
Review Article

Partial Discharge Characteristics of Polymer
Nanocomposite Materials in Electrical Insulation: A Review of
Sample Preparation Techniques, Analysis Methods, Potential
Applications, and Future Trends

Wan Akmal Izzati, Yanuar Z. Arief, Zuraimy Adzis, and Mohd Shafanizam

Institute of High Voltage and High Current, Faculty of Electrical Engineering, Universiti Teknologi Malaysia (UTM),
81310 Johor Bahru, Johor, Malaysia

Correspondence should be addressed to Yanuar Z. Arief; yzarief@�e.utm.my

Received 13 August 2013; Accepted 28 October 2013; Published 16 January 2014

Academic Editors: X. Wang and W. Zhou

Copyright © 2014 Wan Akmal Izzati et al. 
is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Polymer nanocomposites have recently been attracting attention among researchers in electrical insulating applications fromenergy
storage to power delivery. However, partial discharge has always been a predecessor to major faults and problems in this �eld.
In addition, there is a lot more to explore, as neither the partial discharge characteristic in nanocomposites nor their electrical
properties are clearly understood. By adding a small amount of weight percentage (wt%) of nano�llers, the physical, mechanical,
and electrical properties of polymers can be greatly enhanced. For instance, nano�llers in nanocomposites such as silica (SiO2),
alumina (Al2O3) and titania (TiO2) play a big role in providing a good approach to increasing the dielectric breakdown strength
and partial discharge resistance of nanocomposites. Such polymer nanocomposites will be reviewed thoroughly in this paper,
with the di�erent experimental and analytical techniques used in previous studies. 
is paper also provides an academic review
about partial discharge in polymer nanocomposites used as electrical insulating material from previous research, covering aspects
of preparation, characteristics of the nanocomposite based on experimental works, application in power systems, methods and
techniques of experiment and analysis, and future trends.

1. Introduction

Polymers are widely used as insulation material in high
voltage systems due to their high breakdown strength under
electrical stress. Previously, the conventional polymer micro-
composite with added �ller such as silica (SiO2), alumina
(Al2O3), and titania (TiO2) has been developed, as it may
produce better properties than polymer alone. In electrical
systems, partial discharges (PD) have always been a prede-
cessor to major faults in electrical insulation such as glass,
ceramic, polymers, and composite material. 
e occurrence
of PD may alter the dielectric properties of these materials,
making them less e�ective as insulators.

For this reason, researchers in the last decade have
developed a new material, polymer nanocomposite (also
known as nano�ller-added polymers), which may replace

conventional polymer composites with enhanced proper-
ties [1–12]. 
e new material has overcome the drawbacks
of polymer composite materials, thus providing signi�cant
improvement in terms of mechanical and electrical ero-
sion reduction, mechanical strength enhancement, electrical
breakdown/endurance behavior, and space charge mitiga-
tion. Many studies have proven that polymer nanocom-
posite has better PD characteristics evaluated by erosion
depth, amplitude of PD, and surface morphology of polymer
nanocomposite specimens. 
e study of PD has become a
tool in assessing the quality and performance characteristics
of high voltage equipment.


is paper provides a comprehensive review of partial
discharge on polymer nanocomposites in the �eld of high
voltage insulation. We discuss the concept of nanocompos-
ites, the role of nanoparticles in polymer nanocomposites,
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Table 1: Comparison between microcomposites and nanocompos-
ites.

Properties Microcomposite Nanocomposite

Filler content >50wt% <10 wt%
Filler size 10−6 m 10−9m

Speci�c surface area of �llers Small Large

sample preparation, experimental work and �ndings, appli-
cations in power systems, methods and techniques involved
in the experimental work from previous studies regarding the
partial discharge characteristics of various types of nanocom-
posites, and future trends and challenges in this �eld.

2. Information and Analysis

2.1. Concept of Nanocomposites. Polymer nanocomposites are
de�ned as composites in which small amounts of nanometer
sized �llers are homogeneously distributed in a polymer by
certainweight percentages (wt%). Polymers such as polyethy-
lene (PE), polypropylene (PP), polyamide (PA), epoxy, and
rubber are combined with nano�llers that can be either
alumina (Al2O3), titania (TiO2), silica (SiO2), magnesium
oxide (MgO), clay, or other new materials proposed. For a
better understanding of nanocomposites, the di�erent struc-
tures and dimensions of nanocomposites and conventional
microcomposites should be compared, clari�ed, explained,
and elaborated clearly. According to Tanaka et al. [13],
comparison between nanocomposite and microcomposite
polymer materials can be done based on three major proper-
ties: content of �llers, size of �llers, and speci�c surface area
of �llers. 
e comparison is seen in Table 1 [13].

Nanocomposites require a smaller amount of �llers than
microcomposites. 
erefore, polymer nanocomposites are
almost pure polymer, such that some properties of the
polymer remain una�ected even a�er becoming polymer
nanocomposites, such as the density of the composites.
Besides, with smaller amounts of �llers, the distance between
neighboring �ller in nanocomposites will be smaller than
in conventional microcomposites. Lastly, nanocomposites
have a speci�c surface area that is three orders larger than
microcomposites [13]. 
us, interaction of polymer matrices
with �llers is expected to bemuch greater in nanocomposites.

ese properties may have a further impact on the behavior
of insulation in electrical systems. We may expect improve-
ments in electrical properties such as higher breakdown
strength, higher resistance to partial discharges, and treeing,
as well as in their mechanical and chemical properties.
With the rapid development of nanotechnology research, the
fabrication of insulation can be improved.

Basically, polymer nanocomposites have threemajor con-
stituents: polymer matrix, nano�llers, and interaction zone.
Figure 1 shows a simpli�ed illustration of the constituents of
polymer nanocomposites [14].
e constituents are discussed
further as follows.

(a) Polymer Matrix. 
e polymer matrix has three main
categories: thermoplastics, thermosets, and elastomers.


ermoplastic is from the word “thermo” which means
“heat” and “plastic” is “polymer.” 
ermoplastic material
can be so�ened when heated and can become so�er as the
heat increases. 
ermosets are materials that are heated and
vulcanized to produce a cross-linked structure that ties the
polymer chains to a given shape, while elastomers are elastic
materials that can deform when force is applied and revert to
the original shape when the force is released, such as rubber.

(b) Nano�llers.Nano�llers are classi�ed by their dimensions:
one-dimensional—normally referred to as thin platelets,
two-dimensional—referred to as nanowires or nanotubes,
and three-dimensional—referred to as inorganic oxides [15].
Among researchers in the electrical �eld, the most popular
nano�llers for insulation purposes are one-dimensional, such
as clay or layered silicate, and three-dimensional, for example,
alumina (Al2O3), silica (SiO2), titania (TiO2), and many
more.

(c) Interaction Zone. 
e interaction zone is the interfacial
area between thematrix and the �ller. According to Tanaka et
al. [16], the interaction zones consist of three layers: bonded
layer (�rst layer), bound layer (second layer), and loose layer
(third layer). 
e bonded layer is a transition layer, having
a thickness of 1 nm, which tightly bonds both inorganic
and organic substances by coupling agents. 
e bound layer
is a several nm layer of polymer chains that are strongly
bound, interacting with the �rst layer (bonded layer) and
inorganic particles. 
e loose layer loosely interacts with the
second layer and has a thickness of several tens of nm. Above
these three layers, there is an electric double layer which
has a coulombic interaction that charges the nanoparticle
positively or negatively.

2.2. Types of Polymer Nanocomposites

2.2.1. Polymer/Layered Silicate Nanocomposites. Polymer/
layered silicate nanocomposites are made with one-
dimensional nano�llers. An example of a layered silicate that
has been investigated is Cloisite 15A (naturalmontmorillonite
clay), by Guastavino et al. [17]. 
is clay is modi�ed with
dimethyl ditallow ammonium and the molecular structure
is shown in Figure 2. In the experiment, the combination
of LDPE polymers and this layered silicate nano�ller results
in improvements in terms of breakdown strength and space
charge.

2.2.2. Polymer/Metal Oxide Nanocomposites. Metal oxide
�ller is a three-dimensional nano�ller commonly used
among researchers for insulation improvement in terms of
dielectric properties. As an example of the metal oxides
that have been investigated, Maity et al. [18] made use of
alumina (Al2O3) and titania (TiO2) in their studies. In their
experiment, the polymer matrix was epoxy resin (Bisphenol-
A) and was combined with both alumina and titania. As
a result, the surface degradation of nanocomposite-�lled
epoxy samples showed improvements compared with a neat
epoxy resin sample and a microcomposite-�lled epoxy resin
sample.
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Figure 1: Main constituents inside a polymer nanocomposite composed of polymer matrix, nano�llers, and interaction zone [15].
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Figure 2: Molecular structure of Cloisite 15A [17].

2.3. Role of Nanoparticles in Polymer Nanocomposites. Many
studies have reported nanocomposite �ller giving better
results in terms of electrical properties than microcomposite
�ller when usedwith polymer.
ese �ndingswere con�rmed
by researchers in the high voltage insulation �eld. But the
question is what is actually happening in these composites?
How does the size of particles in�uence their properties? Is
there any part of polymer nanocomposite that has the major
role in this property enhancement?


e interaction zone or interfacial area is the main
factor contributing to the improvement of the insulating
properties of the nanocomposites. 
is is the area that
interfaces between the polymer matrix and the nano�llers.
Its role in property enhancement lies on the interaction zone
due to its characteristic of having a speci�c surface area
that is three orders larger than conventional microcomposite
�ller. 
is provides smaller distances between neighboring
�llers [15]. Nanoparticles have a high surface area-to-volume
ratio, which means that for the same particle loading, a
nanocomposite will have a much greater interfacial area
than microcomposite [15, 19]. Since the interaction zone for
nanocomposite is far larger than for microcomposite, it has a
great in�uence on the property improvement [19, 20].


e role of nanoparticles has been proven experimentally
by Maity et al. [18], who found that nanoparticles bonded
with the polymer matrix (epoxy resin) can resist surface
erosion. Nanoparticles provide a superior interface region
between polymer matrices, and thus a large volume of

Barrier properties

Con�ned ionic conduction

Figure 3: 
e barrier behavior of the nanoparticles inside polymer
matrix [13].

polymer belonging to the interfacial zone results in higher
resistance against erosion. Normally, the degradation occurs
in small isolated regions that form channels around existing
nanoparticles [18], so good dispersion of nanoparticles will
improve the resistance to degradation or erosion on the
surface of the nanocomposite material.

With nanosize particles, it is possible to reinforce the
polymer matrix and to improve the barrier resistance against
gas and liquid permeation [13]. Cao et al. [21] also claimed
that the nanoparticles alter the polymer structure to have
a barrier behavior between their layered structure and the
adjustable anisotropic ionic conductivity between the layers,
as shown in Figure 3.

2.4. Polymer Nanocomposite Structures. Previous fabrica-
tions of nanoparticles were di�cult to disperse. 
anks
to advanced developments in the processing technology of
polymer nanocomposites, the nanoparticles are now easier
to dispersemore evenly.Modern nanocomposites are formed
through shear intercalation and exfoliation, as demonstrated
by the e�ective di�usion of polymer in between organophilic
nanoparticles. Intercalation results in a well-ordered stacked
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Figure 4: 
ree types of nanocomposite structures: (a) tactoid, (b)
intercalation, and (c) exfoliation structure [22].

multilayer structure of nanocomposites, which means there
is a �rm interfacial bond between the polymer and the
nanocomposite. 
e exfoliation structure of the nanocom-
posite is well separated into single layers within a continuous
polymer matrix. 
e bonding for intercalated or exfoliated
layered nanocomposites is through a compatibilizer chemical
added to the polymer matrix. Some nanocomposites may be
formed in tactoid structures, which are structures of con-
ventional composite, for cost reduction, but the nanocom-
posite plays a small role in property improvement. 
us, for
the greatest dispersion and interfacial interaction between
nanocomposites and polymer, the exfoliation structure is
suggested [13, 22, 23]. Figure 4 shows an example of the three
types of nanocomposite structures using claywhen combined
with polymer polyethylene (PET).

2.5. Partial Discharge Characteristics of Nanocomposites Based
on Experimental Results. Some of the previous research
showed good results and improvements in terms of partial
discharge resistance.
us, in order to know the polymer that
reacts best with the nano�llers, we will look into �ve kinds
of base polymers: epoxy, polyethylene, polyimide, polyamide,
and polyethylene/natural rubber.

2.5.1. Epoxy Nanocomposite. A lot of experiments were done
to investigate the electrical properties of epoxy polymer
nanocomposite from 2005 until 2011 [31–42], especially in
PD resistance and voltage endurance of the composites a�er
electrical stress. 
e epoxy resins were mixed with small
amounts of nanolayered silicate, nanosilica, nanotitania, and
nano alumina. Most of them demonstrated that the addition
of the nanoparticles could greatly enhance the properties
of the epoxy despite using the epoxy alone, based on the
following results.

(i) A comparison of the dispersion erosion depth a�er
480 hours of voltage application results in reduction
to 146 �m for the base specimen, 57 �m for the
Nanopox specimen (prepared by dispersing nanosil-
ica in epoxy resin and curing the formulatedmixture)
and 23 �m for the Aerosil specimen (prepared by

directly curing a mixture of epoxy and nanosilica)
[37].

(ii) 
e erosion depth of epoxy/silicon carbide (SiC)
specimens decreases with the increase of nano�ller
content from 0 to 5wt% [32].

(iii) 
e erosion depth of epoxy alumina nanocomposites
due to PD decreases with increasing nano�ller con-
tent (3, 5, and 7wt%) [35].

(iv) Discharge resistance increases with the increase
of nano�ller concentration on the epoxy alumina
nanocomposites from 0.1 wt% to 15 wt% [38]. In
contrast, addition of alumina microcomposites gives
inferior results.

(v) Nanocomposites take the longest breakdown
time, which is 307min, compared to neat epoxy
(186min), microcomposite (94min), and nano-
micro-composite (275min) [39].

(vi) An increment of lifetime was observed on the
nanocomposite material of nanosilicate �lled epoxy
resins and a higher shape of Weibull distribution in
an internal discharge investigation, which means that
the material becomes more homogeneous [26].

From these results, it was proven that by adding a low
wt% of nano�ller concentration to the epoxy resins, the PD
characteristic is remarkably improved.
is is most likely due
to the strong bonding between nanoparticles and the epoxy
at the interfacial region, which causes the polymer material
to hold on to the nanoparticles and resist degradation
[40]. Addition of micro�llers does not make any signi�cant
contribution to restraining PD erosion compared to nano-
sized �llers. However, micro�llers can increase the thermal
conductivity of epoxy composite as an advantage [39]. Due to
such characteristics, some researchers considered combining
the addition of micro�llers and nano�llers in a composite to
compensate for the drawbacks of the micro�ller [31, 39].

Besides, there was also a study about the most compatible
and best PD resistance of nanocomposite when added to
epoxy resin. Kozako et al. [41] conducted an experiment
on surface erosion due to PD on several kinds of epoxy
nanocomposites, in which the specimens are listed as follows:

(a) epoxy + TiO2 5wt%, 15 nm size needle-like shape,

(b) epoxy + SiO2 5wt%, 12 nm size spherical shape,

(c) epoxy + SiO2 5wt%, 40 nm size spherical shape,

(d) epoxy + nano-scaled layered silicate (intercalated
structure) 5 wt%.

Maintaining the same wt% of nano�ller, it was found that
epoxy/SiO2 nanocomposites aremore PD resistant than other
nanocomposites. 
is could be related to the PD resistance
of silica and the bonding strength between silica and epoxy
matrices. Further, the smaller size of epoxy/SiO2 is superior
in PD to that of a larger size, which could be related to its
interfacial area.

In addition, this discovery was also strengthened by
the results obtained by Tanaka et al. [33], who concluded
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that nanosilica performs better than nanolayered silicate and
nanotitania based on their investigation of the nanoe�ects on
PD endurance of epoxy nanocomposite.

2.5.2. Polyethylene Nanocomposites. Various types of poly-
ethylene are used in investigating high voltage insulation
as well as in applications [24, 28, 43–53]. Polyethylene is
a thermoplastic polymer consisting of a long hydrocarbon
chain. Most polyethylenes, such as low density polyethylene
(LDPE), linear low density polyethylene (LLDPE), cross-
linked polyethylene (XLPE), and high density polyethylene
(HDPE), have a great resistance to electrical stress, thus
making them useful as high voltage insulating material
besides their primary use as packaging material, such as
plastic. 
e characteristics of the electrical properties under
investigation include electrical breakdown, partial discharge,
and electrical treeing.
e experimental works regarding this
type of polymer are further explained in this section.

(a) High Density Polyethylene (HDPE). Not much has been
published on the electrical properties of HDPE nanocom-
posites when used as insulating material. Shah et al. [50]
reported that, generally, HDPE organoclay nanocompos-
ite improves the electrical properties, including dielectric
strength, volume resistivity, and surface resistivity. As the clay
content was increased up to 5wt%, the dielectric strength
of the nanocomposite increased signi�cantly. Besides, the
clay particles in the compound are understood to perform
as an obstacle for breakdown by electrical stress applied to
it. Sami et al. [53] conducted experiments on the corona
discharge of HDPE clay nanocomposite using the standard
electrode con�guration of the CIGRE method II. However
no improvement of the resistance to corona discharge was
obtained. 
is result is still under investigation.

(b) Cross-Linked Polyethylene (XLPE). 
e available results
and data for this XLPE polymer with nano�ller are limited.
Recently, in 2011, Tanaka et al. [49] reported evidence of
the enhanced dielectric properties of XLPE nanocompos-
ite especially toward the partial discharge resistance. 
e
samples used in this experiment were based on standard
commercial grade XLPE, to have more impact on improving
the current insulation used for power extruded cables. Two
methods of PD resistance evaluation were conducted in this
investigation: the �rst by using a rod-to-plane electrode and
the second similar to the IEC (b) electrode. 
e �rst method
showed PD endurance that was signi�cantly improved for
the �lled XLPE (with SiO2 nano�llers) compared to un�lled
XLPE (without SiO2 nano�ller). 
e improvement was for
�lled XLPE with surface-treated �ller. On the other hand,
with the second method, which used an electrode similar to
the IEC (b) electrode to test the three heat-treated samples
(un�lled, �lled SiO2 without and with surface-treated �ller),
no apparent improvement was made by the nano�llers. It was
generally speculated that this is due to the e�ect of the �ller
treatment of the samples.

Hence, data analysis and tests by the second method
should be further investigated to achieve satisfactory results.
Overall, the nano�ller SiO2 (5%) signi�cantly improved the

PD resistance as it had modi�ed the sample surface of XLPE-
SiO2 nanocomposite.

(c) Low-Density Polyethylene (LDPE).LDPE is one of themost
common types of polyethylene that is utilized as insulating
material for investigation among researchers [24, 53]. For
instance, Guastavino et al. [24] conducted a study on the
behaviour of LDPE nanocomposite toward surface partial
discharge.
e samples used for this experiment were un�lled
LDPE, LDPE + Si (5 wt%), and LDPE + MMT (5wt%).

e method adopted in this experiment used a sphere-
plane electrode con�guration and the test was carried out by
applying alternating sinusoidal voltage having a frequency of
50Hz and 7,500V amplitude. 
e lifetime of each specimen
was collected and compared. As expected, LDPE without
�ller has the lowest average lifetime compared to the �lled
LDPEs. Besides, it was observed that both LDPEs with
nano�ller have smoother surfaces than un�lled LDPE, which
had deeper erosion. Images of the eroded area on the tested
specimens taken using an optical microscope are presented
in Figure 5.

(d) Linear Low-Density Polyethylene (LLDPE). LLDPE also
has limited literature and data on PD characteristics; hence, it
was a challenge to the researcher to collect information about
the performance towards the PD resistance. Makmud et al.
[44, 45] conducted an experiment on LLDPE nanocomposite
blended with natural rubber toward the PD performance,
characteristics, and tensile properties. 
is proved that the
total PD numbers decrease with the increase of the wt%
of the nano�ller. Even though this experiment used natural
rubber as part of the composition, it can be assumed that this
polymer itself had its own role to restructure and recombine
with nanocomposite for this experiment. From this point of
view, the additional natural rubber in this experiment also
provided a good path for future research in expanding the
development of insulation instead of using only the polymer
base with nano�ller.

2.5.3. Polyimide Nanocomposite. Polyimide is used as the
main insulating material in low voltage motors due to its
excellent characteristic as organic dielectric. However, PD
o�en occurs as a result of the high frequency square wave
pulse in its operation. Due to this condition, Peihong et al.
[54] were attracted to study the performance of polyimide
nanoinorganic oxides composites as the insulating material
inmotors by studying the PD/coronamechanism. Samples of
modi�ed �lm and original �lm of polyimide nanoinorganic
oxides composites with di�erent components and contents
were prepared. 
e test result showed that the modi�ed �lm
has better corona resistance than the original �lm, with the
best compound of modi�ed polyimide + 8% SiO2, which
means the PD resistance was stronger for nanocomposites
than for pure polyimide.

2.5.4. Polyamide Nanocomposite. Kozako et al. [55] con-
ducted an investigation on the properties of polyamide-
6 nanocomposite as an insulating material because of its
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(a) (b)

(c)

Figure 5: Images of the eroded surface of the specimens: (a) LDPE; (b) LDPE + MMT 5%; (c) LDPE + Si 5% [24].

present commercial availability.
ey carried out experiments
on four kinds of material, which are polyamide-6 without
nano�llers and with 2wt%, 4wt%, and 5wt% addition of
nano�ller. 
eir PD resistance was examined using the
IEC (b) electrode system and the surface roughness from
scanning electron micrography (SEM) of each specimen was
analyzed. It was found that the PD current property is almost
identical for each type of specimen, where a small addition
of nano�ller of 2 wt% does not signi�cantly change the
property of PD resistance. From the results, they concluded
that polyamide nanocomposites exhibit much stronger PD
resistance than pure polyamide. Meanwhile, from the SEM
image observation, it seems that surface erosion due to PD
was 5 times shallower for polyamide nanocomposite than for
pure polyamide under certain conditions.

Fuse et al. in 2004 [56] had done the same investigation
utilizing an IEC (b) electrode system with the preparation of
three kinds of polyamide-6 nanocomposites sample, that is,
addition of 2 wt%, 4wt%, and 5wt% layered silicate. Using
an atomic force microscope (AFM), it was observed that the
roughness of the samples’ surface exposed to PD increases
with an increase in the PD exposure period in all the samples.
However, the increment is rapidly reduced when nano�ller is
added to the samples. Hence, from the results, the authors
agreed that the PD characteristic is superior in polyamide
nanocomposites to that in conventional polyamide. Besides,
the presence of layered silicate and strong ionic interaction

at the interface between layered silicate and polyamide
contributed to increasing the endurance against PD activity.

Guastavino et al. [57] investigated the short and
medium/long-term performance of a nano�lled polyamide-
imide enamel wire in the occurrence of PD. Using enamelled
wire twisted pair specimens that followed the IEC 851-5
standard procedure, their behavior was compared with other
two commercial wires based on electric strength tests and
aging tests in the presence of PD. Amazingly, the outcome
of the experiments proved that nanostructured organic-
inorganic hybrid enamels can withstand the electrical stress
due to pulsed voltage waveform together with PD activity
better than the other two kinds of insulated wires for the
low voltage electrical machines that are widely used, that is,
polyamide-imide enamel and polyimide �lm.

2.5.5. Polymer/Natural Rubber (NR) Nanocomposite. An
experimentwas conducted byPiah et al. [58] using the combi-
nation of LLDPE/NR without nano�ller. 
e results revealed
that the sample of 80% LLDPE and 20% NR seems to be
the best composition based on the least damaged and lowest
degradation index. Some researchers have taken advantage of
this �nding to continue studying this combination with the
addition of the nano�llers to increase performance in dielec-
tric properties, and especially PD resistance. Makmud et al.
[44, 45] studied this combination by using LLDPE/NR with
nano�ller MMT and TiO2. Considering the PD resistance,
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Figure 7: Development of switchgear components using nanocomposites [25].

the sample from LLDPE/NR with 4wt% MMT seems to be
the best composition due to the suppression of PD activities
during the aging time.

3. Discussion

3.1. Applications of Nanocomposites in Power System. Nowa-
days, certain �elds in the power system use nanocomposites
to improve the material insulation. For example, in power
delivery, the addition of ZnO in surge arresters results in
excellent performance of that equipment, since electrical
properties such as conductivity or permittivity are strongly
�eld-dependent [21]. On the other hand, nanoparticles like
TiO2 added to a polymer such as polyethylene have been
investigated and studied for application in DC transmission.

is kind of nanocomposite could mitigate the space charge
accumulation that happens due to the large thermal gradient
across the cable.

In 2011, the latest technology development to apply
nanocomposites as the insulating material in high voltage
apparatus was heavy electrical apparatus such as switchgears,
instead of using SF6 [25].
e development of solid insulation
by utilizing nanocomposites that reduce the size and weight
of heavy electrical apparatuses is as shown in Figure 6. 
e
components of the switchgear have also been developed by
using nanocomposites, as shown in Figure 7.

3.2. Processing Techniques Based on Previous Research. Many
types of processing techniques or methods have been applied
in order to prepare a sample of polymer nanocomposite, such
as intercalation [43], ultrasonic agitation [34], direct mixing
[34, 59, 60], fuming or super glue [22, 49], the sol-gel method
[22, 60], organic modi�cation [31], and solubilisation [31].
Besides, some researchers added a chemical coupling agent
and curing agent into the polymer nanocomposite samples
in their preparation to improve dispersion in the polymer
[31, 49]. 
e nano�llers are compounded into the polymer
using an intensive mixer, extrusionmachine, or two-roll mill,
to maximize dispersion and minimize aggregation of the
nano�ller particles [49]. It is expected that well-dispersed
�ller in a polymer nanocomposite sample will give better
electrical properties, such as partial discharge characteristics.

In this section, a few of these processing techniques will
be highlighted as they are the most commonly employed by
researchers in the high voltage insulating material �eld.

3.2.1. Intercalation Method. 
e intercalation method con-
sists of three submethods: polymer or prepolymer intercala-
tion, in situ polymerization, andmelts intercalation. Polymer
or prepolymer intercalation from solution is a process of
intercalating polymers or prepolymers between layers of
inorganic layer substances based on a solvent system. 
e
polymers or pre-polymers are in soluble form and the
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inorganic layer substances, such as silicate layers, that are
swellable. 
e �rst process is swelling the layered silicate in
solvent such as water, chloroform, or toluene, a�er which
the solution is mixed with the soluble polymer, resulting in
an intercalating and displacing process that occurs within
the interlayer of silicate between the polymer chains and the
solvent. At the end, a polymer with layered silicate nanocom-
posite is obtained. Secondly, the in situ polymerization
method involves swelling the layered silicate in the monomer
solution so that a polymer is formed between the intercalated
sheets. 
e polymerization is later conducted by heating or
an organic initiator or catalyst �xed through cation exchange
inside the interlayer. Lastly, the melt intercalation method
has great advantages compared to both polymer intercalation
solution and in situ intercalation polymerization. 
is is for
two reasons: �rst, it is good for the environment because no
organic solvents are involved and second is the compatibility
with industrial processes such as extrusion and injection
molding. 
e process for this method looks simple as it
involves annealing, statically ormaybe under shear, amixture
of the polymer and layered silicate above the so�ening point
of the polymer.
e process of intercalation and exfoliation is
shown in Figure 8.

3.2.2. Sol-Gel Method. 
is method is traditionally used for
fabricating glass and ceramics. Tanaka et al. [13] explained
that the sol-gel will start to react from the metal alkoxide,
M (OR)n and is supposed to be melted in water, alcohol,
acid, or ammonia. 
at metal alkoxide is then hydrolyzed
through reaction with water and produces metal hydroxide
and alcohol as a result.
e example is the formation of three-
dimensional network structures of silica by the polymeriza-
tion reaction followed by hydrolysis [13].

Si(OC2H5)4 +H2O �→ (OC2H5)3Si–OH + C2H5OH
≡ Si–OH +HO–Si ≡�→≡ Si–O–Si ≡ +H2O

≡ Si–OH + (OC2H5)3Si– �→ ≡ Si–O–Si ≡ +C2H5OH
(1)

3.2.3. Direct Dispersion Method. 
is method seems to be
simple, as Tanaka et al. [13] said that the nanoparticles are
chemically modi�ed on their surfaces in order to increase
the compatibility, then mixed and dispersed homogeneously
with the polymers without agglomeration. Examples of this
method include a nanoparticles paste of gold, polyamide-6
nanocomposite with silica nanoparticles surface-treated by
amino butyric acid, and many more.

3.3. Measurement Technique Based on Previous Research.

ere are several techniques for measurement of the PD
resistance or erosion as follows.

3.3.1. CIGREMethod II System. Using this technique, the PD
aging under surface discharge phenomena is observed and
the sample can be evaluated for its long-term endurance as
an insulatingmaterial. Casale et al. [26] investigated PD aging
activity by using this method, applying 50Hz sinusoidal volt-
age 30 kVrms to the test cell which was dipped in mineral oil
at room temperature.
is method inspired other researchers
to investigate PD characteristics on nanocomposite material
[43–45, 47]. 
e cell electrode system is shown in Figure 9.

3.3.2. IEC (b) Electrode System. 
is method is widely used
for the measurement of PD degradation test. Kozako et al.
[27], followed by other researchers [61], have conducted
research using this method to investigate degradation due
to surface discharge. 
e con�guration of this method is
shown in Figure 10. In the experiment, the diameter of the
rod was 6mm with the end curvature of 1mm radius. 
e
authors applied alternating high voltage from 4 kVrms up to
10 kVrms with 50Hz frequency to the specimens (slab shape)
having dimensions of 60mm× 60mm× 1mm.
eperiod for
applying the high voltage was about one hour up to 48 hours,
due to the fact that the PDs were caused to occur at the edge
of the rod electrode. 
is experiment was conducted in an
acrylic cell with silica gel inside to maintain a humidity level
similar to the ambient level.
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Figure 9: Test cell electrode system: (1) plane electrode; (2) acrylic
plate; (3) kapton spacer; (4)Molded sphere electrodewith specimen;
(5) polycarbonate bolt; (6) polycarbonate nut; and (7) nylon washer
[26].
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1
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Specimen R1

�6

Figure 10: IEC (b) electrode con�guration system consisting of a
rod and a plane stainless-steel electrode [27].

3.3.3. Rod-to-Plane Electrode System. 
is electrode system
seems to be similar to the IEC (b) electrode, with the
exception of about 0.2mm air gap vertically implemented
in this electrode system. Tanaka et al. [28] conducted an
experiment using this method and their con�guration is
shown in Figure 11. A high voltage tungsten rod was placed
vertically against a grounding plane electrode to form a pair
of electrodes. 
en a specimen of 1mm in diameter was
inserted between a pair of electrodes with an air gap of about
0.2mm. 
e authors clearly stated that the speci�c gap was
measured and set by using ametal thickness gauge, and epoxy
glue was used to �x the tungsten rod in the center hole of
the acrylic support. 
is experiment used a high-frequency
high voltage source (Trek Model 610E HV Ampli�er) with
a Textronix AFG 320 function generator so that the PD
degrades quickly for observation. 
e applied voltage was
4 kV at 720Hz for a period up to 48 hours.

3.3.4. Sphere Plane Electrode System. 
is measurement sys-
tem is not much used by researchers. Figure 12 shows the
con�guration and specimen setup that was conducted by
Higashiyama et al. [29] for investigating the breakdown

Acrylic support

Specimen

Rod electrode 

Plane electrode 

�1mm

r = 1mm
Gap = 0.2 mm

Figure 11: Rod-to-plane electrode system con�guration with the
0.2mm air gap [28].

Hemisphere-shaped
electrode

Plane electrode

Figure 12: Sphere plane electrode system con�guration [29].

voltages and partial discharge phenomena defects simulta-
neously. 
e 60Hz frequency alternating voltage signal was
supplied by a functional generator to an ampli�er and then
fed to the high voltage transformer.

3.4. Analysis Technique Based on Previous Research. Several
techniques for the PD characteristic analysis have been used
by researchers, which are stochastic, pulse shape and pulse
sequence, and Weibull distribution analysis.

3.4.1. Stochastic Analysis. 
e PD patterns can be derived
analytically by using this technique. It generally evaluates the
charge transferred duringPDactivities andmeasures the time
or alternating current phase of the PD occurrences. 
ose
discharges and the phase angle are of great importance for
the analysis of phase-resolved partial discharge (PRPD). One
of the papers published by Altenburger et al. [62] has an
interesting approach towards the theories of PD. 
ough the
authors are restricted to the discharge patterns of voids in
solid insulation (epoxy resin), the concept seems to be similar
and could be implemented with other kinds of discharges as
well. 
e development of PD analysis via stochastic analysis
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Figure 13: Simpli�ed schematic diagram for PD measurement [30].

contributes to the estimation of the physical discharge param-
eters of PD, especially the �rst electron availability and the
charge removal upon discharge process.

3.4.2. Pulse Shape and Pulse Sequence Analysis. 
e second
approach reviewed is pulse shape and pulse sequence anal-
ysis. Patsch et al. [30, 63] implemented this approach in
their analysis for identifying the PD characteristics. Figure 13
shows the simpli�ed schematic diagram for PDmeasurement
and pulse shape and pulse sequence analysis. In this exper-
iment, the coupling device that was set up in series with
the coupling capacitor, Cc, sensed the apparent PD signal
and then the PD detector detected the PD magnitude and
other parameters. 
e band pass �lter used was within the
range of 40–400 kHz for capturing the PD signal and noise
discrimination. 
en the analog signal was converted to a
digital signal by an A/D converter and a PC captured and
stored the signal for evaluation of the pulse shape and pulse
sequence analysis. 
e typical PD signal and the parameters
that were captured are as shown in Figure 14.

In this paper, every PD parameter was analyzed in
detail and the results were clearly discussed to enable other
researchers to understand the method. Lastly, the authors
clearly stated that this kind of approach has proven to be
a powerful tool for PD measurements compared with the
conventional evaluation approach that focuses on the basis
of phase angle occurrences only.

3.4.3. Weibull Distribution Analysis. Another approach to
analysis is by using theWeibull distribution.
is approach is
also widely used in the engineering �eld, especially to model
the stochastic deterioration of partial discharge phenomena
that occur in insulation [64]. One of the papers that review
this Weibull distribution approach was published by Desh-
pande et al. [65], who highlighted that PDpattern recognition
was of great importance in identifying PD characteristics
or parameters. To execute the recognition, �rst we have to
performappropriate stochasticmodels that involve PDheight
in amplitude and phase distributions, which is also known
as partial discharge height distribution (PDHD) analysis.

en the PD characteristics or statistical parameters can be
found by proper interpretation of the resulting recognition
of the PD source and degradation process. Di�erent sources
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Figure 14: Typical PD and parameters for the pulse shape and pulse
sequence analysis [30].

of discharge will produce di�erent PDHD patterns. In the
Weibull approach, a PDHD from a single PD signal has
two parameters, which are � (scale parameters) and 	
(shape parameters). 
e Weibull functions as in (2) are the
cumulative distribution and the probability density function
for those two parameters [65].

Consider


 (�) = 1 − � [−(��)
�] ,

� (�) = 	�(
�
�)
�−1� [−(��)

�] .
(2)

On the other hand, Schifani and Candela [66] found that
the Weibull distribution gave di�erent lines on a graph for
a di�erent number of PD sources, namely, for a single and
multiple PD source.

3.5. Future Trends and Challenges. As Cao et al. [21] said, it
would be pleasing if we could tailor the use of nanocom-
posites to their dielectric properties such as controlled per-
mittivity, conductivity, electric �eld, and frequency. 
rough
this paper, it can be seen that the development of nanocom-
posites has been moving fast in recent years as it promises
great improvements in the electrical properties of high
voltage equipment, especially in terms of resistance to PD
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phenomena, as PD is among the major causes of serious
faults in electrical systems. 
e research on �lled systems
through nanostructuration of dielectric material will gain
extensive application. Brie�y, the recent and future trends in
nanocomposite development are as shown in Figure 15.

4. Concluding Remarks

In the early 21st century, nanocomposite materials have
attracted great interest in the high voltage research �eld
towards the improvement of insulation materials. For the
long run, with the proof of such great experimental results,
nanocomposites can be exploited widely as electrical insulat-
ing material, especially in the high voltage technology and
engineering �eld. High voltage technology needs a material
that is better in terms of physical strength, degradation
performance, and high insulation integrity at an economical
cost. With proper material, processing and design, this
nanocomposite material can perform as the main factor in
maximizing the lifespan of high voltage equipment and at the
same time minimize maintenance costs.
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