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Partial Polymorphic Type Inference and Higher-Order Unification 

Frank Pfenning’ 
Department of Computer Science 

Carnegie Mellon University 
Pittsburgh, Pennsylvania 15213-3890 

Abstract 

We show that the problem of partial type inference in the 
ntb-order polymorphic X-calculus is equivalent to nth- 
order unification. On the one hand, this means that par- 
tial type inference in polymorphic X-calculi of order 2 or 
higher is undecidable. On the other hand, higher-order 
unification is often tractable in practice, and our transla- 
tion entails a very useful algorithm for partial type infer- 
ence in the w-order polymorphic X-calculus. We present 
an implementation in AProlog in full. 

1 Introduction 

Even though polymorphism is generally regarded as a 
very desirable feature in typed programming languages, 
many languages (like ML) restrict themselves to an im- 
plicit polymorphism without explicit type abstraction or 
type application, This is partly due to the difficulty or 
even undecidability of type inference in languages with 
explicit polymorphism (see Boehm [2]). As a conse- 
quence, large amounts of type information must be given 
together with a program, making programming in such 
an explicitly typed language cumbersome. 
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In this paper we examine the w-order polymorphic 
A-calculus as a core language that can serve as a ba- 
sis for the implementation of syntactically much richer 
languages with explicit type abstraction and application. 
Many types and language constructs can be defined di- 
rectly or introduced as typed constants. Definable types 
include products, sums, lists: constructs that can be in- 
cluded in the type checking merely with the addition of 
a new type constant include Mitchell and Plotkin’s 1191 
abstype and reps for the definition and use of abstract 
data types. 

In explicitly polymorphic languages, at least two dif- 
ferent type inference problems arise which we call full 
and partial type inference. These different problems 
reflect different views of the underlying X-calculus, ei- 
ther as type-assignments to untyped terms (the “Curry” 
view [S]) or as filling in information omitted from typed 
terms (the “Church” view [4]). The former leads to full 
type inference, the latter to partial type inference. More 
on this dichotomy in Section 2.1. 

Full type inference means that arbitrary type absuac- 
tions and applications may be inserted into the untyped 
term in order to find a valid typing. Aspects of full type 
inference for the second-order polymorphic X-calculus 
have been examined by Leivant [13], McCracken [ 141, 
and Mitchell [19], but the decidability question is still 
open. 

We believe that full type inference, even though it may 
be decidable, is of limited use in programming practice. 
Types in a program provide more than just information 
for the compiler - they also provide succinct and for- 
mal documentation and thus help the programmer read, 
debug, and maintain his programs. If all type informa- 
tion is omitted, too many programs may have a correct 
typing without carrying the meaning intended by the pro- 
grammer. The fact that there may be many different type 
assignments to a given term compounds this problem. 

As a simple example consider Xx . (xx) (the notation 
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is explained in Section 2). Clearly this term has a typing 
if we insert a type application, for example leading to 
)tx:d0 . 0 j 6 . (x[D . t9 + 01x), which may or may 
not be what the programmer intended. 

Partial polymorphic type inference, on the olher hand, 
does not attempt to arbitrarily insert type abstractions and 
applications, but requires placeholders to be supplied by 
the user. Thus Xx . (xx) would not type-check, but )tx . 
(x [ ] x) would, since there is an explicit indication that x 
was intended to be a type abstraction. This is perhaps 
a little more verbose than the completely untyped term, 
but still much shorter than its fully typed counterpart 
above. Partial type inference has been investigated by 
Mitchell [21] and Boehm [2]. 

As the main result of the paper we show that partial 
polymorphic type inference in the nth-order polymorphic 
X-calculus is equivalent to nth-order unification. This 
may be disheartening, since already second-order unifi- 
cation is undecidable as shown by Goldfarb in [9], and 
thus partial type inference is undecidable even for the 
second-order polymorphic X-calculus (a slightly weaker 
version of this theorem was proven by Boehm in [2]). 

However, we can make very good use of the converse, 
namely that partial polymorphic type inference can be 
solved through higher-order unification. Huet’s complete 
algorithm for higher-order unification described in [ll] 
has proven a very valuable tool with good computational 
properties when given realistic problems. It is used suc- 
cessfully in other areas like higher-order logic program- 
ming [16], natural deduction [22], automated theorem 
proving [ 11, and program derivation [12,24]. 

Somewhat unexpectedly, one can also recover the con- 
venience of ML-style polymorphism by allowing the 
generic let. This extension (see Section 2.2) is conve- 
nient for the same reason it is convenient in ML, namely 
that partial type inference often does not completely de- 
termine the type of a term, but rather has free variables 
in its solution. The typing rule for the ML let constructs 
allows these variables to be instantiated differently at dif- 
ferent occurrences of the term - in our extended set- 
ting we may do the same. Of course, the extension to 
the polymorphic A-calculus means that the variables will 
sometimes be “higher-order”, that is. they m.ay be in- 
stantiated with arbitrary functions from types to types, 
etc. 

Our implementation is written in Miller and Nadathur’s 
XProlog language (see [16]). It is extremely well-suited 
for a problem of the kind described here, since higher- 
order unification is XProlog’s inference engine., The pro- 
gram is short and concise (see Section 5). However, an 
implementation in support of a real programming lan- 

guage would need to be somewhat more sophisticated 
than our prototype. The search space should probably be 
explored through iterative deepening, rather than depth- 
tirst as in XProlog (which is incomplete). Also, it should 
sometimes return “maybe” when no valid typing can be 
found or contradiction discovered, and ask for more in- 
formation from the programmer. 

To date we have only run very preliminary experi- 
ments. However, when given realistic input, our proto- 
type implementation performed well in discovering valid 
typings of expressions with relatively little explicit type 
information. Somewhat more surprisingly, it also showed 
good failure properties and most of the time detected 
when terms could not be typed. We have also identified 
cases where some simple, general improvements to the 
current XProlog interpreter would cause our program to 
return with failure where it currently follows an infinite 
computational branch. 

2 The w-Order Polymorphic X-Calculus 

In [8,7], Girard defines a powerful extension to Church’s 
simply typed X-calculus [3] and goes on to give a con- 
structive proof of strong normalization for his system. 
A fragment of Girard’s calculus was independendy dis- 
covered by Reynolds [25] who introduced abstraction on 
type variables and application of functions to types in or- 
der to define explicitly polymorphic functions. Reynolds’ 
calculus is known as the second-order polymorphic X- 
calculus. 

In this paper we consider the w-order polymorphic X- 
calculus which is an extension of Reynolds’ system, but 
only a fragment of Girard’s system since it omits exis- 
tentially quantified types. Our presentation of the calcu- 
lus consists contains three distinct syntactic categories: 
kinds, types, and terms. In Girard’s presentation in [7], 
kinds are called orders. 

Since our calculus is higher-order, in addition to types 
of terms, we have functions from types to types, etc. We 
will call every such object a type. The subset of those 
that is first-order, or, equivalently, of kind “Type”, can 
actually be the type of a term. These and other properties 
of the calculus are summarized towards the end of this 
section. 

Since we will need to be careful about the set of con- 
stants, the language is parameterized over a set of type 
constructors and a set of term constants. They are cap- 
tured in the kind signature and type signature, respec- 
tively. We use K, M for kinds, CY, p, . . . for types, 8, $J 
for type variables, 0 for type constructors, u, v, . . . for 
terms, x, y, . . . for variables, and c for constants. 
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Definition 1 The syntactic cafegories of kind. type, and 

term are defined through 

Kinds K ::= TypeIK+M 
Types Q ::= CTIBIL&K.CY((Y/~ 
Terms u ::= clxlXx:rr.uluvl 

A&K. u 1 u [Q] 

Definition 2 A kind signature C is a set of pairs uniquely 

associating a kind with each type constructor. We dejine 
an extension C+ of a given kind signature to include the 

constants *:Qpe + Type + 7&e E C’ and, for every 

valid kind K, also IIK:(K ---f Qpe) -+ Type E C+. A 

type signature C is a set of pairs uniquely associating a 
type with each constant. A context F uniquely assigns 
kina to type variables and types to term variables. 

Following common convention, we will sometimes 
omit an empty signature or context. In order not to 
conflict with the “,” separating function arguments, we 
sometimes use “$” to adjoin a pair to a signature or 
context. 

The type constants in =+ and 17~ play a special role: 
=P is the function type constructor, 17~ constructs types 
of polymorphic functions. The idea behind the type con- 
structor DK is due to Church [4] who used IT as a con- 
stant to serve as a universal quantifier. If we restricted 
ourselves to the second order polymorphic calculus, we 
could express the type A0 . 0 3 0 as I7 (Lo . B j 0). 
In the w-order polymorphic A-calculus we have to be a 
bit more verbose, since A may abstract over types of ar- 
bitrary kind. Thus, instead of one constant D, we have 
a family of constants 17~ parameterized over the kind 
of the abstracted variable. Note that in Church’s formu- 
lation of the simple theory of types. a constant 17 also 
exists at every type, 

In the second-order fragment of the polymorphic X- 
calculus as defined above, one can explicitly define com- 
mon data types and operations on them, such as natural 
numbers (int z AB . (0 + t9) + (0 + O)), products, 
disjoint union, or lists (list z La . A0 . (CX + 6 + 6) j 

e + e). 

The benefits of transcending the second-order poly- 
morphic ~-calculus become visible in the example of ab- 
stract data types. Instead of new primitive constructs and 
type deduction rules, we can just introduce a new family 
of constants into the type signature and signature. This 
new type constructor is sigma, (not to be confused with 
the symbol Z for the type signature) and constants absK 

and repK. 

Example 3 (Abstract data types). 

sigma, E (K + Type) -+ Type 
absK E Acr:K --+ l)pe @:Type . sigmaKcv =k 

(AB:K.cuQJ,@+fi 
repK E AQ:K -+ Type. ARK. Q 0 + sigmaKcv 

In the formulation of the system with existential types 

through inference rules, a restriction is placed on @’ in 
the definition of abSK, namely that it not contain 8. Here 

that is unnecessary, since an attempt to substitute a type 

for ,B that contains 0 free would lead to a renaming of 

0 in order to prevent a type clash. Thus this restric- 
tion is embedded into our system directly. For a dis- 

cussion on how these constants can be used to represent 
abstract data types, transliterate work from Mitchell and 

Plotkin [20]. 

In this shortened presentation we will not explicitly 
state the inference rules used to establish the validity of 
contexts or signatures. They hold no surprises. 

We will regard a-convertible types and terms (with 
L and A the respective binders) to be equal. Thus we 
will mostly ignore issues of variable renaming and name 
clashes. 

In the inference rules of the polymorphic X-calculus, 
we will allow conversions between Pv-equivalent types. 
We define p and 7 conversions of types as is done usually 
on terms. A P-redex then takes the form (LQ:K . (~)y. 

Next we define the judgments of the inference system 
that allows us to find valid types for terms and kinds for 
types. 

Definition 4 A judgment is one of the following asser- 

tions: 

l- C kindsig C is a valid kind signature 

kz C typesig C is a valid type signature 

tz,,, r context r is a valid context 

IKEkind K is a valid kind 
rl-,CYEK cr has kind K 

r t-.,c u E (Y u has type Q 

We now define the inference system defining valid 
judgments. It is divided into groups corresponding to 
the different judgments which in turn correspond to the 
different syntactic categories. Every kind that is syntac- 

tically well-formed is also valid, so we omit the rules for 
valid kinds. 
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Definition 5 (Valid Type). 

tE r context u:K E C+ 

rt-EUEK 

tx r context e:KEr 

rt.eeK 

F t-, K E kind r,em--, ff ~hd 

rt-U:K.cufK+M 

rt,aEK+M rkE-,PEK 

rbzcYpBM 

Definition 6 (Valid Term). 

t- r context c:cr E c 

r b,c c E CY 

t- r context X:Q E r 

r b,, x E Q 

r,xza t-,c u E p r kc a E Type 

- r tx,c xx:ff . u E (Y =k p 

r h.,, u E a *p r b-,,, v E CY 

r t,,, UVE P 

r,e:K tE,c u E pe l- K E kind 

- 

Some of the antecedents of the rules are redundant but 
included for technical reasons. In particular, in the rule 
for X the antecedent asserting that cy is a valid type is 
unnecessary, since it follows from the proof that r, X:CY 
is a valid environment. Similarly, we do not need the 
fact that K is a valid kind in the rule for A. 

During the remainder of the paper, we will make use 
of some fundamental properties of the calculus. There 
are other theorems of interest, like strong normalization 
for terms, which we will not need. 

Lemma 7 1. If r tz CY E K then t C kindsig and 

l-z r context and t- K E kind. 

2. If r k,,, u E CY then I- C kindsig and t-Z r context 
and I’ tz CY E Type. 

Lemma 8 (Interpretation of types). The types of the 
polymorphic X-calculus form a simply typed X-calculus. 

We interpret kinds as types and types as terms. Under 

this interpretation we obtain a single base type Type with 
a binary function constant 3 :Type + Type + Type 
and a constant 17~: (K -+ Type) - Type for each type 
K. More term constants may exist depending on the kind 

signature C. 

Theorem 9 (Normal forms for types). rf r tE CY E K 
then CY has a unique long /3rt-normal form. 

2.1 Partial Type Inference 

In this section we define the problem of partial type in- 
ference. This is distinct from the problem of full type 
inference which is to decide whether, given a completely 
untyped term in the A-calculus, there is a way of inserting 
types of bound variables, type abstractions, and type ap- 
plications such that the resulting term in the polymorphic 
X-calculus is well-typed. Even though the problems are 
closely related, undecidability of partial type inference 
does not imply undecidability of full type inference. 

Partial vs. full type inference reflects two views of 
the underlying X-calculus. This difference in approach 
has sometimes been described as the “Church vs. Curry” 
debate. Our formulation of the w-order X-calculus is a 
natural extension of Church’s definition of the simply 
typed X-calculus [4], in which types are embedded in 
terms. In Curry’s formulation [5] (see also Hindley [lo]), 
types may be considered as properties of terms in the 
untyped X-calculus. 

Curry’s view leads to the problem of full type infer- 
ence which has been discussed in the literature in various 
places (see, for example, Leivant [ 133, McCracken [ 141, 
and Mitchell [19]), but whose decidability is still open. 

Church’s view leads to the problem of partial type 
inference some aspects of which have been discussed by 
Mitchell in [21] and Boehm in [23, and which is the 
subject of this paper. 

We adopted the name “partial type inference” from 
Boehm, but it is somewhat misleading. We would like 
to emphasize that it is no more or no less complete than 
the full type inference problem, but simply defined for a 
different view of a calculus of second- and higher-order 
types. In our opinion both views and associated type 
inference problems are theoretically interesting - which 
one has greater practical relevance remains to be seen. 
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This difference may be somewhat difficult to appre- 
ciate, since, in calculi with only simple types, the two 
views of type inference coincide, or rather, essentially the 
same type inference algorithm (based on first-order uni- 
fication) solves both problems (see, for example, [17]). 

Definition 10 The definition ofa partially typed term can 
be obtained from the defmition of a term by adding two 

alternatives, 

jj ::= . ..px.iiIii[]~ 

where ii stands for a partially typed term. 

In the special case of the second-order polymorphic X- 
calculus, we omit the subscript to the “[ 1” since it must 
be “Type”. 

We now need a new judgment expressing that a par- 
tially typed term ii is the result of erasing some type 
information from a term u. We will again define this 
relation through an inference system, since we need to 
maintain a context. 

Definition 11 Formally we define the judgment r kz-,,, 

ii 5 u (read: ii has less rype information than u) through 
an following inference system updating r. From the 
following informal definition it should be easy to see how 

to construct this inference system. 

c 5 c for c E C+ 
x5x 

xx:a * ii _< xx:cY . u if ii 5 u 
Xx. ii 5 XX:CY . u if ii< u 

ii9 5 uv if ii<uandP<v 
I1B:K.i-i 5 AB:K.u if ii<u 

ti[al I U[Ql if ii<u 

n[lK 5 u[(Yl if ii<uandcuEK 

The crucial difference to the full type inference prob- 
lem lies in the fact that we do not have ii < u [CX] or 
ii 5 Ae:K . u for U 5 u. 

Definition 12 (Partial type inference). A term u is a fully 
typed instance of a partially typed term ii iff t-E,C ii 5 u. 

The problem of partial type inference is to jind a fully 
typed instance of a given partially typed term. 

Unlike in the case of the simply-typed A calculus, no 
single most general orprincipal type-schemas exist in the 
polymorphic calculus. Consider the example from the 
introduction, )tx . (x [I x). There are two most general 
solutions to this type inference problem, namely 

Xx:(AB * B 3 se). (me. 0 * 15O]x) 

xx:(ne . 8) . (X [(ae . e) + 71~) 

where &Type + Type and -y:Type are free variables. 
Any instance of these typings will be a solution, and any 
solution will be an instance of the ones given above. 

2.2 Adding Generic Polymorphism 

Type inference in the programming language ML [18] dif- 
fers from type inference for the simply typed X-calculus 
only in one aspect: it uses generic type variables for 
variables bound by let. Thus, for example, 

letf = Xx x in (f 1, f true) 

is type-correct, since Ax . x has principle type Q 3 cy for 
a type variable cy and this type variable may be instanti- 
ated differently at different occurrences off in the scope 
of the binding on f (and is thus called generic). Hence 
let cannot be treated merely as syntactic sugar, since the 
expanded version of the example above, 

(Af . (f 1, f true)) (Xx . x) 

would not be type-correct. 

Explicit polymorphism does eliminate the formal need 
for let, since the programmer can always insert explicit 
type abstractions and applications to achieve the effect 
of generic type variables. Thus the example above could 
be written as 

(Af . (f [I 1,f [I true)) (de )tx:e . x). 

From the practical point of view, however, the generic 
typing possible through the let construct has enormous 
value. 

Surprisingly, generic typing and partial polymorphic 
type inference seem to be orthogonal issues, in the sense 
that generic typing may be added to the polymorphic A- 
calculus in a consistent and practically useful manner. 
We could for example define: 

let cons* = Act XX:CY Xy:(listcu) A0 

xf:@ =3 0 3 e k:o . f~6q~jj-~) 

let cons = cons*[] 

Now one can freely use “cons” as one is used to in ML 
as in ‘l~~ns 1 1”. The generic typing of cons achieves 
the effect (during type inference) of substituting cons* [] 
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where cons appears, and therefore cons 1 I will type- 
check. 

In this manner all the convenience of MLstyle poly- 
morphism can be recovered without giving up the power 
of being able to explicitly abstract over types when de- 
sired. The implementation of type inference in the pres- 
ence of let that we give in the Appendix is somewhat 
different from that in ML. This is due to the fact that prin- 
cipal type-schemas no longer exist, and that we therefore 
cannot simply record the principal type of a variable in 
an environment. Instead we carry out the substitution 
as indicated above, in effect implementing the inference 
rule 

3 Partial Type Inference through Higher- 
Order Unification 

In this section we show how the partial type inference 
problem can be solved using higher-order unification. 
More precisely, the partial type inference problem in 
the nth-order polymorphic ~-calculus can be reduced to 
r&-order unification (see Section 3.3). Althoqgh higher- 
order unification is in general undecidable, H:uet’s [ll] 
algorithm is practical in many cases. So here:, too: the 
sort of unification problem that is extracted from a partial 
type inference problem is very tractable in practice. 

3.1 A Formulation of Higher-Order Unification 

Our formulation of unification will be somewh.at unusual 
in that we present it as a deductive system. The conven- 
tional presentation of unification can be seen as a special 
case of our formulation in which formulas begin with a 
sequence of existential quantifiers followed by only con- 
junctions. 

There are methods for reducing this more gen,eral prob- 
lem to the conventional unification problem. One can ei- 
ther use Skolemization (without increase in ‘order), or 
lifting. For a discussion of these methods see Paul- 
son [22,23] and Miller [153. An extension of Huet’s 
algorithm for higher-order unification that tries to find a 
proof of F directly is a subject of current research. 

Definition 13 (Fo~N,&w of U). The set of formulas of 

the logical system 24 is defined recursively through 

where F, G, . . . stand for formulas. (IX/$) F is our nota- 
tion for substitution of CY for free occurrences of q5 in F, 

possibly renaming some bound variables. 

Definition 14 (Inference rules of U). The only new judg- 

ment in the logic U is 0 kz F. It is defined through the 

following inference rules. 

3.2 Interpreting Type Inference as Unification 

We now define a translation from the type inference prob- 
lem to the theorem proving problem in U. The motiva- 
tion behind this translation is Theorem 16. 

Definition 15 (Translation from partial type inference to 
theorem proving in 24). Given a context r, a partially 
typed term ii, and a type CY such that P I-, CY E Type, 
we dejine V(r, li, a) which constructs a formula F in 24. 
The definition is by induction and is shown in Figure 1. 

Theorem 16 Given a partially typed term ii. Then the 
following are equivalent. 

1. H- w5pe . V(() 1 fi, $1. 

2. There is a lfully typed) term u such that ii 5 u and 

a type /3 such that k, p E Type and t-C,C u E p. 

Moreover, this correspondence is constructive, that is, 
every deduction of 3 in U yields a u satisfying 2 and vice 

versa. 

Proof: From Lemmas 17 and 18. 

In the formulation of the crucial lemmas, we use the 
notation 0, for result of erasing variable/type pairs from 
r, leaving only type variable/kind pairs. 
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V(T, c,(Y) = a-p for c:p E c 

V(T,x, a) = a-p for x:p E r 

V(T,Ax:P . i&a) = 3$:vpe . (Y L (,f3 * +) A V(f @ x:p, U, $J) 

V(T, xx . n, a) = 3P:Type S&Type. (Y L (p * $J) A V(r $ x$, ii, +) 

V(T, ii 5, Q) = +&Type. V(r, ii, q5 =+ 0) A V(r, 3, $J) 

V(T, flO:K . ii, a) = ~~:K~TYP~.~~~~~~A~\VB:K.V(~$B:K,~~,~CI~) 

vu-, i-4 [PI, @Y) = 3&K --f Type. CY A II, p A V(r, ii, ITK$J) where r I-= ,B E K 

vu-, fi [ IK, a> = 3,&K 3j:K + Type. a = $ p A V(I’, ii, flK $J) 

Figure 1: Definition of translation V. 

Lemma 17 Given a valid context I’, a partially typed 
term ii, a type CI such that t-z cr E Type, and 0, H-z 
V(r, ii, cy). Then there is a (fully typed) term u > ii such 
that r l-x-,,, u E ff. 

Proof: By induction on the deduction of 0, EE 
V(T, u, a). 

0 

Lemma 18 Given apartially typed term U. Assume there 
is a (fully typed) term u with U 5 u and a type CY such 
that r I-,,, u E CY. Then for every partially typed li” < u 

and for every a* M CY such that r I-Z CX* E Type, we 
have 0, It-, V(r, U*, a*). 

Proof: By induction on the deduction of r I-,,, u E 
cr. 

0 

We have thus established that the partial type infer- 
ence problem can be reduced to the problem of prov- 
ing a theorem in the system U. By an earlier remark, 
this also means a reduction to the conventional notion 
of higher-order unification. In particular, one can apply 
Huet’s algorithm for higher-order unification to the type 
inference problem. 

We can allow or disallow the “absurd” type Ae:Type . 
0 as a result of the unification problem. This is very 
easily implemented by rejecting solutions containing this 
type. 

3.3 Order of Partial Type Inference and Unification 

We have not yet exploited all the information in the def- 
inition of the function V that translates a partial type 
inference problem into a higher-order unification prob- 
lem. The correspondence can be made more precise: 

the type inference problem for the nth-order polymor- 
phic X-calculus can be solved by nth-order unification. 
The converse is also true (see Theorem 23). 

We lack the space to formally define the order o of 
the type inference problem, but it is a straightforward 
generalization of the usual notion of order. Type infer- 
ence for the simply typed ~-calculus is first-order, type 
inference for the second-order polymorphic X-calculus 
is second-order, and higher types depend on the occur- 
rence of higher-order functions between types. Note that 
constants (like 17~) of order n + 1 may appear in terms 
of order n. The order of the higher-order unification is 
the usual notion of order for the simply typed lambda 
calculus. 

Theorem 19 Given a partially typed term ii of order 

o(U) = n. Then the associated unijication problem has 
order n, that is, o(3+:Type . V((>, li, +)) = n. 

Proof: By induction on ii. 
0 

4 Higher-Order Unifiability through Par- 
tial Type Inference 

In this section we show that there is a translation from 
the problem of higher-order unifiability into partial type 
inference in the w-order polymorphic X-calculus. More 
concretely, given a higher-order unification problem, that 
is a formula F in U, we will construct a partially typed 
term U such that ii has a valid typing iff F is a theorem. 
For the second-order polymorphic X-calculus (with some 
restrictions), a similar result was proven by Boehm in [2]. 
Here we generalize the result to arbitrary order and also 
remove the restriction that required identifiers of type 
A0 . 8 (or other constants in the language). 
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This result establishes the undecidability of the type 
inference problem for every polymorphic X-calculus of 
order 2 or more. Some care must be taken to determine 
the exact conditions under which the translation is order- 
preserving and does not result in a type inference problem 
of higher order (see Corollary 24). 

We now present the translation. Later we will discuss 
the circumstances under which this translaticxn is order- 
preserving. 

Definition 20 (Type closure). Given a type (k E K1 --+ 
. . + K,, - Type. Then 5, the closure of cr. is the type 

AO1:K1 . ..AB.:K,, .cu~‘~ . ..B.. 

Note that the closure of any (higher-order) type (Y will 
by such that h E YQpe. 

We now define the translation from formuKas F in U 
to partially typed terms U such that F is provable iff the 
corresponding term ii has a valid type (see Theorem 23). 

For the sake of brevity, we restrict the definition of B 

to the case of the second-order polymorphic #A-calculus. 
Through the use of type closures B can easily be extended 
to the full w-order calculus. B will be an auxiliary func- 
tion in the translation D (see the following definition). 
Intuitively, a valid typing of B(() , (>, x, (r) will force x to 
have type cy. 

Definition 21 We define B(9, r, x, cu) by induc,?ion on the 
structure of 0, where & is in long /3v-normal-form. It is 
given in Figure 2. 

The definition of the translation D is given for the 
full calculus, since the difference between the second- 
and higher-order versions is minimal (in the second-order 
case it is not necessary to take the type closure of 1c, in 
the clause for an existentially quantified formula). 

Definition 22 We define the translation D by induction 

on the structure of a formula F in U. It is given in 

Figure 3. 

In D, p keeps track of free type variables in the equa- 
tions and their kinds, and r keeps track of the universally 
quantified type variables. 

Note that we could not have simply let D(!@, r, cx g 

,f3) = Xx:& Xy:p . Af . f x(fy (AZ . z)), since (Y and ,8 
contain free variables from the removal of existentially 
quantified variables. Therefore the right-hand side is not 
a partially typed term. Thus the purpose of B is to ana- 
lyze the structure of Q and fi and create a partially typed 

term (withotit any free type variables) that can be typed 
iff there is a type substitution for the free type variables 
in CK and p that would make cy G ,O provable. 

Theorem 23 Given a formula F of the system U. Then 
FE F iff there is a fully typed term u 1 D(() , (), F) and 

a type p such that k,,C u E p. 

Proof: In each direction one generalizes by quantify- 
ing over contexts and then proves the translation correct 
by induction on the structure of the deduction. 

cl 

Corollary 24 Partial type inference for the second-order 

polymorphic X-calculus is undecidable. 

Proof: By inspecting the rules one can see that only 
translation of V&K . F leads to a partial type infer- 
ence problem of higher-order than the unification prob- 
lem. However, the second-order unifiability problem 
is undecidable without the presence of the V quantifier 
(a conventional formulation of a unification problem is 
equivalent to a formula F with an existential quantifier 
prefix and a matrix consisting merely of conjunctions). 
“+ :Type -+ Type + Type” is present in Cf and serves 
as the one binary function constant required for unde- 
cidability of second-order unification (see Goldfarb [9]). 
This observation is important, since the purely monadic 
second-order unification problem is indeed decidabIe (see 
Farmer’s algorithm in [6]) 

0 

Note that the type inference problems generated by the 
translation D contain very little explicit type information. 
In fact, we only need type variables that are explicitly 
abstracted over (with A) somewhere in the term. The 
only exception is the case of a type constructor u. This 
exception can be eliminated if the language satisfies a 
simple and natural closure condition (roughly, that every 
type constructor in the kind signature has a corresponding 
term constructor). 

5 The XProlog Implementation 

The full code of our implementation in XProlog is pro- 
vided in an Appendix on the following page. Unfortu- 
nately, space does not permit to explain the language and 
our implementation of the algorithm in detail. The im- 
plementation is concise, since higher-order unification, 
including the correct treatment of universally quantified 
variables, is the main computational device of XProlog. 
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B(9, r, x, e> = xY:fJ * w *.f XVY & * a where 8:Type E r 

w,r,x,+) = v .fxCfrOg * g>) where y:$ E 9 

B(!P,l”,x,acq...a,) = Xxl...Xx,.Xz:AB1...AB,.81~...~~8,~a(~1...8,. 

V.fx(f(r[l...[lx1 . . .x,> (Xg . g B(@, r, Xl, al). . .B(‘@, r, &I, curl)>> 

B(@,r,x,a *P> = ~yk?*~f.f(xY)Vz(~g .gB(~,r,Y,a)B(~,r,z,P))) 
B(9, r, x, AB . a) = xy ne . of .f (X [e]) (fy (xg . g ~(9, r e3 8x, y, c+) 

Figure 2: Definition of translation B. 

w@,r,@~P) = AJAY. Af.fxCry(%4. g~(m,r,x,~)B(~,r,y,P))) 
D(@, r, F A G) = Xg . g D(@, r,F) D(!p, r, G) 

D@,r,Ei&K.F) = Xx.D(!iQ$:K@x&r,F) 

D(!& r, V&K. F) = A~:K . ~(9, r e 8x, fl 

Figure: 3: Definition of translation D. 
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