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Abstract: Partial discharge measurement is an 
important means of assessing the condition and 
integrity of insulation systems in high voltage 
power apparatus. Commercially available partial 
discharge detectors display them as patterns by an 
elliptic time base. Over the years, experts have 
been interpreting and recognising the nature and 
cause of partial discharges by studying these pat- 
terns. A way to automate this process is reported 
by using the partial discharge patterns as input to 
a multilayer neural network with two hidden 
layers. The patterns are complex and can be 
further complicated by interference. Therefore the 
recognition process appropriately qualifies as a 
challenging neural network task. The simulation 
results, and those obtained when tested with 
actual patterns, indicate the suitability of neural 
nets for real world applications in this emerging 
domain. Some limitations of this method are also 
mentioned. 

1 Introduction 

Electrical insulation plays an important role in any high 
voltage power apparatus. Partial discharges (PDs) occur 
when the local electric field exceeds the threshold value 
and results in a partial breakdown of the surrounding 
medium. Its cumulative effect leads to degradation of the 
insulation. PDs are initiated by the presence of defects in 
manufacture or choice of higher stresses dictated by 
design considerations. Measurements are made to detect 
these PDs and monitor the soundness of insulation 
during service life of the apparatus. PDs manifest as 
sharp current pulses at the terminals, and its nature 
depends on the type of insulation, defect present and 
measuring circuit and detector used [l]. 

Commercially available PD detectors generally display 
P D  pulses on an elliptic time base. These detectors are 
widely used in manufacturing, research and testing estab- 
lishments. The phase position and spread of the pulses 
depend on the nature of PD source and thus provide 
important features for interpretation. These patterns are, 
at times, complex depending on the type of defect 
producing PD, and can further be complicated owing to 
interference. A few typical patterns are shown in Fig. 1. 

A systematic presentation of different types of PD 
display patterns, along with explanations, were first 
reported by CIGRE Working Group 21.03 in 1969 [2] 
and recently, in 1988, by Nattrass [3]; these form the 
knowledge base in this domain. Over the years, experts 
have used this pictorial knowledge base and associated 
patterns obtained during PD tests to the ones which 
yielded the best match to arrive at conclusions about the 
behaviour of the insulation system under test. 

Availability of personal computers and expert system 
building tools brings up possibilities of automating this 
process. A study of the literature shows, however, that no 
attempt has been made to use this pictorial knowledge 
base for PD interpretation. In recent years, pulse height 
analysis data (pulse height versus pulse phase and pulse 
count versus pulse phase) along with related statistics, 
obtained during PD tests in laboratories, have been used 
in conjunction with expert systems [4]. This approach 
builds up a statistical database for PD interpretation. 
Full success was reported for only simple cases (point 
and surface discharges). Gulski and Krueger [ S ] ,  instead 
of using expert systems, stored templates comprising sta- 
tistical parameters relating physical defect models (eight 
in number), and compared them with those obtained in 
further tests. However, results given by them for two 
cases clearly show the low discrimination of the method. 

Thus, there have been no attempts to codify all the 
available pictorial knowledge so as to consider all the PD 
patterns for classification. One such effort was reported 
by the authors to classify most of the PD patterns using 
an expert system based pattern recognition approach [6]. 
Lack of a learning phase, and a need to manually extract 
and codify rules, were its drawbacks. Hence newer 
approaches were studied. 

Multilayer neural networks (NNs) with back propaga- 
tion algorithms have been successfully used in various 
applications as pattern classifiers (Speech, Sonar, EEG, 
ECG, etc.) [ 7 ,  81. The advantage of NN over other classi- 
fiers is its ability to learn from examples, thereby avoid- 
ing explicit coding of knowledge as rules, as in rule based 
systems. Knowledge in the training set is extracted and 
stored in the connection weights and neuron biases 
during the learning phase. Such an implicit rule gener- 
ation mechanism enables use of real world signals or pat- 
terns for on-line training, which is difficult to implement 
with rule based systems when considered alone. However, 
Gallant [9] presents arguments regarding possibilities for 

 



circumventing this problem by the combined use of 
neural nets and expert systems, which he calls ‘connec- 
tionist expert systems’. Secondly, the PD pulses and the 
resulting patterns often change, being functions of 
voltage, duration of its application, nature of defect, 
amount of ageing etc. Hence patterns only resemble each 
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(1 PD in dielectric bounded cavity 
b PD due to gas bubbles in insulating liquid in contact with moist cellulose 
e and d interferences due to asynchronous machine and radio station emission 

Sample P D  and interjerence patterns 

other broadly, even though they are due to the same 
cause. Lastly, the ability of NN to generalise and be 
invariant to some transformations after training are some 
of the highly desirable features which justify its use in the 
current problem. 

During the latter half of 1991, a few researchers have 
also used NN for PD recognition. Murase et al. [lo] 
used real world signals from artificially created defects in 
insulation models as inputs. They employed NN with one 
hidden layer, and reported success for three types of pat- 
terns (protrusions on high voltage conductors, grounding 
enclosures and voids in insulators). Hiroshi and Takeshi 
[l 11 and Hozumi [12] describe NN based systems, used 
primarily as PD alarm processors for specific applica- 
tions such as PD in XLPE cables, and tree initiation in 
needle shaped voids in epoxy resin, respectively. There- 
fore it emerges that, apart from Murase et al., no 
researcher seems to have reported on the subject of this 
paper. 

This paper reports simulation results of a system 
capable of automatically classifying the different PD pat- 
terns including those imposed by interference using a 
feedforward NN with two hidden layers. The displayed 
patterns are captured with a CCD camera, processed to 
extract the PD signal to form the input. Alternatively, 
PD signals can be digitised and used as input. The 
network output indicates the class to which the input 
belongs. A brief summary of results for actual PD pat- 
terns is also given. 

2 

2.1 Choice of NN structure 
Essentially, NN evolve a nonlinear mapping between the 
input and output in the training phase during which the 
weights and biases are iteratively updated using the back 
propagation algorithm [S]. In this supervised learning, 
input-output pattern pairs are repeatedly fed until the 
squared error over the entire training set is a minimum. 
The factors influencing convergence are 

(i) complexity of the decision regions to be formed 
(ii) network topology and size 
(iii) initial choice of weights and thresholds 
(iv) values of learning and momentum rates, 6 and a 

(v) input pattern presentation order. 

A single layer NN can classify only linearly separable 
signals, and is inadequate to achieve complex mappings 
as required in the present problem. This limitation is 
overcome by introducing additional hidden layers 
between input and output. The number of hidden layers, 
and the nodes they must contain to achieve a desired 
input-output mapping, depends on the complexity of the 
input pattern space to be partitioned. Lippmann [7] has 
demonstrated that, with three layers (two hidden and one 
output), any complex decision region can be generated. 
For simple problems, like XOR, the number of hidden 
layer nodes required for obtaining convergence with near 
certainty is related to the number of input presentations 
[S]. For NN with one hidden layer, bounds and condi- 
tions on the number of hidden layer nodes have been 
derived [13-151. It is shown that any arbitrary training 
set with ‘p’ patterns can be ‘exactly’ implemented with 
(p - 1) hidden layer nodes. Sartori and Antsaklis [14] 
caution that this bound is sure to implement the training 
set ‘exactly’ but may not be the best way to ensure 
correct classification (which is most essential in any 
classifier). In the absence of such a theory for NN with 
more than one hidden layer, it seems logical to use results 

Network topology and training set 



presently available along with experience in the problem 
domain to estimate the number of hidden layer nodes 
required. 

At the time of writing this paper, the authors came 
across the conditions on bounds for the number of 
samples needed for neural learning 1163. However, for 
this method to be implemented, it is necessary to ensure 
sufficient number of 'boundary samples' (i.e. those close 
to the cluster boundary). This involves preprocessing of 
the training set to compute the number of clusters and 
selection of those close to its boundary. These computa- 
tions, being large and involved, have not been attempted. 

The NN has the capacity to 'memorise' and 'gener- 
alise' to some extent. It is said to generalise when the 
input-output relation is nearly correct for stimuli never 
encountered during training. Highly layered networks 
tend to generalise better [17, 181, owing to robust inter- 
nal representation and are more fault-tolerant due to 
wider spread of mapping information. PD phenomena 
are statistical in nature and hence the phase position and 
individual pulse amplitudes vary within some limits. NN 
must be made invariant to these variations. Among the 
methods cited [ 191, invariance is achieved by including 
more than one example per class in the training set. This 
choice is justified as each class has many exemplar pat- 
terns, and inclusion of as many as possible (limited by 
training time, memory requirements etc.), will result in 
better exposure of NN to different inputs, and hence 
develop far greater ability for generalisation. 

2.2 Formation of training set 
A study of the pictorial knowledge base, and accompany- 
ing literature, resulted in identification of 21 key patterns. 
Of them, seven are due to interferences only. These pat- 
terns are often present with no test voltage applied and 
sometimes rotate continuously owing to their asynchro- 
nism with the time base. These distinguishing features are 
used by experts to identify and minimise them with suit- 
able line filters and shielded test enclosures. If all the pat- 
terns are considered together, there is a high likelihood of 
the pattern features getting mixed up leading to con- 
vergence problems. Also, information about stationarity 
of the pattern cannot be conveyed in a single capture of 
the image, and comparison of multiple raw video images 
is cumbersome. Therefore they have to be considered 
separately. Hereinafter, these will be referred to as Cate- 
gories A (14 in number) and B (7 in number), respectively. 
Table 1 contains their descriptions. Fig. 2 shows the logic 
used for discrimination. 

The pattern generating program also takes into 
account the possible random variations of pulse ampli- 
tudes and pulse phase positions. These ranges were 
derived after studying the literature on the pictorial 
knowledge base. The details of PD generation, display 

I I 

pattern rototes 

L 

3 

c 
a 

' 
Fig. 2 Logic to classify input into Categories A or B 

and signal extraction are given in Appendix 7. The posi- 
tive part of the extracted signal is averaged every lo" 
(electrical) and then scaled to yield 36 continuous valued 
samples. The amount of information lost by not includ- 
ing the negative part of the PD signal in the training set 
is minimal, as in most cases, the positive and negative 
parts are symmetrical. If desired, another NN can be 
used for it, and the resulting output vectors are to be 
logically combined to obtain the final output. The exam- 
ples belonging to a particular class, if more than one, are 
all put together in the training set. 

Table 1 : Descrivtion of PDs of categories A and B 

Category A 

Class Description of PD Fig. no. in 

Nattrass 

paper P I  

1 
2 

3 

4 

5 

6 

7 
8 

9 

10 

11 
12 

13 

14 

PD in solid dielectric bounded cavity 
Gas bubbles in insulating liquid in contact 

with moist cellulose (e.g. oil impregnated 

paper) 
Cavity between metal on one side and 

dielectric on the other 
PD in number of cavities of various shapes, 

or on external dielectric surface, or high 
tangential stress 

PD at fissures in elastomeric insulation in 
the direction of the field 

Active growth of a carbon track in organic 
material 

Sharp point in an insulating liquid 

Sharp point on a high voltage conductor 
Sharp point on grounded enclosures 
Conducting particles formed in voids in 

Laminar cavities in machine insulation 
Surface discharges between external metal 

Tracking of contaminated organic insulation 

Contact noise 

cast resin insulation 

and dielectric surfaces 

originating from a cavity 

5 
15 

17 

9 

7 

24 

42 
40  

11 

13 

19 

26 

38 

- 

Cateaow B 

Class Descriotion of interference Fig. no. in 

Nattrass 

paper PI 

1 Six pulse thyristor or mercury arc rectifier 44 
2 Asynchronous machine 46 
3 Fluorescent lamps 45 
4 High frequency power amplifier or oscillator 4 1  
5 Radio broadcast 48 
6 Amplifier noise - 

7 Induction heater and ultrasonic generators 49 

2.3 Program validation 
The program for back propagation was tested with the 
XOR problem using two input nodes, two nodes in first 
and second hidden layers and one output node (2-2-2-1). 
Though this structure is superfluous, it helped study of 
the network behaviour with respect to various param- 
eters. With the tolerance fixed at 0.1%, the network con- 
verged in 21 out of 30 trials within 2000-4000 sweeps for 
6 values of 0.9 and 0.8. When tested with 6 = 0.3, it took 
1 1  OOO-15 000 sweeps to converge (26 out of 30 trials), but 
it failed on all 25 trials except one with 6 = 0.1, even after 
32 500 sweeps, taking about 260 s of CPU time on a 386 
running at 16 MHz (error being computed every 250 
sweeps). 

Initial connection weights and neuron biases were 
chosen randomly in the range: 0.0-0.5, and an a value of 
0.9 was used throughout. Weights and biases are updated 



after presentation of each pattern. Neurons in all the 
layers are fully connected. One sweep implies one iter- 
ation over the entire training set. The error is computed 
as the total squared difference between the desired and 
actual outputs over the entire training set divided by the 
total number of patterns. 

3 Results and discussions 

has a value of 0.95. The active neurons and pathways 
shown in Figs. 3a-d are the major contributors for yield- 
ing a ‘high‘ at the appropriate output node. The rest of 
the connections (not shown) are also equally important 
because they have to interfere cooperatively to produce a 
‘low’ at the rest of the output nodes. The figures also 
illustrate the way in which the input-output mapping 
information is realised and the generalisation achieved. 

3.1 Graphical internal representation 
Efforts have been made by various workers to explain 
how the information is internally coded. Pao and Sobajic 
[20] propose ‘that, in NN computing, the very processing 
itself encodes knowledge’. Other explanations [ 18, 211 
are based on strong and weak correlations formed by 
computing the angle between n-dimensional vectors com- 
prising the weight matrices. In this paper, another depic- 
tion is presented. 

The connections between active neurons in the three 
layers of a converged network for two different classes of 
input are given in Figs. 3a-d. The active neuron is 
defined as one whose output is greater than 0.9 if in the 
first and second hidden layer, and greater than 0.8 if in 
the output layer. Initially, all the active neurons are 
found in the three layers for the given input. Only those 
connections between active neurons are considered for 
which 

w(i, j) * neuron(i) + bias(j) > 3.0 

where w(i, j) is the weight between active neurons i and j, 
neuron(i) is the output of active neuron i ,  and bias(j) is 
the threshold of active neuron j .  A value of 3.0 for the 
above limit is chosen because, then, the sigmoid function 

3.2 Results for Category A patterns 
Case I :  Initially, four distinct classes among Category A 
were chosen with the aim of probing the program further. 
Their input signals had the following characteristics 

(i) a pulse group at each voltage zero 
(ii) one pulse group at the positive voltage peak 

(iii) one pulse group at the negative voltage peak 
(iv) a pulse group at each voltage peak. 

As the inputs were distinct, the NN converged on all 
trials. 

Case 2: Here, with all classes included, various 6 values 
(0.95, 0.9, 0.8, 0.75, 0.6, 0.45, 0.25) were tried which led to 
failures on all trials. On examination of the pertinent 
learning curves, it was found that they were very slow in 
learning or oscillatory. Values of 6 of 0.6 and 0.45 
resulted in reduced oscillations, and showed only signs of 
convergence. In these trials, 4OOO sweeps took about 180 
minutes (error being computed every 25 sweeps). A toler- 
ance of 0.5% is used in all these cases. 

Case 3 :  Attributing these to overfitting effects, a reduced 
network with 6 chosen as 0.6 and 0.5 were tried, and it 
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Table 2: Details o f  trainina for Cateaorv A Datterns 

Case Number of Structure Examples 6 Number of Number of Number of 
classes of N N  used Der class trials successes sweeps* 

1 4  36-12-84 1 0.9 16 16 1000 
2 14 36-30-22-14 1 0.95 7 0 

to 
0.25 

3 14 36-24-14-14 1 0.6 6 4 3500 
14 36-24-14-14 1 0.5 9 6 3750 

4 12 36-24-12-12 2 0.6 9 7 2500 
14 36-24-14-14 5 0.6 9' 6 780 

* values give average of successful trials 
' failed even after 4000 sweeps $n each trial 
- includes one platead, considered as failure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

yielded repeatable results. When tested for generalisation, 
it was found that all the converged NNs had implement- 
ed the training set, but invariance to realistic changes in 
phase and amplitude were just satisfactory which called 
for further improvement. 

Case 4 :  This improvement was achieved by including ini- 
tially two examples per class, and then increasing them to 
five examples per class. In addition to this, it resulted in a 
reduced number of sweeps to obtain convergence. Figs. 4a 

and b show sample learning curves depicting them. Table 
2 summarises these results. 

' 0  10 20 30 40 50 60 

number of weeps ,  x 50 
(1 

10 15 20 25 30 
number of sweeps, x 20 

b 

Fig. 4 Sample learning curues 

Note reduction in number of sweeps far convergence 
(1 Case 4, 2 examples/class 2750 sweeps e-e-e 

b Case 4, 5 examples/class 580 sweeps e-e-e 
3000 sweeps 0-0-0 

5-50 sweeps 0-0-0 

Extensive recognition tests were carried out on four 
converged NNs (Category A) to check their gener- 
alisation abilities. It involved feeding inputs different 
from those used during training. Table 3 summarises 
these results. The overall recognition rate lies in the range 
of 83 to 88%. 

On 9 out of 30 trials with 6 = 0.9 and 4 out of 30 trials 
with 6 = 0.3, in the XOR problem, plateaux were 
encountered. Most of the connection weights and biases 
of the network, after failure, had attained high values. 
These high values cause saturation of the activation func- 
tion, resulting in back propagating a very small error, 
and hence causing learning to come to a standstill. The 
algorithm failed, even with an increased iteration count 
(25000). A similar condition was observed on one 
occasion (in nine trials) in Case 4. Both these learning 
curves are shown in Fig. 5. Watrous [22] has drawn 
attention to such plateau regions. A very similar situation 
is reported by Wasserman [23] which he calls 'paralysis'. 

Table 3 :  Recognition results for Categories A and B 

Categoty A 

Class Number of Number of correct 
test classifications 
patterns 

"-1 "-2 "-3 "-4 

1 86 69 77 77 67 
2 71 60 51 54 55 
3 83 76 68 69 72 
4 91 73 86 87 79 
5 77 71 57 65 69 
6 82 61 64 70 60 
7 75 64 71 61 73 
8 45 43 45 38 45 
9 50 50 41 50 49 

52 38 13 31 10 58 
11 62 58 62 49 61 
12 59 58 58 59 56 
13 56 50 50 39 40 
14 58 56 55 56 57 

Total 953 88% 86% 83% 85% 

Category B 

test classifications 
patterns 

Class Number of Number of correct 

"-5 "-6 " - 7  NN-8  

1 55 34 36 48 44 
53 52 52 52 2 58 

3 55 46 40 50 50 
4 40 37 13 26 33 
5 60 50 51 59 60 
6 55 21 50 53 32 
7 30 30 30 30 30 

Total 353 77% 77% 90% 85% 



This is a drawback of NN; suggestions or methods for 
overcoming such situations are, unfortunately, not given 
in the literature. 
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3.3 Results for Category B patterns 
Out of the seven patterns, three are quite similar 
(interferences due to radio stations, amplifier noise and 
high frequency sources). To correctly differentiate among 
them, the samples have to be large enough to reflect their 
characteristics distinctly, since averaging smoothens out 
finer details. Hence 90 sample points were taken for these 
patterns (averaging the extracted signal every 4" 
(electrical)). 

The network structure of 90-16-8-7 with five exam- 
ples per class was considered (in all, 35 patterns). 6 values 
of 0.6, 0.4, and 0.3 were tried, resulting again in highly 
oscillatory error curves. These reduced with a decrease in 
6 value. Repeatable results were obtained with 6 = 0.25, 
converging on all five trials, with an average sweep of 
about 1800. Tests for invariance showed good results. To 
improve these further, eight examples per class was con- 
sidered with the same topology (in all, 56 patterns), but 
repeatable results were obtained only with a further 
reduced 6 value of 0.15, converging in five out of six 
trials, with an average sweep of about 1400. 

Recognition tests were done on four converged NNs 
to ascertain their generalisation capability. Table 3 con- 
tains these results. As can be seen, NNs 7 and 8 yield 
better results indicating superior generalisation. This 
clearly indicates that not all converged networks gener- 
alise to the same extent. It is believed that the networks 
might have reached different optimal points on the error 
surface, owing to different starting points with all imple- 
menting the training set to the same extent (tolerance 
value). Lack of an index or norm to define and quantify 
the amount of generalisation, makes such generalisation 
tests necessary to ascertain this aspect. Such tests were 
done and Table 3 gives the results. 

4 

Even though the NNs had performed satisfactorily in the 
generalisation tests, since they were trained with synthetic 
patterns, their performance when fed with actual PD pat- 
terns had to be ascertained. So five types of Category A, 
and 3 types of Category B patterns, were obtained and 
displayed on the PD detector screen in the conventional 

Recognition of actual PD patterns 

way. They comprised both complex and simple patterns. 
Recognition tests with these actual patterns yielded an 
overall recognition rate of 84% ("-3) for Category A 
patterns and 79% ("-7) for Category B patterns, for the 
best performing NNs. Further details can be found [24]. 
Fig. 6 shows the processed camera output for PD due to 
surface discharge on a cable specimen, along with the 
extracted pattern. The increased levels of noise and 
pulsive interferences (not trained for) in the actual pat- 
terns, as is evident in Fig. 6, may be the reason for the 
lower levels of performance of the NNs. 

Fig. 6 Sample of processed camera output and extracted pattern for 
actual PD due to surJace discharge on cable 

Two large and symmetncal pulsive interference present dunng measurements 
have also been captured 

5 Conclusions and future prospects 

The success obtained in classifying both synthetic and 
some actual PD patterns using NN demonstrates the 
utility of this approach and, in particular, its structure 
with two hidden layers. It is believed that the network 
parameters arrived at will be of help to researchers pro- 
ceeding to use NN for this application. An element of 
empiricism, however, exists in the selection of required 
constants owing to lack of a theoretical foundation for 
NN with more than one hidden layer. Perhaps these 
issues will be addressed by NN experts in years to come. 

In an interesting approach published very recently by 
Low, Lui et al. [25] ,  use of a connectionist expert system 
with adaptive learning abilities has been proposed. This 
system's incremental learning ability is very useful when 
knowledge about newer examples are to be included 
without resorting to a fresh training cycle. Utility of such 
systems in this domain is yet to be explored fully. 

Of the other alternatives being examined by the 
authors, hidden Markov models (HMMs) emerge as the 
most appropriate. As HMM has been very successfully 
applied in speech recognition and, because the shape and 
characteristics of the PD signals closely resemble speech 
signals, it is expected to perform well in this domain too. 
Preliminary results for a 4 class PD problem (Case 1, 
Table 2) has yielded encouraging results. Full details will 
be reported separately. 
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7 Appendix 

7.1 Generation and display of PD patterns 
A simple and effective, though artificial, method to 
display any complicated PD pattern on the oscilloscope 

has been developed. This avoids use of high voltage 
transformers and components and the need for specimens 
with specific defects for generating required patterns. The 
idea is to use a real time digitiser in the reverse way (is. 
the required signals are computed and transferred to its 
memory; these are then used to create the pattern on an 
oscilloscope). To generate any pattern, the x- and y-axis 
signals corresponding to one 50 Hz cycle (20 ms) have to 
be computed. The x-signal (sine wave) is computed and 
stored while the y-signal (cosine wave plus PD pulses) is 
computed each time depending on the type of pattern to 
be displayed. The two signals are transferred via GPIB 
to the digitiser as 2 k points at 10 ps sampling rate and 
10-bit resolution. Sample patterns shown in Fig. 1 have 
been generated in this manner. 

7.2 Extraction of input signal 
A digitising camera is used to capture the displayed 
image. The compressed raw video file is then unpacked 
and displayed on the PC screen after normalisation and 
thresholding. A spot on the oscilloscope as seen by the 
eye does not correspond to a single pixel on the CCD 
array, but to many pixels (8 to lo), depending on its 
intensity. Therefore all displayed traces have to be cor- 
rected for this dispersion. First, a reference ellipse is cap- 
tured and displayed on the PC screen from which a single 
pixel wide reference ellipse is extracted in the following 
manner. A boundary tracing algorithm was developed 
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Procedure for extracting signal patterns 



and used to trace the inner and outer contours, from 
which the reference ellipse is computed and stored. 
Movable zero voltage markers on the elliptic trace are 
provided on the PD detectors for clarity in viewing pat- 
terns and hence made software selectable. The reference 
ellipse is then moved, if necessary, to coincide with the 
centre of the displayed pattern. This is to correct for any 
misalignment due to camera shake, shift of oscilloscope 

trace etc. The pattern is then scanned vertically on either 
side along the reference ellipse, starting from the selected 
zero marker, in a clockwise direction to extract the PD 
pulses. The positive and negative portions are stored 
separately. As mentioned in Section 2.2, averaged ver- 
sions of them form the input to NN. Fig. 7 illustrates a 
step-by-step procedure for extracting the input signal 
pattern. 


