Chapter 23

Partial Least Squares Methods: Partial Least Squares
Correlation and Partial Least Square Regression

Herve Abdi and Lynne J. Williams

Abstract

Partial least square (pLs) methods (also sometimes called projection to latent structures) relate the information
present in two data tables that collect measurements on the same set of observations. rLs methods proceed by
deriving latent variables which are (optimal) linear combinations of the variables of a data table. When the goal
is to find the shared information between two tables, the approach is equivalent to a correlation problem and
the technique is then called partial least square corvelation (PLSC) (also sometimes called pLs-SVD). In this
case there are two sets of latent variables (one set per table), and these latent variables are required to have
maximal covariance. When the goal is to predict one data table the other one, the technique is then called
partial least square regression. In this case there is one set of latent variables (derived from the predictor table)
and these latent variables are required to give the best possible prediction. In this paper we present and
illustrate PLSC and PLSR and show how these descriptive multivariate analysis techniques can be extended to
deal with inferential questions by using cross-validation techniques such as the bootstrap and permutation
tests.

Key words: Partial least square, Projection to latent structure, rLs correlation, prLS-SVD,
rLs-regression, Latent variable, Singular value decomposition, NIPALS method, Tucker inter-battery
analysis

1. Introduction

Partial least square (PLs) methods (also sometimes called projection
to latent structures) relate the information present in two data tables
that collect measurements on the same set of observations. These
methods were first developed in the late 1960s to the 1980s by the
economist Herman Wold (55, 56, 57) but their main early area of
development were chemometrics (initiated by Herman’s son
Svante, (59)) and sensory evaluation (34, 35). The original
approach of Herman Wold was to develop a least square algorithm
(called NIPALS (56)) for estimating parameters in path analysis
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PLS

Fig. 1. The pLs family.
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models (instead of the maximum likelihood approach used for
structural equation modeling such as, e.g., LISREL). This first
approach gave rise to partial least square path modeling (rrs-PM)
which is still active today (see, e.g., (26, 48)) and can be seen as a
least square alternative for structural equation modeling (which
uses, in general, a maximum likelihood estimation approach).
From a multivariate descriptive analysis point of view, however,
most of the early developments of PLs were concerned with defining
a latent variable approach to the analysis of two data tables describ-
ing one set of observations. Latent variables are new variables
obtained as linear combinations of the original variables. When the
goal is to find the shared information between these two tables, the
approach is equivalent to a correlation problem and the technique is
then called partial least square correlation (PLSC) (also sometimes
called rrs-SVD (31)). In this case there are two sets of latent vari-
ables (one set per table), and these latent variables are required to
have maximal covariance. When is goal is to predict one data table
the other one, the technique is then called partial least square
regression (PLSR, see (4, 16, 20, 42)). In this case there is one set
of latent variables (derived from the predictor table) and these latent
variables are computed to give the best possible prediction. The
latent variables and associated parameters are often called dimen-
sion. So, for example, for PLSC the first set of latent variables is
called the first dimension of the analysis.

In this chapter we will present PLSC and PLSR and illustrate
them with an example. prs-methods and their main goals are
described in Fig. 1.

2. Notations

Data are stored in matrices which are denoted by upper case bold
letters (e.g., X). The identity matrix is denoted I. Column vectors
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are denoted by lower case bold letters (e.g., x). Matrix or vector
transposition is denoted by an uppercase superscript T (e.g., X).
Two bold letters placed next to each other imply matrix or vector
multiplication unless otherwise mentioned. The number of rows,
columns, or sub-matricesis denoted by an uppercase italic letter
(e.g., I) and a given row, column, or sub-matrixis denoted by a
lowercase italic letter (e.g., 7).

pL.s methods analyze the information common to two matrices.
The first matrix is an I by Jmatrix denoted X whose generic element
is x; ; and where the rows are observations and the columns are
variables. For PLSR the X matrix contains the predictor variables
(i.e., independent variables). The second matrix is an I by K matrix,
denoted Y, whose generic element is y; ;.. For PLSR, the Y matrix
contains the variables to be predicted (i.e., dependent variables). In
general, matrices X and Y are statistically preprocessed in order to
make the variables comparable. Most of the time, the columns of X
and Y will be rescaled such that the mean of each column is zero and
its norm (i.e., the square root of the sum of its squared elements) is
one. When we need to mark the difference between the original data
and the preprocessed data, the original data matrices will be denoted
X and Y and the rescaled data matrices will be denoted Zx and Zy.

3. The Main Tool:
The Singular Value
Decomposition

The main analytical tool for pis is the singular value decomposition
(svD) of a matrix (see (3, 21, 30, 47), for details and tutorials).
Recall that the svD of a given J x K matrix Z decomposes it into
three matrices as:

L
Z=UAV" =) s} (1)
0

where U is the J by L matrix of the normalized left singular vectors
(with L being the rank of Z), V the Kby L matrix of the normalized
right singular vectors, A the Lby L diagonal matrix of the Lsingular
values. Also, 9y, uy, and v, are,respectively, the ¢th singular value,
left, and right singular vectors. Matrices U and V are orthonormal
matrices (i.e., UTU = VIV =1).

The svD is closely related to and generalizes the well-known
ewgen-decomposition because U is also the matrix of the normalized
eigenvectors of ZZ", V is the matrix of the normalized eigenvectors
of Z'Z, and the singular values are the square root of the
cigenvalues of ZZ" and Z'Z (these two matrices have the same
eigenvalues). Key property: the svb provides the best reconstitution
(in a least squares sense ) of the original matrix by a matrix with a lower
rank (for more details, see, e.g., (1-3, 47)).
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4. Partial Least
Squares Correlation

4.1. Correlation Between
the Two Tables

PLSC generalizes the idea of correlation between two variables to
two tables. It was originally developed by Tucker (51), and refined
by Bookstein (14, 15, 46). This technique is particularly popular in
brain imaging because it can handle the very large data sets gener-
ated by these techniques and can easily be adapted to handle
sophisticated experimental designs (31, 38—41). For PLSC, both
tables play a similar role (i.e., both are dependent variables) and the
goal is to analyze the information common to these two tables. This
is obtained by deriving two new sets of variables (one for each table)
called latent variables that are obtained as linear combinations of
the original variables. These latent variables, which describe the
observations, are required to “explain” the largest portion of the
covariance between the two tables. The original variables are
described by their saliences.

For each latent variable, the X or Y variable saliences have a
large magnitude, and have large weights for the computation of the
latent variable. Therefore, they have contributed a large amount to
creating the latent variable and should be used to interpret that
latent variable (i.e., the latent variable is mostly “made” from these
high contributing variables). By analogy with principal component
analysis (see, e.g., (13)), the latent variables are akin to factor scores
and the saliences are akin to loadings.

Formally, the pattern of relationships between the columns of X
and Y is stored in a K x J cross-product matrix, denoted R (that is
usually a correlation matrix in that we compute it with Zx and Zy
instead of X and Y). R is computed as:

R =Zy!Zx. (2)
The svp (see Eq. 1) of R decomposes it into three matrices:
R = UAVT, (3)

In the PLSC vocabulary, the singular vectors are called saliences:
so U is the matrix of Y-saliences and V is the matrix of X-saliences.
Because they are singular vectors, the norm of the saliences for a
given dimension is equal to one. Some authors (e.g., (31)) prefer
to normalize the salience to their singular values (i.e., the delta-
normed Y saliences will be equal to U A instead of U) because the
plots of the salience will be interpretable in the same way as factor
scores plots for PCA. We will follow this approach here because it
makes the interpretation of the saliences easier.
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4.2. Latent Variables

4.3. What Does PLSC
Optimize?
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The quantity of common information between the two tables can
be directly quantified as the znertia common to the two tables. This
quantity, denoted $rora, is defined as

L
j/Tr)ml = Z 6% <4)
l

where 9, denotes the singular values from Eq. 3 (i.e., §;is the fth
diagonal element of A) and L is the number of nonzero singular
values of R.

The latent variables are obtained by projecting the original matrices
onto their respective saliences. So, a latent variable is a linear
combination of the original variables and the weights of this linear
combination are the saliences. Specifically, we obtain the latent
variables for X as:

Lx = ZxV, (5)
and for Y as:
Ly = ZyU. (6)

(NB: some authors compute the latent variables with Y and X
rather than Zy and Zx; this difference is only a matter of normali-
zation, but using Zy and Zx has the advantage of directly relating
the latent variables to the maximization criterion used). The latent
variables combine the measurements from one table in order to find
the common information between the two tables.

The goal of PLSC is to find pairs of latent vectors Ix_,and ly , with
maximal covariance and with the additional constraints that (1) the
pairs of latent vectors made from two different indices are uncorre-
lated and (2) the coefficients used to compute the latent variables
are normalized (see (48, 51), for proofs).

Formally, we want to find

IX‘[ = ZXV[ and lY.Z = Zyllg
such that
cov(Ix s, Iy ) o l)T(,elY/ = max (7)

[where cov (IX,g, IY,g) denotes the covariance between Ix ,and ly, /]
under the constraints that

Iy s =0 when ¢ # ¢ (8)
(note that lgzlxjr and l;klyjr are not required to be null) and
urlrll[ = V’ZTVg =1. <9

)
It follows from the properties of the svD (see, e.g., (13,21, 30,47))
that u, and v, are singular vectors of R. In addition, from Egs. 3, 5,
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4.4. Significance

4.4.1. Permutation Test
for Omnibus Tests and
Dimensions

and 6, the covariance of a pair of latent variables lx, and ly, is
equal to the corresponding singular value:

Ix v = 8. (10)

So, when ¢ = 1, we have the largest possible covariance between
the pair of latent variables. When ¢ = 2 we have the largest possible
covariance for the latent variables under the constraints that the
latent variables are uncorrelated with the first pair of latent variables
(asstated in Eq. 8, e.g., Ix 1 and Iy, are uncorrelated), and so on for
larger values of /.

So in brief, for each dimension, PLSC provides two sets of
saliences (one for X one for Y) and two sets of latent variables.
The saliences are the weights of the linear combination used to
compute the latent variables which are ordered by the amount of
covariance they explain. By analogy with principal component anal-
ysis, saliences are akin to loadings and latent variables are akin to
factor scores (see, e.g., (13)).

PLSC is originally a descriptive multivariate technique. As with all
these techniques, an additional inferential step is often needed to
assess if the results can be considered reliable or “significant.” Tucker
(51) suggested some possible analytical inferential approaches which
were too complex and made too many assumptions to be routinely
used. Currently, statistical significance is assessed by computational
cross-validation methods. Specifically, the significance of the global
model and of the dimensions can be assessed with permutation tests
(29); whereas the significance of specific saliences or latent variables
can be assessed via the Bootstrap (23).

The permutation test—originally developed by Student and Fisher
(37)—provides a nonparametric estimation of the sampling distri-
bution of the indices computed and allows for null hypothesis
testing. For a permutation test, the rows of X and Y are randomly
permuted (in practice only one of the matrices need to be per-
muted) so that any relationship between the two matrices is now
replaced by a random configuration. The matrix Ryepp, is computed
from the permuted matrices (this matrix reflects only random asso-
ciations of the original data because of the permutations) and the
analysis of R,erm, is performed: The singular value decomposition of
Ryerm is computed. This gives a set of singular values, from which
the overall index of effect $r (i-€., the common inertia) is com-
puted. The process is repeated a large number of times (e.g.,
10,000 times). Then, the distribution of the overall index and the
distribution of the singular values are used to estimate the proba-
bility distribution of $1; and of the singular values, respectively.
If the common inertia computed for the sample is rare enough
(e.g., less than 5%) then this index is considered statistically
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significant. This test corresponds to an omnibus test (i.c., it tests an
overall effect) but does not indicate which dimensions are signifi-
cant. The significant dimensions are obtained from the sampling
distribution of the singular values of the same order. Dimensions
with a rare singular value (e.g., less than 5%) are considered signifi-
cant (e.g., the first singular values are considered significant if they
are rarer than 5% of the first singular values obtained form the Rycrm
matrices). Recall that the singular values are ordered from the
largest to the smallest. In general, when a singular value is consid-
ered significant all the smaller singular values are considered to be
nonsignificant.

The Bootstrap (23, 24) can be used to derive confidence intervals
and bootstrap ratios (5, 6, 9 , 40) which are also sometimes “test-
values” (32). Confidence intervals give lower and higher values,
which together comprise a given proportion (e.g., often 95%) of
the values of the saliences. If the zero value is not in the confidence
interval of the saliences of a variable, this variable is considered
relevant (i.e., “significant”). Bootstrap ratios are computed by
dividing the mean of the bootstrapped distribution of a variable
by its standard deviation. The bootstrap ratio is akin to a Student
¢ criterion and so if a ratio is large enough (say 2.00 because it
roughly corresponds to an o = .05 critical value for a ¢-test) then
the variable is considered important for the dimension. The boot-
strap estimates a sampling distribution of a statistic by computing
multiple instances of this statistic from bootstrapped samples
obtained by sampling with replacement from the original sample.
For example, in order to evaluate the saliences of Y, the first step is
to select with replacement a sample of the rows. This sample is then
used to create Ypoor and Xpoor that are transformed into Zypeor and
Zx 001, Which are in turn used to compute Ry, as:

Rboot = ZYZ;)(,tZXboor (1 1)
The Bootstrap values for Y, denoted Uy, are then computed as
Upoot = Rboot VAT (12)

The values of a large set (e.g., 10,000) are then used to compute
confidence intervals and bootstrap ratios.

We will illustrate PLSC with an example in which I = 36 wines are
described by a matrix X which contains J = 5 objective measure-
ments (price, total acidity, alcohol, sugar, and tannin) and by a
matrix Y which contains K =9 sensory measurements (fruity, floral,
vegetal, spicy, woody, sweet, astringent, acidic, hedonic) provided
(on a 9 point rating scale) by a panel of trained wine assessors (the
ratings given were the median rating for the group of assessors).
Table 1 gives the raw data (note that columns two to four, which
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4.5.1. Centering
and Normalization

4.52.SVD of R

4.5.3. From Salience
to Factor Score

describe the varietal, origin, and color of the wine, are not used in
the analysis but can help interpret the results).

Because X and Y measure variables with very different scales, each
column of these matrices is centered (i.e., its mean is zero) and
rescaled so that its norm (i.e., square root of the sum of squares) is
equal to one. This gives two new matrices called Zx and Zy which
are given in Table 2.
The K =5 by J =9 matrix of correlations R is then computed
from Zx and Zy as
R=ZY"ZX
—0.278 —0.083 0.068 0.115 0481 —0.560 0407 —0.020 —0.540
0.029 0531 0.348-0.168 —0.162 0.084 —0.098 0.202 0.202
=|-0.044 —0.387 —0.016 0431 0.661 —0445 0730 —0.399 —0.850

0.305 -0.187 —0.198-0.118 —0.400 0.469 -0.326 —0.054 0.418
0.008 —-0.479 —0.132 0.525 0.713 —-0.408 0.936 -0.336 —0.884

(13)

The R matrix contains the correlation between each of variable in
X with each of variable in Y.

The svp (cf., Egs. 1 and 3) of R is computed as

R = UAVT

0.366 —0.423 —0.498 0.078 0.6587 [2.629]
—0.180 —0.564 0.746 —0.021 0.304 | | 0.881
=| 0584 0.112 0206 —0.777 —0.005 | | 0.390
—0.272 0.652 0.145 —0.077 0.689 | | 0.141
0.647 0.255 0.364 0.620 0.006 | | 0.077 |

[—0.080 0.338 0.508 —0.044 047277
—-0.232 -0.627 0401 0.005 -0.291
—-0.030 -0.442 0.373 —-0.399 0.173
0.265 0.171 0206 0.089 -0.719
X 0.442 -0.133 —0.057 0.004 —0.092
—0.332 0.388 0.435 0.084 —-0.265

0.490 -0.011 0433 0.508 0.198
—-0.183 —-0.307 —0.134 0.712 0.139
—0.539 0.076 —0.043 0.243 —0.088 |

(14)

The saliences can be plotted as a PCA-like map (one per table), but
here we preferred to plot the delta-normed saliences Fx and Fy,
which are also called factor scores. These graphs give the same
information as the salience plots, but their normalization makes
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4.5.4. Latent Variables
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Fig. 2. The Saliences (normalized to their eigenvalues) for the physical attributes of the
wines.

the interpretation of a plot of several saliences easier. Specifically,
each salience is multiplied by its singular value, then, when a plot is
made with the saliences corresponding to two different dimensions,
the distances on the graph will directly reflect the amount of
explained covariance of R. The matrices Fx and Fy are computed as

FX =UA

0962 -0.373 -0.194 0.011 0.051
-0473 -0497 0291 -0.003 0.024

= 1536 0.098 0.080 -0.109 0.000
-0.714 0574 0.057 -0.011 0.053
1.700 0225 0142 0.087 0.000

(15)

FY =VA

[—0.210 0297 0.198 —0.006 0.037]
~0.611 -0.552 0156 0.001 —0.023
—0.079 -0.389 0145 —0.056 0.013
0.696 0.151 0.080 0.013 —0.056
=| 1161 —0117 -0.022 0.001 —0.007
~0.871 0.342 0169 0012 -0.021
1287 —0.009 0169 0072 0.015
~0.480 —-0.271 -0.052 0100  0.011
|-1417 0.067 -0.017 0.034 —0.007 |

(16)

Figures 2 and 3 show the X and Y plot of the saliences for
Dimensions 1 and 2.

The latent variables for X and Y are computed according to Eqgs. 5
and 6. These latent variables are shown in Tables 3 and 4. The
corresponding plots for Dimensions 1 and 2 are given in Figures 4
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Fig. 3. The Saliences (normalized to their eigenvalues) for the sensory evaluation of the
attributes of the wines.

Table 3
PLSC. The X latent variables. Ly = ZyV
Dim 1 Dim 2 Dim 3 Dim 4 Dim 5
0.249 0.156 0.033 0.065 - 0.092
0.278 0.230 0.110 0.093 - 0216
0.252 0.153 0.033 —0.060 —-0.186
0.184 0.147 —-0.206 0.026 —-0.026
0.004 0.092 —0.269 —0.083 —-0.102
-0.119 0.003 0.058 —-0.101 —0.052
—-0.226 -0.197 0.102 0.054 - 0.053
—-0.170 - 0.098 —0.009 0.030 —0.049
-0.278 0.320 0.140 —0.080 0.194
- 0.269 0.300 - 0.155 0.102 —-0.121
—-0.317 0.355 —0.110 0.084 0.083
—-0.120 0.171 0.047 -0.132 —0.054
0.392 —0.155 0.155 —-0.120 0.113
0.405 —-0.073 0.255 0.030 0.005
0.328 —-0.225 0.120 —0.086 0.073
0.226 —0.150 —0.200 0.067 0.076
0.030 —0.090 - 0.163 —~0.113 0.114
—0.244 —-0.153 0.019 0.099 0.128
—~0.236 —0.119 —0.040 0.121 0.098
0.051 —0.090 —0.081 -0.177 0.067

(continued)
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Table 3
(continued)
Dim 1 Dim 2 Dim 3 Dim 4 Dim 5
~0.299 0.200 —0.026 0.097 0.088
~0.206 0.146 —0.046 0.029 ~0.058
~0.201 0.214 0.034 ~0.065 0.159
~0.115 0.076 —0.046 —0.040 —0.040
0.323 0.004 —0.058 0.123 0.221
0.399 0.112 0.193 0.009 0.083
0.435 ~0.029 ~0.137 0.106 0.080
0.379 ~0.310 ~0.183 ~0.013 0.016
~0.018 —0.265 0.002 ~0.079 —0.062
—0.051 ~0.192 0.097 - 0.118 —~0.183
~0.255 - 0.326 0.164 0.106 - 0.026
—0.146 ~0.626 0.127 0.134 0.058
—0.248 0.126 0.054 0.021 —-0.077
- 0.226 0.174 —0.010 0.027 —0.054
—~0.108 0.096 —0.080 —0.040 —0.110
—0.084 0.025 0.079 —~0.117 - 0.092
Table 4
PLSC. The Y-latent variables. Ly = ZyU
Dim 1 Dim 2 Dim 3 Dim 4 Dim 5
0.453 0.109 —0.040 0.197 - 0.037
0.489 —-0.088 —-0.018 0.062 0.025
0.526 0.293 0.083 —0.135 —0.145
0.243 —0.201 —0.280 0.013 0.090
0.022 - 0.112 —0.308 0.015 —0.145
—0.452 —0.351 0.236 ~0.157 0.208
—0.409 —0.357 —0.047 0.225 —0.062
—0.494 ~0.320 0.019 0.006 ~0.150
~0.330 0.186 0.325 —~0.112 0.030

(continued)
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Table 4
(continued)
Dim 1 Dim 2 Dim 3 Dim 4 Dim 5
- 0.307 0.170 0.005 —0.062 0.040
~0.358 0.252 ~0.167 0.053 0.142
~0.206 0.280 0.171 ~0.006 ~0.060
0.264 —-0.072 —-0.075 0.090 —0.042
0.412 —~0.125 ~0.050 0.103 0.160
0.434 0.149 0.152 —0.268 —~0.030
0.202 —0.194 —-0.237 0.016 0.160
0.065 ~0.138 —~0.330 —0.134 0.029
—0.314 —0.021 0.066 —0.094 0.159
—0.340 —0.194 - 0.173 0.368 0.138
—~0.169 —~0.186 —0.057 0.120 0.019
—~0.183 0.019 0.017 —0.002 —0.045
—0.154 0.037 —0.120 0.112 —~0.188
~0.114 - 0.010 —~0.196 —0.096 0.051
—0.161 0.114 —0.025 —0.019 —0.035
0.490 0.141 0.076 —0.031 —~0.083
0.435 0.180 0.162 0.072 0.035
0.575 0.208 0.365 —0.024 —-0.167
0.357 —0.124 —0.098 0.046 0.137
0.145 - 0.113 —0.078 0.002 —0.087
—~0.268 —~0.299 0.177 —0.161 0.114
—~0.283 -0.232 —0.008 0.109 —0.068
—0.260 —~0.158 0.147 —0.124 —0.081
—0.106 0.373 0.078 0.117 —0.065
—-0.275 0.275 0.305 —~0.102 —~0.019
- 0.060 0.300 —0.238 —0.091 0.004
0.130 0.209 0.162 —~0.110 —0.030

and 5. These plots show clearly that wine color is a major determi-
nant of the wines both for the physical and the sensory points of
view.
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Fig. 4. Plot of the wines: The X-latent variables for Dimensions 1 and 2.
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Fig. 5. Plot of the wines: The Y-latent variables for Dimensions 1 and 2.

In order to evaluate if the overall analysis extracts relevant informa-
tion, we computed the total inertia extracted by the PLSC. Using
Eq. 4, we found that the inertia common to the two tables was
equal to $ro = 7. 8626. To evaluate its significance, we generated
10,000 R matrices by permuting the rows of X. The distribution of
the values of the inertia is given in Fig. 6, which shows that the
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Fig. 6. Permutation test for the inertia explained by the PLSC of the wine. The observed value was never obtained in the
10,000 permutation. Therefore we conclude that PLSC extracted a significant amount of common variance between these

two tables P < 0.0001).

4.5.6. Bootstrap

value of P11 = 7.8626 was never obtained in this sample.
Therefore we conclude that the probability of finding such a value
by chance alone is smaller than m (i.e., we can say that p <
.0001). '

The same approach can used to evaluate the significance of the
dimensions extracted by PLSC. The permutation test found that
only the first two dimensions could be considered significant at the
o = .05 level: For Dimension 1, p < .0001 and for Dimension 2 p
= .0043. Therefore, we decided to keep only these first two dimen-
sions for further analysis.

Bootstrap ratios and 95% confidence intervals for X and Y are given
for Dimensions 1 and 2 in Table 5. As it is often the case, bootstrap
ratios and confidence intervals concur in indicating the relevant
variables for a dimension. For example, for Dimension 1, the
important variables (i.e., variables with a Bootstrap ratio > 2 or
whose confidence interval excludes zero) for X are Tannin, Alcohol,
Price, and Sugar; whereas for Y they are Hedonic, Astringent,
Woody, Sweet, Floral, Spicy, and Acidic.
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Table 5
PLSC. Bootstrap Ratios and Confidence Intervals for X and Y.

Dimension 1 Dimension 2

Bootstrap Lower 95 % Upper 95 % Bootstrap Lower 95 % Upper 95 %

ratio Cl cl ratio Cl Cl
X
Price 3.6879 0.1937 0.5126 —-2.172 —0.7845 —0.1111
Acidity — 1.6344 —0.3441 0.0172 —3.334 — 0.8325 — 0.2985
Alcohol 13.7384 0.507 0.642 0.5328 —0.2373 0.3845
Sugar — 2.9555 —0.4063 —0.1158 47251 0.4302 0.8901
Tannin 16.8438 0.5809 0.7036 1.4694 —0.0303 0.5066
Y
Fruity — 0.9502 —0.2188 0.0648 2.0144 0.0516 0.5817
Floral —3.9264 —0.3233 —0.1314 —3.4383 —0.9287 —0.3229
Vegetal — 0.3944 —0.139 0.0971 —2.6552 —0.7603 —0.195
Spicy 3.2506 0.1153 0.3709 1.0825 —0.0922 04711
Woody 9.1335 0.3525 0.5118 — 0.6104 — 0.4609 0.2165
Sweet —6.9786 — 0.408 — 0.2498 1.9499 0.043 0.6993
Astringent  16.6911 0.439 0.5316 — 0.0688 — 0.3099 0.291
Acidic —2.5518 —0.2778 — 0.0529 —1.443 — 0.6968 0.05
Hedonic —22.7344 —0.5741 — 0.4968 0.3581 — 0.285 0.4341

5. Partial Least
Square Regression

Partial least square Regression (PLSR) is used when the goal of the
analysis is to predict a set of variables (denoted Y) from a set of
predictors (called X). As a regression technique, PLSR is used to
predict a whole table of data (by contrast with standard regression
which predicts one variable only), and it can also handle the case of
multicolinear predictors (i.e., when the predictors are not linearly
independent). These features make PLSR a very versatile tool
because it can be used with very large data sets for which standard
regression methods fail.

In order to predict a table of variables, PLSR finds latent
variables, denoted T (in matrix notation), that model X and simul-
tancously predict Y. Formally this is expressed as a double decom-
position of X and the predicted Y:

X=TPT and Y=TBC", (17)
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5.1. Iterative
CGomputation of the
Latent Variables

in PLSR

5.1.1. Step One

where P and C are called (respectively) X and Y loadings (or
weights) and B is a diagonal matrix. These latent variables are
ordered according to the amount of variance of Y that they explain.
Rewriting Eq. 17 shows that Y can also be expressed as a regression
model as

Y = TBC' = XBprs (18)
with
Bprs = PT*BCT (19)

(where P™* is the Moore—Penrose pseudoinverse of P’ see, e.g.,
(12), for definitions). The matrix B, has J rows and K columns
and is equivalent to the regression weights of multiple regression
(Note that matrix B is diagonal, but that matrix B, is, in general
not diagonal).

In PLSR, the latent variables are computed by iterative applications
of the svp. Each run of the svb produces orthogonal latent variables
for X and Y and corresponding regression weights (see, e.g., (4) for
more details and alternative algorithms).

To simplify the notation we will assume that X and Y are mean-
centered and normalized such that the mean of each column is zero
and its sum of squares is one. At step one, X and Y are stored
(respectively) in matrices X and Yo. The matrix of correlations
(or covariance) between Xy and Yy is computed as

R, = X[Y,. (20)

The svp is then performed on R; and produces two sets of orthog-
onal singular vectors W; and C;, and the corresponding singular
values 47 (compare with Eq. 1):

R, = WA, C/. (21)

The first pair of singular vectors (i.e., the first columns of W, and
C,) are denoted wy and ¢; and the first singular value (i.c., the first
diagonal entry of A;) is denoted 6;. The singular value represents
the maximum covariance between the singular vectors. The first
latent variable of X is given by (compare with Eq. 5 defining Lx):

t; = Xow; (22)

where t; is normalized such that t! t;. The loadings of X on t; (i.e.,
the projection of X, on the space of t;) are given by

P, = Xgt1. (23)



5.1.2. Last Step

5.2. What Does PLSR
Optimize?
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The least square estimate of X from the first latent variable is given

by
X, =tlp,. (24)

As an intermediate step we derive a first pseudo latent variable for
Y denoted u; and obtained as

u) = Y()C]. (25)
Reconstituting Y from its pseudo latent variable as
Y1 = uc], (26)

and then rewriting Eq. 26 we obtained the prediction of Y from the
X latent variable as

?1 = tlblc’f (27)

with
by = t{ul . (28)

The scalar &, is the slope of the regression of Y, ont.

Matrices 5(1 and ?1 are then subtracted from the original X
and original Y, respectively, to give deflated X, and Y;:

X;=Xo—-X; and Y, =Y,-Y,. (29)

The iterative process continues until X is completely decomposed
into L components (where L is the rank of X)). When this is done,
the weights (i.e., all the w,’s) for X are stored in the Jby L matrix W
(whose ¢th column is wy). The latent variables of X are stored in the
Iby L matrix T. The weights for Y are stored in the K by L matrix
C. The pseudo latent variables of Y are stored in the I by L matrix
U. The loadings for X are stored in the J by L matrix P. The
regression weights are stored in a diagonal matrix B. These regres-
sion weights are used to predict Y from X ; therefore, there is one &,
for every pair of t; and u,, and so B is an L x L diagonal matrix.
The predicted Y scores are now given by

Y = TBCT = XBps, (30)

where, Bys = P BCT, (where P is the Moore-Penrose pseu-
doinverse of PT). B, has J rows and K columns.

PLSR finds a series of L latent variables t, such that the covariance
between t; and Y is maximal and such that t; is uncorrelated with t,
which has maximal covariance with Y and so on for all L latent
variables (see, e.g., (4, 17,19, 26, 48, 49), for proofs and develop-
ments). Formally, we seek a set of Llinear transformations of X that
satisfies (compare with Eq. 7):

ty = Xw, such that cov(t;,Y) = max (31)
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5.3. How Good is the
Prediction?

5.3.1. Fixed Effect Model

5.3.2. Random Effect Model

5.3.3. How Many Latent
Variables?

(where wy is the vector of the coefficients of the ¢th linear transfor-
mation and cov is the covariance computed between t and each
column of Y) under the constraints that

t/tv =0 when (#/ (32)

and

tlt, = 1. (33)

A common measure of the quality of prediction of observations
within the sample is the Residual Estimated Sum of Squares (REsS),
which is given by (4)

RESs =|| Y - Y |, (34)

where || ||? is the square of the norm of a matrix (i.c., the sum of
squares of all the elements of this matrix). The smaller the value of
RESS, the better the quality of prediction (4, 13).

The quality of prediction generalized to observations outside of the
sample is measured in a way similar to Ress and is called the Pre-
dicted Residual Estimated Sum of Squares (PREsS). Formally PRESS is
obtained as (4):

PRESS =|| Y — Y || (35)

The smaller prESs is, the better the prediction.

By contrast with the fixed effect model, the quality of prediction for
a random model does not always increase with the number of latent
variables used in the model. Typically, the quality first increases and
then decreases. If the quality of the prediction decreases when the
number of latent variables increases this indicates that the model is
overfitting the data (i.e., the information useful to fit the observa-
tions from the learning set is not useful to fit new observations).
Therefore, for a random model, it is critical to determine the
optimal number of latent variables to keep for building the
model. A straightforward approach is to stop adding latent variables
as soon as the PREss decreases. A more elaborated approach (see, e.
g., (48)) starts by computing the ratio Q,> for the (th latent
variable, which is defined as

) PRESS,
=1-— 36

Qi RESS, — 1, (36)

with PRESS, (resp. RESS,_1) being the value of PRESS (resp. RESS) for
the /th (resp. /—1) latent variable [where RESS) = K x (I —1)].
A latent variable is kept if its value of Q,® is larger than some
arbitrary value generally set equal to (1 —.95%) =.0975 (an



5.3.4. Bootstrap
Confidence Intervals for
the Dependent Variables

5.4. PLSR: Example
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alternative set of values sets the threshold to .05 when I < 100 and
to 0 when I> 100, see, e.g., (48, 58), for more details). Obviously,
the choice of the threshold is important from a theoretical point of
view, but, from a practical point of view, the values indicated above
seem satisfactory.

When the number of latent variables of the model has been
decided, confidence intervals for the predicted values can be
derived using the Bootstrap. Here, each bootstrapped sample pro-
vides a value of B, which is used to estimate the values of the
observations in the testing set. The distribution of the values of
these observations is then used to estimate the sampling distribu-
tion and to derive Bootstrap ratios and confidence intervals.

We will use the same example as for PLSC (see data in Tables 1
and 2). Here we used the physical measurements stored in matrix X
to predict the sensory evaluation data stored in matrix Y. In order
to facilitate the comparison between PLSC and PLSR, we have
decided to keep two latent variables for the analysis. However if
we had used the Q7 criterion of Eq. 36, with values of 1. 3027 for
Dimension 1 and — 0.2870 for Dimension 2, we should have kept
only one latent variable for further analysis.

Table 6 gives the values of the latent variables (T), the recon-
stituted values of X (X)) and the predicted values of Y (Y). The value
of B, s computed with two latent variables is equal to

BpLS

—0.0981 0.0558  0.0859  0.0533 0.1785 —0.1951 0.1692  0.0025 —0.2000
-0.0877 0.3127  0.1713 —0.1615 -0.1204 —0.0114 -0.1813 0.1770  0.1766
= | —-0.0276 —0.2337 —-0.0655 02135 0.3160 —0.20977 0.3633 —0.1650 —0.3936 |.
0.1253 —0.1728 —0.1463 0.0127 —0.1199 0.1863 —0.0877 —0.0707 0.1182
0.0009 —-0.3373 -0.1219 0.2675 0.3573 —0.2072 04247 -0.2239 -0.4536

(37)
The values of W which play the role of loadings for X are equal to
—-0.3660 —0.4267
0.1801 —-0.5896
W= |-05844 0.0771]. (38)
0.2715  0.6256
-0.6468 0.2703

A plot of the first two dimensions of W given in Fig. 7 shows that
X is structured around two main dimensions. The first dimension
opposes the wines rich in alcohol and tannin (which are the red
wines) are opposed to wines that are sweet or acidic. The second
dimension opposes sweet wines to acidic wines (which are also
more expensive) (Figs. 8 and 9).
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Fig. 7. The X-loadings for Dimensions 1 and 2.
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Fig. 8. The circle of correlation between the Y variables and the latent variables for
Dimensions 1 and 2.
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Fig. 9. PLSR. Plot of the latent variables (wines) for Dimensions 1 and 2.

6. Software

rLs methods necessitate sophisticated computations and therefore
they critically depends on the availability of software.

PLSC is used intensively is neuroimaging, and most of
the analyses in this domain are performed with a special MATLAB
toolboox (written by Mclntosh, Chau, Lobaugh, and Chen).
The programs and a tutorial are freely available from www.rot-
man-baycrest.on.ca:8080. These programs (which are the
standard for neuroimaging) can be adapted for other types of data
than neuroimaging (as long as the data are formatted in a compati-
ble format). The computations reported in this paper were per-
formed with MATLAB and can be downloaded from the home page of
the first author (www.utdallas.edu/ herve).

For PLSR there are several available choices. The computations
reported in this paper are performed with MATLAB and can be down-
loaded from the home page of the first author (www.utdallas.


http://www.rotman-baycrest.on.ca:8080
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edu/ herve). A public domain set of MATLAB programs is also
available from the home page of the N-Way project (www.mod-
els.kvl.dk/source/nwaytoolbox/) along with tutorials and
examples. The statistic toolbox from MaTLAB includes a function to
perform PLSR. The public domain program R implements PLSR
through the package ris (43). The general purpose statistical
packages sas, spss, and XLsTAT (which has, by far the most extensive
implementation of PLs methods) can be also used to perform PLSR.
In chemistry and sensory evaluation, two main programs are used:
the first one called simca-r was developed originally by Wold (who
also pioneered PLSR), the second one called the UNSCRAMBLER was
first developed by Martens who was another pioneer in the field.
And finally, a commercial MATLAB toolbox has also been developed
by EIGENRESEARCH.

7. Related Methods

A complete review of the connections between rLs and the other
statistical methods is, clearly, out of the scope of an introductory
paper (see, however, (17, 48, 49, 26), for an overview), but some
directions are worth mentioning. PLSC uses the svD in order to
analyze the information common to two or more tables, and this
makes it closely related to several other svb (or -eigen-
decomposition) techniques with similar goals. The closest tech-
nique is obviously inter-battery analysis (51) which uses the same
svD as PLSC, but on non structured matrices. Canonical correlation
analysis (also called simply canonical analysis, or canonical variate
analysis, see (28, 33), for reviews) is also a related technique that
seeks latent variables with largest correlation instead of PLSC’s
criterion of largest covariance. Under the assumptions of normality,
analytical statistical tests are available for canonical correlation anal-
ysis but cross-validation procedures analogous to PLSC could also
be used.

In addition, several multi-way techniques encompass as a par-
ticular case data sets with two tables. The oldest and most well-
known technique is multiple factor analysis which integrates differ-
ent tables into a common rca by normalizing each table with its first
singular value (7, 25). A more recent set of techniques is the STATIS
tamily which uses a more sophisticated normalizing scheme whose
goal is to extract the common part of the data (see (1, 8-11), for an
introduction). Closely related techniques comprise common com-
ponent analysis (36) which seeks a set of factors common to a set of
data tables, and co-inertia analysis which could be seen as a gener-
alization of Tucker’s (1958) (51) inter-battery analysis (see, e.g.,
(18, 22,50, 50, 54), for recent developments).


http://www.utdallas.edu/~herve
http://www.models.kvl.dk/source/nwaytoolbox/
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PLSR is strongly related to regression-like techniques which
have been developed to cope with the multi-colinearity problem.
These include principal component regression, ridge regression,
redundancy analysis (also known as PcA on instrumental variables
(44, 52, 53), and continuum regression (45), which provides a
general framework for these techniques.

8. Conclusion

Partial Least Squares (rLs) methods analyze data from multiple
modalities collected on the same observations. We have reviewed
two particular prs methods: Partial Least Squares Correlation or
PLSC and Partial Least Squares Regression or PLSR. PLSC analyzes
the shared information between two or more sets of variables. In
contrast, PLSR is directional and predicts a set of dependent vari-
ables from a set of independent variables or predictors. The rela-
tionship between PLSC and PLSR are also explored in (17) and,
recently (27) proposed to integrate these two approaches into a
new predictive approach called BRIDGE-PLs. In practice, the two
techniques are likely to give similar conclusions because the criteria

they optimize are quite similar.
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