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Abstract

This paper presents a framework for multi-object tracking from a single fixed

camera. The region-based representations of each object are tracked and pre-

dicted using a Kalman filter. A scene model is created to help predict and inter-

pret the occluded or exiting objects. Unlike the traditional blind tracking during

occlusion, the object states are updated using partial observations whenever

available. The observability of each object depends on the predictive measure-

ment of the object, the foreground region measurement, and perhaps the scene

model. This makes the algorithm more robust in terms of both qualitative and

quantitative criteria.

1  Introduction

Tracking non-rigid targets in low-resolution images has long been realized as a region-

based correspondence problem, in which each target is mapped from one frame to the

next according to its position, dimension, colour and other contextual information.

When multiple targets exist and their dimensions are not negligible in comparison with

their velocities, occlusion or grouping of these targets is a routine event. This brings

about uncertainty for the tracking, because the contextual information is only available

for the group and individual targets cannot be identified.

Existing region-based tracking algorithms use either the measurement for the group

or the prediction for each target to update the target estimate through grouping. Intille,

Davis and Bobick [2] updated the centroid of a target using that of the group and held

the velocity, size and colour estimates. Rosales and Sclaroff [5] modelled the two cor-

ners of each target's bounding box and updated their positions using the prediction of an

Extended Kalman filter. Ellis and Xu [1] estimated the target, which is closer to the

group in state distance, using the group measurement and updated the other targets with

prediction. However, these algorithms all suffer from poor performance for target esti-

mation during grouping or occlusion. To estimate a target with the group measurement,

the estimate of the target is often seriously discontinuous at the start of grouping and

may be so misleading as to fail to find a match at the end of grouping. Target updating

using prediction is heavily reliant on the motion model and vulnerable to any violation

of the underlying assumption during grouping, e.g. the target turning or accelerating, for

a first-order motion model that assumes a linear trajectory and a constant velocity.
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We realize that the targets in a group are often partially observable, because some of

their bounding edges constitute the four bounding edges of the group. If these partial

observations are fed into the estimation process during grouping, the tracker should be

more robust and accurate than those without any observation. In this paper, our system

assumes that each target has a constant height and width, and models the four bounding

edges of each target by a Kalman filter. Once some edge is decided to be observable

and its measurement is input to the tracker, its opposite edge could be roughly deduced

because the two opposite edges share the “same” (though disturbed by confined noise)

horizontal or vertical velocity according the constant height and width assumption. The

deduction of unobservable variables from observable ones can be either direct or im-

plicit. The decision of target observability is based on the group foreground measure-

ment, target predictive measurement, and perhaps a simple scene model.

2  Foreground Measurement

Our system uses frame differencing for change detection in dynamic images. It com-

pares each incoming frame with an adaptive background image and classifies those pix-

els of significant variation into foreground. To maintain a reliable background image,

the probability of observing a value for each pixel is modelled by a mixture of Gaus-

sians [7]. At each frame, every new pixel value is checked against the Gaussian distri-

butions. For a matched distribution, the pixel measurement is incorporated in the esti-

mate of that distribution and the weight is increased. For unmatched distributions, their

estimates remain the same but the weights are decreased. If none of the existing distri-

butions matches the current pixel value, either a new distribution is created, or the least

probable distribution for the background is replaced. The distribution with the greatest

weight is identified as the background.

The foreground pixels are filtered by a morphological closing (dilation-plus-erosion)

operation and then clustered into foreground “blobs” using a connected component

analysis. A minimum number of foreground pixels is set for each blob to rule out small

disturbances. A foreground blob may correspond to an object, a group of objects due to

dynamic occlusion, or part of an object due to static occlusion. It is represented by a

foreground measurement vector, [ ]Tcc crcrcr 2211=b , where (rc, cc) is the cen-

troid, (r1, c1) and (r2, c2) are the two opposite corners of the bounding box. r1, c1, r2, c2

represent the top, left, bottom and right bounding edges, respectively ( 21 rr < , 21 cc < ).

In this paper, we use )(ib  to represent the i-th element of the vector b, e.g. cr=)1(b .

3  Motion Model

A Kalman filter based on a first-order motion model is used to track each object ac-

cording to the object measurement vector, [ ]Tcc crcrcr 2211=z . We distinguish

object measurements from foreground measurements, because they are the same only

for separate objects. Because our system aims to monitor pedestrians and vehicles, each

target is assumed to move along a linear trajectory at constant velocity and with constant

size. In practice, any minor violation of this assumption can be encoded in the process

covariance matrix. The state vector used is [ ]Tcccc crcrcrcr 2211 ∆∆∆∆=
��

x , where

7 7 8



),( 11 cr ∆∆  and ),( 22 cr ∆∆  are the relative positions of the bounding box corners to the

centroid. They not only incorporate height and width information, but also accurately

represent the bounding box even when the centroid is shifted away from the geometric

centre of the bounding box, e.g. due to asymmetry or shadows.

The state and measurement equations are:
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kw  and kv  are process noise and measurement noise, respectively; the state transition

matrix, A, and measurement matrix, H, are
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where I2  and O2 are 2×2 identity and zero matrices; T is the time interval between

frames. The a priori estimate, −
kx̂ , and a posteriori estimate, +

kx̂ , are related by:
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where Kk is the Kalman gain matrix that is sought to minimize the a posteriori covari-

ance in a least-square sense.

4  Scene Model

Because the camera is fixed, a scene model can be constructed for a specific camera

position. Whilst this is currently done manually, the previous work on path learning [3]

may be extended to derive an automatic method for learning the scene model. This

helps reasoning about the termination and occlusion of objects by scene elements.

Three types of static occlusions in a scene are identified (Fig. 1):

•  Border occlusions (BO), due to the limits of the camera field-of-view (FOV).

•  Long-term occlusions (LO), where objects may leave the scene earlier than

expected, corresponding to the termination of a record in the object database.

The long-term occlusion may exist at the border (e.g. buildings or vegetation) or

in the middle of an image (e.g. at the doors of a building).

•  Short-term occlusions (SO), where an object may be temporarily occluded by

a static occlusion, e.g. a tree or a road sign. Prior knowledge of these occlusions

helps avoid missing existing objects and creating “new” objects.

Each occlusion is characterized by its type (BO, LO or SO) and bounding box repre-

senting its location and dimension. The overlap of these static occlusions with the pre-

dicted centroid of an object can be used to predict object termination and occlusion.

After the a priori estimate of the state is determined, each object is subject to the status

prediction based on the scene model and predictive measurement:

 −− = kk xHz ˆˆ                                                              (4)
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•  An object is labelled as PREDICT_TERMINATED if its predicted centroid, ( −
kẑ (1),

−
kẑ (2)), is within a long-term occlusion (LO) or the outer limit of the border oc-

clusion (BO).

•  An object is labelled as PREDICT_OCCLUDED if its predicted centroid is within a

short-term occlusion (SO).

5  Partial Observability

For tracking multiple objects in a complex scene, it is noted that the object measure-

ment, kz , may be either partly unavailable or completely unavailable. This occurs due

to dynamic occlusion between objects, static occlusion, or just the failure of foreground

detection. Fig. 2 shows some examples of partial observation.

5.1 Deciding Observability

We decide the observability of the objects based on the predictive measurement, −
kẑ ,

the foreground measurement, kb , and perhaps the scene model. The outcome is repre-

sented by the observability vector, mk, which has the same dimension as the object

measurement vector, kz (their elements are in one-to-one correspondence). Each ele-

ment of mk has only two possible values: 1 for OBSERVABLE and 0 for UNOBSERVABLE.

The centroid is determined as OBSERVABLE only when all the four bounding edges (r1,

c1, r2, c2) are OBSERVABLE.

(1) Observability in grouping (Figs. 2(a) and (b))

•  For each foreground blob, all the objects that have their predicted centroid, ( −
kẑ

(1), −
kẑ (2)), within the blob bounding box are counted.

•  If the count is more than 1, the relevant objects form a group and are all associ-

ated with that blob.

•  Within such a group, if an object has the minimum −
kẑ (3) and/or −

kẑ (4), its r1

and/or c1 become(s) OBSERVABLE; otherwise it is UNOBSERVABLE.

•  Within such a group, if an object has the maximum −
kẑ (5) and/or −

kẑ (6), its r2

and/or c2 become(s) OBSERVABLE; otherwise it is UNOBSERVABLE.

LO

LO

SO
SO

Fig. 1: Static occlusions in a scene.
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(2) Observability in occlusion (Fig. 2(c))

•  For each object, check each of its predicted bounding edges. If either corner de-

limiting that edge is within a short- or long-term occlusion, that edge becomes

UNOBSERVABLE; otherwise it is OBSERVABLE.

It is noted that the observability of an object also depends on the observability of its

associated foreground measurement, kn , which has the same dimension as the object

measurement, kz . If the bounding box of this foreground measurement touches the bor-

der of the FOV, its relevant bounding edge becomes UNOBSERVABLE and thus inhibits

(masks) the relevant observability for the associated object(s), i.e.:

kkk nmm &=                                                          (5)

where & represents the logical AND between corresponding elements in two vectors.

5.2 Using Observability

For a completely unobservable object, its state is updated using its predictive state,
−+ = kk xx ˆˆ . For a partially unobservable object, a pseudo measurement vector is consti-

tuted, which members can be classified into two inter-correlated blocks (rc, r1, r2) and

(cc, c1, c2). The inter-block variables are bound by the constant height ( 1r∆ and 2r∆ ) and

constant width ( 1c∆  and 2c∆ ) assumption. Within each block, if all the variables are

unobservable, the only clue for their measurements are the prediction, which reflects the

constant velocity assumption; if part of its variables is observable, the unobservable

measurements can be jointly deduced from the observable measurement, reflecting the

constant size assumption, and the prediction. Suppose the observability matrix, M, is a

diagonal matrix whose main diagonal is the observability vector mk. The pseudo meas-

urement vector is estimated by:

( ) ( )[ ]−−+−+= kkkk zdMIMbz ˆ1 αα                                       (6)

where dk is the directly deduced measurements of unobservable variables from observ-

able measurements, and α controls the combination weights between the directly de-

duced measurements (constant size assumption) and the prediction (constant velocity

assumption). If all the variables in an inter-correlated block are unobservable, −= kk zd ˆ

for that block and this is equivalent to 0=α . The height and width information in the a

priori state estimate, −
kx̂ , is used to compute dk.

SO

(a) (b) (c)

Fig. 2: Partial observations when objects are grouped (a)(b) or behind a static occlu-

sion (c). Grey lines represent the foreground bounding boxes; thick and thin black

lines represent observable and unobservable bounding edges of objects, respectively.
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6  Tracking Algorithm

Our system works in a frame-based loop, which is summarised in the following:

•  Compute the foreground measurement, kb , and decide its observability, kn .

•  For each tracked object, compute its Mahalanobis distance with each foreground

blob. If the predicted centroid of the object is within the bounding box of the

foreground blob, the Mahalanobis distance is set to zero. Select the best-matched

foreground blob for each object according to the Mahalanobis distance.

•  If multiple objects have the same best-matched blob, keep the one(s) with the

smallest or zero Mahalanobis distance, and attribute the other(s) an inhibiting

Mahalanobis distance.

•  Detect object grouping. Decide the observability vector, km , and the measure-

ment, kz , for each object.

•  For each object with an allowable minimum Mahalanobis distance to some fore-

ground blob, estimate its state with the measurement, kz , if it is at least partially

observable; otherwise update its state using the predictive state, −+ = kk xx ˆˆ .

•  For each unmatched object

(1) It is assumed to be terminated, if it is PREDICT_TERMINATED or has been un-

matched for k frames.

(2) It is assumed to be behind static occlusions or lost in foreground detection.

Update it using the predictive state, −+ = kk xx ˆˆ . If not PREDICT_OCCLUDED, it is

subject to termination after k frames.

•  For each unmatched foreground blob, a new object is created and its state is ini-

tiated by kb and zero velocity.

•  Compute the a priori estimate of each object for k+1 and predict its status.

7  Results

To evaluate the performance of our tracking algorithm, we have tested it on a range of

image sequences and compared it with other two algorithms using blind tracking

through occlusion. To distinguish the effect of using partial observation, both algorithms

were designed to be the same as the new one (e.g. the same Kalman tracker), except

their treatment to objects in grouping or occlusion:

•  Algorithm 1   The object with the smallest Mahalanobis distance to the group

foreground blob is estimated with the measurement of the group, kk bz = ; the

others are updated using prediction, i.e. −+ = kk xx ˆˆ , as in [1].

•  Algorithm 2   All the objects in a group are updated using prediction, i.e.
−+ = kk xx ˆˆ , as in [5].

The image sequences used for the demonstration in this paper are the testing dataset

1 (CAM1 and CAM2) for PETS’2001 [4]. We processed frames 1 to 2681 at a tempo-

rally sub-sampled rate of 5 (simulating 5 fps) and at the half frame size (384×288). k=5

in our experiments. In the image results shown below, black and white boxes represent

foreground blob measurement, kb , and object a posteriori estimate, +
kx̂ , respectively. A

white dotted box represents a partly or completely unobservable object. A white curve
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represents the centroid trajectory of an active object.

7.1 Qualitative Performance

Fig. 3 shows an example of tracking through occlusion. In this example, a group of peo-

ple (object 4) walk toward and then pass by a stationary car (object 2). At frames 946-

991, both the objects are grouped and segmented as a large foreground blob (Fig. 3(b)).

Algorithm 1 matches the group foreground blob with object 4, the size of which is then

gradually adapted to that of the group measurement. After the group of people is split

from the car and segmented as a separate, smaller foreground blob (Fig. 3(c)), Algo-

rithm 1 rejects the match between this blob and object 4, due to the great difference in

size and position, and creates a new object (Object 6). Therefore, the group of people

changes its label after the occlusion. By using the partial observation, the location and

size of object 4 is more accurately estimated during occlusion (Fig. 3(e)). Finally, object

4 is correctly matched to the separate foreground blob (Fig. 3(f)).

Fig. 4 shows another example of tracking through occlusion. In this example, a dark

car (object 11 in top row and object 10 in bottom row) moves toward a stationary white

van (object 3) and finally occludes it. At frames 2246-2496, both the targets are seg-

mented as a large foreground blob. Algorithm 2 uses linear prediction to update the es-

timate of object 11 during the grouping. Because object 11 moves in a non-linear tra-

jectory, there exist some errors between the estimate and the foreground blob measure-

ment (Fig. 4(b), see the unfitted bottom and right bounding edges). These estimation er-

rors accumulate and object 11 finally fails to match the corresponding foreground blob

(Fig. 4(c)). Using the partial observation, the bottom and right bounding edges of object

10 are closely fit to the foreground blob (Figs. 4(e) and (f)). Object 10 even has a non-

linear trajectory during grouping (Fig. 4(f)), which indicates the linear motion model

has been continuously adapted to the non-linear motion. It is also noted that the estimate

of the top bounding edge of object 10 is not accurate (Fig. 4(f)), because it has been un-

observable for a long time.

For all the 9 grouping events (19 objects involved) in which objects merge and then

Fig. 3: Example 1 of object tracking through occlusion, (a)-(c) using Algorithm 1

and (d)-(f) using partial observation ( 0=α ).

a b c

d e f
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split, we counted the mis-tracking events in which any object in a group changes its la-

bel after splitting. The result shown in Table 1 indicates that the new algorithm performs

more reliably than Algorithms 1 and 2.

Algorithm 1 Algorithm 2 New (α = 0) New (α = 1)

Count of Errors 1 2 0 0

Table 1: Counts of erroneous tracking in 9 grouping-and-splitting events.

7.2 Quantitative Performance

The advantages of partial observation are not only reflected in the qualitative compari-

sons as above, but also exist in some quantitative measures applied on the tracking re-

sults in which both Algorithms 1 and 2 succeed. The first measure is the tracking error

between actual and predictive measurements, i.e. −−= kkke zz ˆ . For objects updated

using prediction, this error is set to zero.

The second quantitative measure is the path coherence, which represents a measure

of agreement between the derived object trajectory and the motion smoothness con-

straints [6]. Suppose sk is the segment between the centroid estimates at two consecutive

frames, ( ))2(ˆ)2(ˆ),1(ˆ)1(ˆ
11

+
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+ −−= kkkkk xxxxs . The path coherence function used is:
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where the weights w1 and w2 control the importance of direction coherence and velocity

coherence ( 5.01 =w  and 5.02 =w  in this paper), and ]1,0[∈Φk .

These two quantitative measures were selected because they are the basis of most

existing motion correspondence algorithms that usually assume the smoothness of mo-

tion. These measures are demonstrated using the example shown in Fig. 5, which is

Fig. 4: Example 2 of object tracking through occlusion, (a)-(c) using Algorithm 2

and (d)-(f) using partial observation ( 0=α ).

a b c

d e f
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overlaid by the tracking result using partial observation. In this example, a white van

(object 3) first passes by a newly stationary dark car (object 2), heads toward and oc-

cludes a group of people (object 4), decelerates and stops separately at the right border

of the FOV. Object 3 has been grouped at frames 806-941. Due to the linear trajectories

for the objects involved, Algorithms 1 and 2 also succeed in this example. However,

these two algorithms have different performance based on our quantitative measures.

Fig. 6 shows the tracking errors and path coherence values for object 3 in Fig. 5, re-

sulting from all the three algorithms. There are two points that should be noted. Firstly,

the centroid estimation error only accounts for about one third of entire tracking error,

because the latter also includes the errors for two bounding corners. Secondly, the zero

values in the tracking error and coherence function for Algorithms 1 and 2 arise from

grouping and state updating using prediction, representing uncertainty rather than per-

fect tracking. Therefore to be fair, our comparison is concentrated on the measures just

after the end of grouping (frame 946). At that time objects 3 and 4 split and are re-

tracked; the tracking error and coherence are expected to have a peak value.

For the 12 objects involved in all the 6 grouping-and-splitting events in which all the

three algorithms succeed, the peak values of the new algorithm are lower than those of

Algorithms 1 and 2 in each case; the average peak values are shown in Table 2. The

quantitative measures for the new algorithm is much lower than those for Algorithms 1

and 2, indicating its improved performance. The reason is, even fed by partial observa-

tion only during grouping, objects could deduce their unobservable bounding edges ac-

cording to the built-in relation among members of the measurement vector. For exam-

ple, on the assumption of constant size, the left and right edges of an object should share

a horizontal velocity, and the top and bottom edges should share a vertical velocity. The

Fig. 5: Example 3 of object tracking using partial observation ( 0=α ).
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Fig. 6: (a) Tracking errors in pixels and (b) path coherence, for object 3 in

Fig. 5, using Algorithm 1 (thin black lines), Algorithm 2 (thick grey lines),

and partial observation ( 0=α , thick black lines).
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deduction of unobservable variables can be either direct (α = 1) or implicit when the

Kalman filter seeks the optimal solution for the a posteriori estimate (α = 0). In the lat-

ter case, the measurements of the observable variables are propagated to the unobserv-

able variables. Therefore, even with an incomplete measurement input, the objects still

have the estimates of all its four bounding edges adapted to the new, partial measure-

ment. This is partly reflected by the non-zero tracking errors of object 3 during grouping

(Fig. 6(a)), which prevents the tracking errors from accumulating and makes object 3

adaptive to the deceleration. The after-grouping peak measures of the new algorithms

using α = 1 fluctuate around those using α = 0. Their relative values depend on whether

the constant size assumption (α = 1) or the constant velocity assumption (α = 0) is bet-

ter fit to the practical situations in the testing sequences.

Algorithm 1 Algorithm 2 New (α = 0) New (α = 1)

Tracking errors 28.27 29.96 19.33 16.81

Path coherence 0.2765 0.2461 0.0923 0.0863

Table 2: Quantitative measures of the tracking algorithms.

8  Conclusions
We have presented a tracking algorithm utilizing partial observation of each target

through grouping or occlusion. The unobservable variables can be estimated by a Kal-

man filter based on the measurement of observable variables, the state prediction, as

well as the scene model. This makes target estimation adaptive to small changes of di-

rection and accelerations during grouping or occlusion. The new algorithm has advan-

tages over traditional blind tracking schemes in terms of lower tracking errors and better

path coherence.
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