
Int. J. Biol. Sci. 2021, Vol. 17 
 

 
http://www.ijbs.com 

3036 

International Journal of Biological Sciences 
2021; 17(12): 3036-3047. doi: 10.7150/ijbs.61566 

Review 

Partial EMT in Squamous Cell Carcinoma: A Snapshot  
Chengcheng Liao1,2, Qian Wang2,4, Jiaxing An3, Qian Long1,2, Hui Wang3, Meiling Xiang1, Mingli Xiang1, 
Yujie Zhao1,2, Yulin Liu1,2, Jianguo Liu1,2, Xiaoyan Guan1 

1. Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi 563000, China 
2. Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi 563006, China 
3. Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China 
4. Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi 

563006, China  

 Corresponding authors: Xiaoyan Guan; E-mail: 1278279125@qq.com; Tel.: 86-18089620011; Jianguo Liu; E-mail: jgl_zmu@126.com; Tel.: 86-13087891001 

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See http://ivyspring.com/terms for full terms and conditions. 

Received: 2021.04.12; Accepted: 2021.06.25; Published: 2021.07.13 

Abstract 

In the process of cancer EMT, some subgroups of cancer cells simultaneously exhibit both mesenchymal 
and epithelial characteristics, a phenomenon termed partial EMT (pEMT). pEMT is a plastic state in which 
cells coexpress epithelial and mesenchymal markers. In squamous cell carcinoma (SCC), pEMT is 
regulated, and the phenotype is maintained via the HIPPO pathway, NOTCH pathway and TGF-β 
pathways and by microRNAs, lncRNAs and the cancer microenvironment (CME); thus, SCC exhibits 
aggressive tumorigenic properties and high stemness, which leads collective migration and therapy 
resistance. Few studies have reported therapeutic interventions to address cells that have undergone 
pEMT, and this approach may be an effective way to inhibit the plasticity, drug resistance and metastatic 
potential of SCC. 
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Introduction 

Epithelial-mesenchymal transition (EMT), which 
refers to the biological process through which 
epithelial cells transform into cells with a 
mesenchymal phenotype and plays an important role 
in cancer progression, embryonic development, 
inflammation, tissue reconstruction, and fibrosis [1]. 
EMT endows tumors with malignant properties, 
including aggressive behaviors, metastasis, cancer 
stem cell (CSC) activity, and therapeutic resistance [2]. 
EMT was historically considered a binary switch, and 
any partial state was regarded as a metastable state or 
transient snapshot acquired during the EMT process. 
Transcriptional and epigenetic characteristics 
determine the potential gene regulatory networks, 
transcription factors and signaling pathways that 
control these different EMT transition states [ 3 ]. 
However, many studies have shown that cancer cells 
can stably acquire one or more partial EMT (pEMT) 
phenotypes, and that they can exhibi a mixture of 
epithelial and mesenchymal characteristics at the 

molecular and/or morphological level [4, 5, 6, 7, 8, 9, 
10 , 11 ]. pEMT is also known as the hybrid 
epithelial/mesenchymal (E/M), intermediate EMT, 
intermediate mesenchymal, incomplete EMT, 
semimesenchymal, and EMT-like phenotype [12]. 

The pEMT phenotype plays an important role in 
the tumor progression, process of organ branching 
morphogenesis, diabetic kidney disease and wound 
healing [13, 14, 15, 16]. Cells in the pEMT state show 
greater tumor-initiating potential, therapeutic resis-
tance and apoptosis resistance than purely epithelial 
or mesenchymal cells [17, 18]. Tumorigenesis depends 
on single cells in the pEMT state, and cannot be 
replicated by mixing epithelial and mesenchymal 
phenotype cells [19]. Cells with a pEMT phenotype 
cells exhibit loss of apical-basal polarity and have 
better motility, while maintaining adhesion 
characteristics with neighboring cells and acquiring 
mesenchymal-like characteristics [20]; thus, they can 
assemble and move together. If these cell clusters 
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reach the bloodstream intact, circulating tumor cell 
clusters (CTCs) clusters that can migrate collectively 
are generated [18]. Small numbers of CTCs have the 
highest plasticity, are believed to possess CSC 
characteristics and the ability to initiate tumors, can 
form new lesions and are fatal in tumor patients [21]. 
These results indicate that the pEMT phenotype cells 
may be the most suitable for metastasis. The feedback 
loop between EMT and immunosuppression 
promotes tumor progression [22, 23], but how pEMT 
affects tumor immunity remains undiscussed [24]. 

Squamous cell carcinoma (SCC) accounts for 
most esophageal cancers (upper esophagus) [ 25 ], 
more than 90% of cervical cancers [26], 90% of head 
and neck cancers [27], 30% of non-small-cell lung 
cancers (NSCLCs) [28] and 20% of skin cancers [29]. 
Head and neck squamous cell carcinoma (HNSCC), 
esophageal squamous cell carcinoma (ESCC), NSCLC 
and cutaneous squamous cell carcinoma (cSCC) are 
prone to metastasis, recurrence and invasion and have 
low 5-year survival rates [30, 31, 32, 33]. HNSCC is 
prone to cervical lymph node and lung metastasis, 
and its 5-year survival rate is only 43% [32]. The 
5-year survival rate for esophageal cancer is less than 
13% [30]. NSCLC accounts for 85% of lung cancers; 
approximately 40% are unresectable, and the 5-year 
overall survival (OS) rate is approximately 15.9% [34, 
35]. NSCLC includes a variety of cancer types, such as 
lung adenocarcinoma (LUAD), lung squamous cell 
carcinoma (LUSC), and lung large cell carcinoma. The 
largest subgroups of NSCLC are LUAD and LUSC, 
which are significantly different at both the 
transcriptome and cell control network levels [36]. 
However, many current NSCLC studies have not 
distinguished the difference between LUAD and 
LUSC. In this review, the description of NSCLC in this 
review is focused more on LUSC than on LUAD. 
Many types of SCC have a poor response to treatment 
and are prone to metastasis, and thus, they are 
life-threatening. Therapeutic targeting of the pEMT 
maintenance mechanism and phenotype seems to be 
the best strategy to overcome the poor prognosis of 
SCC. 

Markers of pEMT in SCC 

pEMT is usually evidenced by simultaneous 
expression of epithelial and mesenchymal protein 
markers in a single cell [37]. A detailed single-cell 
analysis of more than 6000 cells in 18 cases of HNSCC 
found that some of the cells showed pEMT properties; 
Vimentin and integrin-α5 were upregulated, although 
epithelial markers were not downregulated [ 38 ]. 
Immunohistochemical detection of E-cadherin and 

Vimentin expression in 200 oral squamous cell 
carcinoma (OSCC) patients confirmed that evidence 
of non-EMT, pEMT, and full EMT was present among 
the clinical samples, accounting for 49.5% (99), 43.5% 
(87), and 7.5% (14) of cases, respectively [ 39 ]. 
According to the expression of ESCC extracellular 
adhesion proteins, Vimentin and the adhesion and 
junction components Claudin1 and Claudin7, ESCC 
cells may be divided into the epithelial, full EMT and 
pEMT subgroups [40]. In another study, according to 
the expression level and localization of E-cadherin, 
Vimentin and N-cadherin, approximately 43% of the 
ESCC primary tumors and 53% of ESCC metastatic 
lymph nodes were classified as having a pEMT 
phenotype [41]. The pEMT phenotype can also be 
induced in SCC cell lines. In the p16-positive cervical 
carcinoma cell line CERV196, β-catenin levels are 
increased under epidermal growth factor (EGF) 
induction, while the expression levels of vimentin and 
E-cadherin change only slightly, which indicates a 
pEMT phenotype [42]. In addition, overexpression of 
Bcl-2 in the OSCC cell line HSC-3 induces the 
expression of N-cadherin but cannot completely 
eliminate E-cadherin expression or induce increased 
expression of typical EMT-related transcription 
factors (EMT-TFs) [43]. 

Pastushenko et al. [44] divided the pEMT state 
into early and late stages based on the expression 
patterns of the tumor cell surface markers CD106, 
CD61, and CD51. Epithelial tumor cells express 
epithelial cell adhesion molecule (EpCAM), early 
pEMT is characterized by lack of EpCAM expression 
and a CD106+/-/CD51-/CD61- phenotype, late pEMT 
status is characterized by a CD106+/-/CD51+/CD61- 
phenotype, and full EMT tumor cells exhibit a 
CD106+/-/CD51+/CD61+ phenotype [20, 44]. The 
pEMT subgroup in the SCC model established by 
Ievgenia et al. [45] is negative for CD106, CD61, and 
CD51 or expresses only CD106. Expression of 
epithelial markers such as E-cadherin and EpCAM is 
lost in the early stage of EMT, while keratin 5/8/14 
expression is retained in pEMT and disappears 
completely in the later stage of EMT [44]. N-cadherin 
and Vimentin are highly upregulated in the early 
hybrid state, and their levels are maintained in late 
EMT. The expression of fibroblast activation protein 
(FAP), cadherin 11, complexes that regulate 
transcription of the collagen XXIV gene (Col24a1), 
lysyl oxidase-like 1 (LOXL1), matrix 
metalloproteinase-19 (MMP19), platelet-derived 
growth factor receptor (PDGFR) a/b or paired related 
homeobox 1 (PRRX1) increases in late EMT [44]. 
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Figure 1: The conversion state of EMT shows different morphological and functional characteristics with different markers in SCC. Compared with cells in epithelial and 
mesenchymal state, partial EMT cells have stronger metastatic ability and stemness (+: low to ++++: high). 

 

Regulatory mechanism of pEMT in SCC 

pEMT may be a transient state in the EMT 
process, but the pEMT state can be stabilized or 
maintained through several mechanisms [46]. pEMT 
is controlled by signaling pathways, TFs, epigenetic 
regulators, phenotype stabilizing factors (PSFs) and 
posttranslational modifications [47]. 

pEMT-TFs in SCC 

TFs bind to and inhibit the transcription of genes 
encoding adhesion junction and tight junction 
molecules, thereby triggering EMT. These TFs include 
Snail1/2, zinc finger E-box binding homeobox (ZEB) 
1/2, Twist and lymphoid enhancer-binding factor 1 
(LEF-1) [ 48 ]. pEMT, which is characterized by 
Twist-induced expression of ZEB1, Vimentin and 
Podoplanin (PDPN) but without the absence of 
E-cadherin expression, mediates the acquisition of 
invasive characteristics by cSCC [ 49 ]. In clinical 
samples of NSCLC, the frequency of Snail2 and 
E-cadherin expression seems to control EMT 
phenotypic plasticity. Specific expression patterns of 
E-cadherin and Snail2 distinguish NSCLC with 
different phenotypic characteristics and are related to 
prognosis [50]. In the model of early pEMT in SCC 
established by Ievgenia et al. [45], pEMT is induced by 
the expression of ZEB1 and sex determining region 
Y-box2 (SOX2). Snail1, Twist and ZEB1/2 are highly 
upregulated in the early hybrid state, and their levels 

are maintained in late EMT [44]. Another study 
suggested that early hybrid EMT is initiated by the 
expression of ZEB1, P63, Twist and LIM-protein 2 and 
that Smad2 promotes late EMT [51]. 

FAT1/HIPPO pathway-mediated regulation of 
pEMT in SCC 

FAT1 is a transmembrane protein involved in the 
regulation of EMT, cell growth and actin dynamics 
and plays a key role in tumorigenesis and 
development [52]. FAT1 inhibits tumor progression 
by activating Hippo signaling [53]. The Hippo core 
complex controls the transport of YAP1/TAZ proteins 
to the nucleus, and abnormal upregulation of 
YAP1/TAZ expression or their nuclear localization 
occurs in SCC, which promotes tumor progression 
and metastasis [ 54 ]. FAT1 deletion promotes the 
acquisition of pEMT status in mouse and human SCC, 
thereby increasing tumor stemness and metastasis. 
Depletion of FAT1 functionally activates the 
CAMK2/CD44/SRC axis, promotes YAP1 nuclear 
translocation-mediated ZEB1 expression, and 
stimulates the mesenchymal state of SCC [36]. 
Moreover, depletion of FAT1 inactivates EZH2 and 
promotes the expression of SOX2, thereby 
maintaining the epithelial state [45]. The results of a 
recent study also showed that the 
ZIP4-miR-373-LATS2-ZEB1/YAP1-ITGA3 signaling 
axis has a significant impact on pancreatic cancer 
metastasis and pEMT phenotype acquisition [55]. 
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Figure 2: Inhibition of FAT1 can activate HIPPO-mediated partial EMT in SCC. A: Under the background of function of FAT1 and amplification or overexpression of EGFR, which 
is involved in the molecular mechanisms of SCC development. B: The loss of Fat1 accelerates tumor initiation and malignant progression, and promotes the partial EMT 
phenotype. The loss of FAT1 function activates the CAMK2-CD44-SRC axis, promotes YAP1 nuclear translocation and ZEB1 expression, and stimulates the mesenchymal state. 
This loss of function also inactivates EZH2 and promotes the expression of SOX2, thereby maintaining the epithelial state. 

 

NOTCH/Jagged pathway-mediated regulation 
of pEMT in SCC 

A ligand (Delta-like 1/3/4, Jagged-1/2) binds to 
a receptor (NOTCH1-4) to activate Notch signaling, 
thereby initiating the intercellular communication 
system [56]. Ligand binding induces conformational 
changes in Notch, resulting in exposure of the S2 site, 
which is sequentially cleaved by the A Disintegrin 
and Metalloproteinase (ADAM) family of proteases 
and the γ-secretase complex, thereby releasing the 
Notch intracellular domain (NICD), which then 
translocates to the nucleus [57]. In the nucleus, NICD 
binds to the transcription factor CBF-1/suppressor of 
hairless/Lag1 (CSL) and regulates gene expression 
[57]. The Notch signaling pathway can not only 
activate cell proliferation and antagonize apoptosis, 
but it can also participate in crosstalk with a variety of 
TFs to promote the occurrence of EMT, thereby 

enhancing cell activity, invasion and metastasis in 
vivo [58]. 

Numb, which regulates the endocytosis of 
adhesion molecules (such as E-cadherin), is important 
for epithelial cell-cell and cell-matrix interactions [59]. 
In addition, Numb inhibits Notch intercellular 
signaling and suppresses complete EMT by 
stabilizing the pEMT phenotype, which promotes 
mass migration of NSCLC cells [49]. In addition, 
Numb is associated with poor survival rates and 
increased lung cancer aggressiveness [ 60 ]. EMT 
induction in a given cell to increases the levels of 
Notch ligands and can activate Notch signaling in 
neighboring cells; in turn Notch-Delta and 
Notch-Jagged signaling then induces EMT [60]. 
Notch/Jagged signaling but not Notch/Delta 
signaling can cause aggregation of pEMT cells and 
maintain the population of cells with a pEMT 
phenotype [60]. In addition, the pEMT phenotype is 
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strongly correlated with CSC attributes and increased 
Notch-Jagged signaling [60]. Jagged signaling is often 
related to the maintenance of CSC populations [61], 
and Notch-Jagged signaling-induced stemness may 
be caused by the pEMT phenotype [60]. 

TGF-β-mediated regulation of pEMT in SCC 

Transforming growth factor β (TGF-β) is a main 
driver of EMT. TGF-β is a secreted cytokine that can 
regulate cell proliferation, migration and differen-
tiation of many different types of cells [62]. In the 
process of TGF-β-induced EMT, the key effectors are 
transcriptional inhibitors of E-cadherin, such as 
Snail1/2, ZEB1/2 and Twist [62]. In scleroderma- 
affected skin, TGF-β-induced pEMT-like changes are 
characterized by the induction of Snail1 without loss 
of E-cadherin. Similarly, HaCaT cells (human skin 
keratinocytes) under continuous TGF-β stimulation 
exhibit pEMT characteristics [63, 64]. 

pEMT depends on the TGF-β pathway and is 
involved in lymph node metastasis in NSCLC patients 
[65]. In addition, TGF-β causes proliferation arrest 
and changes in epithelial morphology in benign and 

malignant HaCaT cells. The epithelial connexin ZO-1 
and E-cadherin are downregulated in response to 
TGF-β in benign and malignant HaCaT cells but do 
not induce mesenchymal markers, which suggests a 
pEMT response [66]. In SCC cells (SiHa and FaDu), 
acidosis-induced TGF-β activation can promote pEMT 
and fatty acid metabolism [ 67 ]. TGF-β/Smad 
participates in crosstalk with the Wnt, Notch, Hippo, 
Hedgehog, PI3K-Akt, NF-κB, and JAK/STAT 
signaling pathways [ 68 ]. TGF-β drives Notch1- 
mediated EMT to generate ESCC tumor-initiating 
cells with high CD44 expression and inhibits Notch3 
via ZEB1 expression, thereby preventing cell 
differentiation and allowing pEMT to progression 
[69]. 

Nuclear factor E2-related factor 2 (NRF2) can 
prevent adequate EMT during wound healing [70], 
activates pEMT and maximizes the presentation of the 
pEMT phenotype [71]. TGF-β transcription activates 
P21, thereby stabilizing NRF2, which significantly 
promotes glutathione metabolism and reduces the 
effectiveness of SCC treatment [72]. 

 

 
Figure 3: The regulatory network composed of NOTCH/Jagged and miR34/miR200 regulates the plasticity of partial EMT in SCC. A: Notch binds to an external ligand 
(Delta/jagged), resulting in the cleavage and release of Notch that produces NICD. NICD translocates to the nucleus, activates Notch and Jagged in transcription, and inhibits 
Delta at the same time. B: The EMT circuit contains miR-34, miR-200 and Snail, ZEB, which inhibit each other. 
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Epigenetic regulators of pEMT-TFs in SCC 

Epigenetic regulatory factors (acetylation, 
methylation and noncoding RNAs) and posttrans-
lational modifications (ubiquitination, sumoylation 
and phosphorylation) regulate the expression of 
EMT-TFs, thereby regulating pEMT and subsequent 
metastasis, stemness and therapeutic resistance [38]. 

miR-200 is considered a marker of cancer cells 
and a determinant of the epithelial phenotype [73]. 
miR-200 directly targets the mRNA of the E-cadherin 
transcriptional repressor ZEB1/2 [73]. Activation of 
p53 downregulates Snail expression by inducing 
miR-34a/b/c gene expression [74]. The miR-200/ZEB 
axis is driven by the miR-34/Snail axis to form a 
three-component stable loop; miR-200high/ZEBlow, 
miR-200low/ZEBhigh, and miR-200medium/ZEBmedium 
cells have epithelial, full EMT and pEMT phenotypes, 
respectively [ 75 ]. Moreover, Sukanta et al. [ 76 ] 
analyzed the cell fate transitions among epithelial, 
pEMT and mesenchymal states and confirmed that 
these transitions are mediated by the miR-200/ZEB 
mutual inhibition feedback loop, which is driven by 
the expression level of Snail. In addition to regulating 
E-cadherin and Snail, miR-200 and miR-34 also inhibit 
Jagged and Notch/Delta, respectively [ 77 , 78 , 79 ]. 
These regulatory mechanisms of miR-200/miR-34 can 
affect the pEMT status in SCC. 

miR-151a promotes the contact and barrier 
properties of endothelial cells and promotes 
endothelial cell movement and angiogenesis by 
inducing Snail2, which is frequently amplified in solid 
tumors, including lung tumors [80, 81, 82]. As an 
oncomiR in the pathogenesis of NSCLC, miR-151a 
promotes tumor cell growth by regulating the 
expression of E-cadherin, Fibronectin and Slug, 
among others. In addition, as a direct target of 
miR-151a, E-cadherin can inhibit the migration of 
NSCLC cells and the transition to a mesenchymal-like 
cell phenotype, which suggests that the 
miR-151a-mediated induction of E-cadherin 
inhibition is the main mechanism by which miR-151a 
enhances pEMT in NSCLC [83]. 

Based on a comparison of pEMT cells with 
non-pEMT cells by single-cell sequencing, Snail2 is 
the only activated EMT-TF in pEMT cells [38]. 
Similarly, in the three-dimensional Madin-Darby 
canine kidney (MDCK) tubule formation system, 
Snail2 has also been shown to be a key regulator of 
pEMT processes in vivo [84]. Laminin subunit beta 3 
(LAMB3) and PDPNs are thought to be pEMT 
markers and to be related to cancer metastasis. The 
expression of the lncRNA MYOSLID in HNSCC is 
closely related to that of Slug, LAMB3 and PDPN. In 
addition, knockout of MYOSLID significantly reduces 

the expression levels of Snail 2, LAMB3 and PDPN 
but has no effect on E-cadherin and Vimentin 
expression. The lncRNA MYOSLID promotes 
invasion and metastasis by regulating the pEMT 
process in HNSCC [85]. 

Cancer microenvironment-mediated 
regulation of pEMT 

The cancer microenvironment (CME) 
surrounding tumor cells contributes to the emergence, 
stabilization and regulation of the pEMT phenotype, 
thereby promoting tumor progression [86]. The CME 
reflects the heterogeneity, spatial organization and 
complex fusion of tumor cells, fibroblasts, endothelial 
cells, immune cells and other mesenchymal cells in 
the surrounding extracellular matrix (ECM). 
Cancer-associated fibroblasts (CAFs) directly interact 
with cancer cells to promote pEMT [87, 88]. The local 
distribution of CAFs in the CME differs significantly 
between patients with local relapse and those without 
relapse. While those with relapse accumulate more 
CAFs, cancer cells adjacent to CAFs express both 
E-cadherin and Vimentin [88], which is similar to the 
findings in the study by Wang et al. [89]. pEMT cells 
are located at the primary tumor front in HNSCC and 
are near CAFs [38]. The paracrine interaction between 
CAFs and malignant cells promotes the pEMT 
program at the tumor front in HNSCC and plays a 
potential role in tumor invasion [38]. In cSCC and 
breast tumors, different EMT populations are 
distributed in different tumor areas and are related to 
specific microenvironments [44]. With the 
development of EMT in tumor cells, the composition 
of different matrix components changes; most 
noticeably, the immune infiltration of monocytes and 
macrophages increases significantly, and the density 
of blood and lymphatic vessels increases [44]. The 
reduction in macrophages in vivo increases the 
proportion of EpCAM+ tumor epithelial cells and cells 
in the early mixed EMT state and prevents further 
progression of EMT to a fully mesenchymal state [44]. 

Hypoxia is a powerful driving force for the 
disruption of normal tissue homeostasis and tumor- 
stromal interactions [ 90 ]. The most characteristic 
hypoxia response pathway is mediated by hypoxia 
inducible factor-1 (HIF-1) [91]. Hypoxic ESCC cells 
express high levels of HIF-1A and EIF5A2. The 
two-way regulation between HIF-1A and EIF5A2 
plays an important role in ESCC metastasis, invasion, 
angiogenesis, and pEMT phenotypic coexpression of 
E-cadherin and Vimentin [92]. In addition, periodic or 
intermittent hypoxia may stabilize the pEMT 
phenotype via HIF-1A stabilization and/or crosstalk 
between NRF2 and HIF-1A [93]. 
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Figure 4: Acidosis triggers the upregulation/activation of TGF-β2 and the partial EMT phenotype in a Tsp-1-dependent manner in SCC. 

 

The extracellular pH of most solid tumors is 
acidic due to the high lactate production rate and poor 
perfusion. Acidosis induces genomic instability, 
promotes local tumor invasion and metastasis, and 
inhibits antitumor immunity and therapeutic 
resistance, thereby promoting tumor progression [94]. 
Acidosis triggers the upregulation/activation of 
TGF-β2 in a TSP-1-dependent manner and promotes 
pEMT in SCC through TGF-βRI and subsequent 
phosphorylation of Smad2/3 [69]. 

pEMT and collective migration in SCC 

Metastasis is a process by which localized cancer 
becomes a systemic disease; cancer spreads due to the 
migration of individual cells of the primary tumor. 
However, new evidence found in many types of 
cancers, such as breast cancer, lung cancer, and 
mesenchymal tumors, indicates that tumor metastasis 
can also occur via the spread of large, cohesive cell 
populations that accumulate in adjacent tissues [95]. 
Collective migration does not require complete EMT. 
Cell clusters maintain intercellular connections and 
have some epithelial features; the acquisition of 

interstitial features allows the cells to migrate as a 
cluster. In contrast to the complete loss of cell-cell 
adhesion, which occurs during single-cell migration, 
during collective migration, cell clusters maintain 
cell-cell connections primarily through E-cadherin, 
gap junctions, and surface adhesion proteins of the 
immunoglobulin family [96]. Collective migration is 
related to metastasis, and the clinical effect of 
collective tumor cell migration is worse than that of 
single-cell migration, as collective migration confers 
greater potential for metastasis and proliferation as 
well as higher therapeutic resistance [95, 97]. 

A higher pEMT score is related to HNSCC 
lymph node metastasis and higher lymph node 
staging [38, 98], and pEMT is associated with a greater 
metastasis rate of SCC cells [45, 88]. In HNSCC, Snail 
induces Claudin-11-mediated Src activation and then 
suppresses RhoA activity at intercellular junctions 
through p190RhoGAP, maintains stable cell-cell 
contacts and induces collective migration [ 99 ]. In 
addition, increased Src activity stabilizes 
E-cadherin-based connections and collective 
migration of HNSCC cells [ 100 ]. In addition, 
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Snail-mediated epithelial phenotype maintenance is 
important for the collective migration of SCC cells 
during EMT [99, 101, 102, 103], which suggests that 
the pEMT phenotype may affect the migration pattern 
in SCC. 

Cells in migrating clusters are usually organized 
into two groups: leader cells and follower cells. 
Leader cells are responsible for sensing the 
microenvironment, generating traction to move other 
members of the group and reshaping the matrix 
through proteolysis to create a path through which 
the group can navigate [104]. Fourteen differentially 
expressed mutations were found between the leader 
and follower subgroups isolated from NSCLC. The 
functional characteristics of the two phenotype- 
specific candidate mutations indicated that ARP3 
enhances collective invasion by promoting the 
phenotype of leader cells and that KDM5B inhibits 
chain-like cooperative behavior in follower cells [105], 
in contrast to pEMT plasticity [106-107], supporting 
the relationship between pEMT, collective migration, 
and leader/follower cell genetic and phenotypic 
differences. 

pEMT and SCC stemness 

EMT is associated with an increase in tumor 
stemness [ 108 -109 , 110 ]. However, complete EMT 
may reduce the tumor initiation potential [111, 112, 
113 , 114 ]. Some studies have reported that the 
stemness of CSC is most likely to be maintained in the 
pEMT state rather than in the pure epithelial or 
mesenchymal state [115, 116]. Clustered cancer cells 
have been reported to have greater potential to 
become CSC compared with individual cancer 
cells[ 117 - 118 ]. A coupled EMT-stemness network 
showed that acquisition of the pEMT phenotype can 
increase tumor stemness [119]. Moreover, research 
has shown that pEMT can greatly promote the 
stemness of SCC [120]. At least two factors may lead 
to enhanced stem cell properties of pEMT cells: pEMT 
cells have the ability to self-renewal ability [109, 
121 - 122 ] and can generate hybrid subgroups of 
epithelial and mesenchymal cells [109, 123 - 124 ]. 
pEMT cells can be considered conceptually similar to 
adult stem cells in tissues, and this view is supported 
by the pEMT phenotype found in subpopulations of 
breast CSC [109, 125-126]. However, stemness does 
not always monotonically increase during EMT. 
When cells begin to undergo EMT, stemness may 
initially increase, and when cells cross the pEMT 
threshold to acquire a complete mesenchymal 
phenotype, their stemness may decrease [109]. 

The mechanism by which pEMT regulates 
stemness in SCC is still largely unknown. However, 
some evidence has helped us understand the 

connection between pEMT and stemness. In NSCLC, 
TGF-β1 promotes the expression of CD133 in pEMT 
cells, which in turn leads to the conversion of 
non-stem cells to CSC [ 127 ]. The OvoL family 
transcription factor Shavenbaby (Svb) is the 
downstream target of the Wnt and EGFR pathways, 
and this protein mediates their activity with regard to 
stem cell survival and proliferation. In addition, 
systemic steroid hormones produced by the ovaries 
regulate the conversion between Svb inhibitors and 
activators. Therefore, the Svb axis allows the internal 
integration of local signal cues and interorgan 
communication to regulate the proliferation and 
differentiation of stem cells and has a wide range of 
roles in adult stem cells and cancer stem cells [128]. A 
recent study showed that the interaction of EMT-TFs 
(Snail, Zeb1/2) and the epithelial stabilizing factor 
Svb can regulate stemness and pEMT [129]. In the 
SCC model established by Ievgenia et al.[45], the 
expression of CD44 and SOX2 mediated by changes in 
the HIPPO pathway is an important mechanism for 
the emergence and maintenance of pEMT. However, 
CD44 and SOX2 are one of the key proteins that 
regulate tumor SCC stemness [130]. Based on these 
studies, while pEMT promotes stemness in SCC, the 
maintenance of the pEMT phenotype may depend to 
a large extent on the promotion of tumor cell stemness 
by some pathways. 

pEMT and therapeutic resistance in SCC 

NSCLC patients usually benefit from treatment 
with epidermal growth factor receptor (EGFR) 
tyrosine kinase inhibitors (TKIs), such as gefitinib and 
erlotinib. However, EGFR resistance is likely to occur 
and is at least partially mediated by EMT [131, 132, 
133, 134, 135, 136]. The frequency of Vimentin and 
E-cadherin coexpression in erlotinib-resistant NSCLC 
cell lines is significantly increased compared with that 
in the parental cell lines. In NSCLC-resistant cells, the 
pEMT phenotype, collective cell migration and 
increased stemness are associated with erlotinib 
resistance [137]. CTCs isolated from NSCLC patients 
exhibit both PD-1 ligand 1 (PD-L1) positivity and the 
pEMT phenotype, which may represent the molecular 
background of immune escape in NSCLC [138]. The 
pEMT phenotype may lead to unique and broad drug 
resistance to a variety of cancer therapies. Therapies 
targeting CSC in the pEMT state are expected to 
prevent metastasis and treatment resistance in OSCC 
[139]. In an OSCC cell line, the epithelial cell subset 
(CD44high/EpCAMhigh/CD24low) is sensitive to 
cisplatin, paclitaxel and salinomycin; the mesen-
chymal cell subset (CD44high/EpCAMlow/CD24low) is 
sensitive to cisplatin and salinomycin; and the pEMT 
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subgroups (CD44high/EpCAMlow/CD24high) are 
resistant to all three drugs [139]. 

Drug resistance is often associated with the EMT 
process and CSC. Increasing evidence shows that 
traditional therapies often fail to eradicate cancer cells 
that have been activated by EMT programs and that 
have become CSC, thereby allowing CSC-mediated 
clinical recurrence [140]. Like EMT, the coexistence of 
pEMT and CSC is associated with poor prognosis and 
therapeutic resistance in cancer patients [115]. Similar 
to normal stem cells, most CSC grow slowly, which is 
one of the reason why CSC are resistant to 
chemotherapy [141]. It is reasonable to believe that 
pEMT cells acquire stronger drug resistance because 
of their stronger stemness. However, more direct and 
detailed studies are needed to determine the role of 
pEMT cells in the treatment of drug resistance. 

Conclusions 

Through EMT studies on breast, pancreatic and 
ovarian cancer, the existence of pEMT was confirmed 
[ 142 ]. pEMT is not a metastable transient state 
acquired during EMT but a stable phenotype. In 
addition, the functional role of pEMT may vary 
depending on the type of tumor, the state of spread, 
and the degree of metastasis and colonization [142]. 
At present, the research on pEMT in SCC has just 
started, but some phenomena have been observed. 
Through pEMT, SCC cells acquire a stronger tumor 
initiation ability than that of epithelial and 
mesenchymal phenotype cells and undergo collective 
migration, thereby promoting invasion and metastasis 
into SCC patients’ lymphatic and circulatory systems. 
After pEMT phenotype cells reach a suitable niche, 
the epithelial tumor phenotype can be completely or 
partially restored by mesenchymal-epithelial 
transition (MET) [96]. A stochastic dynamics study, 
which used the dimension reduction approach of 
landscape (DRL) method to study the gene regulatory 
network interacting with metabolism and EMT, found 
a wide range of parameters that can produce four 
stable states, corresponding to epithelial (E), abnormal 
metabolism (A), pEMT (H) and mesenchymal (M) cell 
state. Further calculations quantified the transition 
path between these states and regarded it as a 
biological path. Cells tend to follow the sequence 
during EMT or MET. For EMT, cells in the E state 
need to enter the A state first , and then enter the M 
state, while for the MET, before the cells in the M state 
reaching the E state, cells are likely to enter the H state 
first.[143]. Therefore, tumor cells in the mesenchymal 
state can still transform into the pEMT phenotype 
when the microenvironment changes. The driving 
factors (internal and external) of pEMT in SCC cannot 
be fully determined. Changes in some signaling 

pathways (the HIPPO, NOTCH, and TGF-β 
pathways), EMT-TFs, the CME and noncoding RNAs 
can produce or/and maintain the pEMT phenotype in 
SCC. PSFs such as GRHL2, OVOL2 and miR-145 are 
also considered to be related to the maintenance of 
pEMT [144]; however, the importance of PSFs for 
pEMT in SCC has not been reported. 

Although we have noted the markers of each 
stage of EMT in SCC, which is very important for the 
study and separation of pEMT subgroups, there is no 
clear consensus on the current definition of pEMT 
based on the coexpression of selected mesenchymal 
and epithelial markers in SCC. Therefore, determining 
the model of epithelial and mesenchymal marker 
coexpression to standardize the characterization of 
pEMT remains a main challenge in this field. In 
addition, developing strategies to design treatments 
for pEMT subgroups is a direction worthy of 
consideration. The drug resistance and plasticity of 
pEMT subgroups, the tendency of SCC to metastasize 
and the poor prognosis of SCC patients with 
metastasis emphasize that traditional treatment 
methods cannot effectively overcome the poor 
prognosis conferred by pEMT. 
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