
Partial key recovery attack against RMAC

Lars R. Knudsen∗, Department of Mathematics, Technical University of Denmark,
lars@ramkilde.com

Chris J. Mitchell, Royal Holloway, University of London, United Kingdom
c.mitchell@rhul.ac.uk

Abstract

In this paper new ‘partial’ key recovery attacks against the RMAC block cipher based
Message Authentication Code scheme are described. That is we describe attacks that, in
some cases, recover one of the two RMAC keys much more efficiently than previously de-
scribed attacks. Although all attacks, but one, are of no major threat in practice, in some
cases there is reason for concern. In particular, the recovery of the second RMAC key (of
k bits) may only require around 2k/2 block cipher operations (encryptions or decryptions).
The RMAC implementation using triple DES proposed by NIST is shown to be very weak.

Keywords. Message Authentication Codes. RMAC. AES. Triple DES.

1 Introduction

MACs, i.e. Message Authentication Codes, are a widely used method for protecting the in-
tegrity and guaranteeing the origin of transmitted messages and stored files. To use a MAC
it is necessary for the sender and recipient of a message (or the creator and verifier of a
stored file) to share a secret key K, chosen from some (large) keyspace. The data string to be
protected, D say, is input to a MAC function, along with the secret key K, and the output
is the MAC. The MAC is then sent or stored with the message.

Most common message authentication algorithms today are iterated MAC algorithms. The
MAC input D is padded to a multiple of the block size, and is then divided into q blocks
denoted D1 through Dq. The m-bit MAC involves an initial value IV = H0, a compression
function h, an output transformation g, and an n-bit (n ≥ m) chaining variable Hi between
stage i− 1 and stage i:

Hi = h(Di,Hi−1), 1 ≤ i ≤ q

MACK(D) = g(Hq) .

The secret key may be employed in h, and/or in g.

ISO/IEC 9797-1 [5] lists three possible padding rules for iterated MACs. If the message string
is D = D1, D2, . . . , Dq, then these rules are:

∗Supported by the Danish National Science Research Council grant no. 21-02-0093

1

1. append additional zero bits, such that |Dq| = n;

2. if |Dq| = n append an extra block Dq+1 consisting of one one-bit followed by zero bits,
such that |Dq+1| = n, otherwise append a one-bit then zero bits, such that |Dq| = n;

3. apply rule 1 then prefix the data with one n-bit block D0 containing q.

One very widely used class of iterated MAC schemes are called CBC-MACs, where (typically)
h(x, y) = eK(x⊕ y), and where eK(z) denotes the block cipher encryption of z using the key
K. To avoid some simple forgery attacks [13, §9.5], g is most often a function which outputs
a certain subset of bits of the input, or consists of one or more encryption operations, or is
a combination of the two. In this paper we are concerned with a particular example of a
CBC-MAC scheme known as RMAC [6, 17].

There are two main classes of attack on a MAC scheme, namely key recovery attacks, in
which an attacker is able to discover the secret key used to compute the MACs, and forgery
attacks in which an attacker is able to determine the correct MAC for a message (without the
legitimate key holder having generated it).

forgery attack: this attack consists of predicting the value of MACK(D) for a message D
without initial knowledge of K. If the adversary can do this for a single message, he is
said to be capable of existential forgery . If the adversary is able to determine the MAC
for a message of his choice, he is said to be capable of selective forgery . A very simple
‘attack’ is to choose an arbitrary fraudulent message, and to append a randomly chosen
MAC value. Ideally, the probability that this MAC value is correct is equal to 1/2m,
where m is the number of bits of the MAC value. Practical attacks often require that a
forgery is verifiable, i.e., that the forged MAC is known to be correct beforehand with
probability near 1.

key recovery attack: this attack consists of finding the key K itself from a number of
message/MAC pairs. Such an attack is more powerful than a forgery, since it allows for
arbitrary selective forgeries. Ideally, any attack allowing key recovery requires about
2k operations (here k denotes the bit-length of K). If m is the size of the MAC and
if one assumes that MACK(D) is a random function from the key to the MAC, then
verification of such an attack requires about dk/me text-MAC pairs. To see this, note
that the expected number of keys which will take the message D to a certain given
MAC value is 2k−m. Extending this argument, the expected number of keys which will
take dk/me messages to certain given MAC values is 2k−(mdk/me) ≤ 1.
Partial key recovery attacks are those in which only some k′ < k bits of the secret key
are retrieved.

Preneel and van Oorschot [20] present a general forgery attack that applies to all iterated
MACs. Its feasibility depends on the bit sizes n of the chaining variable and m of the MAC
result and on the nature of the output transformation g. The basic attack requires several
known texts, but only a single chosen text. However, in some cases restrictions are imposed on
the known texts; for example, if the padding method used is the third above, all messages must
have equal length. For an input pair (x, x′) with MACK(x) = g(Hq) and MACK(x′) = g(H ′

q),
a collision is said to occur if MACK(x) = MACK(x′). This collision is called an internal

2

collision if Hq = H ′
q, and an external collision if Hq 6= H ′

q but g(Hq) = g(H ′
q). The attack is

based on the following simple observation:

Lemma 1 ([20]) An internal collision for an iterated MAC algorithm allows a verifiable
MAC forgery, through a chosen-text attack requiring a single chosen text.

This follows since, for an internal collision (x, x′), MACK(x ‖ y) = MACK(x′ ‖ y) for any
single block y; thus a requested MAC on the chosen text x ‖ y provides a forged MAC (i.e.
the same MAC) for x′ ‖ y (here ‖ denotes concatenation). Note this assumes that the MAC
algorithm is deterministic. Also, the forged message is of a special form, which may limit the
practical impact of the attack.

The next propositions show the complexities of finding an internal collision for a given MAC
algorithm.

Proposition 1 ([20]) Let MAC() be an iterated MAC function with n-bit chaining variable
and m-bit result, and an output transformation g that is a permutation. An internal collision
for MAC can be found using an expected number of u =

√
2 · 2n/2 known text-MAC pairs of

at least t = 2 blocks each.

Proposition 2 ([20]) Let MAC() be an iterated MAC function with n-bit chaining variable
and m-bit result, and output transformation g which is a random function. An internal
collision for h can be found using u known text-MAC pairs of at least t = 2 blocks each
and v chosen texts of at least three blocks. The expected values for u and v are as follows:
u =

√
2 · 2n/2 and v is approximately 2n−m.

A widely used type of CBC-MAC (when using DES) is where the output transformation g
is a two-key triple encryption (with keys K1 = K and K2); this is commonly known as the
ANSI retail MAC, since it first appeared in [1]:

g(Hq) = eK1(dK2(Hq)) = eK1(dK2(eK1(Dq ⊕Hq−1))) .

The scheme is designed for use with DES as the underlying block cipher to compensate for its
short key length. However, it has been shown that the above generic forgery attack, requiring
about 2n/2 known text/MAC pairs, can be extended to an attack which recovers the entire
key in time 3 · 2k encryptions, compared to 22k encryptions for an exhaustive search [19, 20].
Other key recovery attacks, also requiring a small multiple of 2k encryption operations, need
only a few known texts, but require many MAC verifications [10, 11, 14].

A variant of the ANSI retail MAC with the same computational complexity was proposed in
[11], where a double block cipher encryption is used in the first and last iteration:

H1 = eK′
2
(eK1(D1)) and g(Hq) = eK2(Hq) .

Here K ′
2 is derived from K2. However, it has been shown that there are again key recovery

attacks of time complexity approximately only that of an exhaustive search over one of the
keys involved [3, 4]. Also, it has recently been shown [7] that for all schemes but one in
ISO/IEC 9797-1 [5], key recovery attacks exist requiring about 2n/2 chosen texts and 2k block
cipher operations.

3

Bellare et al. [2] provide a proof of security for the ‘basic’ CBC-MAC where g(Hq) = Hq,
i.e., a lower bound on the complexity of breaking the system given certain assumptions about
the underlying block cipher. The proof assumes that the messages authenticated are all of
the same length. DMAC is a CBC-MAC scheme with g(Hq) = eK′(Hq), where K ′ is a key
different from K [5, 18, 21]. There is a also proof of security for DMAC, similar to the
aforementioned one for the ‘basic’ CBC-MAC, but which holds for messages of varying length
[18].

Following the approach used in [5], we use a four-tuple [a, b, c, d] to quantify the resources
needed for an attack, where a denotes the number of off-line block cipher encipherments (or
decipherments), b denotes the number of known data string/MAC pairs, c denotes the number
of chosen data string/MAC pairs, and d denotes the number of on-line MAC verifications.
Note c and d are distinguished because, in some environments, it may be easier for an attacker
to obtain MAC verifications (i.e. to submit a data string/MAC pair and learn whether the
MAC is valid) than to obtain the MAC for a chosen message. Moreover, as is the case for
RMAC, it is possible to learn different information from a MAC verification than from a
chosen MAC, since we assume that the attacker has no control over the random salt used for
a chosen MAC.

This paper is organised as follows. §2 presents the RMAC scheme. In §3 several key-recovery
attacks on RMAC are presented, all of which recover one of the two RMAC keys much more
efficiently than previously described attacks. §4 presents an efficient attack on RMAC used
with triple-DES as proposed by NIST [17], and §5 gives some concluding remarks1.

2 The RMAC scheme

The RMAC message authentication code was proposed by Jaulmes, Joux and Valette [6] in
2002. The scheme operates as follows. First suppose the underlying block cipher has n-bit
blocks and uses a key of k bits. The MAC scheme uses a pair of keys K1, K2. The MAC
computation is as follows.

A message D is first padded and split into a sequence of q n-bit blocks: D1, D2, . . . , Dq. The
entity computing the MAC generates a k-bit random salt R, and then makes the following
computations:

H1 = eK1(D1),
Hi = eK1(Di ⊕Hi−1), (2 ≤ i ≤ q), and

MAC = eK2⊕R(Hq)).

The salt R must be stored or sent with the message and MAC.

For the purposes of this paper we assume that the padding method does not involve prefixing
the data with a length block. (NIST [17] specifies that padding rule 2 should be used with
RMAC.) Note that the MAC used will be truncated to the left-most m bits of the MAC value
given in the above equation, where m ≤ n.

RMAC was designed as an alternative to the DMAC scheme with better resistance against the
generic forgery attacks mentioned in the introduction [6]. However this element of increased

1The attacks of §3.5 and §4 also appear in [9], together with key recovery attacks in multi-user settings

4

security comes at a price. The attacks presented in this paper recover one of the two k-
bit keys of RMAC faster than by brute-force. Once this key has been found the scheme is
vulnerable to some simple forgery attacks, see e.g., [13, §9.5]. We remark that none of the
attacks presented in this paper would apply to DMAC [5, 18, 21], for which the best known
attacks recovering either of the two keys require 2k operations, where k is the size of the
involved keys.

3 Partial key recovery attacks on RMAC

In this section we outline several partial key recovery attacks on RMAC. The attacks are
applied to general block ciphers of length n using a k-bit key and do not exploit intrinsic
properties of the underlying block cipher.

3.1 The basis for a partial key recovery attack

Suppose an attacker knows, by some means, the value Hq computed during the RMAC
computation for the padded message D1, D2, . . . , Dq. Suppose the attacker also knows a
MAC for this message (M say) and the corresponding random salt R.

The attacker first chooses an integer s (0 ≤ s ≤ k) and then, by some means, obtains the
MACs M1,M2, . . . ,M2s for this same padded message D1, D2, . . . , Dq for a total of 2s different
(random) salts R1, R2, . . . , R2s . The set of MACs {M1,M2, . . . , M2s} (and corresponding salt
values) is sorted to simplify comparisons.

The attacker next computes Cj = eLj (Hq) for a series of 2k−s arbitrary distinct keys Lj ,
j = 1, 2, . . . 2k−s. After each computation the value of Cj is compared with the set of MACs
{M1,M2, . . . , M2s}.
Then with a probability of 1− (1− 2−k)2

k ' 0.63 (for k ≥ 5), for at least one pair of values
of i, j (1 ≤ i ≤ 2s, 1 ≤ j ≤ 2k−s) the equation

K2 ⊕Ri = Lj

will hold, where K2 is one of the two secret keys used to compute the RMACs. If this equation
holds then Cj = Mi. Of course, this latter equation may hold by chance (with probability
2−m). Thus, during the course of computing the 2k−s values Cj , there will be a total of around
2k−m ‘false’ matches. Eliminating a false match is simple — it requires one decryption of a
different MAC value Mi∗ (using the appropriate offset of the key Lj).

After elimination of all false matches the key K2 will have been recovered. Hence the total
complexity for finding the key K2 is as follows:

• 2s chosen MACs, and

• 2k−s + 2k−m encryption or decryption operations.

Of course, this all depends on the attacker having a means to find the value Hq. Later in this
paper we describe two ways in which this might occur. However, first we consider a simple
variation on the above procedure.

5

3.2 A variant partial key recovery attack

Observe that the m-bit MAC for an arbitrary message with an arbitrary salt R can be found
using an expected 2m−1+(2m−1−1)/2m ' 2m−1 MAC verifications. Thus, instead of requiring
2s chosen MACs, the first part of the attack described in section 3.1 can be performed using
2s+m−1 MAC verifications. Thus, in this case, the total complexity for finding the key K2 is:

• 2s+m−1 MAC verifications, and

• 2k−s + 2k−m encryption or decryption operations.

Rather interestingly, this variant of the attack can be made deterministic instead of proba-
bilistic without increasing the complexity. This is because the attacker is able to choose the
2s salt values R1, R2, . . . , R2s as well as the 2k−s values L1, L2, . . . , L2k−s . Since the attack
depends on finding an Ri and Lj such that Ri ⊕K2 = Lj , it becomes possible to choose the
values of R1, R2, . . . , R2s and L1, L2, . . . , L2k−s to try to ensure that such an equation will
hold (for some i and j) whatever the value of K2.

Suppose the attacker chooses the sets R = {R1, R2, . . . , R2s} and L = {L1, L2, . . . , L2k−s}
such that R and L are mutually orthogonal subspaces, of dimensions s and k−s respectively,
of the k-dimensional vector space over GF(2) with elements the binary k-tuples. This can,
for example, readily be achieved by letting R be the set of all k-tuples whose final k−s digits
are zeros, and L be the set of all k-tuples whose first s digits are zeros. Then, for any k-tuple
K2, there exists a unique pair (Ri, Lj) ∈ R×L such that K2 = Ri⊕Lj . This holds since the
union of a basis for R with a basis for L will be a basis for the entire k-dimensional space.
Hence, for any k-tuple K2, there exists a unique pair (Ri, Lj) ∈ R×L such that Ri⊕K2 = Lj .

Thus, in this case, if R and L are chosen appropriately, the desired ‘match’ will be found
with probability 1.

3.3 A simple method for finding Hq

The first of the two methods we describe for finding Hq applies only in the case where
m = n, i.e. where there is no MAC truncation. Suppose the attacker knows the MAC M
(and corresponding random salt R) for a (q +1)-block padded message D1, D2, . . . , Dq, Dq+1.
Then, for a sequence of distinct values E (where E is an n-bit block) the attacker conducts
a MAC verification for the triple (E, M , R), where E is the one-block padded message, M
is the MAC and R is the salt. (Observe that any MAC verification operation will always
involve such a triple of inputs). This procedure continues until the MAC verification gives
a positive result. The simplest way to implement this would be to use an n-bit counter to
generate successive values of E.

Now suppose that E∗ is the value for which MAC verification succeeds — thus we know that

eK2⊕R(eK1(E
∗)) = M.

But, given that M is also the MAC for the (q+1)-block padded message D1, D2, . . . , Dq, Dq+1,
again using the salt R, we also know that

eK2⊕R(eK1(Dq+1 ⊕Hq)) = M.

6

Thus, since the block cipher encryption function must be one-to-one (for any fixed key), we
know that

eK1(E
∗) = eK1(Dq+1 ⊕Hq),

hence
E∗ = Dq+1 ⊕Hq,

and thus
Hq = Dq+1 ⊕E∗.

It remains for the attacker to learn a MAC for the q-block padded message D1, D2, . . . , Dq,
which requires one chosen MAC (the value of the random salt is not significant), and the
attacker will now know a padded message D1, D2, . . . , Dq, the value Hq, and a MAC (with
its corresponding salt).

We conclude by considering the complexity of the above procedure. It requires

• one known MAC,

• 2n−1 MAC verifications (this is the expected number before the MAC verification suc-
ceeds), and

• one chosen MAC.

Thus, in this case (where m = n), the total complexity of the attack to find K2 is either

• [2k−s + 2k−n, 1, 2s, 2n−1], when the approach described in section 3.1 is followed, or

• [2k−s + 2k−n, 1, 0, 2s+n−1 + 2n−1], when the method in section 3.2 is employed.

In the case where two-key triple DES, [13, 15] is being employed (with k = 112 and n = 64)
this gives a complexity of either [2112−s + 248, 1, 2s, 263] or [2112−s + 248, 1, 0, 263 + 263+s].
Hence, for example, if s = 56 the attack complexities are [256, 1, 256, 263] and [256, 1, 0, 2119],
and if s = 20 the complexities are [292, 1, 220, 263] and [292, 1, 0, 283].

More generally, where a block cipher with a 128-bit key and a 64-bit block size is used,
e.g. IDEA [13] or MISTY1 [12], the attack complexity is either [2128−s + 264, 1, 2s, 263] or
[2128−s + 264, 1, 0, 263 + 263+s]. Putting s = 64 in the first formulation and s = 32 in the
second, we get attack complexities of [265, 1, 264, 263] or [296, 1, 0, 295] which are lower than
might be expected.

Finally note that if AES [16] (with a 128-bit key) is used, then the attack complexity is either
[2128−s, 1, 2s, 2127] or [2128−s, 1, 0, 2127 +2127+s]. Hence, in this case, the attacks are unlikely
to be of much practical significance.

3.4 Another method for finding Hq

The second method we describe for finding Hq applies regardless of the value of m, although
it is less efficient than the previously described method when m = n.

7

The attacker first chooses a sequence of dn/me salts R1, R2, . . . , Rdn/me. The attacker next
uses a series of MAC verifications to find a set S1 of 2(n−m)/2 messages (each at least two
n-bit blocks long), for which the m-bit MAC is equal to all zeros when the salt R1 is used.

The attacker next uses a series of MAC verifications to learn the MACs of all the messages
in S1 for each of the other salts R2, R3, . . . , Rdn/me. For each message and for each salt the
attacker submits each possible m-bit MAC in turn for a MAC verification until the correct
MAC is found. As a result the attacker will know a sequence of dn/me MACs for each of the
2(n−m)/2 messages in S1, and moreover the first MAC in each case will be all zeros.

The attacker now follows exactly the same procedure to generate a second set of messages
S2 of size 2(n−m)/2 (using exactly the same sequence of salt values R1, R2, . . . , Rdn/me). Each
message in this set shall be precisely one block long. As a result the attacker will know a
sequence of dn/meMACs for each of the 2(n−m)/2 one-block messages, again with the property
that the first MAC in every case will equal all zeros.

By the usual birthday paradox arguments [13], with probability ' 0.63, for one padded
message D1, D2, . . . , Dq+1 in set S1, the ‘partial MAC value’ Hq+1 will equal the value of
eK1(E) for a one-block message E in the set S2. This will be evident because the corresponding
tuples of MAC values will be equal. (There may be a small number of ‘false alarms’, i.e. pairs
of tuples of MAC values which agree, even though the partial MAC values disagree. These
can be eliminated using a number of additional MAC verifications.)

Given such a pair of messages, the remainder of the procedure is exactly the same as in the
previous section.

The complexity of the above process is simple to compute. A total of

2(n−m)/2 × 2

messages need to be found which have a MAC of all zeros. Finding one such message will
require 2m MAC verifications on average, and hence finding the messages will require a total
of

2(n+m+2)/2

MAC verifications. A further

dn/m− 1e × 2× 2(n−m)/2

MACs need to be computed. Computing such a MAC requires on average 2m−1 MAC verifi-
cations, and hence computing these MACs requires a total of

dn/m− 1e × 2(n+m)/2

MAC verifications. This gives a total of

dn/m + 1e × 2(n+m)/2

MAC verifications.

Thus, in this case, the total complexity of the attack to find K2 is equal to either

• [2k−s + 2k−m, 0, 2s, dn/m + 1e× 2(n+m)/2], when the approach described in section 3.1
is followed, or

8

• [2k−s + 2k−m, 0, 0, dn/m + 1e × 2(n+m)/2 + 2s+m−1], when the method in section 3.2 is
employed.

We note three cases where this attack appears significant.

• Suppose two-key triple DES [15] is used with m = 16; the second attack variant with
s = 20 gives an attack complexity of [296, 0, 0, 242].

• If two-key triple DES is employed with m = 32 then the complexity of the second attack
variant (with s = 18) is [294, 0, 0, 250].

• Finally, if AES [16] (with a 128-bit key) is used with m = 32, then the second attack
variant (with s = 40) has a complexity of [296, 0, 0, 282].

3.5 A partial key-recovery attack for the case m = n

In this section an attack is presented which, in some cases where m = n, is more efficient
than the attacks of the previous sections. In the following, let dK(x) denote the decryption
of x using the key K for the underlying block cipher.

The attack is based on multiple collisions.

Definition 1 A t-collision for a MAC is a set of t messages all producing the same MAC
value.

We shall make use of the following lemma which is easily proved.

Lemma 2 Let A,B, and C be boolean variables. Then

A ⇒ B ⇔ not(B) ⇒ not(A), and

A ⇒ (B AND C) ⇔ not(B) OR not(C) ⇒ not(A).

Let D be some message (with an arbitrary number of blocks). The attack goes as follows.
Request the MACs of D for s different values of the salt R. Assume that the attacker finds a
t-collision, where the salts are R0, R1, . . . , Rt−1 and denote the common MAC value by M ′.
For simplicity denote K2 + R0 by K, and K2 + Ri by K + ai−1 for i = 1, 2, . . . , t − 1. The
attacker guesses a key value L and computes the decryptions of the MAC value M ′ using the
keys L,L+a0, . . . , L+ at−1. Then it holds for i = 0, 1, . . . , t− 1, that if L = K or L = K +ai

then dL(M ′) = dL+ai(M
′). Using Lemma 2 it follows that if dL(M ′) 6= dL+ai(M

′) then L 6= K
and L 6= K + ai for 0 ≤ i < t. Similarly, if dL+ai(M

′) 6= dL+aj (M
′) then L 6= K + ai + aj for

0 ≤ i 6= j < t. In this way an exhaustive search for K2 can be made faster than brute-force.

In some rare cases one gets equal values in the inequality tests. As an example, if dL(M ′) =
dL+ai(M

′) for some i, then one needs to check if dL(M ′) = dL+a0(M
′) = dL+a1(M

′) = ...
after which all false alarms are expected to be detected. The expected number of false alarms

is t +

(
t− 1

2

)
.

9

We show the case of a 3-collision in more detail. Assume that the random salts used, are
R0, R1, and R2 (which are known to the attacker). Since the messages are the same for all
MACs and since the MACs are equal, say M ′, one knows that the keys K2 + R0,K2 + R1,
and K2 + R2 all decrypt M ′ to the same (unknown) message z, thus

dK(M ′) = dK+a0(M
′) = dK+a1(M

′),

where K = K2 + R0, a0 = R0 + R1 and a1 = R0 + R2.

The following implications are immediate.

L = K ⇒ dL(M ′) = dL+a0(M
′) AND dL+a0(M

′) = dL+a1(M
′)

L = K + a0 ⇒ dL+a0(M
′) = dL(M ′) AND dL(M ′) = dL+a0+a1(M

′)

L = K + a1 ⇒ dL+a1(M
′) = dL+a0+a1(M

′) AND dL+a1(M
′) = dL(M ′)

L = K + a0 + a1 ⇒ dL+a0+a1(M
′) = dL+a1(M

′) AND dL+a1(M
′) = dL+a0(M

′)

Lemma 2 enables us to rewrite the above implications as follows.

dL(M ′) 6= dL+a0(M
′) ⇒ L 6= K

dL+a0(M
′) 6= dL(M ′) ⇒ L 6= K + a0

dL+a1(M
′) 6= dL(M ′) ⇒ L 6= K + a1

dL+a1(M
′) 6= dL+a0(M

′) ⇒ L 6= K + a0 + a1

Take (guess) a key value, L and compute dL(M ′), dL+a0(M
′), and dL+a1(M

′). If dL(M ′) 6=
dL+a0(M

′), then L 6= K and L 6= K + a0, if dL+a0(M
′) 6= dL+a1(M

′), then L 6= K + a0 + a1,
and if dL(M ′) 6= dL+a1(M

′), then L 6= K + a1.

Summing up, with a 3-collision (provided a0, a1 are different) one can check the values of four
keys from three decryption operations.

Let us next assume that there is a 4-collision. Let the four keys in the 4-collision be K, K +
a0,K + a1,K + a2. Then from the results of dL(M ′), dL+a0(M

′), dL+a1(M
′), and dL+a2(M

′),
one can check the validity of four keys. Moreover, by arguments similar to the case of a 3-
collision, from the four decryptions, one can check the values of all keys of the form K+ai+aj ,

where 0 ≤ i 6= j ≤ 2. Thus from four decryption operations one can check 4 +

(
3
2

)
= 7

keys.

This generalizes to the following result. With a t-collision one can check the values of u =

t +

(
t− 1

2

)
keys from t decryption operations. Table 1 lists values of t, u and u/t. It

should be clear that t-collisions can be used to reduce a search for the key K2; the question
is by how much? That is, how many values of L need to be tested before the sets of keys
{L,L + a0, . . . , L + at−1, L + a0 + a1, . . . , L + at−2 + at−1} cover the entire key space?

Consider the case t = 3. One can assume a0 6= a1 (otherwise there is no collision), and that
with a high probability there are two bit positions where a0 6= a1. Without loss of generality

10

Table 1:

t u = t +

(
t− 1

2

)
u/t

3 4 1.3
4 7 1.8
5 11 2.2
6 16 2.7
7 22 3.1
8 29 3.6
9 37 4.1
10 46 4.6
17 136 8.0

assume that these are the two most significant bits and that these bits are “01” for a0 and
“10” for a1. Then a strategy is the following: Let L run through all keys where the most
significant two bits are “00”. Then clearly the sets

{L,L + a0, L + a1, L + a0 + a1}
cover the entire key space and an exhaustive search for K2 is reduced by a factor of 4

3 , since
in the attack one can check the value of four keys at the cost of three decryptions.

Consider the case t = 4. With a high probability the k-bit vectors a0, a1, and a2 are pairwise
different. Also, with a high probability there are three bit positions where a0, a1, and a2 are
linearly independent (viewed as three-bit vectors). Without loss of generality assume that
the bits are the three most significant bits and that these are “001” for a0, “010” for a1 and
“100” for a2. Then a strategy is the following: Let L run through all keys where the most
significant three bits are “000”. Then clearly the sets

{L,L + a0, L + a1, L + a2, L + a0 + a1, L + a0 + a2, L + a1 + a2}
cover 7/8 of the key space. Next fix the most significant three bits of L to “111”, find other
bit positions where a0, a1, and a2 are different and repeat the strategy. Thus, in the first
phase of the attack one chooses 2k−3 values of L, does 4 × 2k−3 = 2k−1 encryptions, and
one can check 7 × 2k−3 keys. In the next phase of the attack one chooses 2k−6 values of L,
does 4× 2k−6 = 2k−4 encryptions, and one can check 7× 2k−6 keys. At this point, a total of
7×2k−3 +7×2k−6 = 2k−2k−3−2k−6 keys have been checked at the cost of about 2k−1 +2k−4

encryptions. In total, an exhaustive search for K2 is reduced by a factor of almost two.

For higher values of t the attacker’s strategy becomes more complex. We claim that with a
high probability (“good” values of ai) the factor saved in an exhaustive search for the key is
close to the value of u/t (see Table 1).

The following result shows the complexity of finding t-collisions [22].

Lemma 3 Consider a set of s randomly chosen b-bit values. With s = c2(t−1)b/t one expects
to get one t-collision, where c ≈ (t!)1/t.

If it is assumed for a fixed message D and a (randomly chosen) salt R that the resulting MAC
is a random m-bit value, one can apply the Lemma to estimate the number of texts needed
to find a t-collision.

11

Consider a few examples. With s = 2(n+1)/2 one expects to get one pair of colliding MACs,
that is, one (2-)collision. With s = (1.8)22n/3 one expects to get a 3-collision, that is, three
MACs with equal values (61/3 ≈ 1.8). With s = (2.2)23n/4 one expects to get one 4-collision
(241/4 ≈ 2.2).

From Stirling’s formula n! =
√

2πn(n/e)n(1 + Θ(1
n)), one gets that (t!)1/t ≈ t/e for large t,

where e is the base of the natural logarithm. Thus, with s ≈ (t/e)2(t−1)n/t one expects to get
a t-collision.

The total complexity of the attack to find K2 is equal to

• [2k−1/(u/t), 0, (t/e)2(t−1)nt, 0], where u = t +

(
t− 1

2

)

The attack is therefore more efficient that those of the previous sections in the cases where
n = m = k. As an example, using AES [16], n = m = k = 128, with t = 17, the complexity
of the attack is [2124, 0, 0, 2123].

As a final remark, note that the message D in the attack need not be chosen nor known by the
attacker. Therefore one can argue that this attack is stronger than a traditional “chosen-text”
attack.

4 The NIST RMAC draft proposal

In this section we comment on the implementation of RMAC as proposed by NIST [17] on
November 5, 2002.

In Appendix A of [17] it is noted that for RMAC with two independent keys K1 and K2 an
exhaustive search for the keys is expected to require the generation of 22k−1 MACs, where k
is the size of one key. However, for the cases with m = n this can be done much faster under a
chosen message attack with just one known message and one chosen message. Independently of
how the two keys are generated, an exhaustive search for the key K2 requires only an expected
number of 2k decryptions of the block cipher. Given a message D and the MAC using the
salt R, request the MAC of D again. With a high probability this MAC is computed with a
salt R′, such that R′ 6= R. For these two MACs, the values just before the final encryption
will be equal and K2 can be found after about 2k decryption operations. Subsequently, K1

can be found in roughly the same time.

4.1 Partial key-recovery attack for RMAC used with 3DES

One of the block cipher algorithms approved to be used in RMAC is triple-DES with 168-bit
keys. Consider RMAC using triple-DES with n = m = 64 using a 64-bit salt R (which is one
option in [17]). The key for the final encryption is then K3 = K2 + (R | 0104). However, it is
not specified in [17] how the three DES keys are derived from K3.

Assume that the first DES key is taken as the rightmost 56 bits of K2 +(R | 0104), the second
DES key as the middle 56 bits, and the third DES key as the leftmost 56 bits. Assume an
attacker is given two MACs of the same message D but using two different values, R and
R′, of the salt. Assume that the rightmost eight bits of both R and R′ are equal. Then the

12

encryption of the last same block for the two MACs is done using triple-DES where for one
MAC the key used is (a, b, c), and where for the other MAC the key used is (a, b, c⊕d). Since
the attacker knows d, he can decrypt through a single DES operation, find c in the expected
time of 256 operations and derive one of the three DES keys [8].

This attack has a probability of success of 2−8. If the attack fails, it is repeated for other values
of D, R, and/or R′. With 28 iterations one finds the single DES key with high probability.
After the third DES key has been found, it is possible to find the second DES key with similar
complexity. Note that eight bits of the salt affect the second DES key. Request the MAC of a
message D2 using two different values of the salt. Decrypt through the final DES component
with the third DES key. With a probability of 1− 2−8 the two second DES keys in the final
encryption will be different as a result of different salt values. Since the salts are known by
the attacker, one finds the second DES in the expected time of 256 operations. Thus, the
attack which finds two of three DES keys has complexity [264, 28, 28, 0].

Subsequently, the final DES key can be found using 256 MAC verifications as follows. Assume
one is given the MACs, M1 and M2, of two different messages D1 and D2, each consisting of
an arbitrary number of 64-bit blocks. Request the MAC, M3, of the message D1 | E, where
E is a one-block message. Let x1, x2 and x3 be the values just before the final triple DES
encryptions in the computations of M1, M2 and M3. Given the value of the final single-DES
key of K2 one can compute also the MAC of the message D2 | (E ⊕ x1 ⊕ x2). Note that the
value just before the final triple DES encryptions in this case is x3. Also note that the attacker
has full control over the key bits which are modified using the (random) salts. Therefore this
last part of the attack works regardless of how the salts are chosen, as long as the attacker
knows them.

In total the complexity of the attack which finds all of K2 (i.e., all three DES keys) is
[264, 28, 28, 256], which is much less than expected.

5 Conclusion

In this paper several partial key recovery attacks on RMAC are presented. Apart from the
attack on RMAC used with triple DES as proposed by NIST, none of the attacks are likely
to be a major concern in practice; however, it is important to have an accurate idea of the
precise level of security offered by any scheme, and the attacks described help provide more
accurate upper bounds on the security level of RMAC. Moreover, since security proofs tend
to focus on the security of the entire key, the existence of partial key recovery attacks such
as those described here may not be revealed by theoretical results.

Since this type of attack does not reveal the entire key, it cannot be claimed that these attacks
threaten the security of the scheme. However, apart from the fact that determining part of the
key rather more easily than the rest is a rather disconcerting property for any cryptographic
scheme to have, two further possible ramifications are as follows.

• First, note that in cases where both the RMAC keys are derived from a single key,
this attack suggests that it is extremely important to ensure that knowledge of one of
the two keys does not threaten the secrecy of the other key. Fortunately, the scheme
proposed in the NIST draft standard, [17], derives the two keys by using the single key

13

to encrypt different fixed strings. In such a case, knowledge of one of the keys does not
pose a major threat to the secrecy of the other key.

• Second, once the second of the two RMAC keys has been compromised, a huge variety
of forgery attacks becomes possible. Essentially, the scheme becomes equivalent to the
simplest of CBC-MACs, where only a single block cipher key is used and where no
special processing is applied to the final message block.

Acknowledgments

The authors would like to thank Tadayoshi Kohno and an anonymous referee for helpful
discussions.

References

[1] ANSI X9.19 “Financial Institution Retail Message Authentication,” American Bankers
Association, August 13, 1986.

[2] M. Bellare, J. Kilian, and P. Rogaway. The security of cipher block chaining. In Y.G.
Desmedt, editor, Advances in Cryptology - CRYPTO’94, LNCS 839, pages 341–358.
Springer Verlag, 1994.

[3] D. Coppersmith, L.R. Knudsen, and C.J. Mitchell. Key recovery and forgery attacks on
the MacDES MAC algorithm. In M. Bellare editor, Advances in Cryptology - CRYPTO
2000, LNCS 1880, pp. 184-196, Springer Verlag, 2000.

[4] D. Coppersmith, C.J. Mitchell, “Attacks on MacDES MAC algorithm,” Electronics Let-
ters, Vol. 35, No. 19, 1999, pp. 1626–1627.

[5] International Organization for Standardization, Genève, Switzerland. ISO/IEC 9797–1,
Information technology — Security techniques — Message Authentication Codes (MACs)
— Part 1: Mechanisms using a block cipher, 1999.

[6] E. Jaulmes, A. Joux, and F. Valette. On the security of randomized CBC-MAC beyond
the birthday paradox limit: A new construction. In J. Daemen and V. Rijmen, editors,
Fast Software Encryption 2002, LNCS 2365, pages 237–251. Springer-Verlag, 2002.

[7] A. Joux, G. Poupard and J. Stern. New attacks against standardized MACs. In T. Jo-
hansson, editor, Fast Software Encryption 2003, LNCS. Springer-Verlag, to appear.

[8] J. Kelsey, B. Schneier, and D. Wagner. Key-schedule cryptanalysis of IDEA, G-DES,
GOST, SAFER, and triple-DES. In Neal Koblitz, editor, Advances in Cryptology:
CRYPTO’96, LNCS 1109, pages 237–251. Springer Verlag, 1996.

[9] L.R. Knudsen and T. Kohno. An analysis of RMAC. In T. Johansson, editor, Fast
Software Encryption 2003, LNCS. Springer-Verlag, to appear.

[10] L.R. Knudsen, and C.J. Mitchell. Analysis of 3gpp-MAC and two-key 3gpp-MAC. Dis-
crete Applied Mathematics, 2003, Vol. 128, No. 1, pages 181–191.

14

[11] L.R. Knudsen and B. Preneel. MacDES: a new MAC algorithm based on DES. Electronics
Letters, April 1998, Vol. 34, No. 9, pages 871–873.

[12] M. Matsui. New block encryption algorithm MISTY. In E. Biham, editor, Fast Software
Encryption, 4th International Workshop, FSE ’97, Haifa, Israel, January 20-22, 1997,
Proceedings, LNCS 1267, pages 54–68. Springer-Verlag, Berlin, 1997.

[13] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied Cryptography.
CRC Press, Boca Raton, 1997.

[14] C.J. Mitchell, “Key recovery attack on ANSI retail MAC,” Electronics Letters, Vol. 39,
No. 14, 2003, pp. 361–362.

[15] National Institute of Standards and Technology (NIST), Gaithersburg, MD. Federal
Information Processing Standards Publication 46-3 (FIPS PUB 46-3): Data Encryption
Standard (DES), October 1999.

[16] National Institute of Standards and Technology (NIST), Gaithersburg, MD. Federal
Information Processing Standards Publication 197 (FIPS PUB 197): Specification for
the Advanced Encryption Standard (AES), November 2001.

[17] National Institute of Standards and Technology (NIST), Gaithersburg, MD. NIST Special
Publication 800-38B, Draft Recommendation for Block Cipher Modes of Operation: the
RMAC Authentication Mode, November 2002.

[18] E. Petrank and C. Rackoff. CBC MAC for real-time data sources. The Journal of Cryp-
tology, 13(3):315–338, 2000.

[19] B. Preneel, P.C. van Oorschot, “A key recovery attack on the ANSI X9.19 retail MAC,”
Electronics Letters, Vol. 32, No. 17, 1996, pp. 1568–1569.

[20] B. Preneel and P.C. van Oorschot. On the security of iterated message authentication
codes. IEEE Trans. on Information Theory, 45(1):188–199, 1999.

[21] RIPE, “Integrity Primitives for Secure Information Systems. Final Report of RACE
Integrity Primitives Evaluation (RIPE-RACE 1040),” LNCS 1007, A. Bosselaers and
B. Preneel, Eds., Springer-Verlag, 1995.

[22] R. Rivest and A. Shamir. Payword and Micromint: Two simple micropayment schemes.
Cryptobytes, 2(1):7–11, 1996.

15

