
 Open access Journal Article DOI:10.1017/S1351324997001599

Partial parsing via finite-state cascades — Source link

Steven Abney

Institutions: University of Tübingen

Published on: 01 Dec 1996 - Natural Language Engineering (Cambridge University Press)

Topics: LR parser and Parsing

Related papers:

 Parsing By Chunks

 Building a large annotated corpus of English: the penn treebank

 Incremental finite-state parsing

 Transformation-based error-driven learning and natural language processing: a case study in part-of-speech tagging

 Text Chunking Using Transformation-Based Learning

Share this paper:

View more about this paper here: https://typeset.io/papers/partial-parsing-via-finite-state-cascades-
39fg3f6qgz

https://typeset.io/
https://www.doi.org/10.1017/S1351324997001599
https://typeset.io/papers/partial-parsing-via-finite-state-cascades-39fg3f6qgz
https://typeset.io/authors/steven-abney-yyd1rwfagv
https://typeset.io/institutions/university-of-tubingen-1nm1j91u
https://typeset.io/journals/natural-language-engineering-1umjvzk5
https://typeset.io/topics/lr-parser-26bbxa6q
https://typeset.io/topics/parsing-3t590anb
https://typeset.io/papers/parsing-by-chunks-l3uwrcwtpc
https://typeset.io/papers/building-a-large-annotated-corpus-of-english-the-penn-4tcny82kaq
https://typeset.io/papers/incremental-finite-state-parsing-4aa2pxtvsa
https://typeset.io/papers/transformation-based-error-driven-learning-and-natural-yiukta0a5v
https://typeset.io/papers/text-chunking-using-transformation-based-learning-9jthst2bz0
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/partial-parsing-via-finite-state-cascades-39fg3f6qgz
https://twitter.com/intent/tweet?text=Partial%20parsing%20via%20finite-state%20cascades&url=https://typeset.io/papers/partial-parsing-via-finite-state-cascades-39fg3f6qgz
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/partial-parsing-via-finite-state-cascades-39fg3f6qgz
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/partial-parsing-via-finite-state-cascades-39fg3f6qgz
https://typeset.io/papers/partial-parsing-via-finite-state-cascades-39fg3f6qgz

Partial Parsing via Finite-State Cascades

Steven Abney

1996

Abstract

Finite-state cascades represent an attractive architecture for parsing

unrestricted text. Deterministic parsers specified by finite-state cascades

are fast and reliable. They can be extended at modest cost to con-

struct parse trees with finite feature structures. Finally, such deterministic

parsers do not necessarily involve trading off accuracy against speed—they

may in fact be more accurate than exhaustive-search stochastic context-

free parsers.

1 Finite-State Cascades

Of current interest in corpus-oriented computational linguistics are techniques
for bootstrapping broad-coverage parsers from text corpora. The work described
here is a step along the way toward a bootstrapping scheme that involves induc-
ing a tagger from word distributions, a lowlevel “chunk” parser from a tagged
corpus, and lexical dependencies from a chunked corpus. In particular, I de-
scribe a chunk parsing technique based on what I will call a finite-state cas-
cade. Though I shall not address the question of inducing such a parser from
a corpus, the parsing technique has been implemented and is being used in a
project for inducing lexical dependencies from corpora in English and German.
The resulting parsers are robust and very fast.
A finite-state cascade consists of a sequence of levels. Phrases at one level are

built on phrases at the previous level, and there is no recursion: phrases never
contain same-level or higher-level phrases. Two levels of special importance are
the level of chunks and the level of simplex clauses [2, 1]. Chunks are the
non-recursive cores of “major” phrases, i.e., NP, VP, PP, AP, AdvP. Simplex
clauses are clauses in which embedded clauses have been turned into siblings—
tail recursion has been replaced with iteration, so to speak. To illustrate, (1)
shows a parse tree represented as a sequence of levels.

1

(1) L3 S S
T3

L2 NP PP VP NP VP
T2

L1 NP P NP VP NP VP
T1

L0 D N P D N N V-tns Pron Aux V-ing

0 the 1 woman 2 in 3 the 4 lab 5 coat 6 thought 7 you 8 were 9 sleeping

Parsing consists of a series of finite transductions, represented by the Ti in
(1). A number of researchers have applied finite transducers to natural-language
parsing [7, 8, 10]. Typically a transducer calculus is developed and syntactic
analysis is accomplished by inserting syntactic labels into a word stream. By
contrast, in a finite-state cascade, spans of input elements are reduced to single
elements in each transduction, as in traditional parsing.
To illustrate, consider the regular cascade (2).

(2) T1 :

{

NP → D? N∗ N

VP → V-tns | Aux V-ing

}

T2 : {PP → P NP}

T3 : {S PP∗ NP PP∗ VP PP∗}

Each transduction is defined by a set of patterns. A pattern consists of a
category and a regular expression. The regular expression is translated into a
finite-state automaton, and the union of the pattern automata yields a single,
deterministic, finite-state level recognizer Ti in which each final state is associ-
ated with a unique pattern. The recognizer Ti is run with Li−1 as input, and it
produces Li as output. The recognizer starts in a distinguished start state, and
input symbols determine state transitions in the usual way. If the recognizer
enters a final state at more than one position in the input, only the longest
match creates an output phrase. If the recognizer blocks without reaching a
final state—and this is routinely the case, inasmuch as patterns only pick out
easily recognizable constructions, rather than attempting to be exhaustive—
then a single input element is “punted” to the output and recognition resumes
at the following word.
For example, in (1), the recognizer T1 begins at word 0 in level L0. It reaches

a final state associated with the NP pattern at position 2, and outputs an NP
from 0 to 2 at L1. The recognizer is then restarted at position 2. No transition
is possible, so P is punted. Starting from position 3, final states associated with
the NP pattern are reached at positions 5 and 6. Taking the longest match, the
recognizer outputs an NP from 3 to 6 at L1. Then recognition continues from
position 6.
A finite-state cascade is very fast, being little more than a pipeline of Lex-

style lexical analyzers [9]. Unlike traditional parsers, there is no global opti-
mization. This contributes not only to speed, but also to robustness. Namely,

2

a common problem with traditional parsers is that correct lowlevel phrases are
often rejected because they do not fit into a global parse, due to the unavoidable
incompleteness of the grammar. This type of fragility is avoided when lowlevel
phrases are judged on their own merits.
If the speed of the parser is attributable to its architecture, its effectiveness

is largely a function of the grammar. The grammar is viewed, not as a linguistic
description, but as a programming language for recognizers. The goal is to write
patterns that are reliable indicators of bits of syntactic structure, even if those
bits of structure are “boundaries” or “kernels” rather than traditional phrases.
The reliability of patterns is key. The philosophy is easy-first parsing—we

make the easy calls first, whittling away at the harder decisions in the pro-
cess. By keeping pattern precision high, we can parse deterministically with
acceptable error rates. Parsing proceeds by growing islands of certainty into
larger and larger phrases. Easy-first parsing means that we do not build a
parse-tree systematically from bottom to top, but rather recognize those fea-
tures of structure that we can. Where reliable markers for high-level boundaries
are recognized, uncertain intermediate-level structure can be skipped over with
“ANY*” expressions to go straight to higher-level phrases. The result is con-
tainment of ambiguity. Containment of ambiguity plays a key role in the use
of chunk-and-clause parsing in the bootstrapping of argument structures. PP’s
and the like whose attachment is uncertain are left unattached, but the possible
attachment sites are limited by the containing simplex clause. Also within noun
chunks, ambiguities like noun-noun modification are contained but not resolved.

2 Features and Internal Structure

In the application of the parser to argument-frame induction, syntactic features
are necessary, particularly for case information in German. It is also at times
convenient to be able to insert, after the fact, some of the internal structure that
regular-expression patterns flatten out, or to insert “linguistic” phrases in cases
where the pattern includes surrounding context or multiple traditional phrases.
Regular cascades can be modified to compute feature inheritance and internal
structure at a modest cost in efficiency, as follows.
We extend patterns to include actions. An example is the pattern (3):

(3) Subj → [NP n= D? n= [N1 A* n= N]] V

The symbols “[NP”, “n=”, “[N1”, and “]” represent actions. The pattern (3)
translates to a finite transducer in which the boldface symbols (D, A,N, V) are
input symbols, and the actions are output symbols. I hasten to emphasize the
difference between this transducer and the transductions Ti that we discussed
earlier. The transductions Ti are computed using level recognizers. Let us
call transducers such as that generated by the extended expression (3) internal
transducers. Internal transducers do not replace level recognizers. Extended

3

patterns such as (3) are stripped of actions and compiled into automata whose
union yields level recognizers, just as before. Level recognizer Ti is called with
Li−1 as input, and creates Li as output. After a phrase associated with pattern
p is recognized, the internal transducer for pattern p is used to flesh out the
phrase with features and internal structure.
Further, unlike in unification grammars, recognized phrases are not rejected

because of unification failures. Indeed, there is no unification per se: features are
represented as bit vectors, and feature assignment involves bitwise operations on
those vectors.1 For example, the case feature of the German word der might be
represented as 1000 0110 0000 0100, meaning that it is either masc. sg. nom.,
fem. sg. gen., fem. sg. dat., or pl. gen. Case features are combined by bitwise
“and.” If Mann is 1011 0000 0000 0000, then der Mann ends up being 1000
0000 0000 0000, i.e., unambiguously masc. sg. nom. If Haus is 0000 0000
1011 0000, then der Haus ends up as all zeros. But it is not for that reason
rejected as a phrase.
After a phrase is recognized, we run the internal transducer on it. That is,

we associate states of the internal transducer with the positions in the input
spanned by the recognized phrase, requiring of course that transitions respect
input symbols and that a final state be reached at the end of the phrase. In
general, the transducer is not deterministic. We do a backtracking search that
postpones epsilon transitions whenever possible, and accepts the first path that
successfully reaches a final state at the end of the recognized phrase.
By associating states of the internal transducer with input positions, we

also associate actions with input positions. A right-bracket action at position
i means “create a new current phrase ending at i”. A left-bracket action at
i means “the new current phrase begins at i”. An assignment action f= at i
means “copy feature f from the input symbol or old phrase at i to the current
phrase”.
Given these interpretations, actions cannot simply be executed left-to-right.

Rather, we must create the innermost phrase first, do the feature assignments
for which it is target, then drop it into the input and repeat with the next
innermost phrase. Fortunately, the order in which actions are to be executed
can be determined at compile time, so that we do not have to sort the actions
at run time.

3 Evaluation

The speed of finite-state cascades has already been mentioned. The speed of
the current implementation (Cass2) is quite sensitive to the number of levels:

1Those features with a fixed set of possible values could of course be folded into phrase
categories, avoiding online computation. But folding features into categories often blows
up the grammar size unacceptably, in which case online computation as described here is
advisable.

4

the parser is about 2/3 faster with a two-level grammar as with a nine-level
grammar. With nine levels, the parser runs at about 1600 words/second (w/s)
on a Sparcstation ELC, or an estimated 1300 w/s on a Sparcstation 1. By
comparison, parser speeds reported in the literature range from less than one
w/s to nearly 3000 w/s. I have attempted to adjust the following figures for
hardware, taking a Sun4/Sparcstation 1 as standard.2 Traditional chart parsers
run at less than 1 w/s (Tacitus: 0.12? w/s [5]). “Skimming” parsers run at
20–50 w/s (Fastus: 23 w/s [3], Scisor: 30? w/s [6], Clarit: 50? w/s [4]).
Deterministic parsers can be more than an order of magnitude faster (CG: 410
w/s [12], Fidditch: 1200 w/s (Hindle, p.c.), Cass2: 1300–2300 w/s, Copsy:
2700? w/s [11]). Cass2 is as fast as any parser in this class, with the possible
exception of Copsy, for which the hardware adjustment is highly uncertain.
In measuring parser accuracy, there is a tension between evaluation with re-

spect to some application (e.g., does parsing improve accuracy of speech recog-
nition/information retrieval/etc.?) and evaluation with respect to a linguistic
definition of “phrase.” I think the resolution of this tension comes by distin-
guishing between the accuracy of the parser at performing the linguistic task it
was designed for, and the utility of the linguistic task for particular applications.
In measuring accuracy, it is additionally important to distinguish between

the task definition, which typically involves human linguistic judgments, and
“test data,” which is a record of a particular person’s judgments. For example,
a stylebook is a task definition, and a treebank is a record of judgments. Gen-
erally, a task definition leaves ample room for interjudge variance—though the
degree to which interjudge variance compromises the validity of treebank-based
evaluations is rarely appreciated. To reduce interjudge variance, we may make
the task definition more detailed, but that also generally makes the task defi-
nition more arbitrary and less useful for comparison of parsers. To be broadly
useful, it is in my opinion better to develop a collection of small, specialized
“benchmarks” rather than a single large stylebook, so that evaluation partic-
ipants can pick and choose those tasks that best match their systems’ actual
design criteria.
We have performed a preliminary evaluation of the parser described here.

I wrote a brief stylebook defining “chunks”, intended as a benchmark for one
part of the output of a partial (or full-scale) parser. I hand-labelled a random
sample of corpus positions with the category and end-point of the chunk (if
any) starting at that corpus position. This permits us to estimate correlation
between my judgments and the parser’s “judgments” without creating a large
treebank. A second human judge (Marc Light) performed the same task, to
permit us to gauge interjudge reliability.

2The estimates I used for hardware coefficients are as follows: Sparcstation 1: 1.0 (Fidditch,
Scisor?, Clarit?—hardware is not specified in Scisor and Clarit citations; I have assumed
Sparcstation 1), Siemens BS2000: 1.0 (Copsy—estimate is highly uncertain), Sparcstation
ELC: 1.25 (Cass2), Sparcstation 2: 1.7 (Tacitus?, Fastus), Sparcstation 10: 3.8 (CG).

5

(4) cass2 marc
sample size N 1000
answers3in common X 921 934
chunks in tst t 390 381
chunks in std s 394
chunks in common x 343 348

per-word accuracy X/N 92.1± 1.7%4 93.4± 1.5%
precision x/t 87.9± 3.2% 91.3± 2.8%
recall x/s 87.1± 3.3% 88.3± 3.2%

What is immediately striking is that the difference between parser and hu-
man performance on this test is barely significant. That fact would not have
emerged if my mark-up had simply been accepted as the standard. Clearly, there
is room for improvement in both the grammar (to improve parser accuracy) and
stylebook (to reduce interjudge variance).

4 Not only Faster but also More Accurate

By way of closing remarks, I would like to address the motivation for partial
parsing. The common view is that a parser such as that described here trades
off accuracy for speed, compared to an exhaustive-search parser. But under
certain reasonable assumptions about English, partial parsers—in particular,
parsers using the longest-match rule—may be not only faster but also more
accurate than exhaustive-search parsers—in particular, stochastic context-free
parsers.
Consider the grammar

(5) S → b A B | c C A | d B D
A → a | a a
B → a | a a
C → a | a a | a a a
D → a | a a

Grammar (5) generates a finite language. Assume that each parse tree occurs
with equal frequency, with the exception that a longest-match rule resolves
ambiguities. That is, the parse-trees (6) are excluded, inasmuch as, for each
parse in (6), there is an alternative parse in which the middle child covers more
of the input.

3The sample consists of corpus positions; X is a random variable whose values (the “an-
swers”) are “chunk of category c and length k” or “no chunk”. Per-word accuracy is the
percentage of correct answers. Precision and recall consider only the subsample in which
there is actually a chunk in the test or standard, respectively.
4The plus-minus figures represent a 95% confidence interval, using a normal approximation

to the binomial.

6

(6) [S b [A a] [B a a]]
[S c [C a] [A a a]]
[S c [C a a] [A a a]]
[S d [D a] [B a a]]

If our training corpus contains each parse tree with equal frequency, excluding
the parse trees (6), the maximum-likelihood estimate for rule probabilities is as
follows:

(7) S → b A B (3/10) | c C A (2/5) | d B D (3/10)
A → a (4/7) | a a (3/7)
B → a (1/2) | a a (1/2)
C → a (1/4) | a a (1/4) | a a a (1/2)
D → a (2/3) | a a (1/3)

Now, because of the longest-match constraint that the language obeys, there
is a deterministic longest-match parser that performs perfectly, whereas the best
SCFG (7) parses the sentence baaa incorrectly. Namely, the parse tree [S b [A
a] [B a a]] has probability 4/14 according to grammar (7), whereas the correct
parse tree, [S b [A a a] [B a]], has probability 3/14.
Intuitively, this is a consequence of “longest match” being an essentially

cross-derivational (equivalently: context-sensitive) notion. If English empiri-
cally observes a longest-match constraint, a deterministic longest-match parser
can be more accurate than a stochastic CF parser. That English does adhere
to a longest-match constraint is suggested by many garden path sentences. For
example, The emergency crews hate most is domestic violence is a garden path
because we strongly prefer the longest initial NP, the emergency crews, and over-
look the alternative that is in this case correct, namely, the emergency [which]
crews hate most is domestic violence.

5 Conclusion

I have presented a technique, finite-state cascades, for producing fast, robust
parsers for unrestricted text. The technique has been applied to English and
German, and is being used in a project for inducing subcategorization frames
and selectional restrictions in these languages. The parser consists of a pipeline
of finite-state recognizers. Key concepts are easy-first parsing, islands of cer-
tainty, and containment of ambiguity. Finite-state cascades can be extended to
include feature assignment and output of “linguistic” structure at little cost in
efficiency.
I have also drawn some distinctions that I believe are important for eval-

uation, though not widely appreciated—in particular, the distinction between
accuracy and utility, and the distinction between task specification and test
data, along with the importance of measuring and controlling interjudge vari-
ance. To the latter end, I propose using a collection of benchmarks instead

7

of a single stylebook in order to control interjudge variance while maintaining
broadness of relevancy.

References

[1] Steven Abney. Rapid incremental parsing with repair. In Proceedings of the
6th New OED Conference: Electronic Text Research, pages 1–9, Waterloo,
Ontario, October 1990. University of Waterloo.

[2] Steven Abney. Parsing by chunks. In Robert Berwick, Steven Abney, and
Carol Tenny, editors, Principle-Based Parsing. Kluwer Academic Publish-
ers, 1991.

[3] Douglas E. Appelt et al. SRI international FASTUS system MUC-4 test re-
sults and analysis. In Proceedings, Fourth Message Understanding Confer-
ence (MUC-4), pages 143–147, San Mateo, CA, 1992. Morgan Kaufmann.

[4] D. Evans, K. Ginther-Webster, M. Hart, R. Lefferts, and I. Monarch. Au-
tomatic indexing using selective nlp and first-order thesauri. In Proc. of
RIAO 91 (Barcelona), pages 624–643, 1991.

[5] Jerry R. Hobbs et al. SRI International: Description of the FASTUS system
used for MUC-4. In Proceedings, Fourth Message Understanding Confer-
ence (MUC-4), pages 268–275, San Mateo, CA, 1992. Morgan Kaufmann.

[6] Paul S. Jacobs. To parse or not to parse: Relation-driven text skimming.
In COLING 90, vol. 2, pages pp. 194–198, 1990.

[7] Kimmo Koskenniemi. Finite-state parsing and disambiguation. In
COLING-90, pages 229–232, 1990.

[8] Kimmo Koskenniemi, Pasi Tapanainen, and Atro Voutilainen. Compiling
and using finite-state syntactic rules. In COLING-92, pages 156–162, 1992.

[9] Michael Lesk. Lex: a lexical analysis program generator (?). In UNIX
Programming Utilities and Libraries. Publisher unknown, 1978?

[10] Emmanuel Roche. Analyse Syntaxique Transformationnelle du Francais
par Transducteurs et Lexique-Grammaire. PhD thesis, Université Paris 7,
1993.

[11] Christoph Schwarz. Automatic syntactic analysis of free text. JASIS,
41(6):408–417, 1990.

[12] Atro Voutilainen. NPtool, a detector of English noun phrases. In Proceed-
ings of the Workshop on Very Large Corpora, pages 48–57, 1993.

8

