Jürgen Jost

Partial Differential Equations

With 10 Illustrations

Contents

Pre	eface	v
Int	roduction: What Are Partial Differential Equations?	1
1.	 The Laplace Equation as the Prototype of an Elliptic Partial Differential Equation of Second Order	7 7 15
2.	The Maximum Principle2.1The Maximum Principle of E. Hopf2.2The Maximum Principle of Alexandrov and Bakelman2.3Maximum Principles for Nonlinear Differential Equations	31 31 37 42
3.	Existence Techniques I: Methods Based on the MaximumPrinciple3.1Difference Methods: Discretization of Differential Equations.3.2The Perron Method3.3The Alternating Method of H.A. Schwarz3.4Boundary Regularity	51 51 60 64 69
4.	1 1 1	77 77 87 94
5.	The Wave Equation and Its Connections with the Laplaceand Heat Equations5.1The One-Dimensional Wave Equation	

	5.2	The Mean Value Method: Solving the Wave Equation Through the Darboux Equation
	5.3	The Energy Inequality and the Relation with the Heat Equation
		with the fleat Equation 121
6.	Th € 6.1 6.2 6.3	e Heat Equation, Semigroups, and Brownian Motion 127 Semigroups
7.		e Dirichlet Principle. Variational Methods for the Solu- of PDEs (Existence Techniques III)
	7.2 7.3 7.4 7.5	Weak Solutions of the Poisson Equation
	7.6	lem. The Finite Element Method
8.	Sob 8.1	olev Spaces and L^2 Regularity Theory
	8.2	Morrey, and John–Nirenberg
	8.3	Boundary Regularity and Regularity Results for Solutions of General Linear Elliptic Equations
	8.4 8.5	Extensions of Sobolev Functions and Natural Boundary Con- ditions
9.	Stro 9.1 9.2	Solutions243The Regularity Theory for Strong Solutions243A Survey of the L^p -Regularity Theory and Applications to243Solutions of Semilinear Elliptic Equations248
10.	Met	e Regularity Theory of Schauder and the Continuity thod (Existence Techniques IV)
	10.2	C^{α} -Regularity Theory for the Poisson Equation
11		Moser Iteration Method and the Regularity Theorem
11.		le Giorgi and Nash
	11.1	The Moser–Harnack Inequality

х

11.2 Properties of Solutions of Elliptic Equations11.3 Regularity of Minimizers of Variational Problems	
Appendix. Banach and Hilbert Spaces. The L^p -Spaces	309
References	317
Index of Notation	319
Index	323

ł