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Abstract: Detection of partial discharge (PD) in switchgears requires extensive data collection and
time-consuming analyses. Data from real live operational environments pose great challenges in the
development of robust and efficient detection algorithms due to overlapping PDs and the strong
presence of random white noise. This paper presents a novel approach using clustering for data
cleaning and feature extraction of phase-resolved partial discharge (PRPD) plots derived from live
operational data. A total of 452 PRPD 2D plots collected from distribution substations over a six-
month period were used to test the proposed technique. The output of the clustering technique
is evaluated on different types of machine learning classification techniques and the accuracy is
compared using balanced accuracy score. The proposed technique extends the measurement abilities
of a portable PD measurement tool for diagnostics of switchgear condition, helping utilities to quickly
detect potential PD activities with minimal human manual analysis and higher accuracy.

Keywords: condition monitoring; partial discharge; PRPD; machine learning; denoising; feature
extraction

1. Introduction

A power distribution system includes a complex electricity supply network in the
form of electrical grids which consist of huge number of power assets such as switchgears,
transformers and power cables. Installed decades ago and nearing the end of their useful
life, the condition of these equipment needs to be monitored and potentially improved
to avoid major disruption. The monitoring and management of such complex network
represents a major challenge for utilities and facility owners. According to statistics, nearly
40% of the faults in switchgears originate from insulation faults or potential defects such as
cracks in the insulator [1], bad electrical contacts, and dirt contamination or dust ingression
of the insulating bush. These insulation defects can excite partial discharge (PD) under
electric fields that are hazardous to insulation. PD is also the consequence of local electrical
stress concentrations in the insulation or on the surface of the insulation [2]. If PD goes
undetected, it will cause safety hazards, power outages and equipment damage [3].

Measurements of ultra-high-frequency (UHF), acoustical emission and transient earth
voltage (TEV) signals have been used to monitor PD activity based on the phenomena of
electromagnetic radiation, acoustic radiation, and transient current flow that accompany
PDs, respectively [4]. However, the detection of PD operationally is an extremely time-
consuming process. PD measurements in substations are usually performed manually
using professional PD instrumentation with scheduled testing periods and are conducted
while the system is in-service [5] to avoid the need to shut down equipment. The diagnosis
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of the PD measurement data is typically achieved by having a trained engineer study the
Phase-Resolved Partial Discharge (PRPD) plots after the data collection process. This also
is a very manual and time-consuming process. There are some automated tools available
but they require the data to be captured “in-phase”. At the substations, the network
is a three-phase system with L1, L2 and L3 phases. The PD can happen at any of the
phases, while the engineer at site can only use the PD tools to acquire the voltage phase
reference through power socket or substation light sources. Thus, the PRPD measured
is with a phase shift, i.e., not “in-phase”. It is challenging for the engineer to obtain
“in-phase” PRPD measurement at the substation, which can otherwise easily be performed
in a lab environment. As such, most of the existing literature discusses the simulation of
partial discharge data in a lab environment, hence assuring that the captured data will
be “in-phase”.

There have been multiple reviews on the techniques used to automatically detect
the presence of PD [6–9]. Most research work [10–12] focuses on using experimentally
simulated PD data obtained in the lab. These research works typically focus more on model
training, testing, and tuning processes. Such simulated experimental lab data pose at least
three concerns:

• Noisy: Data obtained from live environments are often noisy. Although some of
the literature has attempted to re-create noise, such augmentations are typically lim-
ited. Often, they are unable to replicate the full spectrum of noise present in the
actual environment.

• Phase shifted: Data obtained from live environments are often phase-shifted. Most
techniques presented in the literature assume that the captured PD data is in-phase.
However, this is not the case because it is highly likely that the PD data captured on
site at the substations will not be in phase.

• Stochastic: Data from live environments would be very varied as they are obtained
from different substations. There is also the possibility of detecting different type of
PD activities, which may not be well represented in lab experiments.

Research work in recent years has started to focus on using the techniques on real, live
operational data, as in [13,14]. For these papers, the focus has shifted entirely to that of data
cleaning and feature extraction. It may be inferred that applying model training wholesale
without good cleaning and extraction may not yield good results. The proposed technique
presented in this paper employs a clustering method for feature extraction such that partial
discharges with PRPD plots captured out-of-phase can still be detected. This technique
is expected to extend the capabilities of portable PD measurement tools to provide more
accurate and faster diagnostics of PD activities in switchgears.

2. Literature Review

The literature review is divided into three sub-sections to address the different sub-
problems encountered when performing PD diagnostics, namely, noise removal, feature
extraction and machine learning algorithms.

2.1. Noise Removal

Two of the main challenges in noise removal are: (1) the removal of the noise despite
high levels of variability in the data and (2) the removal of noise data while retaining the
actual PRPD points. PRPD data are a 2D plot of the partial discharge activity relative to
the 360 degrees of an Alternating Current (AC) cycle. Hence, the x-coordinates represent
360 degrees and there are only 360 points on the x-axis. The y-axis represents the amplitude
(in dBmV for transient earth voltage measurements) of each discharge event. The PRPD
plot is measured based on 10 s of recording.

This paper will review three different forms of noise removal techniques for the PRPD
data. These techniques will be applied to the PRPD plots (Figure 1) and will demonstrate
some of the issues faced by these techniques. The three techniques reviewed are: (1) erosion
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(a type of image processing technique), (2) Discrete Wavelet Transformations (DWT) and
(3) Fast Fourier Transformation (FFT).

2.1.1. Erosion

Some of the basic forms of noise removal include techniques such as morphological
filters, such as erosion. This form of noise removal has been shown to be effective for
salt and pepper noise. Hence, it can remove random points within the PRPD plot that
can be classified as noise. Running such an erosion algorithm on the plot may yield a
plot where way too much data have been removed and the white noise remains. This is
due to the small sizes of the images and the relatively low repetition rate of the points.
Hence, such erosion techniques tend to also remove the essential data from the image,
as seen in Figure 2. In this situation, the data from Figure 1 were passed through a
2 × 2 erosion filter and the figure shows that the number of datapoints has been very
much removed.

2.1.2. Discrete Wavelet Transformations

Wavelet transforms have been claimed to be an effective way to remove noise in PRPD
plots [3,15]. Two of the highlighted wavelet transformations were DB.5 and bior1.5. Testing
both techniques on the operational data from Section II yields the results shown in Figure 3.
Visually, this indicates that certain forms of white noise persist even after these wavelet
transformations.

2.1.3. Fast Fourier Transform

The final form of noise removal technique is via Fast Fourier Transform. This tech-
nique breaks down the plot into frequency domain, carries out a removal of lower value
frequencies and reconstructs the frequencies back to the image. The removal of white noise
is essential because it may affect the quality of the generated features and, subsequently, the
quality of the machine learning model. As shown in Figure 4, these existing techniques may
not be adequate in the removal of white noise in the PRPD plot. The paper will propose a
white noise removal technique in Section 4.1.

Figure 1. Examples of positive PRPD samples. Top: Internal discharge, Middle: Internal discharge
from 22 kV bushing of oil-filed transformer, Bottom: Internal discharge from voids of solid insulator.
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Figure 2. Data from Figure 1 after going through an 2 × 2 erosion filter.

Figure 3. Data from Figure 1 after undergoing a db5 wavelet transform.

Figure 4. Data from Figure 1 after going through a deconstruction and reconstruction via FFT.

2.2. Feature Extraction
2.2.1. Feature Extraction in Lab Generated PD Data

There are three main techniques for feature extraction for PRPD plots [9]. The first
technique is based on statistical methods such as mean, skewness or Weibull analysis [16,17].
The second technique is based on the extraction of analytical features such as phase angle
patterns from PRPD plots [8,18]. However, these features can be quite susceptible to errors if
the plot is phase-shifted. The final technique is based on dimensionality reduction methods
such as PCA/t-SNE [16,19]. These dimensionality reduction methods are applied at times



Energies 2022, 15, 508 5 of 12

on top of the earlier two techniques to reduce the number of inputs into the machine
learning algorithm.

2.2.2. Two Methods of Applying Feature Extraction

There are two methods to apply these feature extraction techniques. The first
method [17] applies these feature extraction techniques globally across the entire PRPD plot
(of 360 degrees). The extraction of features in this manner will be too general, as much of
the data will be summarized into a handful of features. Hence, the extracted features may
not be the best representation of the data. The second method [12,20,21] tries to solve this by
segregating the PRPD plot into segments, with each segment constituting datapoints from
a few angles. For instance, if each segment consists of 6 degrees, there will be 60 segments
in total. If each segment has 10 degrees, there will be 36 segments in total. The feature
extraction technique will then be applied to each of these segments. For instance, if the
mean, skewness, and kurtosis are features to be extracted from each segment, and there are
60 segments in total, the total number of features will be 180 (3 × 60) features.

2.2.3. Application of Feature Extraction to Operational Data

A survey of recent prior art on PD detection on operational data [10,13,14] shows
that these researchers used specialized techniques for feature extraction. For instance [10]
uses a technique known as Histogram of Orientated Gradient (HOG), an image-processing
technique used to capture edges in images [22]. Ref. [13] uses a bespoke grid filtering
technique. Ref. [14] selects and projects the regions of the PRPD plots. This seems to
suggest that these techniques might not work as well on live operational data for the
following reasons:

• Phase shifted: Data extracted from live operational conditions will always be shifted
in phase. Hence, it will be challenging to apply feature extraction techniques as they
require the data to be in-phase.

• Predetermined segmentation of windows: The PRPD plot is subdivided into prede-
termined plots via grid sizes or phase angles. This may cause issues as the extracted
features would not be directly from the regions indicating the presence of PD, but are
based on predetermined grid spaces instead. These techniques may work very well if
the PRPD plot is in phase, but if the plot is phase-shifted, features may be extracted
from grid spaces in partial regions.

• Multiple types of PD in a PRPD plot: In live operational conditions, it would not be
surprising to find the presence of multiple different types of PD spread out across
different geo-locations. Some of the PRPD plots may also exhibit plots from multiple
PD sources.

Hence, in this paper, a new approach is presented, where the features are obtained
from the clusters in the PRPD plot. These features will be used to determine the presence
of PD across the entire plot, rather than predetermined grid areas. This will be elaborated
further in Section 4.3.

2.3. Machine Learning

Based on papers reviewing machine learning classification techniques on PD
detection, Refs. [6,7,9] two of the most-used techniques are support vector machines
(SVM) [21,23] and artificial neural networks (ANN) [14,20]. Readers are also invited to
refer to [8] for a more in-depth discussion on PD detection using ANNs. Recently, deep
learning techniques such as Convolutional Neural Networks [11] and Long Short Term
Memory (LSTM) [24] have also been used for the classification of PDs. Most of these papers
use experimental lab data, and these data may not be generalizable to live operational con-
ditions. In Section 4.4, this paper will showcase the results on the accuracy of PD detection
when the extracted features are run across a series of classical machine learning techniques.
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3. Operational Data

PD data from distribution substations of local utility company were collected over
a six-month period by technicians using handheld devices. These measurement devices
provide first-cut information on potential PD activities based on their severity level.

Subsequently, the PRPD plots were manually inspected and labeled into positive and
negative plots. This labelling was performed by industrial experts/practitioners from our
collaborator, who owns and operates the national power grid. Similarly, different types of
partial discharge events were labeled and verified by the industrial experts/practitioners.

In total, 452 pieces of Phase-Resolved Partial Discharge (PRPD) 2D plots were obtained.
Out of these, there were 342 negative PRPD plots with no PDs and 110 positive PRPD
plots with PDs. These operational data will typically have different forms of PD [25], an
overlapping PD and the strong presence of random white noise. For instance, even for
internal discharges, the PRPD plots will look vastly different [16]. Examples of these plots
can be seen in Figure 1.

As these data are taken from an operational environment, they clearly show the
presence of noise known as white noise (WN). This white noise is can be observed as a
continuous signal at the bottom of the PRPD plot. A typical machine learning pipeline
for classical classification algorithms (such as decision trees, SVM) involves the following
iterative steps [13]:

• Data cleaning;
• Feature extraction;
• Model training;
• Model testing;
• Model tuning.

This paper presents a novel way of executing the first two steps: data cleaning and
feature extraction of PRPD plots of operational data with WN. Subsequently, various
machine learning models will be trained using these features. The performances of these
models will be individually compared.

4. Methodology

One of the major concerns in the feature extraction techniques used in prior art is that
extraction of features is typically performed globally from the entire PRPD plot (Section 2.2).
This causes the extracted features to be sensitive as there are many factors (such as noise and
possible phase shifts), which may affect the consistency/generalizability of the extracted
features. Hence, one of the main contributions proposed in this paper is the method used
to only carry out feature extraction from specific regions of the PRPD plots that indicate the
presence of PDs. To achieve this, a series of noise-cleaning mechanisms and unsupervised
learning was used to first extract possible PD clusters. The features were then extracted
from these individual PD clusters instead of the entire PRPD plot. This will be explained in
the subsequent subsections.

4.1. White Noise Removal

Two types of noise are typically seen in condition monitoring [7]. They are white
noise (WN) and discrete spectral interference (DSI). The main type of noise in this dataset,
however, is white noise. This type of noise typically appears at the lower y-axis values
of the PRPD plot. A simple threshold would simply not work as the white noise occurs
differs over different datapoints. The use of a histogram would also not be effective as the
repetition rate of white noise also varies randomly.

The method proposed is to determine the baseline where the noise occurs for each
individual plot and subsequently remove it. To determine this baseline, the intuition is the
following: if a PD is present, it presents in the PRPD plot as datapoints hovering over the
white noise. To capitalize on this, the intuition is to determine if there are two clusters of
points available, and if there are, to determine the baseline of the white noise of the lower
cluster. The algorithm for determining the baseline of the lower WN cluster is the following:
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• Bucketing: The PRPD plot consists of 360 degree phases in the x-axis. These 360-degree
are divided into 36 buckets bi for i ranging from 0 to 35. Each bucket bi will have
datapoints from 10 phase angles. For instance, phase angles from 0 to 9 will fall under
the first bucket, phase angles from 10 to 19 to the second, etc.

• Clustering: For each of these buckets bi, a simple k-means that the clustering algorithm
is carried out with the number of clusters set to two. Clustering is then carried out
based only on the y-values (voltage value) alone. The k-means algorithm is randomly
seeded. However, as it is run through the 36 buckets of the PRPD plot, the results are
stable. There are only two possible outcomes of this clustering. In the first outcome,
a PD may be present and the clusters are spaced far apart. In the second outcome, a PD
is not present and the two clusters are spaced close to one another, within the region
of the WN. The rationale for stating that just two outcomes (spaced far and spaced
close) are possible is based on the assumption that the PRPD plot consists of two types
of data, the whitenoise versus the partial discharge voltage values. The assumption
is also that the white noise tends to occupy the lower voltage values but is typically
constant throughout the entire PRPD plot.

• Bucket Baseline Determination: For each bucket bi, a baseline basei is calculated in
the following manner. In the first outcome, where the clusters are far apart in that
bucket, the highest point of the lower cluster is chosen as basei . If the two clusters
are spaced close to one another, the centroid of the higher cluster is chosen as basei.
The rationale for choosing the baseline is to determine the whitenoise voltage level
present in the PRPD plot. In the first outcome, where the two centroids are spaced
far apart, the lower centroid is chosen as the baseline. In the second outcome, where
the two centroids are spaced close to one another, the higher centroid is chosen as
the baseline. Kmeans is run on each bucket to find the two centroids. If the distance
between the centroids falls below a certain threshold, it is deemed to fall under the
second outcome. However, if the distance between the centroids is large, it is deemed
to fall under the first outcome.

• Plot Baseline Determination: The mode of the 36 bucket baselines basemode is finally
calculated and chosen as the baseline value for the PRPD plot. Subsequently, all points
in the PRPD plot where it falls below basemode will be removed. This generates the
plot seen in Figure 5.

After the white noise is removed, the next step is to determine the exact location of the
PD clusters. This will be described in the subsequent subsection.

Figure 5. Data from Figure 4 after removal of datapoints below basemode.

4.2. Clustering of PD Clusters

Typical clustering techniques (such as k-means) requires datapoints to be organized
around a centroid, a scenario which typically would not occur in our case. A better
class of clustering algorithms would be that of density-based clustering (DBScan [26] or
HDBScan [27]), where the clusters are arranged according to the inter-point distances.
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The intuition behind HDBScan is the following: For all point pairs, calculate a metric
that determines how reachable these two points are from each other. This metric, known as
the mutually reachable distance [27] will generate a low score if they are in the vicinity of
each other, but will have a higher score otherwise.

This step creates a score to all edges between the points. A minimum spanning tree [28]
is constructed to determine the lowest collective scores between all these points. A cluster
hierarchy is then built based on the minimum spanning tree. An example of the final
outcome of both the clusters and dendogram can be seen in Figure 6. It can be seen in the
hierarchy that datapoints split off from a cluster where the width of the line represents the
number of points in the cluster. Interested readers are invited to refer to [27,29] for a more
in-depth explanation.

HDBScan was chosen because it is less sensitive to initial parameters (as compared
to DBScan) and, since the clusters are arranged in a hierarchical manner, the number
of clusters extracted based on the data can be controlled. In this paper, the proposed
approach uses the hierarchy within the dendogram to extract only four clusters or fewer
per PRPD plot.

The rationale for four or fewer clusters is because PRPD plots rarely, if ever, have more
than four clusters in the plot. This can be validated through the typical PRPD patterns
library. Using more clusters would create clusters that are too small, which may not capture
the shape of the partial discharge cluster.

Figure 6. An example of how HDBScan works. Left image shows how clusters are formed based on
the inter-points’ distance. Right image shows how clusters are arranged in a hierarchical manner as a
dendrogram. Image reference from [29].

Examples of an extraction of these clusters can be seen in Figure 7. The extracted
clusters are indicative of potential discharge in the PRPD plot. It can be said that the
feature-extraction technique can extract the features of positive PRPD plots, which are
vastly different. Features from these clusters will be extracted in the next section and used
as independent variables for the various machine learning algorithms in Section 4.4.

4.3. Feature Extraction

Finally, the cluster features can be extracted from these individual clusters. In most
prior work, features were extracted from the entire PRPD plot. However, the presence
of PRPD is typically determined through the presence of a few unique shapes of the plot
in specific areas. Hence, the paper proposes the extraction of features based only from
the clusters.
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Figure 7. An example of how HDBScan is applied to the sample images of the dataset. Left column
shows the original dataset. Right column shows the clustered data after white noise removal.
The colors red, yellow and green show the different clusters achieved from HDBScan.

Four features were extracted from each cluster. These are the length of the cluster,
height of the cluster, gradient from top right to bottom left of the cluster and gradient
from top left to bottom right of the cluster. The definitions of these four features are
provided below.

• Length of the cluster: Within a cluster, the rightmost x-value deducted from the
leftmost x-value.

• Height of the cluster: Within a cluster, the top y-value deducted from the
bottom y-value.

• Gradient from top right to bottom left of the cluster: Within a cluster, this gradient is
calculated from the point with the largest y-value and rightmost x-value to the point
with the lowest y-value and leftmost x-value.

• Gradient from top left to bottom right of the cluster: Within a cluster, this gradient is
calculated from the point with the largest y-value and leftmost x-value to the point
with the lowest y-value and rightmost x-value.

The rationale for using these four features of the PRPD plots is because they are able
to distinguish between true PD clusters versus noise or interference. A simple ablation
study was performed to illustrate this and the results are presented in Table 1. These four
features are finally fed into various machine learning algorithms and their accuracy rates
are compared.

4.4. Classification Results

Three main types of classification techniques were used on the extracted features:

• Linear Methods: Logistic Regression and Neural Networks;
• Tree-Based Methods: Decision trees as well as ensemble methods such as Random

Forest (Bagging) and XGBoost (Boosting);
• Kernel Methods: Support Vector Machines.
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A metric known as the balanced accuracy score [30] was used to compare the results
of all these individual techniques. The balanced accuracy score is chosen because it is a
better comparison indicator when the dataset is imbalanced. As there are only two classes
in our dataset, the balanced accuracy score is defined as:

scorebalanced =

PredPD
ActualPD

+ PrednonPD
ActualnonPD

2
In addition to the balanced accuracy score, two other metrics, false positives and false

negatives, were also considered. In our context, false positives are the prediction that the
sample has a PD when it does not. False negatives are the prediction that the sample does
not have a PD when it does. The cost associated with a false positive will be a reduction
of productivity (where staff is deployed to perform a manual confirmation check to verify
the presence of a PD) while the cost associated with a false negative may potentially be
extremely damaging, including blackouts.

The results of these algorithms are shown in Table 2. Decision Tree and XGBoost
algorithms perform best, with a balanced accuracy of 0.95. Typically, ensemble techniques
such as Random Forests or XGBoost perform better than their single-model counterparts
such as Decision Trees. However, due to the small size of the test dataset (about 122), it
is observed that the three forms of tree-based methods do not show a large difference in
balanced accuracy and, in fact, Decision Trees slightly outperform XGBoost by not having
any false negatives. It is, however, interesting to note that, in the current dataset, these
tree-based techniques seem to work slightly better than both neural networks and SVM.

Typically, the business objective requires the number of false negatives to be kept at a
minimum; therefore, based on the limited set of data in the experiment, tree-based methods
such as decision trees, random forests or XGBoost would be most suitable.

A simple ablation study for the features is given in the table below. Assume the
features are named F1, F2, F3 and F4 for length, height, gradient from top right to bottom
left, and gradient from top left to bottom right, respectively. The numbers show the
balanced accuracy scores based on the models in the first column. From this simple ablation
study, we can deduce that the accuracy scores exhibit the highest accuracy and stability
when we utilize all four features.

Table 1. Balanced Accuracy Result Comparison.

Algorithm F1, F2, F3, F4 F1, F2, F3 F1, F2, F4 F1, F3, F4 F2, F3, F4

Decision Tree 0.95 0.82 0.94 0.74 0.87

Random Forest 0.89 0.88 0.89 0.86 0.84

XGBoost 0.95 0.88 0.92 0.87 0.95

Neural Networks 0.89 0.89 0.87 0.88 0.92

Support Vector 0.86 0.86 0.92 0.89 0.84

Logistic Regression 0.69 0.65 0.65 0.47 0.65

Table 2. Balanced Accuracy Result Comparison.

Algorithm Balanced Score Type FP FN

Decision Tree 0.95 Tree Based Methods 2 0

Random Forest 0.89 Tree Based Methods 4 0

XGBoost 0.95 Tree Based Methods 1 4

Neural Networks 0.89 Linear Methods 4 2

Support Vector 0.86 Kernel Methods 5 2

Logistic Regression 0.69 Linear Methods 12 2
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5. Conclusions

In this paper, a clustering technique was presented for data cleaning and feature
extraction of phase-resolved partial discharge (PRPD) plots obtained from real, live sub-
station environments. The 425 live data that were obtained show the strong presence of
random white noise and positive PD plots have overlapping PDs. The proposed clustering
technique performs a series of noise-cleaning mechanisms and unsupervised learning to
first extract possible PD clusters. Subsequently, features were extracted from the individual
PD clusters instead of the entire PRPD plot. Using the proposed methodology, four features
were extracted from each PD cluster, namely, the length of the cluster, height of the cluster,
gradient from top right to bottom left of the cluster and gradient from top left to bottom
right of the cluster. Based on the obtained results, the proposed data-cleaning process
was successful in removing significant white noise in the live data. The feature extraction
technique was able to extract the features of positive PRPD plots, which are vastly different.
The extracted features were fed into six different machine-learning algorithms and the
accuracy was evaluated. Using a small size of test dataset (about 122 plots), it was found
that the tree-based techniques seem to work slightly better than both neural networks and
SVM techniques. In particular, Decision Tree and Random Forest algorithms performs
best with zero false negatives. This is probably due to the relatively small data size, and a
larger data size would better generalize the results. The developed technique is expected
to extend the measurement capabilities of a portable PD measurement tool for more accu-
rate diagnostics of switchgear condition monitoring by helping utilities to quickly detect
potential PD activities and avoiding costly shutdowns.
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15. Mostarac, P.; Malarić, R.; Mostarac, K.; Jurčević, M. Noise Reduction of Power Quality Measurements with Time-Frequency
Depth Analysis. Energies 2019, 12, 1052. [CrossRef]

16. Lai, K.X.; Phung, B.T.; Blackburn, T.R. Application of data mining on partial discharge Part I: Predictive modelling classification.
IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 846–854. [CrossRef]

17. Schober, B.; Schichler, U. Application of Machine Learning for Partial Discharge Classification under DC Voltage. In Proceedings
of the Nordic Insulation Symposium, Vapriikki, Finland, 12–14 June 2019; pp. 16–21. [CrossRef]

18. Chen, P.H.; Chen, H.C.; Liu, A.; Chen, L.M. Pattern recognition for partial discharge diagnosis of power transformer. In
Proceedings of the 2010 International Conference on Machine Learning and Cybernetics, Qingdao, China, 11–14 July 2010;
Volume 6, pp. 2996–3001. [CrossRef]

19. Raymond, W.J.K.; Illias, H.A.; Abu Bakar, A.H. High noise tolerance feature extraction for partial discharge classification in XLPE
cable joints. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 66–74. [CrossRef]

20. Sukma, T.R.; Khayam, U.; Suwarno; Sugawara, R.; Yoshikawa, H.; Kozako, M.; Hikita, M.; Eda, O.; Otsuka, M.; Kaneko, H.; et al.
Classification of Partial Discharge Sources using Waveform Parameters and Phase-Resolved Partial Discharge Pattern as Input for
the Artificial Neural Network. In Proceedings of the 2018 Condition Monitoring and Diagnosis (CMD), Perth, Australia, 23–26
September 2018; pp. 1–6. [CrossRef]

21. Hao, L.; Lewin, P.L. Partial discharge source discrimination using a support vector machine. IEEE Trans. Dielectr. Electr. Insul.
2010, 17, 189–197. [CrossRef]

22. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1,
pp. 886–893. [CrossRef]

23. Hao, L.; Lewin, P.; Dodd, S. Comparison of support vector machine based partial discharge identification parameters.
In Proceedings of the 2006 IEEE International Symposium on Electrical Insulation, Toronto, ON, Canada, 11–14 June 2006;
pp. 110–113. [CrossRef]

24. Nguyen, M.T.; Nguyen, V.H.; Yun, S.J.; Kim, Y.H. Recurrent Neural Network for Partial Discharge Diagnosis in Gas-Insulated
Switchgear. Energies 2018, 11, 1202. [CrossRef]

25. Reid, A.J.; Judd, M.D.; Fouracre, R.A.; Stewart, B.G.; Hepburn, D.M. Simultaneous measurement of partial discharges using
IEC60270 and radio-frequency techniques. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 444–455. [CrossRef]

26. Ram, A.; Jalal, S.; Jalal, A.S.; Kumar, M. A Density Based Algorithm for Discovering Density Varied Clusters in Large Spatial
Databases. Int. J. Comput. Appl. 2010, 3, 1–4. [CrossRef]

27. Campello, R.J.G.B.; Moulavi, D.; Sander, J. Density-Based Clustering Based on Hierarchical Density Estimates. In Proceedings of
the Advances in Knowledge Discovery and Data Mining, Gold Coast, Australia, 14–17 April 2013; pp. 160–172. [CrossRef]

28. Pettie, S. Minimum Spanning Trees. Encycl. Algorithms 2008, 541–544. [CrossRef]
29. McInnes, L.; Healy, J.; Astels, S. hdbscan: Hierarchical density based clustering. J. Open Source Softw. 2017, 2, 205. [CrossRef]
30. Brodersen, K.H.; Ong, C.S.; Stephan, K.E.; Buhmann, J.M. The Balanced Accuracy and Its Posterior Distribution. In Proceedings

of the 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 3121–3124. [CrossRef]

http://dx.doi.org/10.1109/MEI.2015.7303259
http://dx.doi.org/10.3390/en13164103
http://dx.doi.org/10.3390/en13205496
http://dx.doi.org/10.3390/machines5030018
http://dx.doi.org/10.3390/en14113267
http://dx.doi.org/10.1590/2179-10742017v16i3854
http://dx.doi.org/10.3390/en12061052
http://dx.doi.org/10.1109/TDEI.2010.5492258
http://dx.doi.org/10.5324/nordis.v0i26.3268
http://dx.doi.org/10.1109/ICMLC.2010.5580736
http://dx.doi.org/10.1109/TDEI.2016.005864
http://dx.doi.org/10.1109/CMD.2018.8535675
http://dx.doi.org/10.1109/TDEI.2010.5412017
http://dx.doi.org/10.1109/CVPR.2005.177
http://dx.doi.org/10.1109/ELINSL.2006.1665269
http://dx.doi.org/10.3390/en11051202
http://dx.doi.org/10.1109/TDEI.2011.5739448
http://dx.doi.org/10.5120/739-1038
http://dx.doi.org/10.1007/978-3-642-37456-2_14
http://dx.doi.org/10.1007/978-0-387-30162-4_239
http://dx.doi.org/10.21105/joss.00205
http://dx.doi.org/10.1109/ICPR.2010.764

	Introduction
	Literature Review
	Noise Removal
	Erosion
	Discrete Wavelet Transformations
	Fast Fourier Transform

	Feature Extraction
	Feature Extraction in Lab Generated PD Data
	Two Methods of Applying Feature Extraction
	Application of Feature Extraction to Operational Data

	Machine Learning

	Operational Data
	Methodology
	White Noise Removal
	Clustering of PD Clusters
	Feature Extraction
	Classification Results

	Conclusions
	References

