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Abstract things as actuator dynamics in the model description. 

In this paper we discuss .the partial feedback lin- 
earization control of underactuated mechanical sys- 
tems. We consider an n degree of freedom system 
having m actuated, or active, degrees of freedom and 
B = n - m unactuated, or passive, degrees of freedom. 
It is known that the portion of the dynamics corre- 
sponding to the active degrees of freedom may be lin- 
earized by nonlinear feedback. In this paper we show, 
alternatively, that the portion of the dynamics corre- 
sponding to the passive degrees of freedom may be lin- 
earized by nonlinear feedback under a condition that 
we call Strong Inertial Coupling. We derive and ana- 
lyze the resulting zero dynamics which are crucial to 
an understanding of the response of the overall system. 
Simulation results are presented showing the perfor- 
mance of two link underactuated robots under partial 
feedback linearization control. 

1 Introduction 

Underactuated mechanical systems are mechanical 
systems with fewer actuators than degrees-of-freedom 
and arise in several ways, from intentional design as in 
the brachiation robot of Fukuda [13] or the Acrobot [2], 
in mobile robot systems when a manipulator arm is 
attached to a mobile platform, a space platform, or an 
undersea vehicle, [8], or because of the mathematical 
model used for control design as when joint flexibility 
is included in the model [14]. In the latter sense, then, 
all mechanical systems are underactuated if one wishes 
to control flexible modes that are not directly actuated 
(the noncollocation problem), or even to include such 

Our main interest in this paper is the control of 
gymnast type robots like the Acrobot [2], and the 
three-link gymnast robot in [17]. We will show that 
the method of partial feedback linearization [7] and 
the recent method of integrator backstepping [9] pro- 
vide effective design tools for controlling such robots 
to perform various motions. 

It has long been known [16] that fully actuated 
robots are feedback linearizable by nonlinear feedback. 
For underactuated robots it is known that the portion 
of the dynamics corresponding to the actuated (or ac- 
tive) degrees of freedom may be linearized by nonlinear 
feedback[5]. The remaining portion of the dynamics 
after such partial feedback linearization is nonlinear 
and represents internal dynamics. In this paper we 
show that, under a condition which we call Strong In- 
ertial Coupling, it is alternatively possible to linearize 
the portion of the dynamics corresponding to non- 
actuated (or passive) degrees of freedom. .This some- 
what surprising result is quite interesting and, roughly 
speaking, means for a system with m actuators, that m 
of the equations of motion may be linearized whether 
or not they are directly actuated. We will show how 
these results may be used to control underactuated 
robots performing gymnastic type motions. 

1.1 Upper Actuated and Lower Actuated 
Systems 

We consider an n-degree-of-freedom system with 
generalized coordinates q' ,  . . . , qn, and m < n actu- 
ators, each of which directly actuates a single degree 
of freedom. Each actuated degree of freedom is called 
an active joint. The remaining B = n - m unactuated 
degrees of freedom are called passive joints, as shown 

A so-called Upper Actuated System is one in which 
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Figure 1: A General Underactuated System 

the upper arm, or the first m-joints are actuated while 
a Lower Actuated System is one in which the lower 
arm, or the last m-joints are actuated (see Figure 2). 
By suitably numbering and partitioning the vector q 
of generalized coordinates we may write qT = (q:,  q:) 
where q1 E R' corresponds to the passive joints and 
42 E R" corresponds to the active joints. Thus all 
systems will be considered as though they are lower 
actuated without loss of generality. 

Figure 2: Upper and Lower Actuated Systems 

1.2 Dynamics 

With the vector q E R" of generalized coordinates 
partitioned as above with q1 E R' and qz E R", we 
may write the dynamic equations of the n degree of 
freedom system as 

(3) 

is the symmetric, positive definite inertia matrix, the 
vector functions h l ( q , c j )  E R' and hz(q , c j>  E Rm con- 
tain Coriolis and centrifugal terms, the vector func- 
tions 41(q) E R' and &(q)  E Rm contain gravitational 

terms, and r E Rm represents the input generalized 
force produced by the m actuators at the active joints. 
For notational simplicity we will henceforth not write 
the explicit dependence on q of these coefficients. The 
equations (1)-(2) represent the standard dynamics of 
n link robots except that there is no control input to 
the first .f equations [16]. 

2 Partial Feedback Linearization 

In this section we consider the Input/Output (or 
Partial) Feedback Linearization [7] of the system (1)- 
(2). We first consider an output equation 

In this case the output y z  is collocated with the in- 
put r ,  i.e., with the active joints, and we recover the 
known results on input/output linearization for under- 
actuated systems. Our contribution here is in the char- 
acterization of the resulting internal or zero dynam- 
ics 171 which will be important later in the application 
to the swing up control of the Acrobot. 

Next we consider the input/output linearization rel- 
ative to an output equation 

Y1 = q1 E RL. (5) 

In this case the output corresponds to the passive joints 
and is not collocated with the input. We show that 
input/output linearization is possible in this case un- 
der a condition that we call Strong Inertial Coupling. 
This condition allows the integrator backstepping for- 
malism [9] to be used to linearize the passive joints, 
which at first glance is somewhat surprising and non- 
intuitive. We show how this result can be used for the 
swing up control of the Acrobot [2]. 

2.1 Collocated Linearization 

Consider the first equation (1) 

The term M11 is an invertible .t x .t matrix as a conse- 
quence of the uniform positive definiteness of the robot 
inertia matrix M in (3). Therefore we may solve for 
ql  in equation ( 6 )  as 

and substitute the resulting expression (7) into (2) to 
obtain 

&12292 -!- K2 + 4 2  = 7 (8) 
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where the terms fizz, h2, 4 2  are given by 

G22 = M22-M21M3412 

L a  = h2 - M21MG1h1 
6 2  = 9 2  - MziM,'91 

As shown in [5] the m x m matrix &f22 is itself sym- 
metric and positive definite. To see this we note that 
a simple calculation 151 yields 

M Z 2  = T~ MT (9) 

(10) 

where T is an n x m matrix defined by 

T = [ -'fi1M12 ] 
Imkm 

with I,,.,,, the mxm identity matrix. Since T has rank 
m for all q and A4 is symmetric and positive definite, 
i t  follows that is symmetric and positive definite. 

A feedback linearizing controller can therefore be 
defined for equation (8) according to 

T = ll;iZZV2 + h 2  + $2 (11) 

where v2 E R" is an additional control input yet to be 
defined. The complete system up to this point may be 
written as 

M l l @ l +  hl + 91 = - M W 2  (12) 
qz = v2 (13) 
Y2 = q 2  (14) 

We see that the input/output system from v2 to y2 is 
linear and second order. The complete system there- 
fore has m-vector relative degree (2,  . . . , 2)T [7] and 
the equation (12) represents the internal dynamics. 

If y$ = q i ( t )  represents a desired trajectory for the 
active joints, then we may choose the additional con- 
trol term v2 as 

~2 = q$ + h(Qi  - 42) + k p ( q i  - q 2 )  (15) 

where kp and k d  are mx m diagonal matrices of positive 
gains. With state variables 

I1 = 42  - q 2  

Vl = q1 
(16) 

I2 = 4 2  - q," 
7 2  = 9 1  

d 

and output error c 2  = y2 - yi, the complete closed 
loop system may be written as 

il = I 2  (17) 
%2 = -kprl - k d t 2  (18) 
7jl = 7)2 (19) 
7j2 = -M,'(h1 +41> 

c 2  = 21 (21) 
-M{lhf1~(& - k p z l  - rl"dr2) (20) 

In matrix form we write this as 

where rT = ( z T ,  r;), 77 = ($, v:), the matrices A and 
C are given by 

and the function w(z, q ,  t )  = 

72 ( -MG1(h i  + 41) - ME1M12(i,d - kpzi - kdz2)  

(26) 
We see from (22) and (23) that the surface I = 0 in 

state space defines an integral manifold for the system. 
Since A is Hurwitz for positive values of gains in the 
matrices k, and k d  this manifold is globally attractive. 
The dynamics on the manifold are given by 

and define the zero dynamics [7] relative to the output 
j j  = 4 2  - q$. We can state the following result whose 
proof can be found in [7] (see also [lo]). 

Theorem 1. Consider the system (22)-(24). Sup- 
pose that w(O,qO,t) = 0 for t > 0, i.e. (0,qO) is an 
equilibrium of the full system (22)-(24) and qo is an 
equilibrium of the zero dynamics (27). Suppose also 
that A is a Hurwitz matrix. Then (0,170) of the full  
system (22)-(24) is locally stable (respectively, locally 
asymptotically stable, unstable) if 70 is locally stable 
(respectively, locally asymptotically stable, unstable) 
for the zero dynamics (27). 

The point of this theorem is that the local stability 
properties of the full system may be determined based 
on the analysis of two reduced order systems, namely 
(22) and (27). An important point to note is that the 
Jacobian linearization of (23) may have eigenvalues on 
the imaginary a i s  and so not give sufficient informa- 
tion about the stability properties of the full nonlinear 
system. The proof of this result utilizes the Center 
Manifold Theorem and the reader is referred to [lo] 
for details. 

2.2 Non-Collocated Input/Output Lin- 
earizat ion 

In this section we show, under a condition regarding 
the degree of coupling between the active and passive 
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joints, that instead of linearizing the active degrees 
of freedom 42, we may linearize the passive degrees 
of freedom q1 by nonlinear feedback. This result can 
be thought of as a combination of partial feedback lin- 
earization with the method of integrator backstepping. 

To show this we consider the system (12)-( 13) 

M l l h  + hl + 41 = -M12v2 (28) 
q2 = 02 (29) 

Definition 1. The system (1)-(2), equivalently the 
system (28)-(291, is said to be Strongly Inertially 
Coupled if and only if 

rank(M12(q)) = 1 for all q E R" (30) 

This definition is essentially a controllability condition 
and ensures that the acceleration vector v2 in (28) may 
be used as a control input to control the response of q1 

according to the recently developed method of Integra- 
tor Backstepping [9]. Note that Strong Inertial Cou- 
pling requires m 2 t ,  i.e. that the number of active 
degrees of freedom be at  least as great as the number 
of passive degrees of freedom. 

Under the assumption of Strong Inertial Coupling 
we may compute a pseudo-inverse M1'2 for M12 ac- 
cording to 

and define v2 in (28) according to 
MI2 = M,T,(M12MW (31) 

(32) 0 2  = -M!2(M11v1 + hl + 41). 

where v1 E RL is an additional control input yet to be 
determined. With this choice for the control input 212 

the system becomes 

q1 = 211 (33) 
q2 = -M!2(M11V1 + hl + 41) (34) 

Thus we see that the passive degrees of freedom q1 

have been linearized and decoupled from the rest of 
the system and that the equation (34) describing the 
motion of the active joints now represents the internal 
dynamics of the system relative to an output equation 
Y1 = q1- 

The actual control input T is given by combining 
(11) and (32), after some algebra, as 

7- = G2lVl+ k 2  + 4 2  (35) 
where 

G21 = M21 - M2zM!2M11 

k 2  = h2 - M22Mlt2h1 

6 2  = 952-M22M!241 

A calculation s@ilar to that previously given for 
a 2 2  shows that Mal has full rank L, since we may 
write 

where I tx(  is the t x t  identity matrix. Since the inertia 
matrix is invertible and the matrix 

(37) 

has full column rank 1, it follows that the $21 has rank 
t and thus the control is well defined. 

If qf(t)  now represents a desired trajectory for the 
passive joints, we may choose the additional control 
term v1 as 

v1 = if + kd( i f  - i l )  + kp(qf - q1) (38) 

where kp and kd are 1 x 1 matrices of positive gains. 
With state variables 

(39) 
172 = il - if 
22 = 92  

d 
rll = Q1 - Q1 
z1 = 472 

and output error 
may be written as 

= q1 - qf the closed loop system 

lil = 172 (40) 
e 2  = -kpvl -Ed172 (41) 
i.1 = 22 (42) 
f2 = -Mt(h l+41)  

i 1  = 171 (44) 
-M!2M11(($ - kpql - kd172) (43) 

In matrix form we write this as 

ti = AV (45) 
z = s(r),z,t) (46) 

g1 = c17 (47) 

where qT = ($,$), zT = (zT,zf), the matrices A 
and C are given by 

and the function s(0, z, t )  = 
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We see that the surface 7 = 0 in state space defines 
a globally attractive integral manifold for the system 
and that the expression 

i = s(O,z,t)  (50) 

defines the zero dynamics relative to the output g1 = 
71. Theorem 1 above applies to this system as well, i.e., 
an equilibrium ( 0 , z o )  of the full system (45)-(47) is lo- 
cally stable (respectively, locally asymptotically stable, 
unstable) if A is Hurwitz and if the equilibrium t o  of 
the zero dynamics (50) is locally stable ( respectively, 
locally asymptotically stable, unstable). 

The simulations to follow were written in Simnon using 
the parameters in Table 1 below. 

3 Examples 

In this section we give examples of both the col- 
located and non-collocated partial feedback lineariza- 
tion control. We treat the so-called swing up control 
of the Acrobot[l5], a two-link robot with an actuator 
at the elbow but no actuator at the shoulder. Both 
the collocated and non-collocated linearization results 
are illustrated. 

3.1 Swing-Up Control of the Acrobot 

The swing up control problem for the Acrobot 
(shown in Figure 3) is to swing the Acrobot from its 
stable downward equilibrium to  its unstable inverted 
position and balance it about the vertical. The equa- 

Figure 3: The Acrobot 

tions of motion for the Acrobot are 

T 2 i 2  + hl  + dl = 0 
m2141 + m22q2 -k h2 -k 6 2  = T2 

where 

Table 1: Parameters of the Simulated Acrobot 

3.2 Collocated Linearization 

In order to swing up the robot from the vertically 
downward configuration q1 = -7r/2, 93 = 0 to the in- 
verted configuration q1 = +ir/2, 42 = 0, we apply the 
collocated partial feedback linearization control (1 1) 
with the outer loop term given by (15). The motion of 
the second link, in the z-coordinates, is then just the 
response of a second-order linear system. This motion 
will excite the internal dynamics which produces the 
motion of the first link. The crucial step in this proce- 
dure is then the determination of the reference input 
qf for the second link. 

The basic idea behind our swingup strategy is to 
swing the second link between fixed values fa in order 
to pump energy into the system and then to schedule 
the transition of the second link between these two val- 
ues fa “in phase” with the motion of the first link in 
such a way that the amplitude of the swing of the first 
link increases with each swing (See [15] for details). We 
do this by making the reference 9; for link 2 a feedback 
function of the velocity 41 of link 1 as follows: 

qg = 2 0 / ~  arctan(41) (53) 

as shown in Figure 4. 
It is interesting and important to note that our 

choice of reference command to link 2 as a pure feed- 
back function of 41 renders the system autonomous. 
Therefore the zero dynamics evolve on an invariant 
manifold in state space. 

Substituting (53) into (27) yields, after a straight- 
forward calculation, the following expression for the 

mil  = mi!:, + m,(t: + t:2 + 2eltC2 cos(q2)) + l1 + zero dynamics: 
m22 = m2t‘:2 + 12 
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Figure 4: Arctangent Function 

Remarks: We see that the zero dynamics for this sys- 
tem is an autonomous third order nonlinear system. 
This can be explained as follows. Using the expression 
(53) for the reference command qzd in the outer loop 
control (15) means that the feedforward terms q$ and 
q$ contain the acceleration and jerk, respectively, of 
link 1 and thus the order of the system is increased by 
one. Figure 5 shows the response of the zero dynam- 
ics (54). We see that the equilibrium q1 = -7r/2 is 
unstable. The response is plotted modulo 27r which is 
the reason for the apparent jumps between 10 and 14 
seconds where the angle reaches 27r. 

Figure 5: Response of the Zero Dynamics (Initial Con- 
dition ql(0) = -1.35) and a Portion of the Phase Por- 
trait 

We note, however, that the control law 15, is not 
realizable using only position and velocity measure- 
ments. In order to obtain a realizable control input, 
therefore, we will use, instead of (15), the control 

U 2  = kp(q; - q 2 )  - k d 4 2 ,  (55.) 

i.e., (15) without the feedforward terms 4; and C;. 
The control law (55) requires only position and ve- 
locity measurements to implement. The price we pay 
for the simplified outer loop control (55) is that the 
z-coordinates are no longer decoupled from the co- 
ordinates in (22)-(23) and the manifold z = 0 is no 
longer invariant. Figure 6 show the response of link 1 
for the actual system using the outer loop control (55). 
Note that the response is quite similar to the response 
of the ideal zero dynamics (54). As the gains k,, and 
kd are increased in (55) the response of the system be- 
comes nearly the same as the response predicted by 
the ideal case. 

Figure 6: Actual Response of Link 1 Using Collocated 
Control (Initial Condition ql(0) = -1.1) 

The swing up motion is now accomplished by com- 
bining the above partial feedback linearization con- 
trol with a Linear Quadratic Regulator. Control is 
switched to the linear regulator to balance the Acrobot 
about the vertical when the Acrobot enters the basin 
of attraction of the linear regulator. See [15] for details 
of the design of the linear regulator. Figure 7 shows a 
swing up motion using the reference qzd for q2  given by 
(53). 

3.3 Non-Collocated Linearization 

We can also develop an interesting swing up control 
for the Acrobot using the non-collocated linearization 
result. The condition of Strong Inertial Coupling for 
the Acrobot requires that m12 be non-zero over the 
entire configuration space, i.e, 
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Figure 7: Swingup and Balance of The Acrobot Using 
Collocated Control 

This imposes a constraint on the inertia parameters 
of the robot, namely that 12 > m2Pcz(Pl - &z). Us- 
ing the parameters from Table 1 we see that the 
Strong Inertial Coupling condition is satisfied since 
77212 = 1.25 + 0.5cos(q2). Therefore we may use the 
control law (35). 

Since we are interested in the swing up control prob- 
lem, we consider the case qf  = r / 2 .  We then choose 
the outer loop term as 

Figure 8: Phase Portrait of the Zero Dynamics 

t '  

and the system is once again autonomous. Substitut- 
ing qf = n/2, if = 0 = qf into the equation (50) and 
using the original description of the system (51) yields 

as the expression for the zero dynamics. The system 
(57), considered as a dynamical system on the cylinder, 
has two equilibrium points p l  = (O,O)T, which is a 
saddle, and p2 = ( K ,  O)T, which is a center. With the 
parameters from Table 1 the phase portrait of the zero 
dynamics (57) is shown in Figure 8. It follows that, 
for a range of initial conditions, z ( 0 )  = 20, ~ ( 0 )  = BO, 
the state ~ ( t )  = (41 - q t ,  q ~ ) ~  converges exponentially 
to zero, while the state +( t )  = ( q ~ ,  Q.2)T converges to a 
trajectory of the system (57). 

The particular trajectory of the zero dynamics that 
the response of the system converges to will depend 
both on the outer loop gains and on the initial con- 
ditions. Figure 9 shows a successful swing up and 
balance using this approach where the control again 
switches to a Linear, Quadratic Regulator to balance 
the Acrobot when the trajectory nears the vertical po- 
si tion. 

Figure 9: Swing Up and Balance of the Acrobot Using 
Noncollocated Control 

4 Conclusions 

In this paper we have shown that the methods of 
partial feedback linearization and integrator backstep- 
ping provide effective design tools for the control of a 
class of underactuated mechanical systems. We have 
shown that the analysis of the resulting internal or zero 
dynamics is crucial to an understanding of the behav- 
ior of the overall system. 

Research into the control of this class of robotic sys- 
tems is just beginning and there are a number of re- 
search problems that remain to be addressed. It would 
be desirable to develop a theory of robust and adap- 
tive control for these systems. A major impediment to 
progress in this area is that the reduced order system 
(8) is not linearly parametrizable, in general. This 
means that standard adaptive control and backstep- 
ping methods are not applicable. A second research 
problem is to further analyze the zero dynamics for 
classes of problems and applications. The zero dynam- 
ics are determined by the particular control laws used 
and vary greatly from system to system. 

320 



Although space restrictions did not permit in this 
paper, it is also possible to derive partial feedback lin- 
earization control laws directly in task space coordi- 
nates as opposed to the joint space linearization consid- 
ered here. In this case, singularities are of major con- 
cern and methods of controlling such system through 
singularities is a difficult and open problem. The sin- 
gularities that arise in task space linearization of un- 
deractuated systems will depend, in general, on both 
the kinematic and dynamic parameters of the system 
in contrast to the case of fully actuated system where 
the singularities depend only on the kinematic param- 
eters [4]. This fact greatly impacts both the control 
and the motion planning problems for underactuated 
systems[l1]. 
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