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absorbance detection along the axis perpendicular to the ca- 
pillary, as demonstrated here, coupled with RI gradient de- 
tection along the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaxis parallel to the capillary as described by 
Pawliszyn (30). Making both of these measurements simul- 
taneously, yet separately, would require a two-dimensional 
PSD. Two-dimensional PSDs are commercially available, and 
some interest in their use in laser beam deflection sensing has 
been reported (31). Future work is in this direction. 
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Partial Least-Squares Methods for Spectral Analyses. 1. 
Relation to Other Quantitative Calibration Methods and the 
Extraction of Qualitative Information 

David M. Haaland* and Edward V. Thomas 

Sandia National Laboratories, Albuquerque, New Mexico 87185 

Partial leastgquares (PLS) methods for spectral analyses are 
related to other multlvarlate callbratlon methods such as 
classical least-squares (CLS), Inverse least-squares (ILS), 
and prlnclpal component regression (PCR) methods which 
have been used often In quantitative spectral analyses. The 
PLS method which analyzes one chemlcal component at a 
tbne Is presented, and the basis for each step In the algorithm 
Is explained. PLS callbratlon Is shown to be composed of a 
series of simpllfled CLS and ILS steps. This detalled un- 
derstandlng of the PLS algorithm has helped to ldentlfy how 
chemically Interpretable qualltatlve spectral lnformatlon can 
be obtained from the lntennedlate steps of the PLS algorithm. 
These methods for extractlng qualitative Information are 
demonstrated by use of simulated spectral data. The quall- 
tatlve Information directly available from the PLS analysis Is 
superlor to that obtained from PCR but is not as complete as 
that which can be generated during CLS analyses. Methods 
are presented for selecting optbnal numbers of loading vectors 
for both the PLS and PCR models In order to optimize the 
model while simultaneously reduclng the potential for over- 
fittlng the caHbratlon data. Outlier detection and methods to 
evaluate the statlstlcal slgnlflcance of resuits obtalned from 
the dMerent cahatlon methods applied to the same spectral 
data are also discussed. 

Partial least-squares (PLS) modeling is a powerful new 
multivariate statistical tool that has been successfully applied 

to the quantitative analyses of ultraviolet (1,2) near-infrared 
(349, chromatographic (6-8), and electrochemical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(9) data. 
An excellent review of this multivariate statistical method has 
been presented by Martens (lo), which also includes a number 
of published papers. Recently Lorber et al. (11) presented 
a theoretical basis for the PLS algorithm, and Geladi and 
Kowalski published a tutorial on the PLS algorithm (12). PLS 
software has also recently been made available by several 
Fourier transform infrared (FT-IR) instrument manufacturers 
for quantitative spectral analyses. Since software using PLS 
techniques is now available, it is important for infrared 
spectroscopists to understand the PLS method and its relation 
to methods more commonly used in quantitative IR spec- 
troscopy. Therefore, PLS will be described along with the 
classical least-squares (CLS) (13-16), inverse least-squares 
(ILS) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 7--19), and principal component regression (PCR) 
(20-23) multivariate statistical methods which have been 
applied to quantitative IR analyses in the past. A detailed 
description and understanding of the PLS algorithm is 
presented here which indicates that while it is similar to PCR, 
the PLS calibration can be broken down into steps that 
separately involve CLS calibration and prediction followed 
by ILS calibration. Thus PLS has properties which combine 
some of the separate advantages of CLS and ILS methods 
while making some potential improvements over PCR. In 
addition, it will be shown that this detailed understanding of 
the PLS algorithm helps us identify how qualitative infor- 
mation might be extracted from the intermediate steps of the 
PLS modeling. This chemically interpretable spectral in- 
formation available during the PLS calibration and prediction 
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has not been fully utilized in near-infrared or UV analyses 
since these spectroscopies do not contain the wealth of 
chemical information that is available in a mid-infrared 
spectrum. It  is, therefore, the purpose of the first paper in 
this series to present the theory behind the various multi- 
variate statistical methods, improve the conceptual under- 
standing of the PLS algorithm by identifying its relationship 
to other calibration methods, and show how this detailed 
knowledge can improve the extraction of qualitative infor- 
mation from this relatively new method. We will also present 
procedures for selecting the optimal number of PLS or PCR 
factors and identify methods to compare the statistical sig- 
nificance of differences in the results obtained from several 
multivariate calibration techniques applied to the same data. 
The following paper zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(24) applies the methods developed in 
this paper, compares PLS and PCR methods applied to sim- 
ulated spectral data, and evaluates the three full-spectrum 
methods (CLS, PCR, and PLS) using the infrared spectra of 
bulk multicomponent glass samples. 

THEORY 

Relation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPLS to Other Multivariate Methods for 
Quantitative Spectral Analyses. PLS is capable of being 
a full-spectrum method and therefore enjoys the signal av- 
eraging advantages of other full-spectrum methods such as 
PCR and CLS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(14). Because PLS is a full-spectrum method, 
efficient outlier detection methods are available from spectral 
residuals, and limited chemically interpretable spectral in- 
formation can be obtained from PLS in some cases. (Outliers 
are samples that are not representative of the calibration 
samples, and therefore, their estimated concentrations must 
be treated with caution. Spectral residuals are the difference 
between the measured and estimated spectra.) PLS is one 
of several factor analysis methods that are available along with 
PCR and CLS (although CLS is not commonly presented as 
a factor analysis method). PLS also has characteristics and 
advantages of the ILS method which is limited in the number 
of spectral frequencies that can be included in the analysis. 
Therefore, to understand the advantages of applying PLS, it 
is useful to consider the more common multivariate calibration 
methods that have been used for quantitative spectral 
analyses. These methods have all generally presumed that 
there is a linear relationship between absorbance and com- 
ponent concentrations. In addition, each method has a cal- 
ibration step where the relationship between the spectra and 
component concentrations is estimated from a set of reference 
samples. This step is followed by prediction in which the 
results of the calibration are used to predict or estimate the 
component concentrations from the *unknownn sample 
spectrum. Most of the recent quantitative infrared studies 
involving multivariate statistical methods have made use of 
two basic statistical approaches. These are the classical 
least-squares (CLS) (13-16) and inverse least-squares (ILS) 
(17-19) methods which have often been labeled the K and P 
matrix methods, respectively, by infrared spedroscopists. CLS 
has also been labeled direct zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( I O )  or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmtal(11) calibration while 
ILS has been referred to as multiple linear regression (MLR) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(IO), indirect ( I O ) ,  or partial (11) calibration. Both CLS and 
ILS methods use multiple linear regression techniques, but 
they exhibit very different properties and each method has 
its own set of advantages and disadvantages. Several of the 
advantages and disadvantages of each method have recently 
been outlined (25). 

In the following sections, we use notation prevalent in the 
infrared literature. However, the matrix representing the 
spectral data is transposed from its normal configuration in 
ref 13-19 to be consistent with literature describing the PLS 
and PCR algorithms. Boldface upper case letters are used 
for matrices, primes for transposed matrices and vectors, 

boldface lower case characters for vectors, and lower case italic 
characters for scalars. We also use the convention that all 
vectors are expressed as column vectors. Row vectors are 
expressed as transposed column vectors. 

A. Classical Least-Squares Methods. The CLS method 
assumes the Beer’s law model with the absorbance at  each 
frequency being proportional to the component concentrations. 
Model error is presumed to be due to error in spectral ab- 
sorbances. In matrix notation, the Beer’s law model for m 
calibration standards containing 1 chemical components with 
spectra of n digitized absorbances is given by 

A = C K + E A  

where A is the m X n matrix of calibration spectra, C is the 
m x 1 matrix of component concentrations, K is the 1 x n 
matrix of absorptivity-path length products, and EA is the 
m x n matrix of spectral errors or residuals not fit by the 
model. K then represents the matrix of pure-component 
spectra at unit concentration and unit path length. The 
classical least-squares solution to eq 1 during calibration is 

K = (C’C)-’C’A (2) 

where K indicates the least-squares estimate of K with the 
sum of squared spectral errors being minimized. During 
prediction, the least-squares solution for the vector of unknown 
component concentrations, c, is 

5 = (KKt)-l& (3) 

where a is the spectrum of the unknown sample and K is from 
eq 2. 

Equation 1 shows that CLS can be considered a factor 
analysis method since the spectral matrix A is represented 
as the product of two smaller matrices C and K. The pure- 
component spectra (rows of K) are the factor loadings (also 
called loading vectors) and the chemical concentrations (el- 
ements in C) are the factors (or scores). This model changes 
the representation of the calibration spectra into a new co- 
ordinate system with the new coordinates being the 1 pure- 
component spectra rather than the n spectral frequencies. 
Although this coordinate system is not necessarily orthogonal, 
it has the advantage that the 1 spectral intensities for each 
mixture in this new coordinate system of pure-component 
spectra are the elements of C; i.e., the intensities in the new 
coordinate system are the component concentrations. This 
is clear when one considers that the component concentrations 
represent the amount (or intensities) of the pure-component 
spectra which make up any given mixture spectrum. 

Since CLS is a full-spectrum method, it can (1) provide 
significant improvements in precision (14) over methods that 
are restricted to a small number of frequencies, (2) allow 
simultaneous fitting of spectral base lines (14-16), and (3) 
make available for examination and interpretation least- 
squares estimated pure-component spectra and full-spectrum 
residuals (16, 26, 27). A major disadvantage of the CLS 
method is that all interfering chemical components in the 
spectral region of interest need to be known and included in 
the calibration. This restriction can be reduced significantly 
by performing the analysis one spectral band at  a time fol- 
lowed by pooling the results in a statistically efficient manner 
(14-16,28). This allows a high degree of rejection of spectral 
bands which do not follow Beer’s law or which include the 
presence of major interfering components. Nevertheless, we 
have found cases in which spectral overlap occurs throughout 
the spectral range, and a knowledge of all components in the 
sample is essential for accurate quantitative spectral analysis 
by the CLS method (29). 

B. Inverse Least-Squares Method. The inverse least- 
squares method assumes that concentration is a function of 
absorbance. The inverse Beer’s law model for m calibration 
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of being able to perform the analysis one chemical component 
at a time while avoiding the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAILS frequency selection problems. 
As in CLS, the full-spectrum capabilities are retained by 
forming a new coordinate system consisting of full-spectrum 
basis vectors which comprise one of the smaller matrices (see 
eq 8). The other matrix in the decomposition corresponds 
to the intensities in the new full-spectrum Coordinate system. 
By use of the spectral decomposition notation of Lindberg 
et al. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( I ) ,  the calibration spectra can be represented for either 
the PCA or PLS model as follows: 

standards with spectra of n digitized absorbances is given by 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC and A are as before, P is the n X 1 matrix of the 
unknown calibration coefficients relating the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 component 
concentrations to the spectral intensities, and Ec is the m X 
1 vector of random concentration errors or residuals that are 
not fit by the model. Since model error is presumed to be error 
in the component concentrations, this method minimizes the 
squared errors in concentrations during calibration. The 
inverse representation of Beer’s law has the significant ad- 
vantage that the analysis based on this model is invariant with 
respect to the number of chemical components, 1, included 
in the analysis. If it is assumed that the elements in different 
columns of E, are independent, an identical analysis for each 
individual analyte can be obtained by considering the reduced 
model for one component 

(5) 

Here zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc is the m X 1 vector of concentrations of the analyte 
of interest in the m calibration samples, p is then n x 1 vector 
of calibration coefficients, and e, is the m X 1 vector of con- 
centration residuals not fit by the model. 

During calibration, the least-squares solution for p in eq 
5 is 

C = AP + Ec (4) 

c = Ap + e, 

3 = (A’A)-lA’c 

During prediction, the solution for the analyte concentration 
in the unknown sample is simply 

This means a quantitative spectral analysis can be performed 
even if the concentration of only one component is known in 
the calibration mixtures. The components not included in 
the analysis must be present and implicitly modeled during 
calibration. The above capability of the ILS method has 
resulted in it being used for near-infrared analysis (NIRA) 
methods (30). 

One disadvantage of the ILS method is that the analysis 
generally has to be restricted to a small number of frequencies. 
This is because the matrix which must be inverted in eq 6 has 
the dimension equal to the number of frequencies, and this 
number cannot exceed the number of calibration mixtures 
used in the analysis. In addition, collinearity problems (Le., 
the near linear relationships between absorbances at  multiple 
frequencies) can become significant when the number of 
frequencies becomes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtoo large, and the precision of the results 
are actually degraded when too many frequencies are included 
in the analysis. Therefore, the large improvements in precision 
and the full-spectrum advantages of CLS methods are not 
possible with the inverse method. In addition, determining 
how many and which frequencies to include in the analysis 
is not a trivial problem for complex samples. Although sta- 
tistical methods such as stepwise multiple linear regression 
have been used for the selection of frequencies in NIRA (see 
ref 31 for a discussion of frequency selection methods), infrared 
spectroscopists have not yet made use of these frequency 
selection methods. Suboptimal frequency selection can in- 
troduce problems such as poor base-line modeling, noise in- 
flation from the collinearity problem, and overfitting; Le., the 
noise and errors in the calibration data are modeled during 
calibration. 

C. PLS and PCR Models. The PLS and PCR algorithms 
and their general goals are similar, so the common features 
of these methods will be discussed together before the PLSl 
algorithm is described in detail. It should be noted that PCR 
is simply principal component analysis (PCA) followed by a 
regression step (20). Both PLS and PCR are factor analysis 
methods which have many of the full-spectrum advantages 
of the CLS method. However, they retain the ILS advantage 

3 = a’@ (7) 

A = TB + EA 

where B is a h  X n matrix with the rows of B being the new 
PLS or PCA basis set of h full-spectrum vectors, often called 
loading vectors or loading spectra. T is an m x h matrix of 
intensities (or scores) in the new coordinate system of the h 
PLS or PCA loading vectors for the m sample spectra. In PCA 
the rows of B are eigenvectors of A’A, and the columns of T 
are proportional to the eigenvectors of AA’. EA is now the 
m x n matrix of spectral residuals not fit by the optimal PLS 
or PCR model. The analogy between eq 8 of PLS or PCA and 
eq 1 for CLS is quite clear since both equations involve the 
decomposition of A into the product of two smaller matrices. 
However, now rather than the basis vectors being the pure- 
component spectra, they are the loading vectors generated by 
the PLS or PCA algorithms. The intensities in the new co- 
ordinate system are no longer the concentrations as they were 
in CLS, but they can be modeled as linearly related to con- 
centrations as shown later. The new basis set of full-spectrum 
loading vectors is composed of linear combinations of the 
original calibration spectra. The amounts (i.e., intensities) 
of each of the loading vectors which are required to reconstruct 
each calibration spectrum are the scores. 

In general, in a noise-free system only a small number of 
the full-spectrum basis vectors are required to represent the 
calibration spectra (A). When the rank of A which is im- 
portant for concentration prediction is r, then the optimal PLS 
or PCR model in eq 8 will have the dimension h equal to r .  
A new method for the selection of the optimal number of 
loading vectors is described later. In general r 
n, in which case PLS and PCA will have reduced the number 
of intensities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n) of each spectrum in the spectral matrix A 
to a small number of intensities ( r )  in the new coordinate 
system of the loading vectors. This data compression step 
also reduces the noise (32) since noise is distributed throughout 
all loading vectors while the true spectral variation is generally 
concentrated in the early loading vectors. 

The spectral intensities (T) in the new coordinate system 
can be related to concentrations with a separate inverse 
least-squares analysis using a model similar to eq 5. However, 
rather than solving eq 5 by least-squares methods with the 
problem of calculating (A’A)-l, we solve the following set of 
equations by least squares: 

(9) 

where v is the h X 1 vector of coefficients relating the scores 
to the concentrations and T is the matrix of scores (intensities) 
from the PLS or PCA spectral decomposition in eq 8. The 
details of how T and B are calculated by PLS are given later 
in this paper. Both PCA and the PLS algorithm to be de- 
scribed here generate intensities (scores) that are orthogonal, 
and hence, the collinearity problem originally encountered in 
the inverse least-squares solution to eq 5 is eliminated. 
Therefore, all the useful spectral information contained in the 
reduced representation of A can be included, and the analysis 
can be performed one chemical component at a time without 
the hazards of collinearity. The least-squares solution for v 
in eq 9 has the same form as the ILS solution given in eq 6 
with T substituted for A and 8 in place of 6. Because the 

m and r 

c = Tv + e, 
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columns of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT are orthogonal in both PLS and PCA, the 
least-squares solution to v in eq 9 involves the trivial inversion 
of the diagonal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(T’T) matrix. Thus, PLS and PCR both 
involve an inverse least-squares step (PCR is simply PCA 
followed by the separate regression step for the model given 
in eq 9). Since PCA and PLS can both reduce spectral noise 
in the compressed representation of the spectral A matrix, 
the assumption in the ILS model that the dominant errors 
are in concentrations rather than spectra is more closely ap- 
proximated. In PCA the reduction of errors in spectral space 
is optimal in a least-squares sense, but the resulting loading 
vectors are not specifically related to any single analyte. In 
PLS the overall reduction in spectral noise is not necessarily 
optimal, but the PLS basis vectors are generated to relate to 
the chemical component zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof interest. Therefore, PLS and PCR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
can be considered hybrid methods which combine some of the 
advantages of both CLS and ILS methods. 

Although PCA and PLS are similar, the methods to ac- 
complish the goals of spectral decomposition and concentra- 
tion prediction are different. Both methods as implemented 
here involve stepwise algorithms which calculate the B and 
T matrices one vector at  a time until the desired model has 
been obtained. In general, different T and B matrices are 
generated by the PLS and PCA methods. In PCA, the col- 
umns of T are orthogonal and the rows of B are orthonormal 
while in the version of PLS presented here only the columns 
of T are orthogonal. The PCA algorithm used here is the 
NIPALS (nonlinear iterative partial least-squares) algorithm 
developed by Wold (33). NIPALS is an efficient iterative 
algorithm which extracts the full-spectrum loading vectors 
(eigenvectors of A’A) from the spectra in the order of their 
contribution to the variance in the calibration spectra. After 
the first loading vector has been determined, it is removed 
from each calibration spectrum, and the process is repeated 
until the desired number of loading vectors has been calcu- 
lated. The potential problem with PCR is that the loading 
vectors which best represent the spectral data may not be 
optimal for concentration prediction. Therefore, it would be 
desirable to derive loading vectors so that more predictive 
information is placed in the first factors. The PLS algorithm 
presented here (1) is a modification of the NIPALS algorithm, 
and it achieves the above goal by using concentration infor- 
mation to obtain the decomposition of the spectral matrix A 
in eq 8. Concentration-dependent loading vectors are gen- 
erated (B) and the computed scores (T) are then related to 
the concentrations or concentration residuals after each 
loading vector is calculated. Therefore, in principle, greater 
predictive ability is forced into the early PLS loading vectors. 

Basic PLSl Algorithm. We only discuss in detail the PLS 
method in which the calibration and prediction analyses are 
performed one component at  a time. That is, only the con- 
centrations of the chemical component of interest are used 
in the calibration; other concentrations, even if known, are 
not included in the analysis. This is the PLSl algorithm also 
called PLS regression (10). The PLSl calibration and pre- 
diction algorithms are summarized in Tables I and 11, re- 
spectively. Two or more components can be calibrated or 
analyzed simultaneously by using a global PLS algorithm 
called PLS2. In analyzing real samples, we have found em- 
pirically that PLS1, which is a subset of PLSB, more often 
exhibits better predictive properties than PLS2. When PLS2 
is used, the component concentrations must be normalized 
such that their error variances are equal (Le,, corrected for 
the different precisions with which the component concen- 
trations are known) and often these values are not known. In 
addition, the optimal number of PLS loading vectors is often 
different for each component, and usually the PLS2 algorithm 
has been restricted to finding a single optimal number of 

Table I. PLSl Algorithm for Calibration 

step 1. Pretreatment of data 
center A and c 
scale A (optional, see text) 
set index h to 1 

model A = C W ~ ’  + EA (10) 
L.S. solution wh = A’C/C’C (11) 

step 2. Forming the weight loading vector, .ph 

normalize %%h 

step 3. Formation of the score (latent variable) vector, i h  

model A = thwh’ + EA (12) 
L. S. solution i h  = A*h/whfWh = A6’h (13) 

step 4. Relating score vector, f h ,  to th,e concentrations 
model c = Vhth + e, (14) 
L. S. solution e h  = f h f C / i h ’ f h  (15) 

model 4 = f h  bh‘ + EA (16) 
L. S. solution bh = A’ih/ih’ih (17) 

spectral residuals EA = A - $bh‘ (18) 
concentration residuals e, = c - Dhth (19) 

step 7. Increment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh, substitute EA for A and e, for c in step 2 

step 5. Formation of bh, the PLs loading vector for A 

step 6. Calculation of the residuals in A an! c 

and continue for desired numbers of loading vectors 

Table 11. PLSl Algorithms for Prediction 

step 1. 

step 2. 
step 3. 
step 4. 
step 5. 

note: 

step 1. 

step 2. 

step 3. 
note: 

Method 1 
center a using calibration data 
scale a if calibration spectra were scaled 
set h = 1. 

th  = wh‘a (20) 
ch = ch-1 + c h t h  (21) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
eh = eh-1 - bhth (22) 
increment h, substitute eh for a and repeat with step 2 

wh, oh, and bh are from the PLSl calibration, co is the 
until h = r 

average concentration of the analyte in the calibration 
samples and eo = a. 

Method 2 
after PLSl calibration, calculate the final regression 

coefficien-bA 

bf = W(BW’)-lO (23) 

spectra were scaled) 
center a using calibration data (scale a if calibration 

w and B have r rows composed of vectors *h and bh, 
e=  a’bf-+ co (24) 

and O is formed from the individual fib terms for the 
optimal PLSl model (h  = r ) ;  co is the same as given in 
method 1. 

loading vectors for all chemical components. Finally, much 
of the chemical information contained in each chemical com- 
ponent or property is more difficult to interpret when applying 
PLS2 since information from the various chemical components 
gets intimately mixed. PLS2 is, therefore, probably better 
suited for classification or pattern recognition applications 
rather than for prediction of individual species. The PLSl 
algorithm discussed below is a corrected form of the algorithm 
presented by Lindberg et al. ( I ) .  Other algorithms have been 
presented which yield the same prediction results but are 
different in the individual steps (10, 12, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA34). Kowalski and 
co-workers have presented detailed explanations of PLS2 
which include the geometric (12,35) or theoretical aspects (11) 
of the method. However, these discussions of PLS2 tend to 
obscure the simplicity of the PLSl algorithm which can be 
viewed as a series of simplified CLS and ILS steps. 

PLSl Calibration (Table I). Step 1. Geladi and Kowalski 
(12) have discussed the pretreatment of the data in some 
detail, and this discussion will not be repeated here. We will 
point out that mean centering the data (i.e., the average 
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resents a first-order attempt to determine the amount of the 
pure component (i.e. its concentration) in each calibration 
spectrum. With PLS, each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbh vector is related to both A and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c rather than solely to A as in PCA. 

At this point, it is interesting to note that if there had been 
only one spectrally active component in the spectral region 
being analyzed, then steps 2 and 3 of the PLSl algorithm are 
identical with the basic CLS calibration and prediction al- 
gorithms. Thus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG1 and f l  are no longer just first-order ap- 
proximations of the pure-component spectra and concentra- 
tions, respectively; they are the normalized, centered pure- 
component spectra and the centered concentration. Only in 
the presence of two or more independently varying spectral 
components will the two methods be different and make the 
next steps necessary. 

Step 4 .  The score vector (latent spectral variable), i h ,  

representing the intensities in the new PLS coordinate system 
can be related to concentrations using a linear least-squares 
regression just as spectral intensities are related to concen- 
trations in the ILS analysis or as the scores in PCR are related 
to concentrations. However, in PLS a separate relation be- 
tween scores, &,, and concentrations (or concentration resid- 
uals) is found after each weight vector is estimated. The 
relation between f h  and c is modeled by eq 14. Equation 15 
gives the estimate for uh which is the scalar regression coef- 
ficient relating f h  to the concentration of the component of 
interest. Equation 15 is similar to the ILS solution in eq 6 
in that the sum of squared concentration errors is minimized. 
However, in this step of PLS1, the ILS-like solution is con- 
structed one element a t  a time. 

Step 5. Orthogonal i), vectors are desirable in order to 
remove the collinearity problem which was present in the 
original inverse least-squares regression (eq 6). Orthogonal 
i h  vectors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be obtained by forming a new model for A based 
on the latent variable i h .  The new model for A is given in 
Table I, eq 16, where bh is the n X 1 PLS loading vector. This 
step in combination with the next step of the algorithm assures 
that the i h  vectors will be mutually orthogonal. The least- 
squares regression is simultaneously performed at  all fre- 
quencies and is given in Table I, eq 17. Unlike-the first PCA 
loading vector, the first PLS loading vector, bl determined 
from eq 17 does not account for the maximum variance in the 
calibration spectra, A. It  represents an attempt to account 
for as much variation in A while simultaneously co_rrelating 
with f h  which approximates c. Also unlike PCA, the bh vectors 
which comprise the matrix B in eq 8 are not mutually or- 
thogonal. Since tl is a first-order approximation to the cen- 
tered concentrations, frequencies associated with the largest 
positive elements in bl tend to indicate those frequencies 
which exhibit the greatest dependence on concentration for 
that particular loading vector. However, the t+l vector which 
is directly related to c will exhibit this tendency better than 
bl, and therefore %l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill be more useful than bl for extracting 
qualitative information from the PLSl analysis. 

Step 6. The product of the scores ( ih)  and loading vector 
(bh)  is the PLS approximation to the calibration spectra. 
Residuals, EA, in the calibration spectra A are computed by 
subtracting the PLS approximation to the calibration spectra 
from the measured calibration spectra as given in eq 18. 
Similarly, we remove the part of the concentrations that have 
been modeled by PLS to obtain the concentration residuals 
e, as given in eq 19. The product, fihih, in eq 19 represents 
the PLS estimated concentration based on the spectrum. 

PLSl Prediction (Table 11). PLSl prediction can be 
obtained from an unknown sample spectrum, a, after centering 
by applying one of the two methods outlined in Table 11. The 
first method is more involved but allows spectral residuals 
to be calculated. This first method involves the calculation 

calibration spectrum is subtracted from each spectrum, and 
the average calibration concentration is subtracted from each 
concentration) eliminates the need to fit a nonzero intercept, 
and therefore, centering can often decrease the complexity 
of the model by reducing the number of PLS factors required 
to model the data by one (see ref 24). 

After centering, the spectral data may also be scaled at each 
frequency. Scaling is performed to give greater weight to those 
frequencies with greater information content. Since the proper 
weighting is not often h o w n  a priori, the spectral data at  each 
frequency either are not scaled or are autoscaled to unit 
variance (see ref 12). Centering and scaling each make the 
computations less prone to roundoff and overflow problems. 
However, it must be stressed that the results of the PLS 
analysis depend on the nature of the scaling of the spectral 
data, and different results are to be expected depending on 
how the spectral data are pretreated (this is true of PCR also). 
Therefore, it may not be appropriate to scale spectral data 
if, as is often the case, the errors are independent of the 
magnitude of spectral intensity changes. Autoscaling can also 
degrade the results if much of the data contain spectral regions 
with little or no spectral variation. In this case, data with 
minimal spectral variation will contain primarily noise but 
will be given the same importance in the analysis as data which 
experiences composition-related variations. On the other 
hand, autoscaling may also be useful for deemphasizing the 
effects of chemical components with large spectral features 
that may not be of interest in the analysis. In the following 
steps, it will be assumed that the data are always mean cen- 
tered but scaled only if appropriate. 

Step  2. This step in the PLSl algorithm is actually a 
classical least-squares calibration in which the analysis is 
performed assuming that the concentrations of only one 
component are known in the calibration samples. The model 
used in this classical least-squares analysis is given by eq 10 
in Table I. During the first pass through the algorithm (Le., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h = l ) ,  the least-squares estimate in eq 11 for wh, fi1, is a n 
X 1 vector which represents the least-squares estimate (i.e., 
a f iborder  approximation) of the pure-component spectrum 
for the component of interest. The first normalized weight 
vector, dirl, is therfore a vector that is proportional to a 
weighted average of the centered calibration spectra, the 
weights in the average being proportional to the centered 
concentrations of the component being analyzed. Subsequent 
w h  vectors are constructed to be mutually orthogonal. This 
step is a departure from the NIPALS algorithm for PCA since 
concentration information is directly introduced into the 
calculation of the loading vectors. 

Step 3. This step of the PLSl algorithm is similar to a 
classical least-squares prediction step in which the assumption 
is continued that only one component is present in the cali- 
bration samples. Therefore, we use a model similar to that 
in eq 10, and our first-order, least-squares approximation to 
the pure-component spectrum for the component of interest, 
i.e., %1, is used in a one-component CLS prediction step to 
estimate the amount (or concentration) of the dph spectral 
component in each of the calibration spectra. However, we 
substitute t h  (sometimes called the latent variable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(IO)) for 
c in the model in eq 10 since the least-squares solution will 
be only a f iborder  approximation to c. Thus, the model used 
in this step is eq 12. The least-squares estimate of th,  f h ,  is 
obtained by regressing A on e),’ (Table I, eq 13). The indi- 
vidual elements of i h ,  therefore, indicate how much of dPh is 
contained in each calibration spectrum. The vector il rep- 
resents the intensities (or amounts) of the first weight loading 
vector in the calibration samples for the new PLS coordinate 
system. Since is a first-order attempt to represent the 
pure-component spectra from the calibration spectra, i1 rep- 
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of the spectral intensities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( t h  in eq 20) of the sample spectrum 
in the new full-spectrum PLS coordinate system obtained 
during PLS calibration. These intensities are then related 
to analyte concentration by using a prediction equation 
analogous to ILS prediction (i.e., eq zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21 summed for all values 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh from 1 to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr is similar to the ILS prediction given in eq 
7 ) .  For the optimal number factors in the model (i.e., h = r ) ,  
the prediction of concentration based on the unknown sample 
spectrum and eq 21 is then c,. From e, in eq 22, a measure 
of the ability of the calibration set to fit the sample spectrum 
can be obtained. This is presented in more detail in Appendix 
B which discusses outlier detection. 

The second method for obtaining concentration predictions 
from PLSl involves the calculation and use of the vector of 
final calibration coefficients, bf, The vector, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbf, has dimensions 
of an individual spectrum, and it can be calculated in several 
ways. One direct method is given in ref 10 and is presented 
as method 2 in Table 11. The bf vector need only be calculated 
once from the calibration results. Although bf provides an 
efficient method to estimate concentrations from any unknown 
sample spectrum (eq 24), it does not allow a determination 
of the residual spectrum. Therefore, no diagnostic information 
about the quality of the fit is available when predictions are 
obtained by using the bf vector. 

Selection of the Optimal Number of Factors for the 
PLS Model. We would like to select the number of loading 
vectors, r (or alternatively, the number of scores or factors), 
in the PLS algorithm which will allow us to model as much 
of the complexity of the system without overfitting the con- 
centration data. To accomplish this goal, we use the cross- 
validation method leaving out one sample at  a time (36). 
Given a set of m calibration spectra, we perform the PLSl 
calibration on m - 1 calibration spectra, and using this Cali- 
bration, we predict the concentration of the sample left out 
during calibration. This process is repeated a total of m times 
until each sample has been left out once. The concentration 
predicted for each sample is then compared with the known 
concentration of this reference sample. The sum of the 
squared concentration prediction errors (i.e., ec/ee) for all 
calibration samples (prediction error sum of squares or 
PRESS) is a measure of how well a particular PLS model fits 
the concentration data. PRESS is calculated in the same 
manner each time a new factor is added to the PLSl model. 
One reasonable choice for the optimal order (number of 
factors) of a PLSl model would be that order which yielded 
the minimum PRESS. Although PRESS is a reasonable 
measure to use to evaluate the “goodness” of a model, it is 
based on a fiiite number of samples, and therefore, it is subject 
to error. Thus, using the number of fadors (h*) which yields 
a minimum in PRESS can lead to some overfitting. A better 
criterion to select the optimal model involves the comparison 
of PRESS from models with fewer than h* factors. The model 
selected is the one with the fewest number of factors such that 
PRESS for that model is not significantly greater than PRESS 
for the model with h* factors (the F statistic is used to make 
the significance determination). Use of this criterion gives 
rise to more parsimonious PLS models involving fewer factors 
and mitigates the overfitting problem. The details of the 
selection procedure are given in Appendix A. Another possible 
criterion to select the optimal model which may not be as 
sensitive to the presence of outliers involves estimation of the 
error in PRESS (37). The model selected would then be that 
model which has the fewest number of loading vectors which 
yields a PRESS within one standard error of the PRESS 
obtained from the model yielding the minimum PRESS. We 
have used both methods and find empirically that only oc- 
casionally have the two methods yielded different numbers 
of factors. However, we prefer the former method since in 

this case statistical probabilities can be assigned during the 
model selection procedure or when comparing competing 
calibration methods (see Appendix A). Once the optimal 
number of PLS factors is determined, it is necessary to per- 
form the final calibration, using all m calibration samples with 
the optimal number of PLS factors. 

Obtaining Qualitative Information from PLS Cali- 
bration and Prediction. Since these PLSl methods are 
capable of being full-spectrum methods, chemically inter- 
pretable qualitative information sometimes can be obtained. 
The discussion of the PLSl algorithm in this paper suggests 
that the first weight loading vector, should contain useful 
qualitative spectral information since it is the first-order 
approximation to the purecomponent spectrum of the analyte. 
Thus, wl, may be useful for making band assignments and 
determining which regions of the spectrum are most relevant 
to a particular analyte. The vector of final calibration re- 
gression coefficients, bf, from the calibration may also contain 
interpretable information. The bf vector indicates which 
spectral regions are important for prediction and is related 
to the pure-component spectrum taking into account all the 
effects of interfering components, molecular interactions, and 
base-line variations. Finally, useful chemical information and 
outlier detection are available from the spectral residuals. 

Because the CLS method yields direct Beer’s law estimates 
of the pure-component spectra, it will yield a higher quality 
of chemical information than is possible from PLS. In the 
past, the CLS method has been used to determine the presence 
and source of deviations in Beer’s law. The type of qualitative 
information that can be obtained with CLS methods includes 
(1) the presence of molecular interactions and which parts of 
the molecules present in the sample interact, (2) the presence 
of spectrometer nonlinearities (16), (3) the presence and 
identity of unexpected components in the unknown samples 
(24,26), (4) the presence of outliers (38), (5) which components 
in reacting mixtures react and what are the reaction products 
(23,  and (6) information leading to rapid chemical or struc- 
tural assignments of the spectral bands (38). The list of direct 
qualitative information obtained from the PLSl method is 
not as extensive, but some information is, nevertheless, pos- 
sible. 

Direct information about the presence and source of non- 
linearities is not readily available from PLS (or PCR) because 
the method is capable of modeling some types of nonlinear- 
ities. True nonlinearities cannot be fit with linear models used 
in PLS and PCR. However, interactions which cause new 
types of molecular bonding can often be described with an 
additive linear model, yet are considered nonlinear in Beer’s 
law because we have no explicit information about the con- 
centrations of the new species generated by the interaction. 
PLS or PCR can empirically model the number of new com- 
ponents necessary for prediction, and for this reason PLS and 
PCR methods are sometimes called soft modeling methods. 
Thus a system with interactions may be more accurately fit 
by the PLS or PCR model, and molecular interaction infor- 
mation in the residual spectra is lost. Nevertheless, spectral 
residuals still indicate which regions of the spectra do not 
follow the overall PLS model. Therefore, outlier detection 
and the identification of unexpected components are still 
possible with PLS (24,38). Spectral residuals can be deter- 
mined directly from the calibration or prediction analyses (i.e., 
eq 18 and 22, respectively, when h = r ) .  It is shown in the 
companion paper (24) that these full-spectrum residuals allow 
outlier detection and help indicate the presence and identity 
of unexpected components in the samples. 

EXPERIMENTAL SECTION 

Simulated spectral data were prepared to demonstrate the 
qualitative information available from the PLS algorithm. These 
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Figure 1. Pure-component spectra of simulated spectral data without 
noise: (A) component 1, (B) component 2, (C) component zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3, and (D) 
equal molar mixture of the three components. 
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Flgue 2. Mbmve W i n  for ttre threecomponent constrained mlxtwes 
used in the simulated data sets. 

spectra simulated a three-component mixture system with the 
constraint that the concentrations of the components summed 
to 100 mol % . The pure-component spectra were each composed 
of two Gaussian bands of different intensities and bandwidths. 
The purecomponent spectra and the spectrum of the equal molar 
mixture generated from them are shown in Figure 1. Spectral 
data sets of 16 samples were taken either from a mixture design 
(39) to statistically maximize the information content in the 
spectra or at random (uniform over the simplex). Figure 2 il- 
lustrates the mixture design in the calibration sample concen- 
trations. Each component concentration was constrained to be 
120 and 560 mol %. 

DEMONSTRATION OF QUALITATIVE 
INFORMATION DERIVED FROM PLS 

in the PLSl analysis is a 
first-order approximation to the pure-component spectrum 
of that component, so there is often interpretable information 
available in this vector which can be useful in making as- 
signments of spectral bands. However, the quality of +l is 
dependent to some degree on relative intensities of spectral 
bands, and the information in +l will be less useful if the 
analyte of interest only has relatively small spectral features 
or relatively small spectral variation in the calibration set. The 

The first weight vector, 
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Figure 3. Analysis of simulated data without noise, component 1: (A) 
pure-component spectrum, (B) first PLS 1 weight loading vector, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw,, 
and (C) PLSl vector of regression coefficients, b,. 
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Flgure 4. Analysls of simulated data wlthout noise, component 2: (A) 
pure-component spectrum, (B) first PLSl weight loading vector, w,, 
and (C) PLSl vector of regresslon coefficients, b,. 

weight vector also depends on the calibration design (even in 
a noiseless system), and orthogonal factorial designs (39) will 
generate the most useful qualitative information by maxi- 
mizing the pure-component information content in 
Therefore, statistically designed calibration seta should always 
be used when qualitative information is important during PLS 
analysis. 

The vector of calibration regression Coefficients, bf, can also 
contain useful information that is less dependent on the 
calibration design, but interferences of three or more com- 
ponents in a given spectral band can cause problems for in- 
terpretation due to the required compensation in other 
spectral regions, as will be discussed. Figures 3-5 show the 
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COMPONENT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 
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Figure 5. Analysis of simulated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdata without noise, component 3: (A) 
pure-component spectrum, (B) first PLSl weight loading vector, *,, 
and (C) PLSl vector of regression coefficients, b,. 

pure-component spectra, the first weight loading vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(wl), 
and the regression coefficients (bf) for each of the three 
components in simulated data sets without noise. Of course, 
in this case of noiseless data, the pure-component spectrum 
is the same as that estimated by CLS methods from the 
calibration set of mixtures. It is clear that w1 yields infor- 
mation that would be useful in making band assignments. In 
this case, all positive peaks are due to the component of 
interest while negative peaks correspond to interfering com- 
ponents. The bf vector also has interpretive information, but 
as can be seen in Figure 4, the interpretation is not as 
straightforward in component 2 where bf has a positive peak 
for the isolated band of component 1. This positive band is 
due to the presence of two interferences in the middle band 
which must be compensated for in the isolated band of com- 
ponent 1 and illustrates the potential problem of using bf for 
obtaining qualitative information. 

PCR has no vector comparable to *1, but it does yield a 
vector of regression coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(IO) which is similar to that 
in the PLS analysis (it is identical with the PLS vector of 
regression coefficients for a noiseless system that follows Beer’s 
law), and individual PCA loading vectors could be examined 
ao well. Although some limited qualitative information is 
present in the PCR loading vectors (40), they are the same 
for all chemical components. Unless only one of the major 
PCR loading vectors is strongly related to the component of 
interest, PCR in general will be less useful for obtaining 
qualitative information than either CLS or PLS. 

CONCLUSIONS 

The full-spectrum multivariate calibration methods (CLS, 
PCR, and PLS) are all shown to reduce the calibration spectral 
intensity data at  many frequencies to a relatively small 
number of intensities in a transformed full-spectrum coor- 
dinate system. The PLSl calibration algorithm has been 
shown to be composed of simplified CLS and ILS calibration 
and prediction steps. Therefore, PLS exhibits many of the 
advantages of ILS and CLS methods for spectral analyses 
without suffering the disadvantages of these more commonly 
used statistical methods. The detailed understanding of the 
PLS method helps to identify the intermediate steps in the 

algorithm which contain chemically interpretable spectral 
information. The qualitative information available from CLS 
is greater than that obtained from PLS. Yet, PLS can yield 
some chemically interpretable information that is useful for 
making band assignments. In addition, fd-spectrum residuals 
obtained during PLS analyses, like those obtained from CLS, 
can be useful for determining the presence and possibly the 
identity of unexpected components zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(24). Statistically designed 
calibration sets maximize the qualitative information obtained 
during PLS analysis relative to calibration samples that are 
obtained from samples with random concentrations. These 
points are illustrated with simulated and real data in the 
companion paper (24). 

New methods have been presented for the selection of the 
optimal number of factors for PLS and PCR. Rather than 
selection of the model which yields a minimum in prediction 
error variance or PRESS, the model selected is the one with 
the fewest number of factors such that PRESS for that model 
is not significantly greater than the minimum PRESS. This 
reduces the possibility of overfitting the data while providing 
sufficient numbers of PLS or PCR factors to adequately model 
the data. The same general method to obtain the optimal 
model can also be used to compare the prediction abilities of 
different calibration methods. 

Finally, it should be noted that ILS, PCR, and PLS all have 
the potential to estimate not only component concentrations 
but also chemical and physical properties from their infrared 
spectra. This can be accomplished with ILS only if a proper 
selection of a small number of spectral frequencies is made. 
However, PLS and PCR can both be used as full-spectrum 
calibration methods to estimate properties from the spectra 
of materials. This potential to estimate material properties 
can be realized if (1) the properties are dependent on the 
molecular structure of the material, (2) changes in molecular 
structure associated with changes in the property are reflected 
in the infrared spectra, and (3) the properties are linearly 
related to spectral intensities. Thus, in the discussions 
presented in this paper, it should be assumed that property 
could be substituted for concentration whenever it appeared 
in the paper in conjunction with ILS, PCR, and PLS methods. 

SELECTING THE OPTIMAL NUMBER OF 
FACTORS AND COMPARING THE RESULTS 

FROM COMPETING METHODS 

As a guide to select the optimal model, we have computed 
PRESS for cross-validated models with various numbers of 
factors (or loading vectors). The model that yields the min- 
imum PRESS is used as a benchmark, and the number of 
factors associated with this model will be denoted by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh*. All 
models with fewer factors (h < h*) are compared against this 
benchmark. The purpose of this comparison is to find the 
smallest model (fewest number of factors) such that PRESS 
for this model is not significantly greater than PRESS for the 
model with h* factors. 

The selection of the optimal model proceeds as follows: 
Step 1. Compute F(h)  = PRESS (model with h fac- 

tors)/PRESS (model with h* factors) for h = 1, 2, ..., h*. 
Step 2. Choose as the optimal number of factors the 

smallest h such that F(h)  < Fa;m,m where Fo;m,m is the (1 - a )  
percentile of Snedecor’s F distribution with m and rn degrees 
of freedom (n is the number of calibration samples). 

Assuming that the prediction errors have zero mean and 
are mutually independent (both within and between models) 
and normally distributed, Prob (F(h)  > F,;,,,Ioh2 = ~ h , ~ )  = 
2a. Here, gh2 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq,.2 represent the prediction error variance 
of the model with h and h* factors, respectively, and a is a 
probability value to be selected. Notice that the probability 
is 2cu rather than a. This is because we have selected 

APPENDIX A. USE OF THE F STATISTIC FOR 
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PRESS(h*) to be the denominator of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF statistic rather 
than randomly selecting between PRESS(h) and PRESS(h*). 
Therefore, the computed F statistic is always greater than or 
equal to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Note also that, in practice, Prob (F > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFUirn,J < 
2a because of the positive correlation of prediction errors 
between models with h and h* factors. The potential effect 
of this positive correlation is underfitting (selecting a model 
with too few factors). 

In general, the size of the selected model increases with a. 
If a is too small, then there will likely be underfitting prob- 
lems, whereas if a is too large, then overfitting wil l  result. We 
have found that the choice of a = 0.25, although somewhat 
arbitrary, is a good compromise in practice. 

A F statistic, based on PRESS, can also be used to aid in 
the comparison of the prediction abilities of two different 
calibration methods. Let F = PRESS(method l)/PRESS- 
(method 2). Assuming that the prediction errors have zero 
mean and are mutually independent (both within and between 
methods) and normally distributed, Prob (F > F,,,lu? = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu?) 
= a. Here uI2 and u? represent the prediction error variances 
of each of the two methods. One would reject the hypothesis 
that u12 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuZ2 in favor of uI2 > u22 if F > Fu;m.m. Because of 
the need for a definite probability interpretation, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa is not 
chosen arbitrarily. Common choices for a, which is the 
probability of falsely concluding that u12 > uZ2, when in fact 
uI2 = u22, are 0.1 and 0.05. 

In the likely event that the prediction errors are positively 
correlated between methods, then Prob ( F  > Fu;m,m] < a. In 
this case, the a-level hypothesis test based on F and Fa;rn,rn 
is conservative. This means that, although we lose some ability 
to discriminate between methods with different prediction 
error variances, the chance of falsely concluding the prediction 
error variances are different, when they are not, is less than 

While we believe that the procedures outlined above for 
model selection and comparison of methods will work rea- 
sonably well in practice, we admit that they could be improved 
by taking into consideration the correlation of prediction 
errors. Further work to establish procedures that provide a 
more suitable solution to this problem is proceeding. This 
work will be reported on later. 

APPENDIX B. OUTLIER DETECTION 

During calibration, outliers can be detected both from 
concentration F ratios or spectral F ratios while outlier de- 
tection in the unknown samples must rely solely on the 
spectral F ratios. The concentration F ratio (not leverage 
corrected, see below), Fl,m-l(cj), for each sample during 
cross-validated calibration is calculated from 

a. 

where the subscripts on F(c,) indicate the degrees of freedom 
and e,# is the difference between reference and estimated 
concentrations for the ith sample left out of the calibration 
during cross validation. The spectral F ratio for each sample 
during cross-validated calibration is calculated from 

FX,,iaj) = (m - 1)(5ea,k2)/(Z, kea,k2) (B-2) 

where aj represents the spectrum of the sample left out during 
cross validation, the subscripts on F(aj) indicate the degrees 
of freedom and n is the number of frequencies included in 
the analysis. Because of the likelihood of nonconstant variance 
and dependence among the various error elements in eq B-2, 
it is not possible to give a simple and general formula for the 
effective degrees of freedom, x and y.  Lindberg et al. ( I )  
believe that x = (n  - r)/2 and y = (n - r)(m - r - 1)/2 are good 

k = l  r # j  k = l  

estimates of x and y .  However, for practical purposes, when 
there are hundreds of frequencies and no outliers, the F ratio 
will always be close to 1. For example, if the effective degrees 
of freedom are each 120, then the probability that F < 1.5 
(given there is no outlier) is about 0.01. However, for simu- 
lated and real IR spectral data where the error is dependent 
on the absorbance levels, spectral F ratios less than 3 do not 
appear to indicate a highly significant outlier. 

The appearance of F ratios close to 3 is in part due to the 
fact that the residuals are not leverage corrected. Weisberg zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(41) illustrates how residuals can be leverage corrected in the 
context of linear regression. However, it is not clear how to 
make leverage corrections here since PLS, as we have shown, 
is a hybrid method that uses both classical and inverse 
least-squares steps. 

For unknown samples, the spectral F ratios are calculated 
by using the final calibration of all m calibration samples. 
Therefore, the spectral F ratios for an unknown sample are 
given by 

n m n  

k = l  i = l k = l  
Fx,,(a,) = m( C eaSk2)/(C C eaik2) (B-3) 

where a, represents the spectrum of the unknown sample. The 
F ratios can be used as guide in the calibration and prediction 
steps to flag possible outlier samples (see ref 42). This is 
especially important when these methods are used on a large 
number of samples, such as quality control applications, where 
the individual spectral residuals may not be examined for each 
sample. 
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Partial Least-Squares Methods for Spectral Analyses. 2. 
Application to Simulated and Glass Spectral Data 

David M. Haaland* and Edward V. Thomas 

Sandia National Laboratories, Albuquerque, New Mexico 87185 

Parllal least-squares (PLS) methods for quantltatlve spectral 
analyses are compared with c l d c a l  least-squares (CLS) 
and prlnclpal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcomponent regresdon (PCR) methods by udng 
slmulated data and Infrared spectra from bulk seven-compo- 
nent, slllcate-based glasses. Analyses of the slmulated data 
sets show the effect of data pretreatment, base-llne varla- 
tkns, calkatkn dedgn, aml c o n s t r m  mlxtwes on PLS and 
PCR precktlon (MYMI and model complexity. Analyses of the 
shnulated data sets also #ktrtrate some quautatlve dllferences 
between PLS and PCR. For example, the PLS model ap- 
proaches the opthal predlctlon model more rapldly than the 
PCR model and Is computatlonally more effldent. PLS and 
PCR predicted concentratlon errors from the sbnulated data 
sets and a set of the Fourler transform Infrared spectra of 
slllcate-based glasses (S-glass) show that predlctlon errors 
are not statlatically Merent between these two methods for 
these lndhrldual data sets wlth llmlted numbers of samples. 
However, PLS and PCR are both superlor to CLS methods In 
the case of the analysts of Sglass where only one analyte Is 
known In the callbratlon samples and the components of un- 
known concentratlon overlap all the spectral features of the 
analyte components. CLS analysis plecklon slgnlflcantly hn- 
proves when the three known analyte concentratlons (B20,, 
P20,, and OH) are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAubed In the callkatkm. In  thls latter case, 
PLS and PCR concentratlon predlctlons are unchanged, and 
although they each SUI1 yleld a lower standard error of pre- 
dlctlon than the CLS method, there Is no longer strong sta- 
tkitlcal evidence that these Mermces between PLS or PCR 
and CLS are oufblde expertmentat error for the B,O, compo- 
nent. The ablllty of CLS and PLS method8 to provide chem- 
ically useful estimates of the pure-component spectra Is also 
demonstrated. 

Multivariate statistical methods coupled with computerized 
spectrometers are making improvements possible in the 
precision and accuracy of the quantitative spectral analyses 
of chemical samples. In addition, the range and complexity 
of problems that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be solved with quantitative spectroscopy 
have been increased by the use of these methods. In a com- 
panion paper ( I ) ,  the partial least-squares (PLS) method for 
quantitative and qualitative spectral analyses was reviewed, 

and its relation to classical least-squares (CLS), inverse 
leastisquares (ILS), and principal component regression (PCR) 
methods was discussed. (CLS and ILS are sometimes referred 
to as K and P matrix methods, respectively, by infrared 
spectroscopists.) PLS has been shown to be highly effective 
in the quantitative analysis of chemical samples when using 
near-infrared (2) and UV spectra data (3). Analyses of sim- 
ulated spectral data are used in this paper to compare PLS 
and PCR methods and to illustrate a few of the factors such 
as base-line variations and data pretreatment which affect 
model complexity and errors in concentrations estimated from 
the spectral data. In addition, the quantitative analysis of 
infrared spectra from a small set of silicate-based glasses is 
used to illustrate and compare PLS, PCR, and CLS methods 
for this seven-component glass for which the concentrations 
of only a few of the chemical components are known. The 
qualitative information available in the PLS and CLS analyses 
of the glass is compared. The ILS method was not applied 
to these data since ILS is not a full-spectrum method, and 
its performance will be dependent on the frequency selection 
method employed. 

On comparison of available quantitative techniques, it must 
be determined if the differences in concentration estimation 
errors for any given data set are statistically significant. 
Methods to permit these determinations were presented in 
Appendix A of the companion paper ( l ) ,  and their use is 
illustrated in this paper. However, care must always be taken 
that conclusions based on the observed analysis differences 
from a given data set not be overly generalized since a variety 
of parameters such as spectral and concentration noise, 
numbers of frequencies and samples used in the calibration 
set, relative intensities, degree of spectral overlap, the presence 
of base-line variations, backgrounds, and model error can all 
affect the relative performances of these multivariate statistical 
analysis methods. 

EXPERIMENTAL SECTION 

Preparation of Simulated Spectral Data Sets. Simulated 
spectral data were prepared by using three-component mixtures 
with the spectrum of each pure component consisting of two 
Gaussian bands with different intensities and bandwidths. These 
spectral data are described more completely and illustrated in 
ref 1. The mixtures were constrained so that the concentrations 
of the components summed to 100 mol ’%. A variety of spectral 
data sets were generated. Spectral data sets of 16 samples were 
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