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NOTES AND COMMENTS

PARTIAL IDENTIFICATION IN TRIANGULAR SYSTEMS OF
EQUATIONS WITH BINARY DEPENDENT VARIABLES

BY AZEEM M. SHAIKH AND EDWARD J. VYTLACIL1

This paper studies the special case of the triangular system of equations in Vytlacil
and Yildiz (2007), where both dependent variables are binary but without imposing the
restrictive support condition required by Vytlacil and Yildiz (2007) for identification of
the average structural function (ASF) and the average treatment effect (ATE). Under
weak regularity conditions, we derive upper and lower bounds on the ASF and the ATE.
We show further that the bounds on the ASF and ATE are sharp under some further
regularity conditions and an additional restriction on the support of the covariates and
the instrument.

KEYWORDS: Partial identification, simultaneous equation model, binary dependent
variable, endogeneity, threshold crossing model, weak separability, average structural
function, average treatment effect.

1. INTRODUCTION

THIS PAPER STUDIES the special case of the triangular system of equations in
Vytlacil and Yildiz (2007), where both dependent variables are binary. Under
the weak separability assumptions imposed by Vytlacil and Yildiz (2007), such
a model may, without loss of generality, be written as2

Y = I{ν1(D�X)≥ ε1}�(1)

D= I{ν2(Z) ≥ ε2}�
Here, Y denotes the observed binary outcome of interest, D denotes the ob-
served binary endogenous regressor, X and Z are observed random vectors,
and ε1 and ε2 are unobserved random variables. We additionally assume some
mild regularity on the distribution of (ε1� ε2) and that X and Z are exogenous
in the sense that (X�Z)⊥⊥ (ε1� ε2). Under these assumptions, we derive upper
and lower bounds on the average structural function (ASF) and the average
treatment effect (ATE), which may be expressed, respectively, as

G1(d�x) = Pr{Yd = 1|X = x}�
�G1(x)= Pr{Y1 = 1|X = x} − Pr{Y0 = 1|X = x}�

1An earlier version of this paper titled “Threshold Crossing Models and Bounds on Treat-
ment Effects: A Nonparametric Analysis” appeared in May 2005 as NBER Technical Working
Paper 307. We would like to thank Hide Ichimura, Jim Heckman, Whitney Newey, and Jim Pow-
ell for very helpful comments on this paper. This research was conducted in part while Edward
Vytlacil was in residence at Hitotsubashi University. This research was supported by NSF SES-
05-51089 and DMS-08-20310.

2This can be shown by appropriately adapting arguments in Vytlacil (2002).
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where Yd = I{ν1(d�X) ≥ ε1} and (d�x) denotes a potential realization of
(D�X). Vytlacil and Yildiz (2007) established identification of the ASF and
the ATE when the support of the distribution of X conditional on Pr{D = 1|Z}
is sufficiently rich. This support condition would be expected to fail near the
boundaries of the support of X . In particular, it would be expected to fail
when X is a discrete random variable. In this paper, we do not impose any
such support restriction. Under further assumptions, we show that the bounds
we derive on the ASF and ATE are sharp in the sense that for any value lying
between the upper and lower bounds, there will exist a distribution of unob-
servable variables satisfying all of the assumptions of our analysis that is con-
sistent with both the distribution of the observed data and the proposed value
of the ASF or the ATE. In subsequent work, Chiburis (2010) showed that our
bounds may not be sharp when these additional assumptions are not satisfied.

2. IDENTIFICATION ANALYSIS

Formally, we will make use of the following assumptions in our analysis:

ASSUMPTION 2.1: (X�Z)⊥⊥ (ε1� ε2).

ASSUMPTION 2.2: The distribution of (ε1� ε2) has strictly positive density with
respect to (w.r.t.) Lebesgue measure on R2.

ASSUMPTION 2.3: The support of the distribution of (X�Z), supp(X�Z), is
compact.

ASSUMPTION 2.4: The functions ν1(·) and ν2(·) are continuous.

ASSUMPTION 2.5: The distribution of ν2(Z)|X is nondegenerate.

Our analysis below is similar to Chesher (2005), but his analysis requires
a rank condition that can only hold in trivial cases when D is binary. Jun,
Pinkse, and Xu (2009) relaxed this rank condition so that it may hold non-
trivially when D is binary, but they impose an additional assumption on the
dependence between ε1 and ε2.

Note that it follows from Assumptions 2.1 and 2.2 that we may, without loss
of generality, normalize ε2 ∼ U(0�1) and ν2(Z) = P(Z) = Pr{D = 1|Z}. We
may sometimes write P in place of P(Z). After such a normalization, Assump-
tion 2.2 becomes the requirement that the distribution of (ε1� ε2) has a strictly
positive density w.r.t. Lebesgue measure on R × [0�1]. Furthermore, note that
Assumptions 2.1–2.4 imply that P is bounded away from 0 and 1. We will
henceforth work with the normalized model.

Consider first identification of G1(1�x). By equation (1) and Assump-
tion 2.1, we have that Pr{Y1 = 1|X} = Pr{Y1 = 1|X�P(Z)} and Pr{D =
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1|X�P(Z)} = P(Z). Since the events {D = 1�Y = 1} and {D = 1�Y1 = 1} are
the same,

Pr{Y1 = 1|X�P(Z)}
= Pr{D= 1�Y1 = 1|X�P(Z)} + Pr{D = 0�Y1 = 1|X�P(Z)}
= Pr{D= 1�Y = 1|X�P(Z)}

+ (1 − P(Z))Pr{Y1 = 1|X�P(Z)�D = 0}�
The terms P(Z) and Pr{D = 1�Y = 1|X�P(Z)} are identified, but the term
Pr{Y1 = 1|X�P(Z)�D= 0} is not identified. Since Y is binary, this unidentified
term is bounded from above and below by 1 and 0, so

Pr{D = 1�Y = 1|X�P(Z)}
≤ Pr{Y1 = 1|X} ≤ Pr{D= 1�Y = 1|X�P(Z)} + (1 − P(Z))�

Since Pr{Y1 = 1|X} does not depend on P(Z), we can take the supremum of
the lower bounds and the infimum of the upper bounds over values of P(Z).
Parallel reasoning provides bounds on Pr{Y0 = 1|X = x}.

The next lemma uses equation (1) together with the other assumptions of
our analysis to determine the sign of ν1(1�x′) − ν1(0�x) from a modified in-
strumental variables-like term that is identified. Depending on the sign of
ν1(1�x′)− ν1(0�x), we will then be able to bound Pr{Y1 = 1|D= 0�X = x�P =
p} and Pr{Y0 = 1|D = 1�X = x�P = p} from above or below by terms other
than 1 or 0 that are identified.

LEMMA 2.1: Suppose Y and D are determined by (1) and that Assumptions 2.1
and 2.2 hold. Let

h(x�x′�p�p′)= (Pr{D = 1�Y = 1|X = x′�P = p}
− Pr{D = 1�Y = 1|X = x′�P = p′})
− (Pr{D = 0�Y = 1|X = x�P = p′}
− Pr{D = 0�Y = 1|X = x�P = p})�

Then, whenever all conditional probabilities are well defined, we have for p > p′

that h(x�x′�p�p′) and ν1(1�x′)− ν1(0�x) share the same sign. In particular, the
sign of h(x�x′�p�p′) does not depend on p or p′ provided p>p′.

For the proof, see the Supplemental Material (Shaikh and Vytlacil (2011)).
Before proceeding with the statement of the main theorem, we illustrate

the use of Lemma 2.1 in characterizing the possible values for Pr{Y1 = 1|D =
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0�X = x�P = p} and Pr{Y0 = 1|D = 1�X = x�P = p}. Denote by P ′ a random
variable distributed independently of P with the same distribution as P . Define

H(x�x′)=E[h(x�x′�P�P ′)|P > P ′]�(2)

where h(x�x′�p�p′) = 0 whenever it is not well defined. Suppose there exists
p> p′ for which h(x�x′�p�p′) is well defined, that is, p> p′ with both p and
p′ in supp(P|X = x) ∩ supp(P|X = x′). Recall that the sign of h(x�x′�p�p′)
does not depend on p or p′ provided p > p′. If H(x�x′) ≥ 0, then it follows
from Lemma 2.1 that ν1(1�x′) ≥ ν1(0�x). Therefore,

Pr{Y0 = 1|D = 1�X = x�P = p}
= Pr{ε1 ≤ ν1(0�X)|D= 1�X = x�P = p}
≤ Pr{ε1 ≤ ν1(1�X)|D= 1�X = x′�P = p}
= Pr{Y = 1|D= 1�X = x′�P = p}�

where the first and third equalities follow from equation (1), and the inequal-
ity follows from the fact that ν1(1�x′) ≥ ν1(0�x) and Assumption 2.2. If, on
the other hand, H(x�x′) ≤ 0, then we can argue along similar lines to bound
Pr{Y0 = 1|D = 1�X = x�P = p} from below by Pr{Y = 1|D = 1�X = x′�P =
p}. We can thus bound the unidentified terms Pr{Y0 = 1|D= 1�X = x�P = p}
and Pr{Y1 = 1|D = 0�X = x�P = p} by lower and upper bounds that differ
from 0 and 1.

We now state our main theorem. In the statement of the theorem, it is un-
derstood that all supremums and infimums are only taken over regions where
all conditional probabilities are well defined, the supremum over the empty set
is 0, and the infimum over the empty set is 1.

THEOREM 2.1: Suppose Y and D are determined by (1). Let X0+(x) =
{x′ :H(x�x′) ≥ 0}, X0−(x) = {x′ :H(x�x′) ≤ 0}, X1+(x) = {x′ :H(x′�x) ≥ 0},
and X1−(x) = {x′ :H(x′�x)≤ 0}, where H(x�x′) is defined in (2) if h(x�x′�p�p′)
is well defined for some p > p′, and with each set understood to be empty if
h(x�x′�p�p′) is not well defined for any p > p′. Then we have the following
statements:

(i) If Assumptions 2.1 and 2.2 hold, then G1(d�x) ∈ [Ld(x)�Ud(x)] for d ∈
{0�1} and �G1(x) ∈ [L�(x)�U�(x)], where L�(x) = L1(x) − U0(x)� U�(x) =
U1(x)−L0(x), and

L0(x) = sup
p

{
Pr{D= 0�Y = 1|X = x�P = p}

+ sup
x′∈X0−(x)

Pr{D= 1�Y = 1|X = x′�P = p}
}
�
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L1(x) = sup
p

{
Pr{D= 1�Y = 1|X = x�P = p}

+ sup
x′∈X1+(x)

Pr{D = 0�Y = 1|X = x′�P = p}
}
�

U0(x) = inf
p

{
Pr{D= 0�Y = 1|X = x�P = p}

+p inf
x′∈X0+(x)

Pr{Y = 1|D= 1�X = x′�P = p}
}
�

U1(x) = inf
p

{
Pr{D= 1�Y = 1|X = x�P = p}

+ (1 −p) inf
x′∈X1−(x)

Pr{Y = 1|D= 0�X = x′�P = p}
}
�

(ii) If Assumptions 2.1 and 2.2 hold and supp(P�X) = supp(P)× supp(X),
then the above expressions for Ld(x) and Ud(x) for d ∈ {0�1} simplify as

L0(x) = Pr{D= 0�Y = 1|X = x�P = p}
+ sup

x′∈X0−(x)

Pr{D = 1�Y = 1|X = x′�P = p}�

L1(x) = Pr{D= 1�Y = 1|X = x�P = p}
+ sup

x′∈X1+(x)

Pr{D = 0�Y = 1|X = x′�P = p}�

U0(x) = Pr{D = 0�Y = 1|X = x�P = p}
+p inf

x′∈X0+(x)
Pr{Y = 1|D= 1�X = x′�P = p}�

U1(x) = Pr{D = 1�Y = 1|X = x�P = p}
+ (1 −p) inf

x′∈X1−(x)
Pr{Y = 1|D= 0�X = x′�P = p}�

where p= inf{p :p ∈ supp(P)} and p = sup{p :p ∈ supp(P)}.
(iii) If Assumptions 2.1–2.4 hold and supp(P�X) = supp(P)× supp(X), then

the above bounds are sharp.

The proof is given in the Supplemental Material.
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As a corollary, we have immediately that the sign of �G1(x) is identified
whenever h(x�x�p�p′) is well defined for some p > p′. This will be the case
whenever Assumption 2.5 holds.

COROLLARY 2.1: Suppose that Y and D satisfy (1) and that Assumptions 2.1,
2.2, and 2.5 hold. Then the sign of �G1(x) is identified.

REMARK 2.1: The bounds of Theorem 2.1 reduce to those in Manski (1989)
if Assumption 2.5 does not hold. The bounds are smaller the more variation
there is in X conditional on P(Z). In the extreme case where X is degener-
ate conditional on P(Z), the bounds reduce to the same form as the Manski
and Pepper (2000) bounds under monotone treatment response even though
the assumptions are different. See the analysis in Bhattacharya, Shaikh, and
Vytlacil (2008) for details.

REMARK 2.2: It is interesting to ask when the upper and lower bounds will
equal one another for the ASF or the ATE, that is, when the bounds imply
that the ASF or the ATE is identified. Suppose that supp(P�X) = supp(P) ×
supp(X) and that the sets Xd+(x) and Xd−(x) for d ∈ {0�1} are nonempty.
Consider G1(0�x). The analysis for G1(1�x) and �G1(x) is similar. The width
of the bounds on G1(0�x) is equal to

inf
x′∈X0+(x)

Pr{D = 1�Y = 1|X = x′�P = p}(3)

− sup
x′∈X0−(x)

Pr{D= 1�Y = 1|X = x′�P = p}�

Suppose there exists x∗ such that H(x�x∗) = 0. It follows that x∗ ∈ X0+(x) ∩
X0−(x) and (3) is less than or equal to

Pr{D = 1�Y = 1|X = x∗�P = p}
− sup

x′∈X0−(x)

Pr{D= 1�Y = 1|X = x′�P = p} ≤ 0�

Since (3) is greater than or equal to 0 by construction, it follows that G1(0�x) is
identified whenever there exists x∗ such that H(x�x∗) = 0. Using Lemma 2.1,
we may state this condition equivalently as the existence of a x∗ such that
ν1(1�x)= ν1(0�x∗).

REMARK 2.3: It is worth noting that there are several testable implica-
tions of equation (1) and Assumptions 2.1 and 2.2. A straightforward im-
plication is that Pr{D = 1|X�Z} does not depend on X , and, as noted ear-
lier, Lemma 2.1 implies that h(x�x′�p�p′) does not depend on p or p′ pro-
vided p > p′ whenever all conditional probabilities are well defined. It is also
possible to show that for d ∈ {0�1}, there exists a real-valued function Qd(·)
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such that Pr{Y = 1�D = d|X�Z} = Pr{Y = 1�D = d|Qd(X)�P(Z)}. More-
over, Pr{Y = 1�D= 1|Q1(X)= q�P = p} is strictly increasing in both q and p,
while Pr{Y = 1�D= 0|Q0(X)= q�P = p} is strictly increasing in q and strictly
decreasing in p.

REFERENCES

BHATTACHARYA, J., A. SHAIKH, AND E. VYTLACIL (2008): “Treatment Effect Bounds Under
Monotonicity Conditions: An Application to Swan–Ganz Catheterization,” American Eco-
nomic Review, Papers and Proceedings, 98, 351–356. [954]

CHESHER, A. (2005): “Nonparametric Identification Under Discrete Variation,” Econometrica,
73, 1525–1550. [950]

CHIBURIS, R. (2010): “Semiparametric Bounds on Treatment Effects,” Journal of Econometrics,
159, 267–275. [950]

JUN, S. J., J. PINKSE, AND H. XU (2009): “Tighter Bounds in Triangular Systems,” Working Paper,
Penn State University. [950]

MANSKI, C. (1989): “Anatomy of the Selection Problem,” Journal of Human Resources, 24,
343–360. [954]

MANSKI, C., AND J. PEPPER (2000): “Monotone Instrumental Variables With an Application to
the Returns to Schooling,” Econometrica, 68, 997–1010. [954]

SHAIKH, A. M., AND E. J. VYTLACIL (2011): “Supplement to ‘Partial Identification in Triangular
Systems of Equations With Binary Dependent Variables’: Appendix,” Econometrica Supple-
mental Material, 79, http://www.econometricsociety.org/ecta/Supmat/9082_proofs.pdf. [951]

VYTLACIL, E. (2002): “Independence, Monotonicity, and Latent Index Models: An Equivalence
Result,” Econometrica, 70, 331–341. [949]

VYTLACIL, E., AND N. YILDIZ (2007): “Dummy Endogenous Variables in Weakly Separable
Models,” Econometrica, 75, 757–779. [949,950]

Dept. of Economics, University of Chicago, 1126 East 59th Street, Chicago,
IL 60637, U.S.A.; amshaikh@uchicago.edu

and
Dept. of Economics, Yale University, New Haven, CT 06520-8281, U.S.A.;

edward.vytlacil@yale.edu.

Manuscript received February, 2010; final revision received October, 2010.

http://www.e-publications.org/srv/ecta/linkserver/setprefs?rfe_id=urn:sici%2F0012-9682%28201105%2979%3A3%3C949%3APIITSO%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/BSVAEA2008&rfe_id=urn:sici%2F0012-9682%28201105%2979%3A3%3C949%3APIITSO%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/Chesher2005NonparametricIdenti&rfe_id=urn:sici%2F0012-9682%28201105%2979%3A3%3C949%3APIITSO%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/Chiburis&rfe_id=urn:sici%2F0012-9682%28201105%2979%3A3%3C949%3APIITSO%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:5/Manski89&rfe_id=urn:sici%2F0012-9682%28201105%2979%3A3%3C949%3APIITSO%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:6/ManskiPepper00&rfe_id=urn:sici%2F0012-9682%28201105%2979%3A3%3C949%3APIITSO%3E2.0.CO%3B2-2
http://www.econometricsociety.org/ecta/Supmat/9082_proofs.pdf
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:8/Vytlacil02&rfe_id=urn:sici%2F0012-9682%28201105%2979%3A3%3C949%3APIITSO%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/VY04&rfe_id=urn:sici%2F0012-9682%28201105%2979%3A3%3C949%3APIITSO%3E2.0.CO%3B2-2
mailto:amshaikh@uchicago.edu
mailto:edward.vytlacil@yale.edu
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/BSVAEA2008&rfe_id=urn:sici%2F0012-9682%28201105%2979%3A3%3C949%3APIITSO%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/BSVAEA2008&rfe_id=urn:sici%2F0012-9682%28201105%2979%3A3%3C949%3APIITSO%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/Chesher2005NonparametricIdenti&rfe_id=urn:sici%2F0012-9682%28201105%2979%3A3%3C949%3APIITSO%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/Chiburis&rfe_id=urn:sici%2F0012-9682%28201105%2979%3A3%3C949%3APIITSO%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:5/Manski89&rfe_id=urn:sici%2F0012-9682%28201105%2979%3A3%3C949%3APIITSO%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:6/ManskiPepper00&rfe_id=urn:sici%2F0012-9682%28201105%2979%3A3%3C949%3APIITSO%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:8/Vytlacil02&rfe_id=urn:sici%2F0012-9682%28201105%2979%3A3%3C949%3APIITSO%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/VY04&rfe_id=urn:sici%2F0012-9682%28201105%2979%3A3%3C949%3APIITSO%3E2.0.CO%3B2-2

	Introduction
	Identification Analysis
	References
	Author's Addresses

