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Abstract—Employing Orthogonal Frequency Division Multi-

plexing (OFDM) signaling over time-varying channels results

in inter-carrier interference (ICI) and degraded detection error

probability due to the loss of orthogonality among the subcarriers.

This problem is particularly exacerbated for systems operating

in highly mobile scenarios such as underwater acoustic (UWA)

communications, digital video broadcasting (DVB) for mobile

devices and vehicle-to-vehicle (V2V) networks. To address the

problem of data detection in such scenarios, we propose a novel

demodulation strategy using several partial interval Fast Fourier

Transforms (FFTs) instead of a conventional, single full interval

FFT. Algorithms for computing the weights used to combine the

outputs of the partial FFT are presented for three scenarios: full,

partial and no knowledge of the time varying channel. Numerical

simulations and an approximate theoretical analysis show that

significant performance gains can be obtained over traditional

equalizers at a very moderate complexity.

Index Terms—Doppler compensation, OFDM signaling, partial
FFT, time-varying channels, underwater acoustic communica-

tions.

I. INTRODUCTION

O RTHOGONAL Frequency Division Multiplexing

(OFDM) is now the primary signaling scheme for several

wireless communication systems such as Long Term Evolution

(LTE), WiMAX, Digital Video Broadcasting (DVB) etc [4]–[6]

and is also under consideration for underwater acoustic (UWA)

communications [1], [7]–[9]. Interest in OFDM stems from the

fact that it decomposes a static frequency selective channel into

a number of flat channels, enabling low complexity, single-tap

equalization and symbol-by-symbol detection at the receiver. A

considerable amount of research on OFDM receivers for highly

time-varying scenarios has been conducted. Such channels typ-

ically result when either there is high mobility or in wideband
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signaling such as UWA communications where the transmis-

sion bandwidth is large relative to the carrier frequency. The

Doppler in such highly mobile environments destroys the

orthogonality of subcarriers, that results in inter-carrier inter-

ference (ICI), and significantly increases detection complexity

required to mitigate the induced interference.

The problem of low complexity detection of OFDM signals

over time-varying channels has been extensively studied in the

literature. Conventional minimummean-squared error (MMSE)

based block equalizers have a complexity that grows cubically

in block length and hence challenge practical implementa-

tion [10]. By exploiting the banded nature of the frequency

domain channel matrix, several detection techniques whose

complexity grows linearly in the number of sub-carriers have

been designed. The performance of these receivers has been

further enhanced through iterative detection and interference

cancelation algorithms (see [9]–[15] and references therein for

a detailed overview of time-varying channel equalization for

OFDM). In general, lower complexity channel estimation and

data detection algorithms are the key to implementing next

generation OFDM systems with a large number of subcarriers.

In addition to the terrestrial wireless systems noted above,

UWA communications also experience highly time-varying

channels. The low speed of sound in water (1500 m/s) coupled

with mobility results in Doppler distortion, i.e., time scaling of

the transmitted signal [8], [9], [13], [16]. The Doppler scaling

in UWA communications is similar to that of OFDM radar

systems tracking a single target [17]. The time scaling of the

signal causes different subcarriers to be shifted by slightly

different frequencies, resulting in significant ICI. Distortion

compensation and equalization of OFDM signals for UWA

channels have been extensively investigated in [2], [8], [9],

[16], [18], [19].

In this paper, we revisit the problem of data detection over

highly time-varying channels and propose a new demodula-

tion technique called partial FFT demodulation . The received

OFDM symbol is first partitioned into several intervals using

non-overlapping rectangular windows and a discrete Fourier

transform (DFT)1 is performed on each windowed segment of

the received signal. The segments are then weighted and com-

bined. If no weighting is applied, i.e., if the partial FFT outputs

for each segment are directly added, the result is equivalent to

performing conventional, full FFT demodulation, which results

in significant ICI due to uncompensated Doppler distortion. In

contrast, by judicious weighted combining of the partial FFT

outputs, we show that the ICI can be significantly reduced, im-

proving the detection performance at a complexity that is com-

1The DFT is efficiently implemented using the fast Fourier transform (FFT)
and the DFT operation will be referred to as the FFT in the rest of the paper.
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parable to that of typical ICI equalization. The key to improved

performance is that the partial FFT outputs contain less mixing

of contributions from different symbols and allow for more ef-

fective compensation of ICI versus compensating aftermatched

filtering. It should be noted that while we focus on the interfer-

ence mitigation using partial FFT processing, further equaliza-

tion is possible as well. However, for many practical applica-

tions, the benefits of improved front-end processing are suffi-

ciently large that they obviate the need for subsequent equaliza-

tion.

In [20], a windowing technique similar to partial FFT tech-

nique has been proposed which post-processes and equalizes the

received signal by approximating the frequency domain spec-

trum of a rectangular window. In comparison, our work approx-

imates the time-variation of the channel using a time-domain

windowed version of the received signal and develops equal-

ization techniques well suited for UWA communications. While

[20] does not analyze the proposed scheme, this paper presents a

detailed theoretical analysis for the proposed equalizers. In [21],

an orthogonal chirp type signal basis is used to approximate the

ideal signal basis functions. The chirp type functions correspond

to the signal basis of the fractional Fourier transform (FRFT) in

comparison to the sinusoidal basis of the regular Fourier trans-

form. In effect, a multicarrier system similar to OFDM is de-

signed using the FRFT instead of a conventional FFT. A gen-

eralization of [21], using the affine Fourier transform as an al-

ternative to the FRFT was proposed in [22] and was shown to

have more desirable properties than FRFT based multicarrier

systems. Several researchers (see [23] and references therein)

have also explored the design of orthogonal pulse shapes using

a short-time Fourier (STF) basis for multicarrier communica-

tions. We distinguish our work from [21]–[23] by pointing out

that we neither design new pulse shapes nor perform alterna-

tive transforms to the FFT at the receiver. The proposed method

in this paper is a technique which exploits the structure in the

time-variation and pre-processes the input signal by exploiting

FFT processing to reduce time-variation.

We focus primarily on two scenarios in this paper: (1) UWA

channels with time scaling distortion and (2) fast varying ter-

restrial radio channels experienced by users moving at a very

high speed. We first illustrate the partial FFT combining tech-

nique and then derive the optimal weighting coefficients for

combining the outputs for a generic model of the time-varying

channel. The optimal combiner weights are shown to depend

only on the channel frequency response at the midpoint of each

interval. When the knowledge of the channel impulse response

is not available at the receiver, we present a recursive weight es-

timation algorithm to compute the combiner weights. In UWA

channels where the effect of Doppler distortion (time scaling)

can be parameterized, the signal structure can be exploited to

derive a model-based weight estimation algorithm for the com-

biner. We present an approximate analysis of the recursive and

the model based estimators to determine the optimal number of

partial FFTs to be employed in practice. Numerical simulations

are presented to illustrate the performance of the proposed algo-

rithms. We show that for signaling over the UWA channel with

time scale distortion, the partial FFT method significantly out-

performs banded MMSE equalizers and gives comparable per-

formance to algorithms such as MCMC based MAP-SDSC in

[15] at a much lower complexity. For scenarios with no channel

knowledge or with just knowledge of the distortion process, we

show partial FFT processing performs significantly better than

algorithms utilizing similar knowledge of the channel at a lower

complexity. Finally, for the DVB scenario we show that the pro-

posed method outperforms the conventional banded equalizers

in most regimes of interest.

The paper is organized as follows. Section II presents the

OFDM signal model and illustrates the concept of partial FFT

demodulation. The optimal combiner weights, and the recursive

weight estimation algorithm for scenarios with no prior channel

knowledge are derived in Section III, while Section IV illus-

trates the model-based weight estimator for the UWA channel

with Doppler distortion. Section V presents an analysis of the re-

cursive and model-based estimation algorithms, and Section VI

shows numerical results that demonstrate the effectiveness of

this method in various scenarios. The paper concludes with re-

marks in Section VII.

II. SIGNAL MODEL AND PARTIAL FFT DEMODULATION

A. Signal Model

Let us consider an OFDM system with subcarriers. The
vector of information symbols is modu-
lated onto the OFDM subcarriers. The transmitted symbols
are assumed to be drawn from a finite constellation, such as
4-PSK, which we consider for illustration in this paper. Let ,
and denote the duration of the OFDM symbol, du-

ration of the cyclic prefix, and subcarrier spacing respectively.
The subcarrier frequency is , and
the total OFDM signaling bandwidth is . The trans-
mitted OFDM signal in passband can be expressed as

(1)

The passband time-varying channel is modeled as

(2)

where and are the time-varying gain and delay of
the path, respectively, and is the total number of arriving
paths. The received signal in passband can then be expressed as

(3)

where is additive white Gaussian noise (AWGN).
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B. Conventional OFDM Demodulation

In a conventional receiver, after time and frequency synchro-
nization, the cyclic prefix is discarded and the received signal is
transformed into the frequency domain:2

(4)

Here, represents the time-varying frequency response of
the subcarrier, and is the AWGN with zero mean and
variance . From (4), we clearly observe how the time-varying
channel causes ICI. When is time-invariant, the received
signal on each subcarrier reduces to , enabling
one-tap equalization and making symbol-by-symbol detection
optimal. The time variation in destroys this orthogonality,
and necessitates ICI equalization to compensate for the time-
varying channel [10], [11].

C. Partial FFT Demodulation

In partial FFT demodulation, the useful OFDM symbol dura-
tion is divided into non-overlapping intervals (equiva-
lent to multiplying the signal with several rectangular windows)
and a Fourier transform is performed on each windowed seg-
ment of the signal. The output of the Fourier transform for the

subcarrier and the windowed block, henceforth called
the partial FFT output , can be expressed as

(5)

In general, it is assumed that the channel parameters vary slowly
in comparison to the OFDM symbol duration. We exploit this
assumption by approximating the time-varying frequency re-
sponse in each interval by the midpoint value of the function.
The received signal (5) can now be simplified as

(6)

where , and are the midpoint values of the
frequency response, the channel impulse response and path de-
lays, respectively, on the interval . The func-

2We use the continuous time Fourier transform for simplicity. In practice as
well as in our numerical simulations, FFT is used.

tion captures the effect of partial integration over the
interval, and can be evaluated as

(7)

where . This function has the property that

and
Wewill exploit this property later when we design the combiner.
The noise is characterized by the covariances

if

.

(8)

The noise components are thus Gaussian and uncorre-
lated and hence independent across partial FFT outputs
for a given subcarrier, but are correlated for a fixed
across subcarriers. For the subcarrier, let us now
define as the vector
containing the partial interval integration coefficients,

as the diagonal
matrix containing the channel frequency response in each

interval, and as the vector of
partial FFT outputs.3 Expressing (6) in vector form, we have

(9)

Note that and which
compactly expresses the fact that the OFDM subcarriers are or-
thogonal to each other.

D. Combining Partial FFT Outputs

Let us define as the
vector of the combiner weights for the subcarrier. The com-
bining then yields

(10)

An appropriate choice of the vectors allows one to com-
pensate for the time-variation of the channel to some degree,
thus reducing the ICI but not completely eliminating it. Even
if one were to implement optimal front-end filtering, (i.e., a
matched filter for each subcarrier), the resulting output would
contain ICI. Partial FFT demodulation followed by optimized
combining mimics the operation of optimal front-end filtering
and cannot completely eliminate the ICI. However, it can sig-
nificantly reduce its effect possibly even eliminating the need

3Notation: denotes the transpose of , and denotes its conjugate trans-
pose.
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for post-FFT ICI equalization. Clearly, partial FFT demodula-
tion can also be combined with ICI equalization; however, our
goal in this paper is to investigate its performance when used

as a stand-alone alternative to equalization of full FFT outputs.

E. Partial FFT Combining: A Window Design Interpretation

The proposed technique can be alternatively interpreted by
recasting the problem as designing a receiver window for each
subcarrier. For ease of illustration, we briefly consider a dis-
crete time equivalent model of the received signal. Let us sup-
pose that is the sampled version of the signal and

. The partial FFT outputs can be ex-
pressed in terms of as

(11)

where is a unit vector whose entry is 1, is the rectan-
gular window used for computing the partial FFT output,
and is the DFT matrix. Now, the combined partial
FFT outputs in (10) can be written as

(12)

Clearly, each subcarrier has its own window, in contrast to the
approach in [10], [12], where one window is used for all the
subcarriers. In addition, the window is step-wise, while the
windows in [10], [12] are in general smooth. Thus, the partial
FFT technique can be considered as a generalization of the win-
dowing method adopted in OFDM systems. Though [20] also
proposes a similar windowing technique, it significantly differs
from this work in the way the combiner coefficients are
determined.

III. COMPUTING THE COMBINERWEIGHTS

A. Perfect Channel Knowledge Scenario

To derive theMMSEminimizing combiner weights , we
consider the partial FFT outputs for the subcarrier to de-
termine the symbol transmitted on this subcarrier. We empha-
size that the only the partial FFT outputs are considered for
computing . Assuming that all the channel parameters are
deterministic and known, the MMSE combiner weights are the
solution to the optimization problem:

(13)

Substituting for from (9) and evaluating the cross-correlation
and autocorrelation matrices, we obtain

(14)

TheMMSE optimal combiner weights for the subcarrier can
then be evaluated as .
1) Example—Time Invariant Channel: To gain some in-

tuition, let us evaluate the combiner weights for the simple
scenario of a linear time-invariant channel. The subcarrier fre-
quency response coefficients given by (6) are then equal
in all the intervals. The elements of the auto-correlation
matrix of the outputs of the subcarrier are then

(15)

Defining as additionmodulo , we see that is a circulant
matrix as . Exploiting
the fact that any circulant matrix can be diagonalized by a dis-
crete Fourier transform (DFT) matrix, we get ,
where is the unitary DFT matrix and is a diagonal
matrix of the eigen-values of . The optimal combiner coef-

ficients now reduce to . The

closed form solution is obtained by noting that the first column
vector of the DFT matrix is and is the first diagonal
element of . The eigenvalue , corresponding to the first
eigenvector , can be evaluated from the first row of as

and the MMSE
optimal combiner weights are

(16)

In other words, optimal processing for a time-invariant channel
amounts to adding all the partial FFT outputs for a given subcar-
rier and then performing single-tap equalization—as expected,
this is identical to conventional OFDM processing.

B. No Channel Knowledge Scenario

The MMSE estimate for the combiner weights in (13) relies
on the knowledge of the channel frequency response at the mid-
point of each of the partial intervals. Since estimating the
time-varying channel impulse response may not always be prac-
tical, we propose a recursive weight (RW) estimation algorithm
that does not utilize any knowledge of the time-varying channel.
We derive the estimator based on the assumption that the fre-

quency response of the channel changes slowly across subcar-
riers, and thus the combiner weights also change slowly
as a function of the subcarrier index. This assumption is valid
for OFDM systems whose coherence bandwidth is much greater
than the subcarrier spacing. For example, this assumption has
been exploited in [18] to design low complexity detection algo-
rithms for underwater MIMO-OFDM systems.
The RW estimation algorithm is based on the idea that partial

FFT combining eliminates most of the ICI and that the resulting
output after combining for subcarrier can be modeled as

(17)

where is the channel frequency response and contains
the noise and residual ICI.
Using the estimated values of , the partial FFT outputs
are combined to yield . Using an estimate of
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the frequency response on the previous subcarrier, , the
received signal is equalized to form a preliminary estimate of
the data symbol, and make the corresponding decision:

(18)

Now, using this coarse estimate of the transmitted symbols, the
channel frequency response for the subcarrier of interest is up-
dated as

(19)

Assuming correct symbol decisions, or using pilots when avail-
able, the error at the combiner output is evaluated as

(20)

This error is used to drive an adaptive algorithm for the com-
biner weights, for example the recursive least squares (RLS) al-
gorithm:

(21)

The detection method is completely summarized in Algorithm
1. The parameter controls the update of the channel
frequency response and is dependent on the coherence band-
width of the channel. For channels with small delay spreads,
the coherence bandwidth is larger and the frequency response
changes slowly across subcarriers. However for channels with
large delay spreads, the coherence bandwidth is smaller and the
frequency gains on subcarriers change rapidly from one sub-
carrier to another and a smaller value of is suited for such
scenarios. The parameter is the forgetting factor of the RLS
algorithm and is chosen to balance between channel dynamics
and estimation noise and is typically very close to one.
The algorithm is initialized by choosing the channel fre-

quency response to be used for the estimating data on the first
subcarrier to be . The initializing weight vectors are
chosen to be as equal gain combining of the partial
FFT outputs is optimal when the channel is time-invariant. The
parameter which determines the initial covariance matrix

is chosen so that the all the variables are independent and
have a large variance (i.e., is very small) to simulate the fact
that no prior information is available about the statistics of the
partial FFT outputs. The first subcarriers are assigned to
be pilots to operate the algorithm in pilot-assisted mode which
allows better estimation of the RLS error to train the system
parameters. The algorithm then switches to decision directed
model wherein the estimated data symbols are used for com-
puting the error and further updating the weight vector. Note
that the inclusion of pilot symbols in the first few subcarriers
reduces the rate of data transmission. It is shown in Sections V
and VI that a small value of is optimal and as ,
the rate reduction is negligible.
Insertion of pilots beyond those necessary for initial RLS con-

vergence is required for channels that exhibit spectral nulls. On
such channels, a subcarrier experiencing a deep fade may cause

a symbol error, which will then propagate across subcarriers

unless corrected.To overcome the loss of detection performance
caused by error propagation, pilot symbols are inserted periodi-
cally throughout the OFDM symbol and knowledge of the pilot

Algorithm 1: Recursive Weight Estimation

1:INITIALIZATION:

2:Weights:

3:Covariance matrix: ,

4:Control parameters: ,

5:Channel estimates:

6:for to do

7:COMPUTE SIGNALS:

8:

9:

10:

11:DATA DETECTION/PILOTS:

12:if then

13:

14:else

15: , maps the point to the nearest
constellation symbol.

16:end if

17:UPDATE THE CHANNEL:

18:

19:UPDATE THE COMBINER (RLS ALGORITHM):

20:

21:

22:

23: .

24:end for

25:RE-COMPUTE FREQUENCY RESPONSE:

26:

27:

28: .

29:

30:DATA DETECTION:

31:

symbol is used in place of estimated data symbols to update the
channel frequency response.
Once the partial FFT outputs are combined using the RLS

to drive the weight estimation, the receiver uses the distortion
corrected outputs and the knowledge of the pilot symbols to

compute an estimate of the channel impulse response as illus-
trated in Algorithm 1. The channel frequency response, com-

puted from as , can now be used to
perform single-tap equalization on to recover estimates of
the transmitted data symbols.

IV. MODEL BASED COMBINING

Previously, we have computed the combiner weights when
either complete or no knowledge of the channel was available
at the receiver. In this section, we investigate scenarios where
partial knowledge of the distortion process, such as a parametric
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representation, is available to the receiver. In general the com-
biner weights do not have any structure and each weight has
to be estimated independently. However, in some scenarios of
interest such as UWA channels, we can obtain a parametric rep-
resentation of the combiner weights. This parametrization con-
siderably reduces the number of parameters to be estimated and
enables simpler equalization.
To illustrate this method, let us consider OFDM signaling

over an UWA channel with Doppler distortion wherein the re-
ceived signal on each path is a time scaled version of the trans-
mitted signal. Assuming that the channel coefficients are con-
stant for the duration of one OFDM symbol, the time varia-
tion of the signal is captured by the time-varying path delays

, where is the ratio of the relative trans-
mitter/receiver velocity to the speed of sound (see [8], [13], [16]
and the references therein for the UWA channel model). From
(3), the received signal in such a scenario can be expressed as

(22)

We observe that for a time-scaled OFDM signal, each subcarrier
at frequency is shifted by an offset . This model can also
be considered as a generalization of the OFDM system with
carrier frequency offset (CFO) [24] where all the subcarriers are
shifted by the frequency Hz . The partial FFT outputs for the
time scale scenario can be expressed as

(23)

For OFDM with CFO, the partial FFT outputs are obtained by
substituting . Before illustrating the model
based weight estimator, we first compute the optimal combiner
weights for the two scenarios.
1) OFDM With Carrier Frequency Offset: Evaluating the

correlation and covariance matrices needed for the weights in
(13) using (28) with , we obtain

(24)

Noting that and simplifying the resulting ex-
pression similarly as in the case of a time-invariant channel in
Section II, the optimal combiner weights are found to be

(25)

The structure of the optimal combiner suggests that the receiver

first compensates for the phase shift at the par-
tial FFT output and then combines them with equal weights be-
fore channel equalization. Note that this method does not com-
pletely eliminate ICI as the compensated phase shift does not
completely eliminate the CFO.

2) OFDM With Time Scaling Distortion: Evaluating the
auto-correlation and the cross-correlation terms as in the pre-
vious case, we obtain

(26)

Expanding the individual entries of the above matrix, we get

(27)

We observe that the autocorrelation matrix is not a circulant ma-
trix and a simple closed form solution for the optimal weights

may be intractable. However, is a Toeplitz Hermitian
matrix for each . Consequently, we define the matrix

as the related circulant
matrix of . In the limit of large values of , assuming that
the strong norms of the inverses of and are bounded,
we can approximate the Toeplitz matrix by its equivalent circu-
lant matrix [25], and the optimal combiner coefficients in such
a scenario are approximately

(28)

where is the first
eigenvalue of . Note that computing requires the
knowledge of the channel frequency response for each sub-
carrier and the time scale parameter . Clearly, the strategy of
first compensating for the phase distortion and then equalizing
the received signal is asymptotically optimal. Even though
this strategy is not optimal, it will be later shown through
simulations that the combiner weights computed using (28)
result in significant ICI reduction even for small values of .
We now propose an estimator which exploits the parametric

model for the combiner weights in (28) to detect data trans-
mitted using OFDM signals over a UWA channel. As the esti-
mator relies on a model of the combiner weights, this estimator
is called a model-based weight (MW) estimator.

A. Model-Based Weight Estimation

Let us define as the set of subcarriers car-
rying pilot symbols. Using the model for the received signal in
(23), the combiner weights are designed to compensate for the
phase rotation due to the time scaling. Assuming to be a can-
didate value of the time scaling factor, let us define the diagonal

matrix

to model the phase rotation for the partial FFT interval.
The partial FFT outputs for the pilot subcarriers for this candi-
date value of are combined as

(29)
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where the vector contains the
elements of the partial FFT outputs for the pilot subcarriers in
the interval. Assuming that this candidate value is the cor-
rect value of the time scale factor and that is nearly free of
distortion, the combined outputs for the pilot subcarriers can be
expressed as

(30)

where . The least squares
estimate of the channel impulse response corresponding
to a candidate value of the time scale is now obtained as

. The desired time scale parameter can
then be finally determined using the maximum likelihood esti-
mator [13] by searching over all candidate values and choosing
the one which minimizes the metric:

(31)

This minimization problem can be solved efficiently as it in-
volves projecting a vector over a pre-determined subspace and
then using a simple line search for evaluating . Using the es-
timated time scale parameter, the channel impulse response is

given as . The transmitted symbols are now
estimated by first computing the channel frequency response
across all the subcarriers and then performing one-tap frequency
domain equalization:

(32)

We conclude this section by emphasizing that theMW estimator
is a good choice for scenarios in which a parametric represen-
tation of the combiner weights can be derived and the model
parameters easily estimated.

V. PERFORMANCE ANALYSIS: THEORY

In this section, we present an approximate theoretical anal-
ysis to characterize the performance of the proposed RW and
MW estimators. The objective of this analysis is to provide in-
tuition for choosing a practical value of . We consider a CFO
distorted OFDM system to highlight several key properties of
partial FFT combining and the proposed estimators.

A. Analysis of Model-Based Weight Estimation

For the scenario of OFDM with CFO, we begin by assuming
that the parameters of the optimal combiner are estimated cor-
rectly. Correcting for the phase distortion at the outputs of the

partial FFT as in (25), we get .
Substituting for from (5), the signal power at the output
of the subcarrier, , can be evaluated as

(33)

Similarly, the total noise-plus-interference power at the sub-
carrier, , is

(34)

We observe that the interference term

is non-zero only for

those subcarriers for which is a multiple of . Thus,
for an OFDM system with frequency offset on a time-invariant
channel, the partial FFT technique completely eliminates

interference from all the subcarriers that are not at multiples

of away from the subcarrier of interest. This is in contrast
to a banded equalizer which only eliminates interference from
only adjacent subcarriers, and thus significantly reduces
detection error probability. The SIR of the subcarrier for a
fixed value of is given as

(35)

For a given channel frequency response, assuming that
, is a monotonically increasing function of .

Numerically it is always observed that monotonically
increases with and thus choosing the largest value of gives
the lowest symbol error probability. The optimal is then only
limited by the computational available computational resources.
For OFDM signaling over time scale distorted UWA chan-

nels, even though the frequency offset is slightly different for
each subcarrier, it can be treated as a constant in the neighbor-
hood of each subcarrier. This suggests that significant improve-
ment can be obtained for data detection over UWA channels in
comparison to banded MMSE equalization.

B. Analysis of Recursive Weight Estimation

The RW estimation algorithm operates sequentially over sub-
carriers and its performance is a function of the rate of channel
variation and the parameter . Intuitively, as increases from
a very small value ( is the minimum), the performance of
the RW estimation improves as the distortion process is better
modeled with increasing . However, with a further increase
in , the number of weights to be estimated increases for a
fixed amount of information available at the receiver, thus re-
ducing the accuracy of estimating the combiner weights. Hence,
we expect a performance degradation for larger values of .
To capture the tradeoff between modeling accuracy and over-
parametrization, we present a convergence analysis of the RLS
under limiting conditions. As the number of subcarriers is finite
and the channel is frequency selective, the data covariance ma-
trix varies as a function of the subcarrier index, making a general
analysis highly intractable. We consider several simplifying as-
sumptions to facilitate our analysis.
As typical RLS convergence analysis assumes that the data

covariance matrix ( in our case) is fixed [26], we make
assumptions to approximate this as closely as possible. We
begin by assuming that the channel is frequency flat with gain
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. At the receiver, the signal experiences a frequency offset
in addition to the AWGN at the input. The partial FFT outputs
for the received signal can then be simplified from (9) as

(36)

The data covariance matrix can now be expressed as

(37)

Substituting for in the expression, we notice that the terms
around contribute significantly to the covariance matrix
while the magnitude of the contribution decreases as we move
away from the subcarrier of interest. Using this observation al-
lows us to treat the covariance matrix as being independent of
for most of the subcarriers in the OFDM symbol. Deviations

from this assumption are significant at the edge subcarriers, but
are ignored for our analysis. Separating the signal and interfer-
ence terms, we obtain

where is the covariance matrix of the interfering terms and
is given as

(38)

Using the matrix inversion lemma,4 it can be shown that the data
and interference covariance matrix are related as

(39)

For the RW estimation algorithm using exponential de-
caying RLS with parameter , the optimization func-
tion for computing the combiner weights minimizes

For this scenario, the RLS adaptation rule is given by

(40)

where is the RLS prediction error at subcarrier , and is the
gain vector from the RLS update. Using the results from RLS
convergence theory [27], we know that in the limit of large , the
mean weight vector converges to the optimal linear MMSE
solution: . The SIR at the output of the
optimal receiver can be computed as in [28]:

(41)

We note that is derived by using the mid-point ap-
proximation for the received signal (see (6) in Section II), while
the SIR evaluated in (35) uses the actual SIR by precisely eval-
uating all the integrals in (5).
To characterize the performance of the RLS algorithm, we

compute the steady-state output error and the steady state SIR

4The matrix inversion identity for appropriately sized matrices A,B,C,D is
given as .

at the output of the RLS [28]. The steady state error is the sum of
two terms: the optimal MMSE error and the steady-state excess
error[27], [28]. In the limit as the number of iterations tends to
infinity, the steady state error at the output of the RLS in (40)
converges to , where is the mean-square
error obtained by optimal MMSE filtering using [28]:

(42)

and the steady-state excess mean-square error is given by
[28]. Now, under the assumption of

known data symbols, the steady-state output SIR is defined as

(43)

The mean output value is

(44)

where the first equality follows from the independence of
and . To compute the steady state output variance we first
compute the second moment.

(45)

Using the mean and the second moment of the steady state
output, the variance can be obtained as

(46)

The steady-state output SIR is then

(47)

where and is a function of as given
by (35). We observe that both the numerator and denominator
of increase as increases. For smaller , the param-

eter is very small and hence increases rapidly with .

For larger , the numerator saturates and the denominator

increases and hence reduces with increasing . Hence
there exists an optimal finite value of for which the RW es-
timator gives the best detection performance (see Section VI to
see the optimal as a function of distortion parameters).
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TABLE I
COMPLEXITY ANALYSISWITH PERFECT CHANNEL STATE INFORMATION

C. Complexity Requirements

The computational complexity of partial FFT combining is
primarily determined by the algorithm used to compute the com-
biner weights, the number of subcarriers and the number of
intervals . To compute the partial FFT outputs, every algo-
rithm begins by performing -point FFTs on a windowed
version of the received signal thus having a maximum com-
plexity of complex multiplications (CMs) (The ac-
tual complexity is much lesser than as in-
puts to each FFT block are zeros). When perfect channel knowl-
edge is assumed at the receiver, the optimal combiner weights
are determined using (13) which involves solving a system of
equations or computing the inverse of a matrix and approxi-
mately needs CMs. Computing the data covariance
matrix in (13) using (14) requires the evaluation of a series with
terms. The major contribution to is by the subcarriers

in the neighborhood of the subcarrier and thus can be
computed by a truncated version of the series in (14). The total
complexity of computing the optimal combiner weights is then

, where is the number of terms used in
computing .
For the special case of OFDM with time scale distortion or

OFDM with CFO, the combiner weights on each subcarrier
can be computed quickly using (28) or (25) respectively with
a complexity of CMs and an additional CMs to per-
form the combining. Thus, by exploiting the special structure of
the data covariance matrices, the partial FFT method enables

computation of combiner weights and equalization in

CMs. A complete summary of the computational complexity
of partial FFT combining and a comparison of the computa-
tional complexity of several other algorithms proposed in lit-
erature is summarized in Table I. The parameter in Table I
is the number of sub/super diagonals considered for designing
the banded equalizer and is the total number of iterations re-
quired to implement Gibbs sampling in [15]. Clearly for a gen-
eral scenario such as DVB, the complexity of the partial FFT
scheme is larger when compared to similar schemes in litera-
ture, but for the UWA scenario in which partial FFT combining
exploits the structure of the time-varying channels, we clearly
observe from Table I that the complexity of receiver processing
is very small and scales linearly with . In contrast, theMCMC
based MAP-SDSC in [15] scales as while the serial
MMSE scales as for each subcarrier. Finally, though the
PSE algorithm in [14] scales with , it is shown in [29] that
the partial FFT technique significantly outperforms the PSE al-
gorithm in [14].
The RW and MW estimators inherently combine channel es-

timation and computing combiner weights and hence the com-
putational complexity of these estimators includes the cost of
evaluating both sets of parameters. A summary of the total com-
plexity of the RW and the MW estimator is given in Table II, as-
suming is the number of pilot symbols used, is the number
of channel taps estimated and is the number of search points

TABLE II
COMPLEXITY ANALYSIS OF RW AND MW ESTIMATORS

in the MW estimator. For the RW estimator, the computational
complexity is dominated by the RLS algorithm which grows as

. However, as shown in the analysis previously in this
section, there exists an optimal value of for the RW esti-
mator and increasing beyond this value does not improve the
performance of the RW estimator. We will show in Section VI
that the optimal value of is very small compared to (The
maximum value of is ) and hence the RW estimator has
moderate complexity. For the MW estimator, the complexity is
dominated by the number of points used in the search for the op-
timal time-scale parameter (see (31)). Once the value of is
determined the computation of the channel frequency response
and then subsequently combiner weights can be computed using

operations.

VI. PERFORMANCE ANALYSIS: SIMULATION

In this section, we evaluate the performance of the proposed
partial FFT combining technique using numerical simulations.
We primarily consider two scenarios (1) OFDM signaling over
time-scale distorted UWA channel [2], [8], [9] and (2) DVB
signaling over highly time-varying channels [5], [14], [15]. The
simulation setup and the performance results for each of the
scenarios is illustrated separately below.

A. Underwater Acoustic Communications

For UWA signaling, we consider an OFDM system with
subcarriers operating in a bandwidth op-

erating at a center frequency of . The subcar-
rier spacing is and the OFDM symbol dura-
tion is . A cyclic prefix of length

is added to the OFDM symbol to eliminate
inter-symbol interference from the previous symbol. The nor-
malized relative velocity between the transmitter and the re-
ceiver is represented by , where is the relative ve-
locity between the communicating nodes and is
the speed of sound in water. The value of can reach values in
excess of for mobile underwater nodes [8], [9], [13].
As a first step to removing the time-scale distortion, the received
signal is resampled using a coarse estimate of . However, even
a small error in estimating results in residual time scaling on
the order of . We assume that is a uniformly dis-
tributed random variable on the support

for our simulations. As the time-scale distortion results
in a different frequency shift for each subcarrier, the normal-
ized Doppler for UWA OFDM is a function of the subcarrier
frequency. For the system under consideration, the normalized
Doppler can be computed as which is 0.2 for the first sub-
carrier to about 0.3 for the last subcarrier assuming .
A normalized Doppler of about 0.2 causes strong ICI which
spans over several tens of subcarriers. To simulate the under-
water channel, we consider a 6-tap sparse channel with power
profile and a delay pro-
file with the first tap arriving at and last tap arriving at

.
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Fig. 1. Symbol Error Rate assuming perfect knowledge of the UWA channel as
a function of SNR and model parameters for the partial FFT combiner, banded
MMSE and MCMC based MAP SDSC [15].

Fig. 1 shows the Symbol Error Rate (SER) for the partial
FFT combiner, banded MMSE equalizer and the MCMC based
MAP sequence detection with successive cancelation (SDSC)
scheme in [15] as a function of SNR and the model parameters.
Assuming perfect knowledge of the time-varying channel, the
partial FFT combiner weights have been computed using (28).
The combiner weights can be computed in time, how-
ever they are not optimal due to the circulant approximation
of the Toeplitz-Hermitian matrix (see Section IV for a detailed
discussion). For the MCMC based MAP-SDSC in [15], perfect
channel state information is available, the interference from all
the previous symbols is subtracted out and only the interference
from the future symbols is accounted into the receiver design.
Gibbs sampling with iterations is used to compute the
MAP estimates of symbols with the first 10 iterations being con-
sidered as the burn-in period. The complexity of computing the
combiner weights is . From Fig. 1, it is observed that
the partial FFT combiner performs significantly better than the
standard banded MMSE equalizer whose complexity is
per symbol while approaching the performance of the MCMC
based MAP SDSC in [15] at moderate to high SNR. Thus, we
observe that by exploiting the structure of the UWA time-vari-
ation, partial FFT combining can eliminate significant amount
of interference and attain a performance close to higher com-
plexity and interference canceling data detectors. We also note
that the partial FFT method is a pre-processing technique that
can be used in combination with the MCMC based MAP SDSC
and other post-FFT processing techniques as well.
Fig. 2 shows the SER obtained when performing data detec-

tion using the RW and MW estimator. The RW estimator does
not assume prior knowledge of the time-varying channel while
the MW estimator only assumes knowledge of the distortion
process. The RW estimator uses the initialization parameters as
shown in Algorithm 1 (see Section III). The parameters and
which control the RLS has been numerically optimized to give
the best SER. Pilots have been placed uniformly throughout the
OFDM symbol with 7 data symbols between each pilot. We note
that while some techniques such as [8], [9] use zero symbols sur-
rounding the pilots to reduce ICI experienced by the pilots, our

Fig. 2. Symbol Error Rate of the RW and MW estimators as a function of SNR
and model parameters (a) RW estimator (b) MW estimator.

method does not place zero symbols around pilots. However, to
train the adaptive equalizer, we assume that the first subcar-
riers of each OFDM symbol are pilots. For the RW estimator in
Fig. 2(a), we observe that at moderate SNR, the SER improves
with increasing as the time-varying channel is better com-
pensated for thus resulting in reduced ICI. As increases fur-
ther, the number of weights to be estimated increases causing
over-parametrization and reduced accuracy of estimating the
desired parameters. For example, we see from Fig. 2(a) that the
performance is the best when and a degradation is ob-
served for and . Observe that this behavior has
been predicted by the analysis of OFDM over flat fading chan-
nels with CFO in Section V (see (47)). As the RW estimator
does not completely eliminate ICI, an error floor is observed at
high SNR due to the residual ICI.
Fig. 2(a) also shows a comparison between the RW estimator

and a modified version of [18]. Both methods use adaptive al-
gorithms to estimate parameters relevant to ICI compensation
and neither assumes any knowledge of the channel and both
methods use the same number of pilots for a fair comparison.
The channel estimates are obtained adaptively (LMS is used in
[18]) using pilots and tentative decisions (single tap equalization
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Fig. 3. Output SIR as a function of for an input SNR of 25dB for a UWA
OFDM system using MW estimation and partial FFT combining (a) Flat fading
channel with CFO (b) Frequency selective channel with time scale distortion.

and detection ignoring ICI). The estimated ICI is then subtracted
from the received data for each subcarrier, and equalization is
performed to get new data symbol estimates. In our comparison,
we select the best value of (one which gives lowest SER)
based on numerical simulations. It is clearly observed that the
RW method significantly outperforms the method in [18] under
the current simulation scenario.
For the MW estimator in Fig. 2(b), we assume that

pilots are placed uniformly throughout the OFDM symbol, the
channel length conservatively set at taps and the
number of search points in (31) for determining the optimal
time-scale parameter chosen to be . From Fig. 2(b),
we see that for the MW estimator the SER improves signifi-
cantly with increasing . As grows larger, the performance
improvement saturates and results in a tradeoff due to the
increasing complexity. Fig. 2(b) also shows a comparison
between the MW estimator (which estimates the channel and
distortion parameters) and the bandedMMSE equalizers (which
assume perfect channel knowledge). We clearly observe that
even when there is a difference in channel knowledge, the MW
estimator significantly outperforms the conventional banded
MMSE equalizer at moderate to high SNRs at a much lower
complexity compared to the banded MMSE equalizer.
1) Comparison of Simulation and Analytical Results: The

analysis in Section V assumes a frequency offset scenario,

Fig. 4. Output SIR as a function of for an input SNR of 25 dB for a UWA
OFDM system using RW estimation and partial FFT combining (a) Flat fading
channel with CFO (b) Frequency selective channel with time scale distortion.

which is a simplification of the more general time scale distor-
tion scenario. To assess the predictive value of these analytical
results, we examine the two scenarios: OFDM with CFO and
time-scale distortion.
Fig. 3(a) shows the optimal SIR as a function of the number

of OFDM sub-intervals for various values of the normal-
ized CFO and an input SNR of 25 dB. The optimal SIR is
the output SIR of the MW estimator which has perfect knowl-
edge of the channel and the frequency offset. As pointed out in
Section V, the optimal SIR is a monotonically increasing func-
tion of , since the mid-point approximation becomes more ac-
curate with increasing .We observe that the theoretical output
SIR reaches its steady state value even for small values of .
Fig. 3(b) shows the pre-detection SIR for the UWA channel with
MW estimation for various values of and time-scale distor-
tion. All the required channel and time-scale parameters are es-
timated during the course of the simulation. We observe that
except for a small loss in the maximum output SIR (from 25 dB
to around 21 dB) due to errors in channel and time scale estima-
tion, the plot of the output SIR is as predicted in Fig. 3(a) thus
validating our approximate analysis.
Fig. 4(a) shows the theoretically expected SIR output for

OFDM signaling over a flat fading channel with CFO for
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Fig. 5. SER assuming perfect knowledge of the DVB wireless channel as a
function of SNR and model parameters. (a) Velocity = 180 kmph, Normalized
Doppler = 0.11. (b) Velocity = 240 kmph, Normalized Doppler = 0.15.

various values of normalized CFO and when all the system
and channel parameters are known perfectly. While the
in (47) increases with due to more accurate modeling, it
saturates at moderate values of . However, the parameter
that characterizes the adaptive algorithm, increases with
, slowly reducing the steady-state SIR. The SIR curve thus

exhibits a maximum, which indicates the optimal number of
partial intervals to be used. We also observe from Fig. 4(a)
that the slope of the SIR curve is different on both sides of the
optimal , and hence, erring on the side of larger is better
than choosing a smaller value. Fig. 3(b) show the pre-detection
SIR for an UWA channel with RW estimation for frequency
selective fading channel. We observe that the trend of the SIR
curve is as predicted by the theoretical analysis. However, as
the curve in Fig. 4(a) is for a simplified OFDM system with
flat fading and CFO with known parameters, and the curve in
Fig. 4(b) shows the measured output for a time scaled OFDM
system with estimated parameters, there is a mismatch between
the two figures which can be attributed to the time-varying na-
ture of the data covariance matrix. However, the purpose of the
analysis is to provide intuition for choosing an optimal value
of and we note from Fig. 4(b) that choosing between 8
and 16 is optimal depending on the level of expected Doppler
distortion and agrees well with the results in Fig. 2(a).

B. Digital Video Broadcasting

For DVB signaling between mobile devices, we consider an
OFDM signal with subcarriers in a bandwidth of

centered at . The subcarrier spacing
is and the OFDM symbol duration is .
The cyclic prefix is . The wireless channel be-
tween the mobile antenna and the receiver are modeled based on
a realistic channel model determined by the COST-207 project
and the Typical Urban TU-6 channel model is considered for
simulation [15]. The TU-6 channel model has 6 taps and the
multipath gains on each tap are modeled with the Jakes model.
We consider velocities of 180 kmph and 240 kmph which result
in a normalized Doppler of and 0.15 approximately.
Figs. 5(a) and 5(b) show the SER as a function of various

system parameters for the partial FFT based combiner, banded
MMSE equalizer and the MAP based SDSC algorithm in [15]
as a function of SNR for velocities 180 kmph and 240 kmph
respectively. We observe that in general the partial FFT method
performs better than the banded MMSE equalizer of equivalent
complexity but there exists a performance gap when compared
to the MAP based SDSC. This can be attributed to the fact that
theMAP based SDSC is an interference canceling equalizer and
thus reduces the effective amount of interference seen by each
data symbol.

VII. CONCLUSIONS

In this paper, we considered the problem of OFDM data de-
tection over a highly time-varying channel. A detection tech-
nique called partial FFT demodulation was proposed, wherein
each OFDM symbol is divided into several smaller intervals and
FFT is performed on each. Weighted combining of the partial
FFT outputs results in a significant reduction in ICI compared
to banded equalization and permits low complexity symbol-by-
symbol detection.While banded equalization typically accounts
for ICI only from a few adjacent subcarriers, partial FFT demod-
ulation can take into account ICI from many more subcarriers
without increasing the computational complexity. Three sce-
narios were considered in which either full, partial or no knowl-
edge of the channel is available, and techniques for deriving the
optimum combiner weights in each of these scenarios have been
presented. An approximate theoretical analysis of the proposed
weight estimators was presented, showing interesting proper-
ties of the estimators that explain the trends observed in numer-
ical simulations. Numerical results for time-varying channels
corresponding underwater acoustic communications and digital
video broadcasting demonstrate the significant improvements
that can be obtained using the proposed technique.
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