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Abstract

We derive nonparametric bounds for local average treatment effects (LATE) without imposing
the exclusion restriction assumption or requiring an outcome with bounded support. Instead, we
employ assumptions requiring weak monotonicity of mean potential and counterfactual outcomes
within or across subpopulations defined by the values of the potential treatment status under
each value of the instrument. The key element in our derivation is a result relating LATE to a
causal mediation effect, which allows us to exploit partial identification results from the causal
mediation analysis literature. The bounds are employed to analyze the effect of attaining a GED,
high school, or vocational degree on future labor market outcomes using randomization into a
training program as an invalid instrument. The resulting bounds are informative, indicating that
the local effect when assigned to training for those whose degree attainment is affected by the
instrument is at most 12.7 percentage points on employment and $64.4 on weekly earnings.

Key words: causal inference, instrumental variables, mediation analysis, nonparametric bounds,
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1 Introduction

Instrumental variable (IV) methods are widely used in economics and other fields to estimate

causal treatment effects by exploiting exogenous treatment variation induced by exogenous variation

in the instrument. Imbens and Angrist (1994) and Angrist, Imbens and Rubin (1996) (hereafter

IA and AIR, respectively) show that in the presence of heterogeneous effects and under some as-

sumptions, IV estimators point identify the local average treatment effect (LATE) for individuals

whose treatment status is changed because of the instrument. A critical assumption of IV methods

is the exclusion restriction, which requires that the instrument affects the outcome only through its

effect on the treatment. Unfortunately, in many applications, it is debatable whether the instrument

employed is valid (i.e., satisfies the exclusion restriction), or it is difficult to find valid instruments.

In this paper, we derive nonparametric bounds for LATE without imposing the exclusion restriction

assumption or requiring an outcome with bounded support. Instead, we employ weak monotonicity

assumptions on the mean potential and counterfactual outcomes of strata defined by the values of the

potential treatment status under each value of the instrument. The key element in the derivation of

our bounds is an important result relating LATE to a causal mediation effect. This result generalizes

the one in IA and AIR to invalid instruments, and allows us to exploit partial identification results

from the causal mediation analysis literature (e.g., Sjölander, 2009; Flores and Flores-Lagunes, 2010).

Our paper is related to the studies by Hirano et al. (2000) and Mealli and Pacini (2012), who

extend the IV framework in AIR to identify effects of the instrument on the outcome for different la-

tent subpopulations (i.e., local intention-to-treat effects) while allowing for violations of the exclusion

restriction. The first study uses a parametric Bayesian approach to point identify those effects, while

the second derives nonparametric bounds by exploiting restrictions implied by the randomization of

the instrument on the joint distribution of the outcome and an auxiliary variable (e.g., a covariate).

In contrast, our main focus is on local treatment effects (as opposed to instrument effects).

There is a growing literature on partial identification of treatment effects in IV models. A strand

of this literature constructs bounds on treatment effects assuming the validity of the instrument
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(Manski, 1990, 1994; Balke and Pearl, 1997; Heckman and Vytlacil, 1999, 2000; Bhattacharya et al.,

2008; Kitagawa, 2009; Huber and Mellace, 2010; Shaikh and Vytlacil, 2011; Chen et al., 2012), while

another strand considers invalid instruments. Conley et al. (2012) use information on a parameter

summarizing the extent of violation of the exclusion restriction along with distributional assumptions

in the form of deterministic or probabilistic priors. Nevo and Rosen (2010) derive analytic bounds on

average treatment effects by employing assumptions on the sign and extent of correlation between the

instrument and the error term in a linear model. Our approach is different in that it is nonparametric

and does not require modeling the extent of invalidity of the instrument nor its correlation with an

error term; however, it is currently limited to the case of a binary and randomly assigned instrument

and a binary endogenous regressor.

Similar to Manski and Pepper (2000), we study nonparametric partial identification of treatment

effects without a valid instrument employing weak monotonicity assumptions, except we focus on

LATE (while they focus on the population average treatment effect) and our bounds do not require

an outcome with bounded support (while, in general, theirs are uninformative without a bounded

outcome). Our approach is also different in that it contains elements from the principal stratification

framework (Frangakis and Rubin, 2002), which is rooted in AIR and Hirano et al. (2000). This

framework is useful to analyze causal effects when allowing the IV to causally affect the outcome

through channels other than the treatment, hence allowing the exclusion restriction to be violated.

Deriving bounds for LATE is important for several reasons. LATE is a widely used parameter in

applied work and its bounds can be employed as a robustness check when estimating it, as illustrated

in our empirical application. In addition, the bounds on LATE can be used as a building block to

construct bounds for the population average treatment effect, as we later discuss, and they can be

more informative than the bounds on other parameters (e.g., the population average treatment effect)

in some applications. Finally, in some settings LATE is a relevant parameter even if the instrument

is invalid, such as in experiments or quasi-experiments with imperfect compliance. For instance,

consider the example in AIR of using the Vietnam era draft lottery as an IV for estimating the effect

of military service on civilian earnings. This IV would be invalid if the draft lottery has a separate
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effect on civilian earnings through channels other than military service (e.g., by affecting schooling

decisions to postpone conscription). Even in this case, LATE is a policy-relevant parameter as it

measures the effect of military service on earnings for those induced to the military by the draft.

The bounds derived herein are likely to be relevant to applied researchers. First, in many ex-

periments and quasi-experiments the randomized variable may not satisfy the exclusion restriction.

For instance, in AIR’s example the draft status could have affected civilian earnings through both

veteran status and education. Similarly, the randomized variable may fail to satisfy the exclusion

restriction even when an experiment is specifically designed for analyzing the effect of a particular

treatment. For example, Hirano et al. (2000) analyze the effect of influenza vaccination on flu-

related hospitalizations in a study where physicians were randomly encouraged to provide flu shots

to high-risk patients. They find evidence that the encouragement could have affected the outcome

through channels other than the receipt of the vaccination (e.g., through the receipt of other medical

treatment), thus invalidating the use of the encouragement as an IV for vaccination. In the examples

above, our bounds can be employed to learn about LATE without imposing the exclusion restriction.

Second, our bounds can be used to exploit existing experiments to learn about treatment effects

other than those for which the experiments were originally designed for. We illustrate the use of our

bounds in this case by using random assignment into a training program as an IV to analyze the

effect of attaining certain types of academic degrees on labor market outcomes. Finally, our results

are also useful in designing experiments when it is not possible to randomize the treatment of interest

because of financial or ethical reasons. In such cases, one could randomize a variable that affects the

treatment instead, and employ the methods herein to bound the effect of interest.

2 Partial Identification of LATE

2.1 Relationship between LATE and Causal Mediation Effects

Assume we have a random sample of size n from a large population. For each unit i in the

sample, let Di ∈ {0, 1} indicate whether the unit received the treatment of interest (Di = 1) or

the control treatment (Di = 0). We exploit exogenous variation in a binary instrument Z to learn
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about the effect of D on an outcome Y , with Zi ∈ {0, 1}. Let Di(1) and Di(0) denote the potential

treatment status; that is, the treatment status individual i would receive depending on the value

of Zi. This setting gives rise to four subpopulations (called “principal strata” in Frangakis and

Rubin, 2002) within which individuals share the same values of the vector {Di (0) , Di (1)}: {1, 1},

{0, 0}, {0, 1} and {1, 0}, commonly referred to as always takers, never takers, compliers, and defiers,

respectively (AIR, 1996). Also, let Yi (z, d) denote the potential or counterfactual outcome individual

i would obtain if she received a value of the instrument and the treatment of z and d, respectively.

For each unit i, we observe the vector (Zi, Di, Yi), where Di = ZiDi (1) + (1− Zi)Di (0) and Yi =

DiYi (Zi, 1) + (1−Di)Yi (Zi, 0). This notation implicitly imposes the stable unit treatment value

assumption, which implies that there is no interference between individuals and that there are no

different versions of the treatments being analyzed (Rubin 1978, 1980, 1990). To simplify notation,

in the rest of the paper we write the subscript i only when deemed necessary.

We begin by describing the key result in IA and AIR. They impose the following assumptions:

Assumption 1 (Randomly Assigned Instrument). {Y (1, 1) , Y (0, 0) , Y (0, 1) , Y (1, 0) , D (0) , D (1)}

is independent of Z.

Assumption 2 (Nonzero Average Effect of Z on D). E [D (1)−D (0)] 6= 0.

Assumption 3 (Individual-Level Monotonicity of Z on D). Di (1) ≥ Di (0) for all i.

Assumption 3 rules out the existence of defiers. IA and AIR also impose the following assumption:

Exclusion Restriction Assumption: Yi (0, d) = Yi (1, d) for all i and d ∈ {0, 1}. (1)

This assumption requires that any effect of the instrument on the potential outcomes is through the

treatment status only. Vytlacil (2002) shows that the IV assumptions imposed by IA and AIR are

equivalent to those imposed in nonparametric selection models.

IA and AIR show that if the exclusion restriction holds, along with Assumptions 1 to 3, the local

average treatment effect of D on Y for the compliers (which they call LATE) is point identified as:

E [Y (z, 1)− Y (z, 0) |D (1)−D (0) = 1] =
E [Y |Z = 1]− E [Y |Z = 0]

E [D|Z = 1]− E [D|Z = 0]
. (2)
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The exclusion restriction is crucial to the point identification result in (2). Intuitively, an average

effect of D on Y is obtained by dividing the reduced-form effect of Z on Y by the effect of Z on D

because the exclusion restriction guarantees that all of the effect of Z on Y works through D.

In what follows, we maintain Assumptions 1 to 3 and drop the exclusion restriction. Hence,

instead of assuming that all the effect of the instrument on the outcome works through the treatment

status, we now let the instrument have a causal effect on the outcome through other channels. As

a result, in order to employ Z as an instrument to learn about the effect of D on Y , we need to

disentangle the part of the effect of Z on Y that works through D from the part that works through

the other channels. To this end, we relate this problem to the causal mediation analysis literature.

We introduce some additional notation. We use Y Z
i (1) = Yi (1, Di (1)) and Y Z

i (0) = Yi (0, Di (0))

as shorthand for the outcome individual i would obtain if exposed or not exposed to the instrument,

respectively. Thus, the reduced-form average treatment effect (or intention-to-treat effect) of the

instrument on the outcome is ATEZY ≡ E[Y Z (1) − Y Z (0)]. Also, let the counterfactual outcome

Yi (1, Di (0)) represent the outcome individual i would obtain if exposed to the instrument, but

kept the treatment status at the value if not exposed to the instrument. Intuitively, Yi (1, Di (0))

is the outcome from an alternative counterfactual experiment in which the instrument is the same

as the original one, but we block the effect of Z on D by holding Di fixed at Di (0). Note that the

use of the counterfactual outcome Yi (1, Di (0)), which is an “entirely hypothetical”outcome (Rubin,

1990), makes our approach somewhat different from the original principal stratification framework of

Frangakis and Rubin (2002) that employs only potential outcomes Y Z
i (1) and Y Z

i (0). A discussion

clarifying our departure from principal stratification is provided in the Appendix.

Following Flores and Flores-Lagunes (2010), let the mediation (or mechanism) average treatment

effect, or MATE, be given by

MATE = E[Y (1, D (1))− Y (1, D(0))], (3)

and let the net average treatment effect, or NATE, be given by

NATE = E[Y (1, D(0))− Y (0, D(0)]. (4)
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NATE and MATE have received different names in other fields. They are also called, respectively,

the (average) pure direct and indirect effects (Robins and Greenland, 1992; Robins, 2003), or the

(average) natural direct and indirect effects (Pearl, 2001).

MATE gives the average effect on the outcome from a change in the treatment status that is due

to the instrument, holding the value of the instrument fixed at one. NATE gives the average effect

of the instrument on the outcome when the treatment status of every individual is held constant at

Di (0). Since ATEZY = MATE + NATE, these two effects decompose the total average effect of

the instrument on the outcome into the part that works through the treatment status (MATE) and

the part that is net of the treatment-status channel (NATE). Note that ATEZY = MATE if all the

effect of Z on Y works through D (i.e., under the exclusion restriction), whereas ATEZY = NATE

if none of the effect of Z on Y works through D. Finally, note that an alternative decomposition of

ATEZY can be made by defining MATE and NATE using the counterfactual outcome Y (0, D (1))

instead of Y (1, D (0)). The two decompositions can differ because of treatment effect heterogeneity.

We work with the definitions of MATE and NATE in (3) and (4), and discuss below the implication

of the way the decomposition is made on the definition of LATE.

We now relate MATE in (3) to a relevant effect of D on Y by writing it as:

MATE = E[Y (1, D(1))− Y (1, D(0))] (5)

= E {[D(1)−D(0)] · [Y (1, 1)− Y (1, 0)]}

= Pr (D(1)−D(0) = 1) · E [Y (1, 1)− Y (1, 0)|D (1)−D (0) = 1]

−Pr (D(1)−D(0) = −1) · E [Y (1, 1)− Y (1, 0)|D (1)−D (0) = −1] .

The second line in (5) writes MATE as the expected value of the product of the individual effect

of the instrument on the treatment status times the individual effect from a change in the treatment

status on the outcome, holding the value of the instrument fixed at one. The third line uses iterated

expectations, and is the basis for the following proposition.
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Proposition 1 Under Assumptions 2 and 3 we can write

LATE ≡ E [Y (1, 1)− Y (1, 0)|D (1)−D (0) = 1] =
MATE

E [D(1)−D(0)]
. (6)

Proposition 1 follows directly from (5) by ruling out the existence of defiers. As in IA and AIR, we

refer to the parameter E [Y (1, 1)− Y (1, 0)|D (1)−D (0) = 1] as the local average treatment effect

(LATE). It gives the average treatment effect for compliers under exposure to the instrument.

Proposition 1 writes LATE as a function of MATE and the average effect of the instrument on the

treatment status, where now MATE plays the role of the reduced-form effect of the instrument on

the outcome when the exclusion restriction holds.

Proposition 1 is important because it generalizes the IA and AIR result in (2) to include the

case when the exclusion restriction is violated, and since the denominator in (6) is point identified

under Assumption 1, it allows us to employ identification results on MATE to identify LATE. In

principle, point identification results on MATE (e.g., Robins and Greenland, 1992; Imai et al., 2010;

Flores and Flores-Lagunes, 2011) could be employed to point identify LATE. However, these results

require selection into the mechanism (in our case the treatment) to be based on observables, which

runs contrary to the logic for using an IV strategy to control for unobservable factors (see also Mealli

and Mattei, 2012). Therefore, we focus on partial identification of LATE.

Before presenting our bounds on LATE, it is instructive to relate Proposition 1 to the IA and

AIR result in (2). The exclusion restriction in (1) implies that MATE = ATEZY , which obtains

the result in IA and AIR as a special case of Proposition 1. In addition, the exclusion restriction

implies that E [Y (1, 1)− Y (1, 0)|D (1)−D (0) = 1] = E [Y (0, 1)− Y (0, 0)|D (1)−D (0) = 1], so in

this case specifying whether the effect of the treatment on the outcome is under exposure to the

instrument is irrelevant. In our setting, however, this distinction is important because we allow the

instrument to have a net or direct effect on the outcome, so average treatment effects can be different

depending on whether or not the individuals are exposed to the instrument. As a result, the LATE

in (6) is not exactly the same as that in (2) without further assumptions (e.g., assuming that LATE

under exposure to the IV is the same as under no exposure).
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Two additional remarks are in order. First, similar to the LATE in (2), the specific instrument

employed is crucial in interpreting the LATE in (6), as we illustrate in our empirical application.

Second, it is possible to obtain a result analogous to (6) for the average treatment effect for com-

pliers under no exposure to the instrument, E[Y (0, 1) − Y (0, 0)|D (1) − D (0) = 1], by using the

counterfactual outcome Y (0, D (1)) instead of Y (1, D (0)) in the definition of MATE and NATE.

The choice of LATE to consider (whether or not under exposure to the instrument) depends on the

particular application at hand.

2.2 Bounds on LATE

In this section, we present bounds on LATE in (6) based on Proposition 1 and the partial

identification results on MATE in Flores and Flores-Lagunes (2010). Given bounds on MATE,

bounds on LATE follow from Proposition 1 and point identification of E [D(1)−D(0)].

Partial identification of MATE in Flores and Flores-Lagunes (2010) is attained from the level of

the strata up. To simplify notation, we write at, nt, c and d to refer to the strata of always takers,

never takers, compliers, and defiers, respectively. Define local versions of MATE and NATE as the

corresponding average effects within strata:

LMATEk = E[Y Z(1)|k]− E[Y (1, D (0))|k], for k = at, nt, c, d; and, (7)

LNATEk = E[Y (1, D (0))|k]− E[Y Z(0)|k], for k = at, nt, c, d. (8)

The fact that Di (0) = Di (1) for the always and never takers implies that for these two strata

Y Z(1) = Y (1, D (0)), so LMATEk = 0 and LNATEk = E[Y Z(1)− Y Z(0)|k] for k = at, nt. It also

implies that the observed data contains information on Y (1, D (0)) only for those treated individuals

in the nt and at strata (Flores and Flores-Lagunes, 2010; Mealli and Mattei, 2012). Note that

LNATEat and LNATEnt are local intention-to-treat effects like those considered in Hirano et al.

(2000) and Mealli and Pacini (2012). In addition, LATE in (6) equals LMATEc since LMATEc =

E[Y (1, D(1))− Y (1, D (0))|c] = E{[D(1)−D(0)] · [Y (1, 1)− Y (1, 0)]|c} = E [Y (1, 1)− Y (1, 0)|c].

To briefly motivate the bounds on MATE in Flores and Flores-Lagunes (2010), consider Table 1

which summarizes the relationship between the compliance behavior of the individuals in the sample
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and their observed treatment status (Di) and instrument exposure (Zi), under Assumption 3:

Table 1
Zi

0 1
Di 0 nt, c nt

1 at at, c

Under Assumptions 1 and 3, it is possible to point identify the proportion of each of the strata

in the population, and to point or partially identify the mean potential outcomes and local effects

of certain strata. Let πnt, πat, and πc be the population proportions of the principal strata nt, at,

and c, respectively, and let pd|z ≡ Pr (Di = d|Zi = z) for d, z = 0, 1. Then, πnt = p0|1, πat = p1|0,

πc = p1|1 − p1|0 = p0|0 − p0|1, E[Y Z (0) |at] = E[Y |Z = 0, D = 1], and E[Y Z (1) |nt] = E[Y |Z =

1, D = 0]. In addition, it is possible to construct bounds on E[Y Z (1) |at], E[Y Z (0) |nt], E[Y Z (0) |c],

and E[Y Z (1) |c] by employing the trimming procedure in Lee (2009) and Zhang et al. (2008). For

example, consider constructing an upper bound for E[Y Z (0) |nt]. The average outcome for the

individuals in the (Z,D) = (0, 0) group can be written as:

E[Y |Z = 0, D = 0] =
πnt

πnt + πc
· E[Y Z (0) |nt] +

πc
πnt + πc

· E[Y Z (0) |c]. (9)

Since πnt/ (πnt + πc) = p0|1/p0|0, E[Y Z (0) |nt] can be bounded from above by the expected value

of Y for the p0|1/p0|0 fraction of the largest values of Y for those in the observed group (Z,D) = (0, 0).

A similar approach can be used to construct a lower bound on E[Y Z (0) |nt], as well as bounds

on E[Y Z (0) |c], E[Y Z (1) |at], and E[Y Z (1) |c], where for the last two terms the observed group

(Z,D) = (1, 1) is employed. Moreover, note that the bounds on E[Y Z (0) |nt] and E[Y Z (1) |at] can

be used to construct bounds on LNATEnt and LNATEat, respectively, as the other term in the

definition of each of these LNATEs is point identified (see equation (8)). As we further discuss in

Section 4, the bounds on LNATEnt and LNATEat can shed light on the validity of the exclusion

restriction assumption, as this assumption implies that LNATEnt = LNATEat = 0 (e.g., Hirano et

al., 2000; Huber and Mellace, 2010, 2011; Mealli and Pacini, 2012).

Flores and Flores-Lagunes (2010) use the point identified quantities and trimming bounds above

as building blocks to construct bounds on MATE by writing it in different ways as a function of the
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local effects and average potential and counterfactual outcomes of the three existing strata as:

MATE

= πcLMATEc (10)

= πntE
[
Y Z (0) |nt

]
+ πatE

[
Y Z (0) |at

]
+ πcE

[
Y Z (1) |c

]
− πcLNATEc − E

[
Y Z (0)

]
(11)

= E
[
Y Z (1)

]
− πatE

[
Y Z (1) |at

]
− πntE

[
Y Z (1) |nt

]
− πcE [Y (1, D (0)) |c] (12)

= E
[
Y Z (1)

]
− E

[
Y Z (0)

]
− πatLNATEat − πntLNATEnt − πcLNATEc. (13)

Intuitively, bounds on MATE are constructed by partially or point identifying quantities at the

strata level and then employing equations (10) to (13) to bound MATE.

Note that to partially identify MATE, and hence LATE, further assumptions are needed because

the data have no information on Y (1, D(0)) for compliers, so the terms E[Y (1, D (0)) |c], LMATEc,

and LNATEc appearing in equations (10) to (13) are not identified. As in Flores and Flores-Lagunes

(2010), we consider two additional sets of assumptions. The first imposes weak monotonicity of mean

potential and counterfactual outcomes within strata.

Assumption 4. (Weak Monotonicity of Mean Potential and Counterfactual Outcomes within Strata).

4.1. E[Y Z (1) |c] ≥ E[Y (1, D (0)) |c]. 4.2. E[Y (1, D (0)) |k] ≥ E[Y Z (0) |k], for k = nt, at, c.

Assumption 4.1 implies that LMATEc(= LATE) ≥ 0, so that the treatment has a non-negative

average effect on the outcome for the compliers. When combined with Assumption 3, it also implies

that MATE = πcLMATEc ≥ 0. Assumption 4.2 states that, for each stratum, the instrument has

a non-negative average effect on the outcome net of the effect that works through the treatment

status. It requires that LNATE ≥ 0 for all strata, which implies that NATE ≥ 0. Hence, under

Assumptions 3 and 4, we have ATEZY ≥ 0, and the instrument is assumed to have a non-negative

average effect on the outcome.

Assumptions similar to Assumption 4 have been considered for partial identification of aver-

age treatment effects in IV models (e.g., Manski and Pepper, 2000) and in other settings (Manski,

1997; Sjölander, 2009). For instance, Manski and Pepper (2000) consider the “monotone treatment
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response” (MTR) assumption, which states that the individual-level effect of the treatment on the

outcome is non-negative for every individual. In contrast to the MTR assumption, note that Assump-

tion 4.1 allows some individual effects of the treatment on the outcome to be negative by imposing

this monotone restriction on the average treatment effect for the compliers.

Let yzdr be the r-th quantile of Y conditional on Z = z and D = d. For ease of exposition,

suppose Y is continuous so that yzdr = F−1Y |Z=z,D=d (r), with F· (·) the CDF of Y given Z = z and

D = d. Let U z,k and Lz,k denote, respectively, the upper and lower bounds on the mean potential

outcome Y Z (z) for stratum k derived using the trimming procedure described above, with z ∈ {0, 1}

and k ∈ {at, nt, c}. Proposition 2 presents bounds on LATE under Assumptions 1 through 4.

Proposition 2 If Assumptions 1 through 4 hold,

0 ≤ LATE ≤ U

E [D|Z = 1]− E [D|Z = 0]
, where

U = E [Y |Z = 1]− E [Y |Z = 0]− p1|0 max
{

0, L1,at − E[Y |Z = 0, D = 1]
}

−p0|1 max
{

0, E[Y |Z = 1, D = 0]− U0,nt
}

U0,nt = E[Y |Z = 0, D = 0, Y ≥ y001−(p0|1/p0|0)]

L1,at = E[Y |Z = 1, D = 1, Y ≤ y11(p1|0/p1|1)].

Proof. See Internet Appendix.

Proposition 2 implies that under Assumptions 1 to 4 the upper bound on LATE is at most equal

to the usual IV estimand in (2), since U ≤ E[Y |Z = 1]− E[Y |Z = 0].

In contrast to Assumption 4, the next set of assumptions does not restrict the sign of LATE. It

involves weak monotonicity of mean potential and counterfactual outcomes across strata.

Assumption 5. (Weak Monotonicity of Mean Potential and Counterfactual Outcomes across Strata).

5.1. E [Y (1, D (0)) |c] ≥ E
[
Y Z (1) |nt

]
. 5.2. E

[
Y Z (1) |at

]
≥ E [Y (1, D (0)) |c]. 5.3. E

[
Y Z (0) |c

]
≥

E
[
Y Z (0) |nt

]
. 5.4. E

[
Y Z (0) |at

]
≥ E

[
Y Z (0) |c

]
. 5.5. E

[
Y Z (1) |c

]
≥ E

[
Y Z (1) |nt

]
. 5.6.

E
[
Y Z (1) |at

]
≥ E

[
Y Z (1) |c

]
.
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This assumption states that the mean potential and counterfactual outcomes of the always takers

are greater than or equal to those of the compliers, and that these in turn are greater than or equal

to those of the never takers. Assumption 5 formalizes the notion that some strata are likely to

have more favorable characteristics and thus better mean outcomes than others. For example, in

our empirical application it requires that, on average, individuals who are more likely to attain an

academic degree are also more likely to have favorable labor market outcomes.

Assumption 5 has two attractive features: it may be substantiated with economic theory, and

the combination of Assumptions 1, 3, and 5 provide the testable implications E[Y |Z = 0, D =

1] ≥ E[Y |Z = 0, D = 0] and E[Y |Z = 1, D = 1] ≥ E[Y |Z = 1, D = 0] that can be used to

falsify the assumptions. Moreover, it is possible to obtain indirect evidence about the plausibility of

Assumption 5 by comparing relevant average baseline characteristics (e.g., pre-treatment outcomes)

of the different strata (e.g., Flores and Flores-Lagunes, 2010; Frumento et al., 2012; Chen et al.,

2012). These tools are illustrated and further discussed in our empirical analysis.

Assumption 5 is implicit in some selection and single-index models, and similar monotonicity

assumptions across strata have been considered previously in other settings (e.g., Zhang and Rubin,

2003; Zhang et al., 2008, 2009). Assumption 5 is also related to, but different from, the monotone

instrumental variable (MIV) assumption in Manski and Pepper (2000). The MIV assumption states

that mean potential outcomes as a function of the treatment vary weakly monotonically across sub-

populations defined by specific observed values of the instrument: E[Y (d) |Z = 1] ≥ E[Y (d) |Z = 0]

for d = {0, 1}. Assumption 5 differs from the MIV assumption in at least two important ways. First,

Assumption 5 refers to potential and counterfactual outcomes that explicitly allow the instrument to

have a causal effect on the outcome (through D and other channels) by writing them as a function

of the treatment and the instrument. Second, Assumption 5 imposes weak inequality restrictions

across subpopulations defined by specific values of the potential treatment status (principal strata).

Proposition 3 presents bounds on LATE employing Assumptions 1, 2, 3, and 5.
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Proposition 3 If Assumptions 1, 2, 3, and 5 hold,

L

E[D|Z = 1]− E[D|Z = 0]
≤ LATE ≤ U

E[D|Z = 1]− E[D|Z = 0]
, where

L =
(
p1|1 − p1|0

)
·
(
max

{
L1,c, E [Y |Z = 1, D = 0]

}
− U1,at

)
U =

(
p1|1 − p1|0

)
(E [Y |Z = 1, D = 1]− E [Y |Z = 1, D = 0])

U1,at = E[Y |Z = 1, D = 1, Y ≥ y111−(p1|0/p1|1)]

L1,c = E[Y |Z = 1, D = 1, Y ≤ y111−(p1|0/p1|1)].

Proof. See Internet Appendix.

The lower bound on LATE in Proposition 3 is always less than or equal to zero because p1|1 −

p1|0 = πc ≥ 0 and U1,at is always greater than or equal to L1,c and E[Y |Z = 1, D = 0] (from the

testable implications above). Therefore, the bounds in Proposition 3 cannot be used to rule out a

negative LATE. Nevertheless, as illustrated in our empirical application, the upper bound on LATE

in this proposition can be informative.

Finally, Assumptions 1 through 5 can be combined to construct bounds on LATE. This yields

an additional testable implication: E[Y |Z = 1, D = 1] ≥ E[Y |Z = 0, D = 0].

Proposition 4. If Assumptions 1 through 5 hold,

0 ≤ LATE ≤ min{Ũ1, Ũ2}
E[D|Z = 1]− E[D|Z = 0]

, where

Ũ1 = E [Y |Z = 1]− p1|0 max{E [Y |Z = 1, D = 1] , E [Y |Z = 0, D = 1]}

−
(
p1|1 − p1|0

)
max{E[Y |Z = 1, D = 0], E[Y |Z = 0, D = 0]}

−p0|1E [Y |Z = 1, D = 0]

Ũ2 = E [Y |Z = 1]− E [Y |Z = 0]

−p1|0 max{0, E [Y |Z = 1, D = 1]− E [Y |Z = 0, D = 1]}

−p0|1 max{0, E [Y |Z = 1, D = 0]− E [Y |Z = 0, D = 0]} −
(
p1|1 − p1|0

)
·

max{0, E [Y |Z = 1, D = 0]− U0,c, E [Y |Z = 1, D = 0]− E [Y |Z = 0, D = 1]}

U0,c = E[Y |Z = 0, D = 0, Y ≥ y00(p0|1/p0|0)].
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Proof. See Internet Appendix.

Similar to Proposition 2, Ũ2 implies that the upper bound on LATE in Proposition 4 is at most

equal to the IV estimand in (2), and Assumption 4.1 implies that the lower bound on LATE is zero.

3 Estimation and Inference

The bounds derived in Section 2 involve minimum (min) and maximum (max) operators, which

are problematic for standard estimation and inferences procedures. Sample analog estimates of this

type of bounds tend to be narrower than the true bounds because of the concavity and convexity of

the min and max functions, respectively, and the asymptotic distribution of the bound estimators is

usually unavailable. Moreover, Hirano and Porter (2012) show that there exist no locally asymptot-

ically unbiased estimators and no regular estimators for parameters that are nonsmooth functionals

of the underlying data distribution, such as those involving min or max operators. These issues have

generated a growing literature on inference methods for partially identified models of this type (see

Tamer, 2010, and references therein). We use the methodology proposed by Chernozhukov, Lee and

Rosen (2011) (hereafter CLR) to obtain confidence regions for the true parameter value and half-

median unbiased estimators for our lower and upper bounds. The half-median-unbiasedness property

means that the upper bound estimator exceeds the true value of the upper bound with probability

at least one half asymptotically, while the reverse holds for the lower bound.

To briefly describe CLR’s procedure as applied to our setting, let the bounds for a parameter θ0

(e.g., LATE) be given by [θl0, θ
u
0 ], where θl0 = maxv∈Vl={1,...,ml} θ

l(v) and θu0 = minv∈Vu={1,...,mu} θ
u(v).

CLR refer to θl(v) and θu(v) as bounding functions. In our setting, v indexes the bounding func-

tions, while ml and mu give, respectively, the number of terms inside the max and min opera-

tors. It is straightforward to write the bounds from the previous section in this form by ma-

nipulating the min and max operators. For example, the lower bound for LATE in Proposition

3 can be written as θl0 = maxv∈Vl={1,2} θ
l(v) = max{θl(1), θl(2)}, with θl(1) ≡ L1,c− U1,at and

θl(2) ≡ E [Y |Z = 1, D = 0]− U1,at. Similarly, the upper bound in Proposition 2 contains 4 bound-

ing functions, while it contains 16 bounding functions in Proposition 4. In our case, sample analog
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estimators of the bounding functions θl(v) and θu(v) are known to be consistent and asymptotically

normally distributed, as they are simple functions of proportions, conditional means, and trimmed

means (Lee, 2009; Newey and McFadden, 1994).

CLR address the issues related to estimation and inference for the bounds [θl0, θ
u
0 ] by employing

precision-corrected estimates of the bounding functions before applying the min and max operators.

The precision adjustment consists of adding to each estimated bounding function its pointwise stan-

dard error times an appropriate critical value, κ(p), so that estimates with higher standard errors

receive larger adjustments. Depending on the choice of κ(p), it is possible to obtain confidence re-

gions for either the identified set or the true parameter value, and half-median unbiased estimators

for the lower and upper bounds.

More specifically, the precision-corrected estimator of the upper bound θu0 is given by

θ̂u(p) = min
v∈Vu

[θ̂u(v) + κu
V̂ u
n

(p)su(v)], (14)

where θ̂u(v) is the sample analog estimator of θu(v) and su(v) is its standard error. CLR compute

the critical value κu
V̂ u
n

(p) based on simulation methods and a preliminary estimator V̂ u
n of V u =

arg minv∈Vu θu(v). Intuitively, V̂ u
n selects those bounding functions that are close enough to binding

to affect the asymptotic distribution of the estimator of the upper bound. A precision-corrected

estimator of the lower bound θl0 is obtained in a similar way. Further details on the CLR methodology

and our specific implementation steps are provided in the Internet Appendix.

4 Bounds on the Labor Market Effects of Attaining a Degree

In this section we illustrate the use of our bounds by analyzing the effect of attaining a general

educational development (GED), high school, or vocational degree on labor market outcomes using

randomization into the Job Corps (JC) training program as an instrument. We employ data from the

National Job Corps Study (NJCS), a randomized experiment performed in the mid-1990s to evaluate

the effectiveness of JC. This application is relevant given the large empirical literature analyzing the

effects on earnings of education (e.g., Card, 1999) and degree attainment (e.g., Hungerford and Solon,

1987; Cameron and Heckman, 1993; Jaeger and Page, 1996; Flores-Lagunes and Light, 2010).
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Recall that there are two leading situations where our bounds can be used. The first is when it

is debatable whether the exclusion restriction holds. The second is when the randomized variable

in an existing experiment is used as an IV to learn about treatment effects other than those for

which the experiment was designed for, in which case the exclusion restriction is unlikely to hold.

Our application illustrates the latter situation, which is subtler. In particular, we do not argue

that random assignment in the NJCS is not a valid IV for analyzing the effect of JC participation

adjusting for non-compliance with the assigned treatment. Instead, we employ random assignment

as an IV to bound the effect of a different treatment (attaining a degree) from that for which the

experiment was designed for (JC participation).

4.1 The Job Corps Program, Data, and Preliminary Analysis

JC is U.S.’s largest and most comprehensive job training program for economically disadvantaged

youth aged 16 to 24 years old. In addition to academic and vocational training, JC provides its

participants a variety of services such as health services, counseling, job search assistance, social

skills training, and a stipend during program enrollment, as well as room and board for those residing

at the JC centers during program enrollment. In the NJCS, a random sample of all pre-screened

eligible applicants in the 48 contiguous states and the District of Columbia was randomly assigned

into treatment and control groups, with the second group being denied access to JC for three years.

Both groups were tracked with a baseline interview immediately after randomization and thereafter

at 12, 30 and 48 months. For further details on JC and the NJCS see Schochet et al. (2001).

Since the original NJCS reports, which found statistically positive effects of JC participation

on employment and weekly earnings (Schochet et al., 2001), several papers have analyzed different

aspects of JC using the NJCS data. For instance, Flores-Lagunes et al. (2010) analyze why positive

effects of JC are found for whites and blacks but not for Hispanics, while Flores et al. (2012) study

the effects of different lengths of exposure to academic and vocational instruction in JC under a

selection-on-observables assumption. The wage effects of JC adjusting for selection into employment

have also been considered. Zhang et al. (2009) and Frumento et al. (2012) point identify wage effects

16



for certain principal strata, with the latter paper also addressing the issues of non-compliance and

missing outcomes, and analyzing the average characteristics and outcomes of the different strata. Lee

(2009) and Blanco et al. (2012) use trimming bounds analogous to those for LNATEat discussed

in Section 2.2 to bound, respectively, the average and quantile wage effects of JC for individuals

who would be employed regardless of their random assignment. Flores and Flores-Lagunes (2010)

use their bounds on NATE and MATE to analyze the mechanisms through which JC affects labor

market outcomes, focusing on the attainment of a high school, GED, or vocational degree as a

potential mechanism. Importantly, the present application is different from theirs in that the focus

here is on analyzing the returns to attaining a degree (as opposed to analyzing how JC works),

employing random assignment as a potentially invalid instrument. In other words, disentangling the

part of the effect of JC on labor market outcomes that is due to attaining a degree is not the purpose

of the current analysis, but rather an intermediate step for bounding the effect of interest.

Our sample consists of all individuals with non-missing values on the randomized treatment

status, the variables regarding the attainment of a GED, high school, or vocational degree, and the

outcome variables considered. We concentrate on estimating the returns to attaining any combination

of those three degrees because many JC participants attain at least two of them (a GED or high

school degree plus a vocational degree), and thus breaking up the effects of the different degrees would

require additional assumptions. We focus on the outcomes measured 36 months after randomization,

which corresponds to the time the embargo from JC ended for the control group. We use as an

instrument the randomized indicator for whether or not the individual was assigned to participate

in JC, hereafter referred to as the “random assignment status”. We note that there existed non-

compliance with the assigned treatment in the NJCS (73 percent of those in the treatment group

enrolled in JC, while 1.4 percent of those in the control group managed to enroll in JC). We discuss

below the implications of this non-compliance for the interpretation of our results.

Table 2 presents point estimates for some relevant quantities. The population average effect, or

intention-to-treat effect (ITT ), of the random assignment status on the probability of being employed

36 months after randomization is 4 percentage points, while the ITT on weekly earnings is $18.1. The
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Parameters
Average	
  Treatment	
  Effects

ITT	
  of	
  instrument	
  on	
  employment
ITT	
  of	
  instrument	
  on	
  earnings	
  
Average	
  effect	
  of	
  instrument	
  on	
  degree	
  attainment
LATE	
  of	
  degree	
  attainment	
  on	
  employment
LATE	
  of	
  degree	
  attainment	
  on	
  earnings

Strata	
  Proportions
πnt

πat

πc

Conditional	
  Means Estimate Std.	
  Error Estimate Std.	
  Error
E[Y|Z=0] 0.61 (0.009) 170.85 (3.703)
E[Y|Z=1] 0.65 (0.007) 188.96 (2.933)

Testable	
  Implications
E[Y|Z=0,	
  D=1]-­‐E[Y|Z=0,	
  D=0] 0.09 (0.018) 48.87 (7.365)
E[Y|Z=1,	
  D=1]-­‐E[Y|Z=1,	
  D=0] 0.15 (0.014) 70.50 (5.894)
E[Y|Z=1,	
  D=1]-­‐E[Y|Z=0,	
  D=0] 0.13 (0.015) 64.23 (5.708)
Notes:	
  The	
  labor	
  market	
  outcomes	
  (Y)	
  are	
  either	
  weekly	
  earnings	
  or	
  employment	
  status	
  in	
  month	
  36	
  after	
  randomization.	
  The	
  
treatment	
  (D)	
  is	
  the	
  attainment	
  of	
  a	
  high	
  school,	
  GED,	
  or	
  vocational	
  degree.	
  The	
  instrumental	
  variable	
  	
  (Z)	
  is	
  an	
  indicator	
  for	
  whether	
  
the	
  individual	
  was	
  randomly	
  assigned	
  to	
  participate	
  in	
  JC.	
  Sample	
  size	
  is	
  8,020	
  individuals:	
  2,975	
  with	
  Z=0	
  and	
  5,045	
  with	
  Z=1.	
  Standard	
  
errors	
  are	
  based	
  on	
  5,000	
  bootstrap	
  replications.

Employment

18.11
0.209

0.34
0.45

0.194

(0.007)
(0.009)
(0.011)

(0.055)
86.63 (22.769)

0.21
Weekly	
  Earnings

Table	
  2.	
  Point	
  Estimates	
  of	
  Interest

(4.759)
(0.011)

(0.011)

Standard	
  ErrorEstimate

0.041

average (first-stage) effect of the random assignment status on the probability of attaining a degree is

21 percentage points. All three effects are highly statistically significant. The IV point estimate for

the effect of attaining a degree on employment and weekly earnings using random assignment status

as an instrument is 19.4 percentage points and $86.63, respectively, and both are highly statistically

significant. These are point estimates of the IA and AIR LATE in (2) under Assumptions 1 to 3

plus the exclusion restriction assumption in (1), which requires that all the effect of the random

assignment status on employment and earnings works through the attainment of a degree. This

assumption is likely violated because JC may have an effect on the outcomes through other services,

such as job search services or social skills training. In fact, below we present evidence that JC has

an effect on both outcomes net of the effect that works through the attainment of a degree, which

under the assumptions considered implies that the exclusion restriction is violated.

4.2 Discussion of Assumptions

Assumption 1 holds by design, and the results in Table 2 suggest that Assumption 2 is satisfied.

Assumption 3 states that there are no defiers: individuals who would obtain a GED, high school, or
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vocational degree only if they were assigned to not participate in JC. This assumption is plausible

given that JC facilitates the obtainment of such a degree. In our application, the never takers are

those individuals who would never obtain a degree regardless of whether or not they are assigned to

participate in JC, while the always takers are those who would always obtain a degree regardless of

their assignment. The compliers are those who would obtain a degree only if assigned to participate

in JC. Table 2 shows the estimated proportions of each of these strata (under Assumptions 1 and 3).

Assumption 4.1 states that the attainment of a degree has a non-negative average effect on

employment and earnings for the compliers, which is consistent with conventional human capital

models. Assumption 4.2 states that the combination of the rest of the channels through which the

random assignment status affects the outcome has a non-negative average effect on labor market

outcomes for all strata. This assumption seems plausible because the other components of JC (e.g.,

job search assistance, social skills training) also aim to improve the participants’ future labor market

outcomes. Nevertheless, a potential threat to the validity of this assumption is that individuals are

“locked-in” away from employment while undergoing training, which could negatively affect their

labor market outcomes. Note, however, that the fact that our outcomes are measured 36 months

after randomization (when most individuals have finished training) decreases the relevance of this

issue. In addition, this assumption is imposed on the LNATEs (as opposed to the individual net

effects), which increases its plausibility as it allows some individuals to experience a negative net

effect. We present empirical evidence below that LNATEat > 0 (under Assumptions 1, 3, and 5).

Finally, Assumption 5 states that the average potential and counterfactual outcomes of the com-

pliers are no less than the corresponding average potential outcomes of the never takers, and no

greater than those of the always takers. This assumption seems plausible in our application given

the characteristics of the individuals expected to belong to each strata. For instance, we would ex-

pect individuals with more favorable traits to succeed in the labor market (e.g., discipline) to belong

to the always-taker stratum rather than to the complier stratum, with the reverse holding when

comparing the compliers to the never takers.

Although Assumption 5 is not directly testable, indirect evidence on its plausibility can be gained
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from comparing mean baseline characteristics that are closely related to the outcomes for the different

strata (e.g., Flores and Flores-Lagunes, 2010; Frumento et al., 2012; Chen et al., 2012). If these

comparisons suggest that compliers have better average baseline characteristics than always takers,

or worse characteristics than never takers, then Assumption 5 is less likely to hold. In this application,

the probability of being employed in the year prior to randomization for never takers, compliers, and

always takers are, respectively (standard errors in parenthesis), 0.153 (.009); 0.205 (.010); and 0.216

(.011). The corresponding numbers for the mean weekly earnings in the year prior to randomization

are $86.26 (2.57); $117.73 (12.95); and $109.74 (3.09). For both always takers and compliers, the

two mean characteristics are statistically greater than those of the never takers, while the differences

of those two means between always takers and compliers are not statistically significant. Thus, the

data do not provide indirect evidence against Assumption 5. In addition, the last three rows of Table

2 verify that the testable implications of Assumptions 4 and 5 discussed in Section 2.2 hold. In sum,

although not innocuous, Assumptions 3 to 5 appear acceptable in our application.

4.3 Results

Table 3 shows half-median unbiased estimates of the bounds on LATE in Propositions 2 through

4 for employment and weekly earnings, along with 95 percent confidence intervals for the true pa-

rameter value based on the methodology discussed in Section 3. Table 3 also presents results for

MATE, LNATEnt, and LNATEat. We begin by focusing on LNATEnt and LNATEat. Their

bounds can provide evidence on the validity of the exclusion restriction, as this assumption implies

that LNATEnt = LNATEat = 0. The idea of analyzing the direct or net effect of the instrument

on the outcome for particular strata to assess the plausibility of the exclusion restriction has been

considered previously by Hirano et al. (2000), and similar ideas appear in Huber and Mellace (2010,

2011) and Mealli and Pacini (2012) (see also Heckman and Vytlacil, 2005, and Kitagawa, 2008, 2009,

for more on testing implications of the LATE assumptions). The specific formulas for the bounds on

LNATEnt and LNATEat are provided in the Internet Appendix. The first two columns of Table 3

show bounds on these two parameters under Assumptions 1 and 3, which correspond to the trimming
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Assumptions:

Parameters LB UB LB UB LB UB LB UB

1.	
  	
  LNATEnt -­‐0.365 0.241 0.000 0.241 -­‐0.019 0.241 0.000 0.241

2.	
  	
  LNATEat -­‐0.095 0.341 0.000 0.341 0.044 0.341 0.044 0.341

3.	
  	
  MATE 0.000 0.044 -­‐0.094 0.032 0.000 0.027

4.	
  	
  LATE 0.000 0.211 -­‐0.448 0.151 0.000 0.127

1.	
  	
  LNATEnt -­‐96.41 111.09 0.00 111.09 -­‐6.28 111.09 0.00 111.09

2.	
  	
  LNATEat -­‐98.76 114.74 0.00 114.74 15.35 114.74 15.35 114.74

3.	
  	
  MATE 0.00 19.48 -­‐35.94 14.74 0.00 13.60

4.	
  	
  LATE 0.00 86.70 -­‐169.92 70.50 0.00 64.43

[0.00,	
  122.47]

[3.49,	
  131.75]

[0.00,	
  16.71]

[0.00,	
  77.53]

[0.00,	
  122.47]

[0.00,	
  131.75]

[0.00,	
  27.93]

[0.00,	
  129.19]

[-­‐16.59,	
  122.47]

[3.49,	
  131.75]

[-­‐41.83,	
  17.15]

[-­‐185.45,	
  80.23]

[-­‐0.048,	
  0.289]

[0.019,	
  0.364]

[-­‐0.104,	
  0.037]

[-­‐0.470,	
  0.175]	
  	
  

[0.000,	
  0.289]

[0.019,	
  0.364]

[0.000,	
  0.036]

[0.000,	
  0.166]

1,	
  2,	
  3,	
  and	
  4 1,	
  2,	
  3,	
  and	
  5 1,	
  2,	
  3,	
  4	
  and	
  5

Notes:	
  The	
  Table	
  shows	
  half-­‐median	
  unbiased	
  estimates	
  of	
  the	
  bounds	
  and	
  95	
  percent	
  confidence	
  intervals	
  (in	
  
square	
  brackets)	
  for	
  the	
  true	
  value	
  of	
  the	
  parameter	
  based	
  on	
  the	
  method	
  proposed	
  by	
  Chernozhukov,	
  Lee	
  and	
  
Rosen	
  (2011),	
  as	
  discussed	
  in	
  Section	
  3.	
  For	
  the	
  bounds	
  with	
  no	
  minimum	
  or	
  maximum	
  operators,	
  the	
  bound	
  
estimates	
  and	
  confidence	
  intervals	
  closely	
  correspond	
  to	
  the	
  analog	
  estimates	
  and	
  the	
  Imbens	
  and	
  Manski	
  (2004)	
  
confidence	
  intervals,	
  respectively.	
  The	
  variance-­‐covariance	
  matrix	
  for	
  all	
  the	
  estimated	
  bounding	
  functions	
  is	
  based	
  
on	
  5,000	
  bootstrap	
  replications,	
  and	
  the	
  number	
  of	
  draws	
  from	
  a	
  normal	
  distribution	
  used	
  to	
  get	
  the	
  estimated	
  
bounds	
  and	
  confidence	
  intervals	
  (see	
  Internet	
  Appendix	
  for	
  details)	
  is	
  100,000.	
  Sample	
  size	
  is	
  8,020	
  individuals:	
  2,975	
  
with	
  Z=0	
  and	
  5,045	
  with	
  Z=1.	
  The	
  labor	
  market	
  outcomes	
  (Y)	
  are	
  either	
  employment	
  status	
  or	
  weekly	
  earnings	
  in	
  
month	
  36	
  after	
  randomization.	
  The	
  treatment	
  (D)	
  is	
  the	
  attainment	
  of	
  a	
  high	
  school,	
  GED,	
  or	
  vocational	
  degree.	
  The	
  
instrumental	
  variable	
  	
  (Z)	
  is	
  an	
  indicator	
  for	
  whether	
  the	
  individual	
  was	
  randomly	
  assigned	
  to	
  participate	
  in	
  JC	
  
("random	
  assignment	
  status").	
  LNATEk,	
  the	
  local	
  net	
  average	
  treatment	
  effect	
  for	
  stratum	
  k	
  (never	
  or	
  always	
  takers),	
  
gives	
  the	
  part	
  of	
  the	
  effect	
  of	
  the	
  random	
  assignment	
  status	
  (Z)	
  on	
  labor	
  market	
  outcomes	
  (Y)	
  that	
  works	
  through	
  
channels	
  other	
  than	
  the	
  attainment	
  of	
  a	
  degree	
  (D)	
  for	
  stratum	
  k.	
  MATE,	
  the	
  mechanism	
  average	
  treatment	
  effect,	
  is	
  
the	
  part	
  of	
  the	
  intention-­‐to-­‐treat	
  effect	
  of	
  Z	
  on	
  Y	
  that	
  works	
  through	
  D.	
  LATE	
  is	
  the	
  local	
  average	
  treatment	
  effect	
  of	
  
degree	
  attainment	
  on	
  labor	
  market	
  outcomes	
  for	
  those	
  individuals	
  assigned	
  to	
  the	
  program	
  and	
  whose	
  degree	
  
attainment	
  is	
  affected	
  by	
  their	
  random	
  assignment	
  status.

Employment	
  Outcome

Weekly	
  Earnings	
  Outcome

1	
  and	
  3

[-­‐0.419,	
  0.289]

[-­‐0.129,	
  0.364]

[-­‐113.51,	
  122.47]

[-­‐112.19,	
  131.75]	
  

[0.000,	
  0.289]

[0.000,	
  0.364]

[0.000,	
  0.064]

[0.000,	
  0.308]

Table	
  3.	
  Estimated	
  Bounds	
  on	
  the	
  Effect	
  of	
  Degree	
  Attainment	
  on	
  Labor	
  Market	
  Outcomes	
  
Using	
  Random	
  Assignment	
  Status	
  as	
  an	
  Invalid	
  Instrument

Proposition	
  2 Proposition	
  3 Proposition	
  4
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bounds discussed in Section 2.2. These estimated bounds are not able to reject that those two net

effects are zero. Bounds on LNATEnt and LNATEat under Assumption 4 are presented for com-

pleteness, since adding Assumption 4.2 (LNATEk ≥ 0) is not attractive for assessing the validity of

the exclusion restriction. Employing Assumption 5 substantially increases the lower bounds shown

in the first column. The estimated lower bounds on LNATEat for employment and earnings equal

0.044 and $15.35, respectively, and the 95 percent confidence intervals for LNATEat exclude zero for

both outcomes. Thus, under Assumptions 1, 3, and 5, the data reject the validity of the instrument

because the random assignment status has a strictly positive average direct effect on the outcome

for the at stratum, suggesting the unreliability of the conventional IV point estimates in Table 2.

Table 3 shows that under Proposition 2 the estimated upper bound on MATE equals 4 percentage

points for employment and $19.48 for earnings, which are very close to the ITT of the instrument

on the outcomes in Table 2. Replacing Assumption 4 with Assumption 5 (Proposition 3) yields an

estimated upper bound of 3 percentage points for employment and $14.7 for earnings. This implies,

for example, that at most 75 percent of the ITT effect of the instrument on employment is due to the

attainment of a degree. Lastly, when both Assumptions 4 and 5 are used (Proposition 4), the bounds

on MATE imply that the part of the average effect of random assignment status on employment

that is due to the attainment of a degree is at most 66 percent, while the corresponding quantity is

75 percent for earnings. The fact that the estimated upper bounds on MATE under Propositions

3 and 4 are considerably below the ITT of random assignment status on the outcome is consistent

with our previous finding regarding the existence of a non-zero net average effect of the instrument

on the outcome and the invalidity of the instrument.

We now focus on the LATE results. Here, LATE in (6) is interpreted as the average effect for

compliers of attaining a GED, high school, or vocational degree on the outcome when assigned to

participate in JC. Note that, given the imperfect compliance with the random assignment present in

the NJCS, LATE cannot be interpreted as the average effect for compliers when enrolled in JC.

Under Proposition 2, the lower bound on LATE for both outcomes is zero, and the estimated

upper bounds equal 0.211 for employment and $86.70 for weekly earnings. Although the upper bound

22



on LATE in Proposition 2 is at most equal to the usual IV estimand in (2), both estimated upper

bounds are slightly above the corresponding IV point estimates in Table 2 because of the half-median

unbiased correction we employ. Note that under Proposition 2 the data do not provide any additional

information to narrow the bounds in our application, as they come directly from Assumption 4.

The estimated upper bounds on LATE obtained by employing Assumption 5 instead of Assump-

tion 4 (Proposition 3) are more informative. They equal 15.1 percentage points for employment

and $70.5 for earnings. When all five assumptions are combined (Proposition 4), the lower bound

on LATE is zero for both outcomes, which comes directly from Assumption 4, and the estimated

upper bounds imply that LATE is at most 12.7 percentage points for employment and $64.43 for

weekly earnings. The 95 percent confidence intervals for the true value of LATE under Proposition

4 for employment and earnings are, respectively, [0, 0.166] and [0, 77.53]. Thus, in this case we can

statistically reject effects larger than 0.166 for employment and $77.53 for earnings, while based on

the IV point estimates in Table 2 we cannot reject effects as large as 0.30 and $131, respectively.

For each outcome, the IV point estimate in Table 2 falls outside the 95 percent confidence interval

for LATE under Proposition 4. In a setting where the LATE in (6) and (2) are equal, this implies

that the invalidity of the instrument results in IV point estimates that are severely upward biased

(under Assumptions 4 and 5). To test this more formally, let βIV denote the IV estimand in (2). The

CLR-based 95 percent confidence interval on the partially identified parameter (LATE − βIV ) for

employment is [−0.2987,−0.0184], while the corresponding 90 percent confidence interval for earnings

is [−122.97,−1.25]. These CLR-based confidence intervals take into account that the correlation

between the estimates of βIV and those of many of the upper bounding functions in Proposition 4 is

very high and positive, and that some estimated bounding functions are well below the IV estimates

in Table 2. When using the bounds under Proposition 3, although the point estimates of βIV in Table

2 fall outside the 95 percent confidence interval for both outcomes, the corresponding CLR-based 95

percent confidence interval on (LATE − βIV ) for employment and the 90 percent one for earnings

are given by [−0.734, 0.057] and [−293.94, 16.38], respectively, both of which include zero.

Our results also suggest that sample analog estimates of bounds involving min and max operators
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can be severely biased in practice and, thus, that appropriate estimation and inference methods

should be used. For instance, the sample analog estimates of the upper bounds on LATE under

Proposition 4 for employment and earnings equal 0.1 and $53.9, respectively, both of which are well

below the corresponding half-median unbiased estimates in Table 3.

Next, we compare our estimated bounds on LATE to two sets of bounds on the population

average treatment effect (ATE) derived by Manski and Pepper (2000). The first set is under their

monotone instrumental variable and monotone treatment response assumptions (MIV-MTR), while

the other is under their monotone treatment selection and MTR assumptions (MTS-MTR). The

MTS assumption specializes the MIV assumption to the case when the IV is the realized treatment,

in which case their bounds do not require a bounded outcome. In these comparisons, it is important

to keep in mind that ATE may differ from LATE in the presence of heterogeneous effects. For

employment, the estimated MIV-MTR bounds on ATE are [0, 0.49], while those for earnings are

[0, $870.6] (these bounds require a bounded outcome; for earnings, we use the in-sample maximum,

$2, 358.4, as the upper bound). The upper bounds for ATE are above all those presented in Table 3

for LATE. The estimated MTS-MTR bounds on ATE, [0, 0.13] for employment and [0, $64.14] for

earnings, are close to our bounds on LATE under Proposition 4. Note that, with a binary treatment,

the upper bound on ATE under the MTS-MTR assumptions is E[Y |D = 1]− E[Y |D = 0].

Finally, we relate our results to the empirical literature on the returns to years of schooling.

The average number of actual hours of academic and vocational instruction received while enrolled

in JC for those individuals who participated and obtained a degree is 1,448. Considering that a

typical high school student receives the equivalent of 1,080 hours of instruction during a school year

(Schochet et al., 2001), obtaining a degree is equivalent to about 1.34 years of schooling. Hence,

our results above suggest an upper bound on the average return to a year of schooling of about 28

percent (38%/1.34). Card (1999) surveyed IV estimates of the return to one year of schooling that

exploit institutional features of school systems, which estimate the effect for individuals who would

otherwise have relatively low educational attainment (as in our application). These IV estimates

range from 6 to 15.3 percent, and thus fall within our estimated bounds on LATE.
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5 Conclusion

This paper derived nonparametric bounds for local average treatment effects employing an

invalid instrument and allowing the outcome to have an unbounded support. We substitute the

exclusion restriction assumption in Imbens and Angrist (1994) and Angrist et al. (1996) with as-

sumptions requiring weak monotonicity of potential and counterfactual outcomes within or across

principal strata. Our bounds on the effect of attaining a degree on labor market outcomes illustrate

their identifying power: they indicate that the local effect when assigned to training for those whose

degree attainment is affected by the instrument (random assignment to a training program) is at

most 12.7 percentage points on employment and $64.43 on weekly earnings.

The analysis herein can be extended to derive bounds on the population ATE with invalid

instruments. Under the monotonicity assumption of the instrument on the treatment, the ATE

equals the weighted average of the (local) average treatment effects for the always takers, never

takers, and compliers. Our general approach can be used to construct bounds on ATE with invalid

instruments by first deriving bounds on each of those local average effects. A related approach has

been employed in the literature to derive bounds on ATE when the exclusion restriction holds (e.g.,

Angrist et al., 1996; Huber and Mellace, 2010; Chen et al., 2012). Another possible extension of

our results is to settings where the instrument is not randomly assigned. One could combine the

ideas herein with work allowing estimation of LATE when the instrument is assumed to be random

conditional on a set of covariates (Hirano et al., 2000; Abadie, 2003; Frölich, 2007).
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6 Appendix: Relationship to Principal Stratification

We discuss how our approach differs from the original Principal Stratification (PS) framework

of Frangakis and Rubin (2002). In contrast to the original PS framework that employs only potential

outcomes (Y Z
i (1) and Y Z

i (0)), we also work with a priori counterfactual outcomes (Yi (1, Di (0))).

The difference is that, while potential outcomes can be observed in the data depending on the

instrument assignment (e.g., Y Z
i (1) is observed for those with Zi = 1), a priori counterfactual

outcomes are never observed regardless of the instrument assignment (e.g., the outcome compliers

would have if Zi = 1, but we could “force” them to have Di = 0). As a result, we also consider partial

identification of effects that are not “principal strata effects”, defined as comparisons of potential

outcomes within a given principal stratum. For example, the object of interest when estimating direct

or net effects within a PS framework is the so-called principal strata average direct effect, which is

defined as E[Y Z (1)−Y Z (0) |D (1) = D (0)]; that is, the average effect for those individuals whose D

is unaffected by Z. As compared to NATE and MATE (which are not principal strata effects), this

effect has the attractive feature that it does not require additional assumptions for employing the

information available in the data to learn about counterfactual outcomes that are never observed.

However, in a setting with heterogeneous effects, it does not decompose the ATEZY into a net

and mechanism effect the way NATE and MATE do (e.g., VanderWeele, 2008; Flores and Flores-

Lagunes, 2010, 2011; Mealli and Mattei, 2012). For further discussion on these topics see, for example,

Frangakis and Rubin (2002), Rubin (2004), Pearl (2011), Mattei and Mealli (2011), and Mealli and

Mattei (2012). Mealli and Mattei (2012) provide an interesting discussion of principal stratification

and its connections and differences with IV methods, along with an alternative presentation of the

exclusion restriction assumption.
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