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PARTIAL EXTENSIONS OF ATTOUCH'S THEOREM
WITH APPLICATIONS TO PROTO-DERIVATIVES

OF SUBGRADIENT MAPPINGS
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Abstract. Attouch's Theorem, which gives on a reflexive Banach space the
equivalence between the Mosco epi-convergence of a sequence of convex func-
tions and the graph convergence of the associated sequence of subgradients, has
many important applications in convex optimization. In particular, generalized
derivatives have been defined in terms of the epi-convergence or graph con-
vergence of certain difference quotient mappings, and Attouch's Theorem has
been used to relate these various generalized derivatives. These relations can
then be used to study the stability of the solution mapping associated with a
parameterized family of optimization problems. We prove in a Hilbert space
several "partial extensions" of Attouch's Theorem to functions more general
than convex; these functions are called primal-lower-nice. Furthermore, we use
our extensions to derive a relationship between the second-order epi-derivatives
of primal-lower-nice functions and the proto-derivative of their associated sub-
gradient mappings.

1. Introduction

Various forms of convergence have been studied as means to "differentiate"
functions and set-valued mappings (multifunctions). Epi-convergence of a se-
quence of functions refers to the set-convergence of the sequence of epigraphs
of the functions (the epigraph being the set of all points on or above the graph of
the function), while the graph convergence of a sequence of set-valued mappings
involves the set-convergence of their graphs.

In this paper we study two types of set convergence: Painleve-Kuratowski and
Attouch-Wets convergence. Let Sf be a Banach space. Recall that Cn c Sf
Painleve-Kuratowski (PK) converges to C,  denoted by Cn -^pk C if

lim sup C„ = lim inf C„ = C;
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for more on PK convergence see [7],[33],[38], and the references therein. Here
lim sup Cn is the set of all accumulation points of sequences from the sets C„
and lim inf C„ is the set of limit points of such sequences. Of course depending
on the topology of the space we obtain different kinds of PK convergence. If
we do not specify the topology then we assume that the convergence is in the
strong topology, and if we are dealing with subsets of the product space Sf x Sf*
then we assume that the convergence is in the strong-strong topology. (On Sf x
Sf* we will use the norm ||(x, m)|| = max{||x||, ||«||}.) A family of functions
/„ : Sf —> 3? U {+00} Mosco epi-converges to /, denoted by /„ —>m /, if
epi f„ (the epigraph of /„ ) PK converges to epi / in both the weak and strong
topologies; see [1], and Section 3 of this paper for an alternate description of
Mosco epi-convergence.

On the other hand, C„ Attouch-Wets (AW) converges to C, denoted by
C„ -^aw C,  if for all p big enough

limhaus/)(C„ , C) -+ 0,
where

hauS/,(C„ , C) := max {e((Cn)p, C), e(Cp, C„)}
where e(A, B) := supdist(a, B) and Dp := DnBp (where Bp is the closed ball

aeA
of radius p). Finally recall that {fn} Attouch-Wets converges to /.denoted
by fn -^aw f'. if epi/„ —>aw epi/. For more on Attouch-Wets convergence of
sets and functions see [2],[3],[4],[6],[9],[10] and the references therein.

Attouch [ 1 ] proved that a sequence of lower semicontinuous proper convex
functions on a reflexive Banach space, Mosco epi-converges if and only if the
graphs of the subdifferentials Painleve-Kuratowski converge to the subdifferen-
tial of the limit function and a condition that fixes the constant of integration
holds. For a family of convex functions several extensions have been given. In a
general Banach space Attouch-Beer [5] showed that slice convergence for lower
semicontinuous proper convex functions is equivalent to Painleve-Kuratowski
convergence of the graphs of the subdifferentials. A result in the spirit of At-
touch's Theorem can also be found in [3] where they show that a family of
lower semicontinuous proper convex functions Attouch-Wets converges if and
only if the graphs of the subdifferentials Attouch-Wets converge.

Recently, Poliquin [24] extended Attouch's Theorem to possibly nonconvex,
primal-lower-nice functions in a finite-dimensional setting. Recall that a lower
semicontinuous extended real-valued function / is primal-lower-nice at X, a
point of the effective domain of / (i.e., X € dom/:= (x|/(x) < oc}), if there
exist positive scalars 1, c, and T such that if t > T, \\u\\ < ct, ||x - x|| < X
and u £ dpf(x) (the proximal subgradient set to / at x; see Section 2) then
the inequality

/(*') > f(x) + (u,x'-x)- (t/2)\\x' - x\\2
is valid for all x' with ||x' - x|| < I. In Proposition 2.2 we give an alternate
characterization of primal-lower-nice functions; that characterization says in
essence that a function is primal-lower-nice if a portion of the graph of the
subdifferential, linearly increasing with /, is /-monotone. One of the many
interesting features of primal-lower-nice functions is that it is not necessary to
specify what flavor of subgradients are being employed, as for these functionsLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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all subgradients are the same. This result is presented in Theorem 2.4, and first
appeared in the finite dimensional setting in [23].

Obviously convex functions and lower- C2 functions are primal-lower-nice;
a function / is lower- C2 if / plus a nonnegative multiple of the norm square
is convex; see [31]. Poliquin [23] showed that in finite dimensional spaces,
the class of primal-lower-nice functions includes the composition of convex
functions (not necessarily finite) with ^2 mappings and satisfying a constraint
qualification. Recently Thibault and Zagrodny [39] showed that in a Banach
space, this type of composition function is also primal-lower-nice as long as the
convex function is continuous relative to its effective domain. Levy [19] showed
that this extra assumption is not needed in a Hilbert space. To be more precise,
let g : Sf —► 3iU {+00} be a lower semicontinuous proper convex function, and
F : ^ -> Sf be a twice continuously differentiable mapping from the Banach
space J^ into the Hilbert space Sf. If x is a point where g(F(x)) < oo and
the (Robinson) constraint qualification is satisfies at x , i.e.,

5c+ (dom g - F(x)) - VF(x)y = Sf,

then g o F is primal-lower-nice at x.
Convexly composite functions are extremely important in analysis and opti-

mization in particular. In fact every lower semicontinuous function on a Banach
space that admits a locally uniformly rotund norm can be written as the compo-
sition of a lower semicontinuous convex function with a nice mapping; see [28].
However, without extra assumptions it is unlikely that the constraint qualifica-
tion will be satisfied. A special class of convexly composite functions in finite
dimensions that is extremely important in optimization consists of the fully
amenable functions. A function is fully amenable if it can be represented as the
composition of a piecewise linear-quadratic convex function with a ^2 map-
ping satisfying a constraint qualification. Poliquin and Rockafellar [25]-[27],
and Rockafellar [32],[34],[35],[37] have studied fully amenable functions, and
have demonstrated their broad applicability to problems in finite-dimensional
optimization. Important examples of fully amenable functions include the max-
imum of finitely many W2 functions, the indicator of a set defined by finitely
many ^2 constraints for which a constraint qualification is satisfied, and the
distance-squared from a convex, polyhedral set to the image of a W2 mapping.

The setting of this paper is that of a Hilbert space. We give three partial
extensions of Attouch's Theorem. We show in Theorem 3.5 that if {/,} is
a sequence of equi-primal-lower-nice functions at x (see Definition 2.1), equi-
bounded below near x with {/„(x)} bounded, then Mosco epi-convergence to
/ implies that the graphs of the subgradients PK converge to the graph of the
subgradients of /. Under the same assumptions and a condition that fixes the
constant of integration we provide in Theorem 3.6 a partial converse to Theorem
3.5. Indeed we show that if the graphs of the subgradients of f„ PK converge to
the graph of the subgradients of / (here / is a lower semicontinuous function
on Sf), then /„ strongly epi-converges to /, i.e., convergence of the epigraphs
in the strong topology. In is worth noting that a full converse to Theorem 3.5 is
not possible, and an example illustrating this is provided in the paragraph before
the statement of Theorem 3.6. Finally, again under the same assumptions as
Theorem 3.5, we show in Theorem 4.3 that Attouch-Wets convergence of {/„}
implies the PK convergence of the graphs of the subgradients, and that we almostLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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have Attouch-Wets convergence of the subgradients in the following sense: there
exist positive a and po such that for all p > po

e{(ra)p,Tn2a)-^0   as   «^oc,

and
e((ri)p,r2a)^0   as   n-oo.

Here
Tl = {(x,u)\\\x-x\\<a,     and   u£dfn(x)},
r%a = {(x,u)\\\x-X\\<2a,     and   u£dfn(x)},
T" = {(x, u)\ \\x - x\\ < a,     and    u£df(x)},
r2a = {(x,u)\\\x-x\\<2a,    and   u£df(x)}.

Epi-convergence and graph convergence can be applied to various sequences
of difference quotients, associated to functions or set-valued mappings, to ob-
tain notions of epi-derivatives of functions and proto-derivatives of set-valued
mappings; see [15],[18],[19],[22],[24]-[27],[32], and [34]-[38]. Rockafellar [36]
used Attouch's Theorem to show the equivalence between the second-order epi-
differentiability of convex functions and the proto-differentiability of their as-
sociated subgradient mappings. Poliquin [24] likewise used his extension of
Attouch's Theorem to prove the same equivalence but for primal-lower-nice
functions on finite-dimensional spaces. Analogously, our partial extensions of
Attouch's Theorem enable us to show the following: If / is primal-lower-nice
at X and v £ df(x), i.e., v is a subgradient to / at X, then

(1) if / is twice Mosco epi-differentiable at x relative to v then df is
PK proto-differentiable at x relative to v ;  see Theorem 3.8.

(2) If / is twice Attouch-Wets epi-differentiable at x relative to x then
df is Attouch-Wets proto-differentiable at x relative to v ; see Theo-
rem 4.4.

The concepts of second-order epi-derivatives and proto-derivatives are due to
Rockafellar; the adjectives Mosco, Attouch-Wets and PK here merely serve to
fix the topology (and are not new concepts). Moreover in both cases we obtain
a formula for the subgradients of one-half the second order epi-derivatives. In
case (1) we obtain that the subgradients of one-half the second-order Mosco epi-
derivative is equal to the PK proto-derivative of the subgradient mapping; see
Theorem 3.8. In case (2) we obtain that the subgradients of the second-order
Attouch-Wets epi-derivative is equal to the Attouch-Wets proto-derivative of
the subgradient mapping; see Theorem 4.4. Formulas for the second-order epi-
derivatives are very important in the sensitivity analysis of optimal solutions in
parametric optimization where an auxiliary optimization problem can be used
to calculate the generalized derivatives; see [25] and [37].

In Zolezzi [40] the following partial extension of Attouch's Theorem is pre-
sented: for a family of locally Lipschitzian functions equi lower semidifferen-
tiable and locally equi-bounded on a suitable Banach space, strong epi-conver-
gence implies that

(s-w*)limsupgphdf„ cgphd/
(strong convergence in Sf and weak* convergence in Sf*). This result is
used to show continuous behavior under data perturbations of multipliers andLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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generalized gradients associated with integral functionals. In Proposition 3.1 we
obtain a similar result for primal-lower-nice functions; we show that if a family
of equi-primal-lower-nice functions {/„} strongly epi-converges to / then

(1.1) (s-w)limsupgphdfn cgph<9/

(strong convergence in Sf and weak convergence in Sf*). Our result in Propo-
sition 3.1 does not follow from Zolezzi's work because primal-lower-nice func-
tions are not in general locally Lipschitzian nor are they in general equi lower
semidifferentiable. Finally in Example 3.2 we illustrate that even for convex
functions the opposite inclusion in (1.1) does not hold in general, and therefore
strong epi-convergence does not necessarily give the convergence of the graphs
of the subgradients.

2. Primal-lower-nice functions in Hilbert spaces
In this paper, we are interested in several different kinds of subgradients to

functions /:7-t»U {+00} := 3? U {00} at points x £ Sf, where Sf is
a Hilbert space. The set of (Clarke) generalized subgradients to / at x is
denoted by df(x) (see [13] and [14] for a broad discussion of these subgra-
dients), the set of Frechet subgradients to / at x is denoted by dFf(x) (see
[11]), and the set of proximal subgradients to / at x, defined below, is de-
noted by dpf(x); for more details on proximal subgradients, see [14] and [30]
for instance. A point u £ Sf is a proximal subgradient to the function / at
x 6 dom/,  written u £ dpf(x), if for some t > 0 the inequality

(2.1) f(x') > f(x) + (u, x' -x) - (t/2)\\x' - x\\2
is valid for all x' in a neighborhood of x . Here (x, y) denotes the dot product
on Sf.

The set dpf(x) is convex, and the inclusion dpf(x) C dFf(x) c df(x)
holds in general. For convex functions, the proximal subgradients are the same
as the (Clarke) generalized subgradients, and we will see in Theorem 2.4 that
this property is an important feature of a more general class of functions, called
primal-lower-nice functions.

Definition 2.1. A function / : Sf -* 3?U{-l-oo} is primal-lower-nice at X if / is
lower semicontinuous, x e dom / and there exist positive scalars X, c, and T
such that if t > T, \\u\\ < ct, ||x - x|| < X and u £ dpf(x) then the inequality

f(x') > f(x) + (u,x'-x)- (t/2)\\x' - x\\2
is valid for all x' with ||x' - x|| < X. A family of lower semicontinuous
functions is equi-primal-lower-nice at X if all the functions in the family are
primal-lower-nice at X with respect to the same scalars. The function / is
called primal-lower-nice if it is primal-lower-nice at all points in its effective
domain.

If a function is primal-lower-nice at x, then we know how steep a quadratic
is needed to "realize" any proximal subgradient to / at x . In particular, con-
vex functions and lower-C2 functions are trivially primal-lower-nice. Another
important example of a primal-lower-nice function is given by the composition
of a lower semicontinuous proper convex function with a twice continuouslyLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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differentiable mapping satisfying a constraint qualification; see [19],[23], and
[39].

Primal-lower-nice functions were first introduced in Poliquin [23]. The origi-
nal definition was in terms of the "t-monotonicity" of the proximal subgradient
mapping. In finite dimensions, these two ways of characterizing primal-lower-
nice functions were shown to be equivalent in [23]; we now do the same in the
case of a Hilbert space.

We say that a family of functions fn:Sf -* SRu {+00} is equi-bounded below
near x if there exists X positive with

inf      inf   |/„(x)} > -00

where B(y, r) denotes the closed ball of radius r centered at y.

Proposition 2.2. Let f„ : Sf —> St U {+00} be a family of lower semicontinuous
functions equi-bounded below near X and with {fn(x)} bounded. The following
are equivalent:

(1) {/„} is equi-primal-lower-nice at X.
(2) There exist positive constants X,   c and f such that for all n £ N and

t > T we have

(ux -u2,xx- x2) > -t\\xx -x2||2

whenever u, £ dpfn(x,), \\Uj\\ < ct, and ||x,- - x|| < X.

Proof. We first show that (1) implies (2). Because {/,} is equi-primal-lower-
nice at X there exist positive constants c,   X and T such that for all n £ N

fn(x') > fn(x) + (U,X'-X)~ (//2)||x' - x||2

is valid for all x' with ||x' - x|| < I whenever t > T, \\u\\ < ct, \\x — x\\ < X
and u £ dpf„(x). If w, e dpfn(Xj), ||«,|| < ct, t >T and ||x, - x|| < X,  then

fn(xx) > fn(x2) + (u2, xx -x2) -(</2)||xi -x2||2   and

fn(Xl) >fn(xX) + (ux,X2-Xx)-(tl2)\\xX - X2||2.

It follows, by adding the previous two inequalities, that

(Ml - U2 , Xl - X2) > -t\\XX - X2||2.

We now show that (2) implies (1). We may assume without loss of generality
that {fn} is equi-bounded below on B(x,X).

We will need the following claim:

Claim 1. For any 0 < X < X there exists Tx > 0 such that for all t > Tx,
n £ N and z £ Sf with \\z - X|| < (A/4) we have

argmax {(tz, x) - (r/2)||x||2 - f„(x)} C B(x, (3/4)A).
||JC-JC||<1

Proof of Claim 1. According to [23, Lemma 3.2], if O : Sf -» 3? U {+00} is
lower semicontinuous and bounded below on B(x, X) then for

2(Q(x) - y)
~     (3/8)A2    'License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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where y =    inf    4>(x), one has
l*-Jtll<*

argmax{(/z,x)-(?/2)||x||2-0(x)} c B(x, (3/4)A)
\\x-x\\<x

for all z with ||z-X|| < (A/4). (Note that [23, Lemma 3.2] is stated in terms of
a finite dimensional space, but the only essential requirement is that the norm
be given by a dot product.) To complete the proof of the claim just let

Tx ~ SUP-TV/8V22-'

where y„=     inf    fn(x).
\\x-x\\<k

We will also need the following:

Claim 2. There exist positive A2 and T2 such that for all n £ N and t >T2 if
u = t(z-x) is in dpf„(x) with ||x -X|| < (A2/4) and \\z - x\\ < (X2/4) then

fn(x') > f„(x) + (u,x'-x)- (7/2)||x' - x||2

for all x' £ B(x, X2).
Once the claim has been established just let c = (A2/8), T = T2 and A =

(A2/8), then if u £ dpfn(x) with \\u\\ < ct, \\x - x|| < X and t > T then for
z = (u/t) + x we have

\\z - x|| < ||x - X|| + \\u\\/t < (A2/8) + c< (A2/8) + (A2/8) = (A2/4).
From Claim 2 it follows that

MX') > MX) + (U,X'-X)~ (t/2)\\X' - X\\2
for all x' £B(x, A).

Proof of Claim 2. Let 0 < A2 < (l/2)min{A, <?}. Let T2 > max{T, Tx} where
Tx is given by Claim 1 with A = A2. Fix n £ N, and / > T2. Let u = t(z-x) £
dpfn(x) with ||x-x|| < (A2/4) and ||z-x|| < (A2/4). Notice that ||«|| < ct.
Consider the following optimization problem:

sup     {<?z,x')-(f/2)||x'||2-/„(x')}.
x'€B(x,X2)

(This is a finite number because f„ is bounded below on B(x, X2).) Let {x^.}
be a maximizing sequence, i.e., there exists {e^} a sequence of nonnegative
numbers converging to 0 such that

(tz, xk) - (t/2)\\xk\\2 - fn(xk) >     sup     {(tz, x') - (t/2)\\x'\\2 - fn(x')} - ek.
x'€B{x,h)

By Claim 1, we may assume wlog that {x^} c B(x, (3/4)A2). By the Borwein-
Preiss smooth variational principle (see [12]) there exist {wk}, another maxi-
mizing sequence, such that

l|u>*-**ll <2v/e^
and (eventually)

0£dp[-(tz,.) + (ti2)\\ ■ ||2 + M-)](wk) + jrkBLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(where B is the closed unit ball). So there exist {yk} £ B such that

(tz - twk) - s/Tkyk £ dpfn(wk).

Eventually ||(7z - twk) - y/ekyk\\ < ct. To see this notice that

||(/z - twk) - v/efcV^I < t\\z - x\\ + t\\x - wk\\ + Ji~k
< t(X2/4) + tX2 + y/Fk'.

Hence eventually \\(tz - twk) - ^fe^y^ < 2tX2 < ct. Now pick any t < t (not
depending on k ) such that \\(tz - twk) - -/e^y^H < ct, and \\u\\ < ct. We then
have

((tz - twk) - y^yk -u,wk-x)> -fHu^-xll2.
The left-hand side of the previous expression is equal to -t\\wk -x\\2 - (y/e^yk ,
wk - x) (recall that u = t(z - x)) and therefore we conclude that {wk} con-
verges to x. Because {wk} is a maximizing sequence we conclude that the
supremum is attained at x. (This is because

limsup {(tz,wk) - (//2)|K||2 - fn(wk)} < (tz, x) - (tl2)\\x\\2 - f„(x).)
k—*oo

We have shown that

(tz, x') - (Z/2)||x'||2 - Mx') < (tz, x) - (t/2)\\x\\2 - fn(x)

for all x' £ B(x, X2). From this we conclude that

Mx') > (tz ,x'-x) + (t/2)\\x\\2 - (t/2)\\x'\\2 + fn(x)
= (tZ - tX , X1 - X) - (t/2)\\x' - X||2 + fn(x) ,

for all x' £ B(x, X2). This concludes the proof of Claim 2 and of the proposi-
tion.   □

Remark. The requirement that {/„} be equi-bounded below near X and that
{fn(x)} be bounded is only needed to prove that (2) implies (1). Also notice
that (1) implies (2) is valid in any Banach space.

Corollary 2.3. Let f: Sf —> 3? U {+00} be a lower semicontinuous function that
is finite at x. The following are equivalent:

(1) f is primal-lower-nice at x.
(2) There exist positive constants X,   c and T such that

(ux - u2,xx- x2) > -t\\xx -x2||2

whenever u, £ dpf(Xj), ||w;|| < ct, t > T and ||x, - X|| < A.

Proof. The function / is bounded below on some neighborhood of X. (This is
because / is lower semicontinuous.) We then apply the previous proposition
with /„ = / for all n .   □

One of the most important features of primal-lower-nice functions is that
their proximal subgradients and (Clarke) generalized subgradients agree.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Theorem 2.4. If a function f: Sf -> 5R U {+00} is primal-lower-nice at x, then
for all x in a neighborhood of x, the proximal subgradients to f at x agree
with the generalized subgradients to f at x, i.e., dpf(x) = df(x).
Proof. Because / is primal-lower-nice on a neighborhood of X we need only
establish the theorem at x. The proof is similar to Poliquin [23]. Let c > 0,
X > 0 and T > 0 be as in the definition of / primal-lower-nice at X. Since
Sf is a reflexive Banach space whose norm is Frechet differentiable away from
zero and locally uniformly convex, Loewen [20] gives the following equality:

df(x) = co[U+U0],

where co denotes the closed convex hull, U is the set of weak limit points of
sequences of proximal subgradients (i.e. u £ U if there exists a sequence {x„}
converging to X in norm with {/(x„)} converging to f(X), and a sequence
{«„} weakly converging to u with un £ dpf(x„)), and Uo is the set of singular
limit points of sequences of proximal subgradients. (Thus, «o £ Uo if and only
if there is a sequence x„ —> x with f(x„) -* f(x), a sequence u„ £ dpf(x„),
and a sequence of scalars an —» 00 such that u0 is the weak limit of u„/a„.).

We first show that dpf(x) is a sequentially weakly closed set, by proving
that the set U is contained in (and therefore equal to) dpf(x). For u £
U, there exist sequences {x„} converging strongly to x, and u„ £ dpf(x„)
with {u„} converging weakly to u,and {/(x„)} converging to f(X). (Notice
that the weak convergence of {un} implies that ||w„|| is bounded.) Eventually
||*n-*ll <^ and pick t > T such that ||«„|| < ct. Since / is primal-lower-nice
at x, we eventually have

(2.2) f(x) > f(x„) + {u„,x- x„) - ^II* - x„||2

for all x with ||x - x|| < A. Taking the limit in (2.2) as n —> 00, we get
u £ dpf(x). Since dpf(x) is convex, its strong closure and sequential weak
closure are identical, and we have actually shown that dpf(x) is strongly closed.

Now we consider any uo £ Uq. It follows that there are sequences {x„}
converging strongly to X, {o„} going to 00, and u„ £ dpf(x„) such that
{/(*«)} converges to f(x) and the sequence of quotients {u„/o„} converges
weakly to u0. The weak convergence of the quotient sequence implies that
there exists a finite number y such that ||u„|| < yon . Since {x„} converges
strongly to X and {o„} goes to 00, there is an integer N such that the bounds
ll*n _ x|| < X and yon/c > T hold for every n > N. Since / is primal-lower-
nice, the inequality

(2.3) f(x) > f(xn) + (u„,x- xn) ~^\\x- x„\\2

is valid for all x with ||x - x|| < A. Dividing (2.3) by on and taking the limit
as n —> 00 , we obtain the inequality

(2.4) 0> (uo,x-X)- jr||x-x||2

for all x with ||x - x|| < A.
Finally, we show that U + U0_ dpf(x) and deduce our result from this. For

any u + Uo £ U + Uo , we know from the first part of this proof that u £ dpf(X).License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Therefore, there is a / > 0 with

f(x)>f(x) + (u,x-x)-t1\\x-x\\2

locally. This combined with (2.4) yields the inequality

f(x) > f(x) + (u + uo,x-x)-2^—11* - *||2

locally, which implies that that u + uo £ dpf(x). Therefore

df(X) = co[U + U0] C co(dpf(x)) = dpf(x) C df(x).
(The second equality follows because the convex set dpf(x) is strongly closed).
D

Theorem 2.4 is very useful for studying the properties of the (Clarke) gener-
alized subgradients to primal-lower-nice functions. Our generic approach will
be to prove results in terms of the more tractable proximal subgradients, and
then state these results in terms of (Clarke) generalized subgradients.

Primal-lower-nice functions have another fascinating property: the "local"
Moreau-Yosida approximate of parameter t plus t/2 times the norm square is
convex; this was first observed by Thibault and Zagrodny [39]. We denote by
g' the Moreau-Yosida approximate of parameter t, i.e.,

g'(x)= inf {g(x') + (//2)||x'-x||2}.
X     _£C

Proposition 2.5 [Thibault and Zagrodny]. Let fn:Sf —> 3?U{+oo} be a family of
lower semicontinuous proper functions, equi-bounded below near x with {/«(x)}
bounded. Assume further that {/„} are equi-primal-lower-nice at x with con-
stants c,   A and T. Then there exist 0 < c < c,   T > T and 0 < rx < r2 < A
with rx+ c < X such that for all t> T and for all n we have

(1) (f„ + SB{x^2))'(x) + (t/2)\\x\\2   is convex on   B(x, rx) (where dc de-
notes the indicator of the set C).

(2) The infimum in the definition of (f„ + SB(X,r2))'(x) is actually equal to
the infimum over the set B(x, (3/4)r2) for each x in B(x, rx).

(3) 7/||m||<ct,   ||x - x|| < rx with u£df„(x) then

d(fn+SB(x,ri)y(X+") = {u}.

Parts (1) and (2) of the proposition are from [39]. To prove part (3), we will
need the following lemma.

Lemma 2.6. Assume

f(x') > f(x) + (u,x'-x)- (t/2)\\x' -x||2
is valid for all x' £ C where C is some set containing x. Then (f+Sc)'(x+j) =
f(x)+2Ll\\u\\2-
Proof. By definition,

(f + Sc)'(y) = inf {f(x') + (t/2)\\x> - y\\2}.x'ecLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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For all x' £ C we have

/(x') + (//2)||x+"-x'||2

> f(x) + (u,x'-x)- (t/2)\\x' - x\\2 + (t/2)\\x -x'+ "||2

= f(x) + (u, x' -x) - (t/2)\\x' - x||2 + (f/2)||jr - x'||2 + (x-x',u)

= /(*) + ̂ IMI2-
Therefore, (f + Sc)'(x + f) = /(x) + ±\\u\\2.    D

Proof of Proposition 2.5. Let f„ be equi-primal-lower-nice at x with constants
T, X and c. By [39, Lemmas 4.2 and 4.4] there exist 0 < fx < r2 such that
(1) and (2) are valid (with r, in place of r,). Let r2 = f2. Pick 0 < rx < rx and
let 0 < c < min{c, (rx - rx)} . We may assume that T > T and that r2 < X.
Fix n. Choose any t >T, x and u £ df„(x) with ||x-x|| < ri and ||w|| < ct.
By the previous lemma and the primal-lower-nice property of fn , the infimum
in the definition of (fn + SB^XtriX) (x + y) is attained at x. By [17, Lemma 3.6]
we have that

(2.5) aF(f„ + dB{x>r2))'(x + ") c dFfn(x) n {r([x + "] - x)}.

In this case, because the function (f„ + SB(X<r2)) (x) + (?/2)||x||2 is convex on
t3(X ,fx), and that ||x + -t - x|| < fx we have

dF(fn +SB{X,ri))'(X+ y) = dp(fn + 5B(x ̂ (x + ") =d(fn+dB{X,ri))t(X+^),

and this set is nonempty. This and (2.5) complete the proof of the Proposi-
tion.   □

3.  MOSCO CONVERGENCE

Recall that /„ : Sf —> Jtuj+oo} Mosco epi-converges to /, denoted by
/„ —>m /, if /„ strongly and weakly epi-converges to /. In other words, we
have for all x

(3.1) f(x) <liminffn(xn)   whenever   x„ —>w x

and
(3.2) there exists   x„ ->* x   with   f(x) > limsup/„(x„).

Note that /„ strongly epi-converges to / if the inequality in (3.1) holds for
every sequence x„ converging strongly to x. We will say that /„ Mosco epi-
converges to / on C if for all x £ C

f(x) < liminf/„(x„)   whenever   x„ —^ x   and {x„} c C

and

there exists   xn —>s x   with   {x„} c C and f(x) > limsup/„(x„).License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Proposition 3.1. Let {/„} be a family of equi-primal-lower-nice functions with
constants c, X and T. //{/„} strongly epi-converges to f on B°(x, A) (where
C° is the interior of C). then for any (x, u) £ (s - w) limsupgphd/, with
\\x - x|| < A we have (x, u) £ gphdpf
Proof. Let (x, u) € (s - u>) lim sup gph<9/„ with ||x-X||<A, i.e., there exist
subsequences x„k -*s x and u„k -+V u with u„k £ dfnk(x„k). For any x', with
||x' - x|| < (A - ||x - x||), there exist x'„ -*' x' with limsup/„(x^) < f(x').
Because {u„k} is bounded there exists t > T with \\u„k\\ < ct. It follows by
the primal-lower-nice property that eventually

fnk(Xnk) > fnk{Xnk) + (u„k , X„k - X„k) - (t/2)\\x'„k - X„J2.

We then have
f(x') > lim sup f„k(x'„ k)

> limsup {f„k(x„k) + (unk, x'„k - x„k) - (t/2)\\x'„k - x„k\\2}

> liminf{/„,(x„J + (u„k, x'„k-x„k) - (t/2)\\x'nk - x„J2}
>/(x) + (M,x'-x)-(//2)||x'-x||2,

i.e., u £ dpf(x). (The final inequality follows because {/„} strongly epi-
converges to /.) This completes the proof of the proposition.   D

We now give an example to illustrate that under the mere assumption of
strong epi-convergence there is little hope (in general) that the graphs of the
subgradients would converge.

Example 3.2. Consider I2 with orthonormal base {ex, ...., en, ...}. Let /„
be a convex function defined by fn(x) := Sk„(x) - 2\(x, en)(x, ex)\ where
Kn := {x £ l2\(x,en) < 0, (x, ex) < 0}. Let f(x) := SK(x) where K :=
{x £ /2|(x,^i) < 0}. Then the sequence of convex functions /„ strongly
epi-converges to / (but does not Mosco epi-converge). Furthermore, the set
of subgradients to / at any x is just the normal cone to the convex set K
at the point x, and thus in particular 0 e df(x) for any x £ K. Fix x =
-eex £ K with e > 0. Notice that the set of subgradients to /„ at any point
with negative first and «th components -A and -p is the set {(X/p)xl2en +
(p/X)xl2ex }, and that there are no subgradients to /„ at points with negative
first component and a zero nth component. Furthermore, any sequence {x„}
converging strongly to our fixed x must have «th components approaching
zero and must eventually have negative first components. Therefore, if there is
to be any hope of finding a sequence of subgradients yn £ dfn(x„) converging
weakly (or strongly) to 0 £ df(x), the x„ must eventually have strictly negative
first and nth components and thus the yn must be of the form (Xn/p„)xl2en +
(p„/X„)x/2ex with X„ converging to e >0 and p„ converging to zero. But such
a sequence of y„ does not converge weakly (or strongly) to anything, because
its norm increases to infinity. We conclude that the graphs of the subgradient
mappings df„ do not set converge (strong to weak or strong to strong) to the
graph of df, even though the sequence of functions /„ strongly epi-converges
to the function /.

We will need the following:License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Proposition 3.3 (similar to Attouch-Wets [2, Proposition 4.2]). Let f„: Sf ->
■R U {+00} be a family of functions equi-bounded below near x with {fn(x)}
bounded. Assume further that {/,} is equi-primal-lower-nice at x, with con-
stants c, A and T, and that {fn} Mosco epi-converges to f on some neigh-
borhood of x. Then there exist T > T, 0 < c < c and 0 < rx < r2 < X with
c + rx < A such that all the conclusions of Proposition 2.5 follow and such that for
all t>T   (f„ + SB{Xtr2)y Mosco epi-converges to (f+SB{x<r2))' on B°(x,rx).
Proof. Let c > 0, T and 0 < rx < r2 be given by Proposition 2.5. We
may assume that f„  Mosco epi-converges to / on B°(X, r2). Let (g„)' :=
(fn +^B(x,r2)) ar,d g' '■= (/ + o~B(X,ri)) • We must show that for all x with
||x - x|| < rx and t >T we have
(3.3)       g'(x) <liminf(gn)'(x„)   whenever   x„ ->w x and ||x„ -X|| < rx
and
(3.4)

there exists   x„ -*s x   with ||x„-x||<ri and     gt(x)>limsup(gn)t(xn).

We first show (3.4). For any a > g'(x), there is x' with

/(x') + (//2)||x-x'||2<a.
By Proposition 2.5 we may assume that ||x' - X|| < (3/4)r2. By hypothesis,
there exist x„ -+* x' with limsup/„(x„) < f(x'). By the definition of (gn)',
eventually we have

(gn)'(x) < (fn)(xn) + (t/2)\\Xn - X\\2.
From this we conclude that lim sup(gn)'(x) < a, and we have established (3.4).

To show (3.3) we use a proof similar to [6].  For any sequence x„ in the
interior of B(x, rx) converging to x weakly, if y > liminf(^„)'(x„) then (by
taking a subsequence if necessary) there exist y„ such that

Myn) + (t/2)\\xn-yn\\2<y.
Again by Proposition 2.5 we may assume that \\yn - x\\ < (3/4)r2. By taking a
subsequence if necessary, we may assume x„ — yn converges weakly in Sf. It
follows that yn weakly converges to y £ Sf with ||y -x|| < (3/4)r2. Therefore

g'(x) < f(y) + (t/2)\\y - x||2 < liminf {f„(yn) + (t/2)\\xn - yn\\2} < y.
(The middle inequality holds by the weak-lower semicontinuity of the norm and
our assumption that /„ Mosco epi-converges to /.) By our choice of y we
have shown (3.3).   □

Lemma 3.4. Let {/„} be a sequence of functions from Sf into 5RU{+oo} that
Mosco epi-converges to a function f : Sf —> »U {+00} on B := B°(x, r). Let
g be any continuous convex function from B into 3? that goes to infinity on
the boundary of B. If we let g(x) = +00 for x ^ B then {f„ + g} Mosco
epi-converges to f + g over Sf.
Proof. We first show that for any x£Sf there exists {x„} strongly converging
to x with Hmsup [f„(x„) + g(x„)] < f(x) + g(x). If x £ B the inequal-
ity is obvious. Otherwise, there exists {x„} strongly converging to x with
lim sup f„(x„) < f(x). As g is strongly continuous, we have

limsup[/„(x„) + ^(x„)j < (Hmsupfn(xn))+g(x)<f(x) + g(x).License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Now consider {x„} weakly converging to x . Suppose that ||x - X|| > r. As
g is weakly lower semicontinuous, we have +00 = g(x) < liminfg(x„), and
hence

lim inf [f„(x„) + g(x„)] > liminf/„(x„) + liminfg(x„) = +00 = f(x) + g(x).
Now suppose that ||x - X|| < r. If eventually ||x„ - x|| > r,  then eventually
g(xn) - +00 and hence

f(x) + g(x) < +00 = lim inf [fn(xn) + g(xn)].
So assume that this is not the case. Let

5(0) := min{« e N : ||x„ - x|| < r}
and for k > 0 let

s(k + 1) := min{« > 1 + s(k) : ||x„ - x|| < r}.
Let x'„ := xS(k) if n = s(k) for some k £ N, and x'„ = x otherwise. It follows
that x'„ £ B and the sequence weakly converges to x. Moreover

lim inf [f„(x„) + g(x„)] = lim inf [fs{k)(xs{k)) + g(xs{k))]

> (liminffs{k)(xs{k))) + g(x)   because g is w-l.s.c.
k—udo

> lim inf/,(*£) + g(x)    ({x^,} is a subsequence of   {x'})
n—*oo

>f(x) + g(x),
because of the Mosco epi-convergence of /„ on B. The proof is now com-
plete.   □

We are now ready to establish our convergence result for Mosco epi-conver-
gence. In the following Theorem we will use the terminology

gphd/„ ^pk gphdf on B°(x, rx) xSf.
By this we mean that if (x, u) £ limsupgphS/, with ||x - X|| < rx then
(x, u) £ liminfgphd/, and (x, u) £ gphdf and conversely if (x,u) £
gphdf with ||x - X|| < rx then (x, u) £ limsupgphd/,.
Theorem 3.5. Let f„ : Sf —► 3? U {+00} be a family of functions equi-bounded
below near x with {fn(x)} bounded. Assume further that f„ are equi-primal-
lower-nice at x, and that f„ Mosco epi-converges to f on some neighborhood
of X. Then f is primal-lower-nice at x, and there exist rx positive with

gphdfn -^k gphdf on B°(x,rx)x Sf.
Proof. Let T > 0, c > 0 and 0 < rx < r2 he given by Proposition 3.3.
We may assume that rx < (l/4)r2 and that {/„} is equi-bounded below on
B(x, r2), and Mosco epi-converges to / on B°(x, r2). This ensures that / is
also bounded below on B(x, r2).

For all t > T we have, by Proposition 3.3, that (fn + SB^Xtri)) Mosco epi-
converges to (/ + SB(X<r2))' on B°(x,rx). Let <p be a C°° convex function
that goes to infinity on the boundary of B°(x, rx). Let <f>(x) := +00 for x £
B°(x, rx). We have by Lemma 3.4 that

(fn + SB{x,r2))' + (t/2)\\.\\2 + (t)^(f + 3B{x,r2)y + (t/2)\\.\\2 + cf>   on XLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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and by Attouch's Theorem

gph (//+d(fn+sB(x,r2)y+d<p) ->pk gPh (a+d(f+dB{x,r2)y+d<p)
Since dtf>(x) = V0(x) for x in B°(x, rx) and d<j>(x) = 0 otherwise, we have

_?hd(fn-rSB(x,ri)y -^pk gphd(f + 8B(x,r2)y
on B°(x, rx).

Let (x,u) £ limsupgph9/n with ||x - X|| < rx , then, by Proposition 3.1,
(x, u) £ gphdpf. Therefore

lim supgphdfn c gph dpf   over B(x ,rx).
Now consider u £ dpf(x) with x £ B(X, rx). Because the function / is

bounded below, there exists t > T such that ||x + " - X|| < rx and such that

f(x') > f(x) + (u,x'-x) - (t/2)\\x' - x\\2
is valid for all x' in B(x, r2). It follows by Lemma 2.6 that

(f+°-B(X,rl))t(X+") = f(x) + (jt)\\u\\2,

i.e., the infimum is attained at x. By [17, Lemma 3.6] we have

e(f+dB{Xtr2)y(x+^)=dF(f+dB{s>r2)y(x+^)ct[x+"-x].

(The equality is due to the fact that (/ + <5b(s,,-2))'(*) + (*/2)|| • ||2 is convex on
B(X,rx).) Therefore u £ d(f+ dB{x>r2))'(x + f). As

gphd(fn + SB{X,r2))' ̂ pk gphd(/ + 8B(X<r2)y

on B°(X, ri),   there exist (w„, u„) with wn -» (x + ") and un -» u with
u„ £ d(fn + <5fl(je,,-2)) (w„). We can write wn = x„ + ^f with x„ -» x. Again by
[17, Lemma 3.6] we have for n big enough

un £d(f„ + 5B{Xtr2))'(xn + ^f)= dp(f„ + SB{Xtr2)y(x„ + Vf)

Cd(fn + SB{x<r2))(x'n) nt[x„ + ^-X„],

where x'„ £ B(x, r2) is any point where the infimum in the definition of
(fn + SB(X<ri)) (xn + ^) is attained. (Such a point exists by the proof of [17,
Lemma 3.6].) It follows that x'n = xn and that

Un €d(fn+dBiXtr2))(Xn) =5/„(X„),

and therefore (x, u) e liminfgph<9/„. We have shown that over B°(x, rx)

limsupgphd/, c gphdpf C lim inf gph df„.
It follows from Corollary 2.3 that / is primal-lower-nice at X. This completes
the proof of the theorem because dpf = df in a neighborhood of x.    0

We provide a partial converse to Theorem 3.5. Note that a full converse
to Theorem 3.5 cannot hold, as is seen for example by taking the family of
functions {/,} given by f„ := -|| • ||2 which are (equi) primal-lower-nice atLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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0. In this case, the corresponding subdifferentials are given by df„(x) = -2x .
The graphs of these subdifferentials trivially PK converge to the graph of -2x ,
which is the subdifferential of the function / = -|| • ||2 . However, the family of
functions {/,} does not Mosco epi-converge to / since -|| • ||2 is not weakly
lower semicontinuous. Notice that in this case {/„} does however strongly
epi-converge to /.
Theorem 3.6. Let /„ : Sf —> SR U {+00} be a family of functions equi-bounded
below near X with {/n(x)} bounded. Assume further that f„ are equi-primal-
lower-nice at X, and that gph<9/„ PK converges to gph<9/ on some neighbor-
hood of X where f : Sf —> 3? U {+00} is a lower semicontinuous function. Also
assume that there exists {X„} converging strongly to x with {f(x„)} converging
to f(X), and {un} converging weakly to u with un £df„(xn) and Q£df(X).
Then f is primal-lower-nice at x, and {/„} strongly epi-converges to f on a
neighborhood of x.
Proof. By Corollary 2.3 we may assume that / is primal-lower-nice at x. By
Theorem 2.4, u is in the proximal subdifferential of / at X and hence / is
bounded below near X. Let T > 0, c > 0, and 0 < rx < r2 be given by
Proposition 2.5. We may assume that

/ is primal-lower-nice at X with constants c, T and r2. We may further
assume that rx < (l/4)r2, {/„} U {/} are equi-bounded below on B(x, r2)
and that gph<9/„ PK converges to gph df on B°(x,r2).

By Lemma 3.7, or by the proof of Theorem 2.64 in Attouch [1] (pages 231-
232), there exist positive p\ < rx and T[ > T such that for all t > T[ the
functions (f„ + SB(X<r2)) , n £ N, and (f + SB(x,n)) are Lipschitzian of
constant ct on B(x, p\). Let y := min {(l/2)c, (l/2)pj}. For the same reason
there exist positive px < (l/2)p\ and Tx > T[ such that the above functions
are Lipschitzian of constant yt on B(x, px).

Claim. Forall t > Tx, gphd(f„+SB(Xtr2))' PK converges to gphd(f+SB{x^2))'
on 73°(X, pi).

Proof of Claim. Let (x , u) be an element of gph d(f+8^^) with ||x-X|| <
px. It follows from Proposition 2.5 part (1) that

(3.5) U£dF(f + dB{x,r2))'(x).
Let   x'   =  x - j.   By [17,  Lemma 3.6] the infimum in the definition of
(/ + ^B(x,r1)) (x) is attained at some x" £ B(x, r2),  and we have

U£d(f + 8B(x,r2))(x")n{t(x' + -t-x")}.

It follows that x' = x". In fact by Proposition 2.5 we have that x' = x" £
B(x, (3/4)r2),  and therefore we have
(3.6) u£d(f + 8B{x,r2))(x') = df(x').

By our assumptions there exist (x^,, u„) £ gph df„ converging (strong-strong)
to (x', u) which also means that (x'n + ^, u„) converges to (x, u). From
(3.5) we have that ||w|| < yt. (This is because (f + SB(Xtr2))' is Lipschitzian of
constant yt.) Therefore

||x'-x|| = ||x- " -x|| < ||x-x|| + y||w|| < px+y< p\.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Hence eventually ||x^ -x|| < p\ < rx, and ||w„|| < ct because un converges to
u and ||w|| < yt < ct. It follows from the above and Proposition 2.5 part (3)
that

d(fn+SBix,r2)y(x'n + ^) = {«„}.

Consequently
(x, u) £ lim inf gph d(fn + SB{X:r2)y.

Now let (x, u) £ lim sup gph d (f„ + SB(X<r2))   with ||x - X|| < pi,  we will
n—»oo

show that (x, u) £ gph d (/ + dB(X _ r2)) and this will conclude the proof of this
Claim. By definition there exists a subsequence

(X„k ,U„k)£ gph d(fnk+5B(Xtri)y

with (xnk, u„k) converging to (x, u). By taking another subsequence if nec-
essary we may assume that \\x„k - x\\ < px. By Proposition 2.5 part (1) we
have

Unk £ dF(f„k +dB{Xtr2))'(x„k).

Let x'„k = x„k - u„k/t, and x' = x - u/t. We have x'„k converging to x'
and as in (3.6). (See the discussion prior to (3.6).) It follows that u„k £
df„k(x'„k). By our assumptions u £ df(x'). We also have ||w|| < ct (this is
because (f„k + dB(X^2)) is Lipschitzian of constant yt on B(x,px), which
implies that ||w„J < yt and in the limit we obtain that ||«|| < yt < ct) and

||x' - x|| = ||x-x|| < ||x - x|| + -\\u\\ < px+y < p\.

From Proposition 2.5 part (3) we have

d(f+8B{x,r2)y(x) = d(f+8B{x,r2)y(x' + -t) = {u},

and therefore (x, u) £ gph<9(/ + 8B(x,r2)) ■ This completes the proof of the
Claim.

Let 0 be a positive C°° convex function that goes to infinity at the boundary
of B°(x, px). We extend <p to Sf by cp(x) = +00 for x not in B°(x, px).
For t >TX we have

gphS[(/! + r5B(Xjr2))r + (r/2)||.||2 + 0]

^kgVhd[(f + dB{x,r2)y + (t/2)\\-\\2 + cP]    on   Sf.
By Proposition 2.5 part (3) once again we may assume (by taking Tx bigger if
necessary) that for t > Tx we have x + " and xn + ^f in B°(x, px),

Uned(fn+dB{Xyr2))'(xn + lj)       and     U£d(f + dB(X^2))'(x+-t).

Hence

U„ + t(X„ + ^) + V^(X„ + ^) 6 d [(fn + dB{x,r2)y + (t/2)\\ ■ ||2 + <P](X„ + ^f) ,

and

U + t(X + V-) + V«77(X +-t)£d [(/ + dB{x>ri)y + (t/2)\\ • ||2 + 4>](X + -t).
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Now we apply Attouch's Theorem to deduce that [(fn+SB^x >r2))' + (t /2)\\-\\2+<p]
Mosco epi-converges to [(f + 8B^x<r2)) + (t/2)\\ • \\2 + tp] on Sf and hence on
B°(X, px). Finally we apply [1, Theorem 2.65, p. 232] and [1, Theorem 2.15
(p. 138)] to conclude that {/„} strongly epi-converges to / on 73°(X, pi).    □

Remark. Instead of the assumption that there exist {x„} converging to X with
{/(x„)} converging to f(x) and {tt„} converging weakly to tt with u„ in
the subdifferential of /„ at x„ and tt in the subdifferential of / at X, one
might assume that for each ball centered at x there is some point x and some
sequence {x„} in this ball with {/(x„)} converging to f(x) and a sequence
{«„} converging weakly to some u with un in the subdifferential of /„ at x„
and u in the subdifferential of / at x.

Lemma 3.7 [1, proof of Theorem 2.64]. Let &~ be a family of functions on
Sf with values in 3? U {+oc} that are equi-bounded below on Sf by -a where
a > 0. Assume x is a point in Sf with {/(x) : / £ &~} bounded above by
ft > 0. Then for f £3r,   t>0 and x, x' £Sf we have

f'(x') < f{x) + (t/2)\\x - x'|| [||x - x'|| + 2{(2/t)(B + a) + ||x - x'||2}1/2' .
Proof. Fix t > 0,   x, x' £ Sf and e > 0. Choose xe £ Sf such that

(3.7) /(xe) + (//2)||x-xf||2</'(x) + e

Then
(t/2)\\x - xe ||2 < f(x) + e - f(xt) < f(x) + e + a

<f(x) + (t/2)\\x-x\\2 + e+a
<P + a + e + (t/2)\\x-x'\\2.

From this it follows that
/'(*') </(*f) + ('/2)||xf-x'||2

< f{x) + e - (t/2)\\xt - x\\2 + (t/2)\\x( - x'||2    (by (3.7))
= f(x) + e + (t/2)(\\xt - x'|| - ||xe - x||) (\\Xl - x'|| + ||x£ - x\\)

<f(x) + e + (t/2)\\x-x'\\(\\xe-x\\ + \\xc-x'\\)
< f{x) + e + (t/2)\\x - x'||(2||x£ - x|| + ||x - x'||)

<f(x) + e + (t/2)\\x-x'\\ \\x-x'\\

+ 2{(2/t)(P + a + e) + \\x - x'W2}"2   ,

and this concludes the proof of the lemma.   □

For t > 0 and v £ df(X) define the second-order difference quotients <p, :
Sf^$lu{+oo} by
CX 8A A (t\ ■      /(* + tf) ~ fix) - t(V , £)(3.8) Mi) ■=-7772^-■

We say that / is twice Mosco epi-differentiable at x relative to v if the second-
order difference quotients </>, Mosco epi-converge as t i 0 to a proper function.
The limit function is denoted by fx'mv.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Similarly, for a set-valued mapping T :Sf =\Sf define the first-order differ-
ence quotients Tt:Sf' =J Sf by

(3.9) rf«) := r<*+ «?)-«,

Let v £ r(x). We say that T is Painleve-Kuratowski (PK) proto-differentiable
at x relative to v with proto-derivative Tfkv if gph Tt Painleve-Kuratowski
(PK) converges to gphT^.

Theorem 3.8. Assume f is primal-lower-nice at x. If f is twice Mosco epi-
differentiable at x relative to v then df is PK proto-differentiable at x relative
to v with

d((l/2)fx™)(S) = (df)'xpkv(i).
Proof. Note that for all t, </>,(0) = 0, d((l/2)4>,)(£) = (df(x + ti)-v)/t
for all £. (<p, is given in (3.8).) By [24], there exist p and to > 0 such
that for all t £ ]0, to] the functions </>, are equi-bounded below and equi
primal-lower-nice on B(0, p). We are therefore in a situation where we can
use Theorem 3.5. The application of Theorem 3.5 shows that the limiting func-
tion fx% is primal-lower-nice on the whole space. (This is because it is twice
positively homogeneous.) In particular, through Theorem 3.5 we obtain that
there exists r>0 such that gphd((l/2)(pt) Painleve-Kuratowski converges to
gphd((l/2)fx'™) on B°(0, r) x Sf. This is sufficient for our purposes because
if A > 0 then (<*, to) £ gphd(fx%) if and only if (Ac;, Xco) £ gphd(fx™).
(Againbecause fx"l is twice positively homogeneous, see Rockafellar [32], and
dP(fxmv) = d(fx'i).) Similarly for any A > 0, (<*, co) £ lim sup gph (d<pt)
if and only if (A£, Aw) £ limsupgph (d(pt). The same property holds for the
liminf and this completes the proof.   □

4. ATTOUCH-WETS CONVERGENCE

Recall that C„ Attouch-Wets (AW) converges to C, denoted by C„ —aw C,
if for all p big enough

limhaus^C , C) —> 0,
where

haus/)(C„ , C) = max {e((Cn)p, C), e(Cp, Cn)}
where e(A, B) := supdist(a, B) and Dp := D n Bp (where Bp is the closed

aeA
ball of radius p). Also recall that {/„} Attouch-Wets converges to /, denoted
by /„-«" /,  if epifn^aw epi fi

We will need the following lemmas. For /, g :Sf —> 3tU {+00} let ep(f, g)
:=e((epif)p,epig).

Lemma 4.1. Let g : Sf —» 3? be Lipschitz over any bounded subset of Sf and
let fn : Sf —> 3? u {+00} and fi : Sf —► 3? U {+00} be lower semicontinuous.
Assume that for all p > p > 0 we have  lim hauSn(epi/„ , epi/) = 0. Then for

n—>oo
all p > p there exist p' > p and X > 0 depending only on g and p such that

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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for all n

(4n ep(f+ g, fin+ g)< 2(1+X)epl(fi,fn) and
eP(fin + g,fi+g)< 2(1 +X)ep,(fn,f).

In particular, for all p > p

lim haus^(epi(/, + g), epi(/+ g)) = 0.
n—»oo v

Proof. We will only show the first part of (4.1). Consider (x, r) £ epi(fi + g) .
Then (x, r - g(x)) £ epi fi and \g(x)\ < \g(0)\ + k\\x\\ < \g(0)\ + kp, where
A: is a Lipschitz constant for g over 5(0, p). So

\r - g(x)\ < r + \g(x)\ <p + \g(0)\ + kp := p',

and therefore (x, r - g(x)) £ (epi fi)pi. Take (u, s) £ epi/„ with ||x - u\\ +
\r-g(x)-s\ <2epl(f, fi„). But (u, s + g(u)) £ epi(f„ + g) and

dist((x, r), epi(/„ + g)) <\\(x, r) - (u, s + g(u))\\
< \\x - u\\ + \r - g(u) -s\

(4 2) < \\x - u\\ + \r- g(x) -s\ + \g(x) - g(u)\
<(l+A)||jc-w|| + |r-*(jc)-s|
<(l+A)[||x-M|| + |r-g(x)-5|]

< 2(1+X)ep,(fi, fn),
where A is a Lipschitz constant for g over B(0, a), and a is any upper
bound for the sequence {2ep>(f, /„)}. Therefore

eP(f + g, fin + g)=        sup       dist((x, r), epi(fn + g))
(x,r)eepi(f+g),,

< 2(1 +X)epl(/,/„).   n

Lemma 4.2. Let fi and fi' be two functions from Sf into 3t that are equi-
Lipschitz over each bounded subset of Sf. Let x £ Sf, s > 0 and 8 := SB(XzS).
Let p>0 with (epif)p, (epi f')p, and (epi(f + f'))p nonempty. Finally let
X be a Lipschitz constant of fi and fi' over B(x, 2ep(fi, fi')). Then

eP(f + S,fi' + d)<(4 + X)ep(fi,f).
Proof. Let (x,r) e (epi(/ + S))p. Then |r| < p and x £ B(x,s), since
r > f(x) + S(x) and hence 8(x) = 0. So (x, r) £ (epi fi)p and hence there
exists (x', /•') £ epi/' with

||x-x'||<||x-x'|| + |r-r'|<2^(/,/'),

and hence

x'£x + B(0, 2ep(fi, fi')) ax + B(0,s + 2ep(fi, fi')).

Choose x" £ B(x, s) such that x' £ x" + 73(0, 2ep(fi, fi')) and put r" =
fi'(x") + r'-fi'(x') > fix"). We have (x", r") £ epiif + 8) since ||x"-x|| < 5License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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and furthermore
dist((x, r), epi(f + 6)) < \\x - x"\\ + \r- r"\

< \\x - x'|| + \r- r'\ + \\x' - x"\\ + \r' - r"\
= \\x - x'|| + \r- r'\ + \\x' - x"\\ + \f'(x') - fi'(x")\
<4ep(f,fi') + \f'(x')-f'(x")\
<4ep(fi,f') + X\\x'-x"\\
<(4 + X)ep(f,f)

where A is a Lipschitz constant of /' over B(x, 2ep(f, /')) (note that ||x' -
x"|| < 2ep(fi, fi')). We conclude that ep(f + 8,fi' + S) < (4 + X)ep(fi, f).    a

Theorem 4.3. Let fn : Sf -» 3t U {+00} be a family of functions equi-bounded
below on Sf with {fn(X)} bounded. Assume further that {/„} is equi-primal-
lower-nice at x, and that {f„} Attouch-Wets converges to a lower semicon-
tinuous function fi. Then fi is primal-lower-nice at x. In addition there exist
positive a and po such that

gphdfin ^pk gphdf on B°(x,a)xSf,

and for all p > Po
(4.3) K(r<vry-o as «-oc,
and
(4.4) e((Tna)p,T2a) ->0   as   n -» 00.

Here
r" = {(x, u) I ||x -x|| < a,    and   u£df„ix)},
r"Q = {(x, u)\\\x-X\\ <2a,    and   u£dfi„ix)},
T° = {ix, u) I ||x -x|| < a,    and   u£dfix)},
r2a = {(x, u)|||x-x|| <2a,     and   u£dfix)}.

Proof. First note that / is also bounded below on Sf.  Assume that fn are
equi-primal-lower-nice with constants A, c and T > 2. Let T, c,rx,r2 be
given by Proposition 2.5. By taking T bigger if necessary we may assume that
for all x with ||x - x|| < rx and / > T
(4.5)
ifnfix) := inf{finix') + (t/2)\\x' - x||2} =     inf     {fn(x') + (t/2)\\x' - x||2},

x' \\x'-x\\<r2

and that the same is true for / In other words for all t > T and x £ B°(x, rx)
we have (fi„)'(x) = (f„ + <5B(x,r2))'(x) and f(x) = (fi + SB{x,r2))'(x).

Take ro positive such that r0 < rx. For all t > T we have by [6, Lemma
3.3] (by taking T bigger if necessary) that

(4.6) (/„)' -™ f.
To be more precise, because {/„, /} is equi-bounded below, we have, again by
[6, Lemma 3.3], that there exists p such that for p > p and t >T we have

lim hausp(epi(f„)', epi/') = 0.
n—too >■ \License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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From Lemma 4.1 it follows that

(4.7) Hm haus,(epi [(/„)' + (t/2)\\ ■ f], epi [/' + (t/2)\\ • ||2]) = 0.
From Lemma 4.2 we have for p > p and t > T
(4.8)
lim hausp(epi [(fin)'+ (t/2)\\-\\2 + dB{x,ro)], epi [f + (t/2)\\.\\2 + 6B{x,ro)]) = 0.

From [6, Theorem 5.2] (see also [3, Theorem 2.3] and [21, Theorem 3.6]) we
obtain that for p > p and t > T

Um haus„(gph [tI + d((fi„)' + 5B{Xiro))], gph [ti + d(f+ SB{Xiro))}) = 0,

and from this we deduce that

il™ haUiV ( 8Ph 9 ((/«)' +SB(X,r0)) , gPhd(/' + ^(x,r0)))  = 0.

Notice that we also have

(4.9)
/„ _>«» / => [(/„)' + (//2)|| • ||2 + SB{x,ro)] -+m [/' + (7/2)|| • ||2 + SB(x<ro)]

(4.10)
=> gph [tl + d((fin)' + SB{Xtro))] ->'* gph [tl + d(f + dB{xJo))]
=> gphd((fin)l + 5B{XtJ ->pk gphd(f + dB{X!ro)).

Where the implication in (4.9) is due to the fact that for convex functions,
Attouch-Wets convergence implies Mosco epi-convergence; see [6, Proposition
4.5]. The implication in (4.10) follows of course by Attouch's Theorem. Be-
cause of these facts we may proceed as in the proof of Theorem 3.5 to obtain
that the graph of the subdifferential of f„ PK converges to the graph of the sub-
differential of / over some neighborhood of x. It then follows by Corollary 2.3
that / is primal-lower-nice at x and that the Mosco epi-convergence assertion
holds as in Theorem 3.5. We may now assume that / is primal-lower-nice at
X with constants T,   c,  and 3a,  with 3a < r0.

We first show (4.3). Fix p > p and x satisfying ||x|| < p. Also fix t > T
(independent of x) with p < /min{c, a}. Assume u £ df(x) with ||w|| <
p. (Note that p is independent of x.) By (4.5) and Lemma 2.6, note that
\\x + j - x\\ < 2a, the infimum in the definition of /' at (x + ") is attained
at x. It follows that u £ df'(x + f). Let p, := p(l + (l/t)). We have that
II* + j\\ < Pt and that ||u|| < pt. Let

(4.11) yn := hausP![gphd((fin)'+ SB{x<ro)), gphd(f + SB{Xiro))).

(note that yn —> 0 as n —► oo.) Choose n big enough so that y„ < (l/4)a.
Consider any e positive with e < (1/4)q. There exist xf  and ue  such that
ut £ d((fn)' + dB{x,ro))(x( + *■) with

||(-*e + y)-(x + — >|| -e <   y„,     \\u( -u\\ -e < y„.

This is because

yn>e(gphd(f + 8B(x,ro))pi,gphd((fn)' + dB(x,ra)))

> dist((x + " , U), gphd((fin)' + SB{Xiro))).License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Notice that ||xe + *f -x\\ <3a, which implies that ue £ d(f„)t(xe + *f) and
hence by [17, Lemma 3.6] (see the proof of Theorem 3.5) that ue £ dfn(xe).
We have

||xe - x|| < (l/t)\\ue - u\\ + yn + e

<(l + (l/t))yn + (l + (l/t))e.
Also we have

||w£-w|| < (l + (l/t))yn + e.
It follows by the choice of n and e that ||xe - x|| < 2a,  and

dist((w, x), T"Q) < max{||we - u\\, ||xe -x||}
<(l + (l/t))yn+(l + (l/t))e.

This shows that
dist((M,x),r^Q)<(i + (i/o)y„,

and hence
e((rvrL)<(i + (i/0)>v

By taking n —> oo we have

^(rVIlJ-O   as   n^oo.
To show (4.4), fix S > 0 and choose JVeN such that for all n > N we

have y„ < min{(l/4)a, (S/2)}. (Here yn is defined in (4.11).) Consider for
any fixed n> N, un £ dfn(x„) with ||x„|| < p, \\x„ -x\\ < a and ||wn|| < p,
where p > p. Fix t > T satisfying p < tmin{c, a}. By Proposition 2.5 we
have un £ d(f„)'(x„ + !f). (This is because ||x„ + ^ - x|| < 2a.) Again let
pt = p(l + (l/t)). Fix S > 0. Fix e positive with e < (l/4)a. There exist xe
and ut such that u( £d(f + SB{x,ro))(xe + ^) with

||(xe + y)-(x„ + y)||-e <   yn,    ||M£-w«||-e<y„.

This is because

?n >e[[gphd((fin)<+SB{x,rQ))pi,gphd(f + 5B{Xiro)))

> dist((x„ + ^f,U„), gphd(f + ^(jt.ro)))-

Notice that ||xe + ^ - x|| < 3a, which implies that ue £ d(f„)'(xe + ^-) and
hence by [17, Lemma 3.6] (see the proof of Theorem 3.5) that ut £ df(xe).
We have

||*£ -JCiill < (l/OII"e -un\\ + y„+e
<(l + (l/t))yn + (l + (l/t))e.

Also we have
\\Ue-u„\\<(l + (l/t))y» + e.

It follows by the choice of n and e that ||xe - X|| < 2a. Then

dist((«„, x„), T2a) < max{||«e - u\\, ||x6 - x||}

<(i + (i/fl)y* + (i + (i/0)e.
This shows that

dist((M„,x„),r2a)<(l + (l/0)y„.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Thus we have that for all n> N

e((K)p,r2°)<2yn<S.

From this we conclude that

e((T"a)p,r2°)^0   as   n - oo.

This completes the proof of the theorem.   □

For v £ dfi(x) we say that / is twice Attouch-Wets epi-differentiable at x
relative to v if the second order difference quotients (see (3.8)) Attouch-Wets
converge as t I 0 to a proper function. The limiting function (which we may
assume is closed) is denoted by fxa™. It is easy to show that the function fx^
is twice positively homogeneous.

For a set-valued mapping F : Sf -=>* Sf we say that F is Attouch-Wets proto-
differentiable at x relative to v where v £ Y(x) if the first-order difference
quotients (see (3.9)) Attouch-Wets converge to gphT^.

Theorem 4.4. Assume fi is primal-lower-nice at x. If fi is twice Attouch-Wets
epi-differentiable at x relative to v then df is Attouch-Wets proto-differentiable
at x relative to v with fxaf primal-lower-nice and

d((i/2)fx'™)(Z) = (df)'™(Z).
Proof. As in the proof of Theorem 3.8, we are in a situation where we can use
Theorem 4.3. This shows that the limiting function fxa^ is primal-lower-nice
on the whole space (because it is twice positively homogeneous). The proof is
quite similar in spirit to that of Theorem 3.8 and we therefore omit the details.
Needless to say that the key points are that for A > 0

(£, co) £ gphd(/;,7) if and only if (Ac , Xco) £ gphd(fx™)
and that

(i,co) £ gph d((pt) if and only if (Af, Xco) £ gph d(cp{t/^).   O
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