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Partial Exact Controllability of a Nonlinear
System

A K. NANDAKUMARAN and R.K. GEORGE

ABSTRACT. In this article, we prove the partial exact controllability of
a nonlinear system. We use semigroup formulation together with fixed point
approach to study the nonlinear system.

i. INTRODUCTION

In this short article, we study the partial exact controllability, which
we will make precise later, of a nonlinear system. Let {2 be a bounded
open set in R™ with sufficiently smooth (say C?) boundary I and @ =
(0, Ty x Q2,2 = (0,T) x I'. Consider the coupled equations:

ug —ODut f(B) =0  in@Q, (1)

6,-D6+g(uw)=0 inQ, (2)
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with initial conditions
u(0,2) = wo(z), w(0,2) = w(z), 3)

6(0,z) = bo(z), (4)
and boundary conditions .

u(t,z) = v in 3, . (5)

6(t,z) =0 in X. (6)

Here u,0 are the unknowns and v is the control function; f and g are
nonlinear terms.

Definition. (Partial Exact Controllability): We say the system
(1)-(6) is partially ezactly conirollable if there ezists T > 0 such that
for any given initial date (uo,u1,600) in a suitable space, there exists a
control function v such that the corresponding solution of the system
(1)-(6) satisfies

w(l,)=uw(T,:)=0 in Q.

In this article we prove the partial exact controllability of the above
system when f and g are Lipschitz continuous with the further assump-
tion that either the product of the Lipschitz constants of f and g is small
enough or g is uniformly bounded on R.

We have the following main theorem.

Theorem 1.1. Assume that [ and g are Lipschilz continuous with
constants o, ay, respectively. Then the system (1)-(6) is partially
ezactly controllable if the product o oy is sufficiently small and T is
sufficiently large.

We discuss the smallness of cer; at the end of this article.

There are enormous literature in the field of exact controllability.
Here we would like to mention few references which are relevent for this
article. In [8] E. Zuazua has studied the exact controllability for the
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nonlinear wave equation 4y — Au + f(u) = 0, f Lipschitz, with initial
conditions and boundary control. Here he does not assume any smallness
of the Lipschitz constant. Possibly the same technique can be adapted
to our system which we discuss in the discussion section of this paper.

In one dimensional setting, E. Zuazua [9]-[10} has studied the con-
trollability of the equation ui — uzr + f(u) = 0 with super linear f
satisfying the hypothesis lim m%g%;, = 0 as |$| —= co. We hope that our
system can also be tackled with such nonlinearities f and g satisfying

f(s — s gls) _
o Ts = 0 and lim +TioaTs =0.

lim
For a good survey in the field of exact controllability using a new
technique, the so called HUM method introduced by Lions, one can refer
to Lions [6]-[7} and the references therein. Lasiecka and Triggiani [3}-[5]
(more references can be seen in their papers) use semigroup formalism to
study the control problem which is more an algebraic method while the
HUM method uses only PDE. Essentially both the approaches reduce the
controllability and/or reachability problems to some energy inequalities.
We use a fixed point approach combined with the technique of Lasiecka
and Triggiani for studying the system (1)-(6). We will not go into the
details of the literature and one can see the above cited references.

2. FIXED POINT APPROACH

We use the notations of standard Sobolev spaces. Let X = L*(22).
Our control space is H3(0,T,L2(I')). Let 8 be fixed in C([0,T], X).
Assume that f(8) is in C([0,T], X). We proceed as follows:

STEP 1: With the known f(8), consider the equation (1) with the
conditions (3) and (5) which is an exact controllability problem for the
unknown u. Solve the problem to obtain the controlled solution % and
a steering control v, which of course depends on #. Observe that this
control can be chosen in a unique fashion (see equation (13) and also
the Remark 3.2) and denote by N the operator defined as N((;) = .

STEP 2: Now take the equation {2) where u is replaced by the
known solution # obtained in Step 1 and solve for & with the conditions
(4), (6) and this operator is denoted by K, i.e., K(&) = 6.

STEP 3: If the operator KN : C([0,7],X) — C([0,T],X) with K
and N as above, has a fixed point, then the system (1)-(6) is partially
exactly controllable.
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First we prove the Step 1, where we employ the technique of La-
siecka and Triggiani to get the exact controllability.

Lemma 2.1. Let 8 € C([0,T),X) be fized, then the system
uy—Du=—-f#) inQ,
u(0,z) = uo(z), u:(0,2) = w1(x) in Q, (N
u(t,z)=v  in %,

with the initial conditions ug € L*(R), u; € H~Y(Q), is ezactly control-
lable with control v € L*(0,T;T). Further, if f is Lipschitz continuous
with constant « then the operator N defined in Step 2 is Lipschitz con-
tinuous from C([0,T]; X) into itself.

Proof: Let A: D(A) C Ly(Q) — L2(9Q) be the positive self adjoint
operator defined by

Ah = ~Oh, D(A) = H*(Q) N By ().

Then — A generates a strongly continuous cosine operator C(t) on Ly(2)
with the sine operator S(2) = f; C(r)dr. Define the Dirichlet map D as

follows:
Dg=h<= Ah=0 inQ, h=g onT. (8)

Then D : H*(') — H**¥(Q), s > 0 is continuous. Then (7) can be
writien as a system of first order equtions as:

alol =[Sl Lad ) o

Then

A= [_OA g] . D(A) x D(A}) = D(A?) x L}(Q),
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generates a unitary strongly continuous group

C(t)  5(1)

#(t) = et = [—AS(t) C(t)] on H'(Q) x L}(Q).

For a given v, a mild solution of (7) can be written as
[:t] N [-i‘s*&) & [:ﬂ
* /0: —ig(:)r) csz((i _ 2] [AD%(T)] dr

Il ce-7) S@i-71) 0 -
o) [L4e 2y &)
Now define a mapping Ly : H{(0,7, L*(T)) —» L*(Q) x H~1(Q) by

Tr er-r) S(T-r 0
Lrv= /0 —AS(T —)‘r) C((T - r))] [AD‘U] dr
(10)
_ [A I s(T - T)Dv(‘r)] .
A [Ic(T - r)Do(r)

Then as a consequence of trace regularity for hyperbolic systems
(see [2], [5]) Lr is continuous from Hg(0,T; L%(I")) — H}(R) x L(Q).

So the question of controllability of (7) reduces to the surjectivity
of the mapping Lt which can be obtained from Lasiecka and Triggiani
[5). So, for a given 6§, we have the controllability for the solution (u,u,)
on the space H}(Q)x L?(Q) within the class of controls H3(0,T; L*(T)),
provided T is large enough or equivalently on the space L2(}} x H~1(Q)
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with controls in L2(0,T; L%(T')) (See [5}). The operator N is given by
N8 = v and put U = [:],where
t

t } t
U(t) = ¢(t)Us + /n ot — r)F(B)dr + jﬂ #(t — 7)Buvdr, (11)

with 0
o= (2] 0] 5oL

Let Uy, U; be, respectively, the controlled solutions corresponding to 6,
and #, then

t t
Ur(t)—Us(t) = / @(t — T)[F(6,) — F(8:)]dr + f $(t —7)B(v1 — vq )dT.
0 0
(12)
Since f is Lipschitz, the first term on the righthand side can be estimated
as

2 1
< cm?/ 116y = Gz dr.
X 0

t
” [) 8(t - T)F(6) — F(G))dr
Now we estimate the second term as follows: The operator
Lr: Hg(0,T;LA(T)) — Hy() x L*(%),

defined by

tro= [T 557 D S [ab]

- /0 (T ~ 1)Bo(r)dr,
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is bounded, linear and onto and its adjoint L} is given by
(Lr2)(t) = B*¢*(T - t)=.

More details on those operators Ly, L} etc. can be found in [5]. The
following control v € N(Lg)* defined by

T
n(t) = B*¢*(T—t)(LrLy)"" ["¢(T)Uo— | er-nraer), g3

steers the system to zero state. Hence
t t
/ #(t — 7)(Bwry — Bw)dr = / $(t — T)BB*¢*(T — 7)(LrLy)™!
0 0

T
- [ fo (T - s)(F(6,) — F(61))ds|dr.

Observe that the exact controllability of the linear systems implies
the existence of (L7L%)~!. Now it is easy to see that (for suitable
choices of constants C and k)

2
X

” jo t ¢>Ft — 7)B(v1 — v)dr

2

X

<[ " T = () — PR ))dr

T
<Co? ] AL
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Hence,

T
(VB8 — (NGOl < K2 / 16y — Bolldr.  (14)
Therefore,

[|N, = Nb,||cqo. %) < ClI81 — ballcqo,m: x) -

This proves that the operator N is Lipschitz continuous. This completes
the proof of the lemma.

Lemma 2.2. Suppose that g is Lipschitz continuous. Then the
operator K defined in Step 2 is well defined and Lipschitz continuous
and compact.

Proof. The operator K is given by K = 8, where # is the solution

8, — AN = —g(@) in Q,

of

6{0,z) = 6p(z) in £, (15)

#(t,z) =0in X.

Define A such that Ah = —Ah with D(A) = H%(Q) N H}(2). Then A
is self adjoint and it generates a compact semigroup T(t), ¢ > 0, given
by (see [1])
o Ta
T(t)l‘ = ZeA,t Z < E:‘;bnj > ¢njs
n=1 i=1

where {¢,;} is the system of complete orthonormal eigenfunctions for
A with Dirichlet data and {A,} is the corresponding set of eigenvalues,
with multiplicity r,. Hence the solution of (15) can be represented as

B(t) = T(1)do — /0 T(t - 7)g(@)dr.
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If()l = Kﬁ], 32 = Kﬁg, then

[|1K iy — Kiizlleqo,r;x) € kran||in — #2|leqo,1;x)

where k; > 0 is some constant, o, being the Lipschitz constant of g.
Hence K is Lipschitz continuous.

Since the semigroup generated by A is compact, it is not hard to
verify that the operator K is compact. This completes the proof of
Lemma 2.2.

3. PROOF OF THEOREM 1.1
We prove that under the hypothesis of the theorem, the operator

KN : C([0,T]; X) — C([0,T); X),

defined by K NG = 8, where @ is given by

8(t) = T(t)bp — fo tT(t - r)g(N8)dr,

is a contraction, which in turn implies partial exact controllability of the
system (1)-(6). For 8,62 € C([0,T); X), we have

(KN8, — KNG)(2) = _[) t T(t — 7)[g(N8;) — g(N,)]dr.

Now

llg(N61) — (Nl < oi||Nbs — Nba|I% ¥t € [0, T]

, (16
< Katal [ (6, - Bllyar,
0
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so that

|KN8; — KNG, ||% < Ca’alllg(N61) - g(NB)|I%

(17)
< CTo?al||b; - 52||¥:({0.T];X)’

Therefore
|E N6, — KNG |cqo.):x) < Caanllby — ballcqo,yx)-

Hence K N is a contraction if aa; is sufficiently small enough and thus
K N has a fixed point. This proves the theorem.

Remark 3.1 In fact, we need not have to apply control on all of 2.
One can partition ¥ = EoUX,;, where Eo = (0,T)x 'y, & = (0,T)x Iy
and I' = TqUT; withTo = {z € T : (z — zo).v(x) > 0}, where
[y =T'\To, z° € R™. Here v(z) is the unit normal to the boundary at
z. Then we can obtain the conclusions of our main theorems by applying
controls only on the part g {[6]).

Remark 3.2 The control given by (13) can also be uniquely ob-
tained by using HUM method. We can write the controlled solution u
of (7) as u = u! + u®, where u! is the unique solution of the following
problem:

“}t —Aul = —f(8) in@Q,
4'(0,2) =0, 1;(0,z) =0 in ),

u'(t,2) =0 on L.
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Since we are interested in finding the control v satisfying u(T') = u(T) =
0 in Q,u? should satisfy the reachability problem

ul—Aut =0 inQ,
12(0, ) = up(z),u2(0,2) = uy(z) in Q,

u!(t,z)=v onI.

with the reachability conditions uv*(T) = —u!(T), w3(T) = —ul(T).
This control can be defined in a unique fashion as the minimization of
f5v*dE, among all possible admissible controls.

Remark 3.3 The restriction made in Theorem 1.1 on the Lipschitz
constants of f and g can be relaxed if we assume that g is uniformly
bounded, (that is, there exists a positive constant k such that |g(z)] < k,
for all z € R), as we see in the following theorem.

Theorem 3.1 Suppose that f and g are Lipschitz continuous and
g is uniformly bounded, then the system is partially exactly controllable.

Proof. Let N and K be operators defined as in Lemma 2.1 and
Lemma 2.2. Note that N and K are continuous operators. Following
the proof of Theorem 1.1, it suffices to show that the operator KN :
C((0,7), X} — C([0,T}, X) defined by K N(8) = 6, where 8 is given by

8(t) = T(t)6o — /D Tt - rYg(NB)dr.

has a fixed point. It follows that KN is a continuous and compact
operator. The uniform boundedness of g implies that there exists r > 0
such that |KN@|| < r for all 8 in C([0,T),X). Let B, be a closed ball
in C([0,T)], X) with center 0 and radius r. Thus KN maps B, into B,
and hence by Schauder’s fixed point theorem there exists a @ such that
KN@¢ = 8, and hence the system (1)-(6) is partially exactly controllable.
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Remark 3.4 Of course, one can reverse the hypotheses on f and
¢ in Theorem 3.1. That is, instead of g being bounded, the uniform
boundedness of f is sufficient to conclude the same result. On the other
hand, the hypothesis that g is uniformly bounded can be relaxed to g is
asymptotically linear, (refer E. Zuazua [11]).

In this short note we only showed that we can achieve partial exact
controllability using the classical method together with a fixed point
approach. Of course it may be possible to obtain the same result using
the HUM method introduced by Lions.

4. DISCUSSION

Here we discuss on the assumption that the product aa; of the
Lipschitz constants is small enough. Of course it would be interesting to
know the same result without the above assumption. We indicate some
possible directions one can go about it. Recall the proof of Lipschitz
(Lemma 2.1) continuity of N. We have proved that (see (14))

T
H(NG — N)(t)k < Co® / 161 — 82|(% dr.
0

In the estimation of the above inequality we had to estimate two
terms on the right hand side of (12) and we obtained that the first term,
namely,

2

H fotqﬁ(t ~ 7)[F(8;) - F(éz)]df . < Cta? /0‘”‘,;1 _ Gyllkdr.

Observe that the limit of integration on righthand side is from 0 to t.
Suppose we could prove the second term is also bounded by the similar
estimate (Note that we have only proved || fif ¢(t—7)(Bv - Buv;)dr||% <

Cta? foT |81 — 82||%dr, where the limit of integrations is from 0 to T),
then it follows that

1
N6y — NG|l < Co? ] 16; — B dr. (18)
i]
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In this case, without the assumption oo, is small, we can prove that

KN has a fixed point. In fact, we prove that (K N)" is a contraction
for some n > 1 and this can be seen as follows.

Recall the operator K N 6 = #, defined in Section 2, where @ is given
by

8(t) = T(t)f — /0 T(t — T)g(N)dr.

With the assumption

([(V: - N&)(t)Ilk < Cto? / 1162 — ol

we get,
t
1g(¥6;) - 9(NBy)|k < Ctael ]0 s = ol

and we can show that

KNG, ~ KNGO < kata® [+ [ 16~ Bl ) ar

2 ot Ch A
< kator S ([ 16 - &%),

where k is some constant which is fixed now onwards.

(19)

By a repeated application of (19} it can be seen that

(K N)"6; - (KN)Y 6%

t3ﬂ—1 t . _
< (ka%az)“(zn‘:} ° : )(/0 161 —02“3():17,
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(K V)61 — (K N)82|%p0,17. %)

kT3ada®\™ 1 .
53( 5.3 ) ((n_l)!)HGl—92||C([o,T];X)-

So as n — co, we can make the constant on the right hand side of
the above inequality, less than 1 for n large enough and (KN)" is a
contradiction for some n and hence K'N has a fixed point.

Now we present a different approach adapting the technique of E.
Zuazua [8]. In [8] he has studied the nonlinear wave equation us; — Au+
f(u) =0, f Lipschitz, with-initial conditions and boundary control. He
has proved that the above equation is exactly controllable in suitable
spaces under the assumption that f is globally Lipschitz continuous.
Adapting the same technique to our present system, one is lead to the
study of the uniform exact controllability of the following linear system

utg—Au-}— W]gzhl in Q,

8; — NG+ Wou=hy in Q,

with conditions as in (3)-(6). Here hy,hy € L2(Q) and Wy = W, (z,1t),
W, = W,(z,t) are potentials which are in L°(Q).

If the above system is uniformly exactly controllable (uniform with
respect to the potentials Wi, W;, see E. Zuazua [8]), then it is possible
to obtain exact controllability of the system (1)-(6) for globally Lipschitz
continuous functions f and g.

A brief description of the method is as follows. Fix (#,8) € L*(Q) x
L*(Q) and define W, = {0270 w, = #8060 and by = - (0), hy =
—-g(0). Obviously, W1,W, € L*°(Q) because f and g are Lipschitz
continuous. Now using the uniform exact controllability of the above
linear system with potentials W, and W, defined as above, one can
show that the controlled solution (u,8) satisfies ||(u,8)||L2(@)xL3(@) <
C, where the constant C is independent of (&, é) With this estimate in
mind, one can define a mapping F : L*(Q) x L*(Q) — L*(Q) x L*(Q)
by F(&,8) = (u,8) with satisfies || F(%,8)|| < C uniformly. Also, it is
not difficult to show that the mapping F is compact. Now one can apply
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the Schauder’s fixed point theorem to get the desired result in suitable
spaces. So the controllability problem for our system (1)-(6) reduces
to the uniform controllability problem of the above linear system with
bounded potentials W; and W, and the uniform controllability of the
linear system seems to be an open problem.
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