
 Open access Proceedings Article DOI:10.1145/62678.62697

Partial polymorphic type inference and higher-order unification — Source link

Frank Pfenning

Institutions: Carnegie Mellon University

Published on: 01 Jan 1988 - International Conference on Functional Programming

Topics: Type inference, Unification and Undecidable problem

Related papers:

 A theory of type polymorphism in programming

 A unification algorithm for typed λ-calculus

 A Formulation of the Simple Theory of Types

 Towards a theory of type structure

 Higher-order abstract syntax

Share this paper:

View more about this paper here: https://typeset.io/papers/partial-polymorphic-type-inference-and-higher-order-
2p3o7k6t1i

https://typeset.io/
https://www.doi.org/10.1145/62678.62697
https://typeset.io/papers/partial-polymorphic-type-inference-and-higher-order-2p3o7k6t1i
https://typeset.io/authors/frank-pfenning-4ikcw7jpgy
https://typeset.io/institutions/carnegie-mellon-university-2nn2m0cz
https://typeset.io/conferences/international-conference-on-functional-programming-401kpsqk
https://typeset.io/topics/type-inference-1vx0079u
https://typeset.io/topics/unification-wm1isn4n
https://typeset.io/topics/undecidable-problem-qr4vtse3
https://typeset.io/papers/a-theory-of-type-polymorphism-in-programming-31odml2q8y
https://typeset.io/papers/a-unification-algorithm-for-typed-l-calculus-3pizr2kk72
https://typeset.io/papers/a-formulation-of-the-simple-theory-of-types-gaxd51193e
https://typeset.io/papers/towards-a-theory-of-type-structure-10m71j63y9
https://typeset.io/papers/higher-order-abstract-syntax-4w9dht3b8x
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/partial-polymorphic-type-inference-and-higher-order-2p3o7k6t1i
https://twitter.com/intent/tweet?text=Partial%20polymorphic%20type%20inference%20and%20higher-order%20unification&url=https://typeset.io/papers/partial-polymorphic-type-inference-and-higher-order-2p3o7k6t1i
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/partial-polymorphic-type-inference-and-higher-order-2p3o7k6t1i
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/partial-polymorphic-type-inference-and-higher-order-2p3o7k6t1i
https://typeset.io/papers/partial-polymorphic-type-inference-and-higher-order-2p3o7k6t1i

Partial Polymorphic Type Inference and Higher-Order Unification

Frank Pfenning’
Department of Computer Science

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213-3890

Abstract

We show that the problem of partial type inference in the
ntb-order polymorphic X-calculus is equivalent to nth-
order unification. On the one hand, this means that par-
tial type inference in polymorphic X-calculi of order 2 or
higher is undecidable. On the other hand, higher-order
unification is often tractable in practice, and our transla-
tion entails a very useful algorithm for partial type infer-
ence in the w-order polymorphic X-calculus. We present
an implementation in AProlog in full.

1 Introduction

Even though polymorphism is generally regarded as a
very desirable feature in typed programming languages,
many languages (like ML) restrict themselves to an im-
plicit polymorphism without explicit type abstraction or
type application, This is partly due to the difficulty or
even undecidability of type inference in languages with
explicit polymorphism (see Boehm [2]). As a conse-
quence, large amounts of type information must be given
together with a program, making programming in such
an explicitly typed language cumbersome.

This research was supported in part by the Office of Naval Research
under contract N00014-84-K-041.5 and in part by the Defense Advanced
Research Projects Agency (DOD), ARPA Order No. 5404, monitored

by the Office of Naval Research under the same contract.

*The author can be reached via electronic mail on the ArpaNet as
fp@cs.cmu.edu.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

In this paper we examine the w-order polymorphic
A-calculus as a core language that can serve as a ba-
sis for the implementation of syntactically much richer
languages with explicit type abstraction and application.
Many types and language constructs can be defined di-
rectly or introduced as typed constants. Definable types
include products, sums, lists: constructs that can be in-
cluded in the type checking merely with the addition of
a new type constant include Mitchell and Plotkin’s 1191
abstype and reps for the definition and use of abstract
data types.

In explicitly polymorphic languages, at least two dif-
ferent type inference problems arise which we call full
and partial type inference. These different problems
reflect different views of the underlying X-calculus, ei-
ther as type-assignments to untyped terms (the “Curry”
view [S]) or as filling in information omitted from typed
terms (the “Church” view [4]). The former leads to full
type inference, the latter to partial type inference. More
on this dichotomy in Section 2.1.

Full type inference means that arbitrary type absuac-
tions and applications may be inserted into the untyped
term in order to find a valid typing. Aspects of full type
inference for the second-order polymorphic X-calculus
have been examined by Leivant [13], McCracken [141,
and Mitchell [19], but the decidability question is still
open.

We believe that full type inference, even though it may
be decidable, is of limited use in programming practice.
Types in a program provide more than just information
for the compiler - they also provide succinct and for-
mal documentation and thus help the programmer read,
debug, and maintain his programs. If all type informa-
tion is omitted, too many programs may have a correct
typing without carrying the meaning intended by the pro-
grammer. The fact that there may be many different type
assignments to a given term compounds this problem.

As a simple example consider Xx . (xx) (the notation

0 1988 ACM 0-89791-273-X/88/0007/0153 $1.50

153

is explained in Section 2). Clearly this term has a typing
if we insert a type application, for example leading to
)tx:d0 . 0 j 6 . (x[D . t9 + 01x), which may or may
not be what the programmer intended.

Partial polymorphic type inference, on the olher hand,
does not attempt to arbitrarily insert type abstractions and
applications, but requires placeholders to be supplied by
the user. Thus Xx . (xx) would not type-check, but)tx .
(x [] x) would, since there is an explicit indication that x
was intended to be a type abstraction. This is perhaps
a little more verbose than the completely untyped term,
but still much shorter than its fully typed counterpart
above. Partial type inference has been investigated by
Mitchell [21] and Boehm [2].

As the main result of the paper we show that partial
polymorphic type inference in the nth-order polymorphic
X-calculus is equivalent to nth-order unification. This
may be disheartening, since already second-order unifi-
cation is undecidable as shown by Goldfarb in [9], and
thus partial type inference is undecidable even for the
second-order polymorphic X-calculus (a slightly weaker
version of this theorem was proven by Boehm in [2]).

However, we can make very good use of the converse,
namely that partial polymorphic type inference can be
solved through higher-order unification. Huet’s complete
algorithm for higher-order unification described in [ll]
has proven a very valuable tool with good computational
properties when given realistic problems. It is used suc-
cessfully in other areas like higher-order logic program-
ming [16], natural deduction [22], automated theorem
proving [11, and program derivation [12,24].

Somewhat unexpectedly, one can also recover the con-
venience of ML-style polymorphism by allowing the
generic let. This extension (see Section 2.2) is conve-
nient for the same reason it is convenient in ML, namely
that partial type inference often does not completely de-
termine the type of a term, but rather has free variables
in its solution. The typing rule for the ML let constructs
allows these variables to be instantiated differently at dif-
ferent occurrences of the term - in our extended set-
ting we may do the same. Of course, the extension to
the polymorphic A-calculus means that the variables will
sometimes be “higher-order”, that is. they m.ay be in-
stantiated with arbitrary functions from types to types,
etc.

Our implementation is written in Miller and Nadathur’s
XProlog language (see [16]). It is extremely well-suited
for a problem of the kind described here, since higher-
order unification is XProlog’s inference engine., The pro-
gram is short and concise (see Section 5). However, an
implementation in support of a real programming lan-

guage would need to be somewhat more sophisticated
than our prototype. The search space should probably be
explored through iterative deepening, rather than depth-
tirst as in XProlog (which is incomplete). Also, it should
sometimes return “maybe” when no valid typing can be
found or contradiction discovered, and ask for more in-
formation from the programmer.

To date we have only run very preliminary experi-
ments. However, when given realistic input, our proto-
type implementation performed well in discovering valid
typings of expressions with relatively little explicit type
information. Somewhat more surprisingly, it also showed
good failure properties and most of the time detected
when terms could not be typed. We have also identified
cases where some simple, general improvements to the
current XProlog interpreter would cause our program to
return with failure where it currently follows an infinite
computational branch.

2 The w-Order Polymorphic X-Calculus

In [8,7], Girard defines a powerful extension to Church’s
simply typed X-calculus [3] and goes on to give a con-
structive proof of strong normalization for his system.
A fragment of Girard’s calculus was independendy dis-
covered by Reynolds [25] who introduced abstraction on
type variables and application of functions to types in or-
der to define explicitly polymorphic functions. Reynolds’
calculus is known as the second-order polymorphic X-
calculus.

In this paper we consider the w-order polymorphic X-
calculus which is an extension of Reynolds’ system, but
only a fragment of Girard’s system since it omits exis-
tentially quantified types. Our presentation of the calcu-
lus consists contains three distinct syntactic categories:
kinds, types, and terms. In Girard’s presentation in [7],
kinds are called orders.

Since our calculus is higher-order, in addition to types
of terms, we have functions from types to types, etc. We
will call every such object a type. The subset of those
that is first-order, or, equivalently, of kind “Type”, can
actually be the type of a term. These and other properties
of the calculus are summarized towards the end of this
section.

Since we will need to be careful about the set of con-
stants, the language is parameterized over a set of type
constructors and a set of term constants. They are cap-
tured in the kind signature and type signature, respec-
tively. We use K, M for kinds, CY, p, . . . for types, 8, $J
for type variables, 0 for type constructors, u, v, . . . for
terms, x, y, . . . for variables, and c for constants.

154

Definition 1 The syntactic cafegories of kind. type, and

term are defined through

Kinds K ::= TypeIK+M
Types Q ::= CTIBIL&K.CY((Y/~
Terms u ::= clxlXx:rr.uluvl

A&K. u 1 u [Q]

Definition 2 A kind signature C is a set of pairs uniquely

associating a kind with each type constructor. We dejine
an extension C+ of a given kind signature to include the

constants *:Qpe + Type + 7&e E C’ and, for every

valid kind K, also IIK:(K ---f Qpe) -+ Type E C+. A

type signature C is a set of pairs uniquely associating a
type with each constant. A context F uniquely assigns
kina to type variables and types to term variables.

Following common convention, we will sometimes
omit an empty signature or context. In order not to
conflict with the “,” separating function arguments, we
sometimes use “$” to adjoin a pair to a signature or
context.

The type constants in =+ and 17~ play a special role:
=P is the function type constructor, 17~ constructs types
of polymorphic functions. The idea behind the type con-
structor DK is due to Church [4] who used IT as a con-
stant to serve as a universal quantifier. If we restricted
ourselves to the second order polymorphic calculus, we
could express the type A0 . 0 3 0 as I7 (Lo . B j 0).
In the w-order polymorphic A-calculus we have to be a
bit more verbose, since A may abstract over types of ar-
bitrary kind. Thus, instead of one constant D, we have
a family of constants 17~ parameterized over the kind
of the abstracted variable. Note that in Church’s formu-
lation of the simple theory of types. a constant 17 also
exists at every type,

In the second-order fragment of the polymorphic X-
calculus as defined above, one can explicitly define com-
mon data types and operations on them, such as natural
numbers (int z AB . (0 + t9) + (0 + O)), products,
disjoint union, or lists (list z La . A0 . (CX + 6 + 6) j

e + e).

The benefits of transcending the second-order poly-
morphic ~-calculus become visible in the example of ab-
stract data types. Instead of new primitive constructs and
type deduction rules, we can just introduce a new family
of constants into the type signature and signature. This
new type constructor is sigma, (not to be confused with
the symbol Z for the type signature) and constants absK

and repK.

Example 3 (Abstract data types).

sigma, E (K + Type) -+ Type
absK E Acr:K --+ l)pe @:Type . sigmaKcv =k

(AB:K.cuQJ,@+fi
repK E AQ:K -+ Type. ARK. Q 0 + sigmaKcv

In the formulation of the system with existential types

through inference rules, a restriction is placed on @’ in
the definition of abSK, namely that it not contain 8. Here

that is unnecessary, since an attempt to substitute a type

for ,B that contains 0 free would lead to a renaming of

0 in order to prevent a type clash. Thus this restric-
tion is embedded into our system directly. For a dis-

cussion on how these constants can be used to represent
abstract data types, transliterate work from Mitchell and

Plotkin [20].

In this shortened presentation we will not explicitly
state the inference rules used to establish the validity of
contexts or signatures. They hold no surprises.

We will regard a-convertible types and terms (with
L and A the respective binders) to be equal. Thus we
will mostly ignore issues of variable renaming and name
clashes.

In the inference rules of the polymorphic X-calculus,
we will allow conversions between Pv-equivalent types.
We define p and 7 conversions of types as is done usually
on terms. A P-redex then takes the form (LQ:K . (~)y.

Next we define the judgments of the inference system
that allows us to find valid types for terms and kinds for
types.

Definition 4 A judgment is one of the following asser-

tions:

l- C kindsig C is a valid kind signature

kz C typesig C is a valid type signature

tz,,, r context r is a valid context

IKEkind K is a valid kind
rl-,CYEK cr has kind K

r t-.,c u E (Y u has type Q

We now define the inference system defining valid
judgments. It is divided into groups corresponding to
the different judgments which in turn correspond to the
different syntactic categories. Every kind that is syntac-

tically well-formed is also valid, so we omit the rules for
valid kinds.

155

Definition 5 (Valid Type).

tE r context u:K E C+

rt-EUEK

tx r context e:KEr

rt.eeK

F t-, K E kind r,em--, ff ~hd

rt-U:K.cufK+M

rt,aEK+M rkE-,PEK

rbzcYpBM

Definition 6 (Valid Term).

t- r context c:cr E c

r b,c c E CY

t- r context X:Q E r

r b,, x E Q

r,xza t-,c u E p r kc a E Type

- r tx,c xx:ff . u E (Y =k p

r h.,, u E a *p r b-,,, v E CY

r t,,, UVE P

r,e:K tE,c u E pe l- K E kind

-

Some of the antecedents of the rules are redundant but
included for technical reasons. In particular, in the rule
for X the antecedent asserting that cy is a valid type is
unnecessary, since it follows from the proof that r, X:CY
is a valid environment. Similarly, we do not need the
fact that K is a valid kind in the rule for A.

During the remainder of the paper, we will make use
of some fundamental properties of the calculus. There
are other theorems of interest, like strong normalization
for terms, which we will not need.

Lemma 7 1. If r tz CY E K then t C kindsig and

l-z r context and t- K E kind.

2. If r k,,, u E CY then I- C kindsig and t-Z r context
and I’ tz CY E Type.

Lemma 8 (Interpretation of types). The types of the
polymorphic X-calculus form a simply typed X-calculus.

We interpret kinds as types and types as terms. Under

this interpretation we obtain a single base type Type with
a binary function constant 3 :Type + Type + Type
and a constant 17~: (K -+ Type) - Type for each type
K. More term constants may exist depending on the kind

signature C.

Theorem 9 (Normal forms for types). rf r tE CY E K
then CY has a unique long /3rt-normal form.

2.1 Partial Type Inference

In this section we define the problem of partial type in-
ference. This is distinct from the problem of full type
inference which is to decide whether, given a completely
untyped term in the A-calculus, there is a way of inserting
types of bound variables, type abstractions, and type ap-
plications such that the resulting term in the polymorphic
X-calculus is well-typed. Even though the problems are
closely related, undecidability of partial type inference
does not imply undecidability of full type inference.

Partial vs. full type inference reflects two views of
the underlying X-calculus. This difference in approach
has sometimes been described as the “Church vs. Curry”
debate. Our formulation of the w-order X-calculus is a
natural extension of Church’s definition of the simply
typed X-calculus [4], in which types are embedded in
terms. In Curry’s formulation [5] (see also Hindley [lo]),
types may be considered as properties of terms in the
untyped X-calculus.

Curry’s view leads to the problem of full type infer-
ence which has been discussed in the literature in various
places (see, for example, Leivant [133, McCracken [141,
and Mitchell [19]), but whose decidability is still open.

Church’s view leads to the problem of partial type
inference some aspects of which have been discussed by
Mitchell in [21] and Boehm in [23, and which is the
subject of this paper.

We adopted the name “partial type inference” from
Boehm, but it is somewhat misleading. We would like
to emphasize that it is no more or no less complete than
the full type inference problem, but simply defined for a
different view of a calculus of second- and higher-order
types. In our opinion both views and associated type
inference problems are theoretically interesting - which
one has greater practical relevance remains to be seen.

156

This difference may be somewhat difficult to appre-
ciate, since, in calculi with only simple types, the two
views of type inference coincide, or rather, essentially the
same type inference algorithm (based on first-order uni-
fication) solves both problems (see, for example, [17]).

Definition 10 The definition ofa partially typed term can
be obtained from the defmition of a term by adding two

alternatives,

jj ::= . ..px.iiIii[]~

where ii stands for a partially typed term.

In the special case of the second-order polymorphic X-
calculus, we omit the subscript to the “[1” since it must
be “Type”.

We now need a new judgment expressing that a par-
tially typed term ii is the result of erasing some type
information from a term u. We will again define this
relation through an inference system, since we need to
maintain a context.

Definition 11 Formally we define the judgment r kz-,,,

ii 5 u (read: ii has less rype information than u) through
an following inference system updating r. From the
following informal definition it should be easy to see how

to construct this inference system.

c 5 c for c E C+
x5x

xx:a * ii _< xx:cY . u if ii 5 u
Xx. ii 5 XX:CY . u if ii< u

ii9 5 uv if ii<uandP<v
I1B:K.i-i 5 AB:K.u if ii<u

ti[al I U[Ql if ii<u

n[lK 5 u[(Yl if ii<uandcuEK

The crucial difference to the full type inference prob-
lem lies in the fact that we do not have ii < u [CX] or
ii 5 Ae:K . u for U 5 u.

Definition 12 (Partial type inference). A term u is a fully
typed instance of a partially typed term ii iff t-E,C ii 5 u.

The problem of partial type inference is to jind a fully
typed instance of a given partially typed term.

Unlike in the case of the simply-typed A calculus, no
single most general orprincipal type-schemas exist in the
polymorphic calculus. Consider the example from the
introduction,)tx . (x [I x). There are two most general
solutions to this type inference problem, namely

Xx:(AB * B 3 se). (me. 0 * 15O]x)

xx:(ne . 8) . (X [(ae . e) + 71~)

where &Type + Type and -y:Type are free variables.
Any instance of these typings will be a solution, and any
solution will be an instance of the ones given above.

2.2 Adding Generic Polymorphism

Type inference in the programming language ML [18] dif-
fers from type inference for the simply typed X-calculus
only in one aspect: it uses generic type variables for
variables bound by let. Thus, for example,

letf = Xx x in (f 1, f true)

is type-correct, since Ax . x has principle type Q 3 cy for
a type variable cy and this type variable may be instanti-
ated differently at different occurrences off in the scope
of the binding on f (and is thus called generic). Hence
let cannot be treated merely as syntactic sugar, since the
expanded version of the example above,

(Af . (f 1, f true)) (Xx . x)

would not be type-correct.

Explicit polymorphism does eliminate the formal need
for let, since the programmer can always insert explicit
type abstractions and applications to achieve the effect
of generic type variables. Thus the example above could
be written as

(Af . (f [I 1,f [I true)) (de)tx:e . x).

From the practical point of view, however, the generic
typing possible through the let construct has enormous
value.

Surprisingly, generic typing and partial polymorphic
type inference seem to be orthogonal issues, in the sense
that generic typing may be added to the polymorphic A-
calculus in a consistent and practically useful manner.
We could for example define:

let cons* = Act XX:CY Xy:(listcu) A0

xf:@ =3 0 3 e k:o . f~6q~jj-~)

let cons = cons*[]

Now one can freely use “cons” as one is used to in ML
as in ‘l~~ns 1 1”. The generic typing of cons achieves
the effect (during type inference) of substituting cons* []

157

where cons appears, and therefore cons 1 I will type-
check.

In this manner all the convenience of MLstyle poly-
morphism can be recovered without giving up the power
of being able to explicitly abstract over types when de-
sired. The implementation of type inference in the pres-
ence of let that we give in the Appendix is somewhat
different from that in ML. This is due to the fact that prin-
cipal type-schemas no longer exist, and that we therefore
cannot simply record the principal type of a variable in
an environment. Instead we carry out the substitution
as indicated above, in effect implementing the inference
rule

3 Partial Type Inference through Higher-
Order Unification

In this section we show how the partial type inference
problem can be solved using higher-order unification.
More precisely, the partial type inference problem in
the nth-order polymorphic ~-calculus can be reduced to
r&-order unification (see Section 3.3). Althoqgh higher-
order unification is in general undecidable, H:uet’s [ll]
algorithm is practical in many cases. So here:, too: the
sort of unification problem that is extracted from a partial
type inference problem is very tractable in practice.

3.1 A Formulation of Higher-Order Unification

Our formulation of unification will be somewh.at unusual
in that we present it as a deductive system. The conven-
tional presentation of unification can be seen as a special
case of our formulation in which formulas begin with a
sequence of existential quantifiers followed by only con-
junctions.

There are methods for reducing this more gen,eral prob-
lem to the conventional unification problem. One can ei-
ther use Skolemization (without increase in ‘order), or
lifting. For a discussion of these methods see Paul-
son [22,23] and Miller [153. An extension of Huet’s
algorithm for higher-order unification that tries to find a
proof of F directly is a subject of current research.

Definition 13 (Fo~N,&w of U). The set of formulas of

the logical system 24 is defined recursively through

where F, G, . . . stand for formulas. (IX/$) F is our nota-
tion for substitution of CY for free occurrences of q5 in F,

possibly renaming some bound variables.

Definition 14 (Inference rules of U). The only new judg-

ment in the logic U is 0 kz F. It is defined through the

following inference rules.

3.2 Interpreting Type Inference as Unification

We now define a translation from the type inference prob-
lem to the theorem proving problem in U. The motiva-
tion behind this translation is Theorem 16.

Definition 15 (Translation from partial type inference to
theorem proving in 24). Given a context r, a partially
typed term ii, and a type CY such that P I-, CY E Type,
we dejine V(r, li, a) which constructs a formula F in 24.
The definition is by induction and is shown in Figure 1.

Theorem 16 Given a partially typed term ii. Then the
following are equivalent.

1. H- w5pe . V(() 1 fi, $1.

2. There is a lfully typed) term u such that ii 5 u and

a type /3 such that k, p E Type and t-C,C u E p.

Moreover, this correspondence is constructive, that is,
every deduction of 3 in U yields a u satisfying 2 and vice

versa.

Proof: From Lemmas 17 and 18.

In the formulation of the crucial lemmas, we use the
notation 0, for result of erasing variable/type pairs from
r, leaving only type variable/kind pairs.

158

V(T, c,(Y) = a-p for c:p E c

V(T,x, a) = a-p for x:p E r

V(T,Ax:P . i&a) = 3$:vpe . (Y L (,f3 * +) A V(f @ x:p, U, $J)

V(T, xx . n, a) = 3P:Type S&Type. (Y L (p * $J) A V(r $ x$, ii, +)

V(T, ii 5, Q) = +&Type. V(r, ii, q5 =+ 0) A V(r, 3, $J)

V(T, flO:K . ii, a) = ~~:K~TYP~.~~~~~~A~\VB:K.V(~$B:K,~~,~CI~)

vu-, i-4 [PI, @Y) = 3&K --f Type. CY A II, p A V(r, ii, ITK$J) where r I-= ,B E K

vu-, fi [IK, a> = 3,&K 3j:K + Type. a = $ p A V(I’, ii, flK $J)

Figure 1: Definition of translation V.

Lemma 17 Given a valid context I’, a partially typed
term ii, a type CI such that t-z cr E Type, and 0, H-z
V(r, ii, cy). Then there is a (fully typed) term u > ii such
that r l-x-,,, u E ff.

Proof: By induction on the deduction of 0, EE
V(T, u, a).

0

Lemma 18 Given apartially typed term U. Assume there
is a (fully typed) term u with U 5 u and a type CY such
that r I-,,, u E CY. Then for every partially typed li” < u

and for every a* M CY such that r I-Z CX* E Type, we
have 0, It-, V(r, U*, a*).

Proof: By induction on the deduction of r I-,,, u E
cr.

0

We have thus established that the partial type infer-
ence problem can be reduced to the problem of prov-
ing a theorem in the system U. By an earlier remark,
this also means a reduction to the conventional notion
of higher-order unification. In particular, one can apply
Huet’s algorithm for higher-order unification to the type
inference problem.

We can allow or disallow the “absurd” type Ae:Type .
0 as a result of the unification problem. This is very
easily implemented by rejecting solutions containing this
type.

3.3 Order of Partial Type Inference and Unification

We have not yet exploited all the information in the def-
inition of the function V that translates a partial type
inference problem into a higher-order unification prob-
lem. The correspondence can be made more precise:

the type inference problem for the nth-order polymor-
phic X-calculus can be solved by nth-order unification.
The converse is also true (see Theorem 23).

We lack the space to formally define the order o of
the type inference problem, but it is a straightforward
generalization of the usual notion of order. Type infer-
ence for the simply typed ~-calculus is first-order, type
inference for the second-order polymorphic X-calculus
is second-order, and higher types depend on the occur-
rence of higher-order functions between types. Note that
constants (like 17~) of order n + 1 may appear in terms
of order n. The order of the higher-order unification is
the usual notion of order for the simply typed lambda
calculus.

Theorem 19 Given a partially typed term ii of order

o(U) = n. Then the associated unijication problem has
order n, that is, o(3+:Type . V((>, li, +)) = n.

Proof: By induction on ii.
0

4 Higher-Order Unifiability through Par-
tial Type Inference

In this section we show that there is a translation from
the problem of higher-order unifiability into partial type
inference in the w-order polymorphic X-calculus. More
concretely, given a higher-order unification problem, that
is a formula F in U, we will construct a partially typed
term U such that ii has a valid typing iff F is a theorem.
For the second-order polymorphic X-calculus (with some
restrictions), a similar result was proven by Boehm in [2].
Here we generalize the result to arbitrary order and also
remove the restriction that required identifiers of type
A0 . 8 (or other constants in the language).

159

This result establishes the undecidability of the type
inference problem for every polymorphic X-calculus of
order 2 or more. Some care must be taken to determine
the exact conditions under which the translation is order-
preserving and does not result in a type inference problem
of higher order (see Corollary 24).

We now present the translation. Later we will discuss
the circumstances under which this translaticxn is order-
preserving.

Definition 20 (Type closure). Given a type (k E K1 --+
. . + K,, - Type. Then 5, the closure of cr. is the type

AO1:K1 . ..AB.:K,, .cu~‘~ . ..B..

Note that the closure of any (higher-order) type (Y will
by such that h E YQpe.

We now define the translation from formuKas F in U
to partially typed terms U such that F is provable iff the
corresponding term ii has a valid type (see Theorem 23).

For the sake of brevity, we restrict the definition of B

to the case of the second-order polymorphic #A-calculus.
Through the use of type closures B can easily be extended
to the full w-order calculus. B will be an auxiliary func-
tion in the translation D (see the following definition).
Intuitively, a valid typing of B(() , (>, x, (r) will force x to
have type cy.

Definition 21 We define B(9, r, x, cu) by induc,?ion on the
structure of 0, where & is in long /3v-normal-form. It is
given in Figure 2.

The definition of the translation D is given for the
full calculus, since the difference between the second-
and higher-order versions is minimal (in the second-order
case it is not necessary to take the type closure of 1c, in
the clause for an existentially quantified formula).

Definition 22 We define the translation D by induction

on the structure of a formula F in U. It is given in

Figure 3.

In D, p keeps track of free type variables in the equa-
tions and their kinds, and r keeps track of the universally
quantified type variables.

Note that we could not have simply let D(!@, r, cx g

,f3) = Xx:& Xy:p . Af . f x(fy (AZ . z)), since (Y and ,8
contain free variables from the removal of existentially
quantified variables. Therefore the right-hand side is not
a partially typed term. Thus the purpose of B is to ana-
lyze the structure of Q and fi and create a partially typed

term (withotit any free type variables) that can be typed
iff there is a type substitution for the free type variables
in CK and p that would make cy G ,O provable.

Theorem 23 Given a formula F of the system U. Then
FE F iff there is a fully typed term u 1 D(() , (), F) and

a type p such that k,,C u E p.

Proof: In each direction one generalizes by quantify-
ing over contexts and then proves the translation correct
by induction on the structure of the deduction.

cl

Corollary 24 Partial type inference for the second-order

polymorphic X-calculus is undecidable.

Proof: By inspecting the rules one can see that only
translation of V&K . F leads to a partial type infer-
ence problem of higher-order than the unification prob-
lem. However, the second-order unifiability problem
is undecidable without the presence of the V quantifier
(a conventional formulation of a unification problem is
equivalent to a formula F with an existential quantifier
prefix and a matrix consisting merely of conjunctions).
“+ :Type -+ Type + Type” is present in Cf and serves
as the one binary function constant required for unde-
cidability of second-order unification (see Goldfarb [9]).
This observation is important, since the purely monadic
second-order unification problem is indeed decidabIe (see
Farmer’s algorithm in [6])

0

Note that the type inference problems generated by the
translation D contain very little explicit type information.
In fact, we only need type variables that are explicitly
abstracted over (with A) somewhere in the term. The
only exception is the case of a type constructor u. This
exception can be eliminated if the language satisfies a
simple and natural closure condition (roughly, that every
type constructor in the kind signature has a corresponding
term constructor).

5 The XProlog Implementation

The full code of our implementation in XProlog is pro-
vided in an Appendix on the following page. Unfortu-
nately, space does not permit to explain the language and
our implementation of the algorithm in detail. The im-
plementation is concise, since higher-order unification,
including the correct treatment of universally quantified
variables, is the main computational device of XProlog.

160

S
 A

fo

rm
ul

at
io

n
of

th

e
si

m
pl

y
ty

pe
d

la
m

bd
a

ca
lc

ul
us

in

w

hi
ch

%

 ty
pe

s
m

ay

be

om
itt

ed
.

--
--

--
--

--
--

--
--

--
-_

__
__

__
__

__
__

__
__

__
__

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--

*
T

he

la
ng

ua
ge

ex

te
ns

io
n

fo
r

th
e

O
m

aQ
a-

O
rd

er

po
ly

m
or

ph
ic

la

m
bd

a
ca

lc
ul

us

m
od

ul
e

tp
-t

yp
as

.
m

od
ul

e
tp

go
ly

ty
pe

s.

in
fix

11

0
--

>
xf

y.

b
rig

ht

as
so

ci
at

iv
e:

fu

nc
tio

n
ty

pe
s.

in

fix

12
0

e
yf

x.

Z

le
ft

as
so

ci
at

iv
e:

ap

pl
ic

at
io

n.

ki
nd

tp

ty

pe
.

c
ty

pe
s.

ki

nd

te
rm

ty

pe
.

b
te

rm
s.

ty
pe

--

>
tp

->

tp

->

tp

.
b

fu
nc

tio
n

ty
pe

co

ns
tr

uc
to

r.

ty
pe

la

m

tp

->

(t
er

m

->

te
rm

)
->

te

rm
.

I
la

m
bd

a.

ty
pe

ol

am

(t
er

m

-b

te
rm

)
->

te

rm
.

S
 t

yp
e

om
ltt

ed
.

ty
pe

e

te
rm

->

te

rm

->

te
rm

.
Z

ap

pl
ic

at
io

n.

--
--

--
--

--
--

--
--

--
1_

__
__

__
__

__
__

__
__

__
I_

--
--

--
--

--
--

--
--

--
--

--
--

-

%
 T

yp
e

in
fe

re
nc

e
fo

r
th

e
si

m
pl

y
ty

pe
d

la
m

bd
a

ca
lc

ul
us

.

in
fix

12

0
b

yf
x.

0

le
ft

as
so

c:

ty
pe

ap

pl
ic

at
io

n.

po
st

fix

12
0

L6

yf
.

S
 o

m
itt

ed

ty
pe

ap

pl
ic

at
io

n.

ty
pe

dd

(A

->

tp

)
->

tp

.
C

 u
ni

ve
rs

al

ty
pe

co

ns
tr

uc
to

r.

ty
pe

11

(A

->

te

rm
)

->

te
rm

.
t

ty
pe

ab

st
ra

ct
io

n.

ty
pe

=

te
rm

->

tp

->

te

rm
.

S
 t

yp
e

ap
pl

ic
at

io
n.

ty
pe

LC

te

rm

--
>

te
rm

.
C

 t
yp

e
om

itt
ed

.

__
__

^-
_-

--
__

-_
__

--
--

--
--

--

__
__

__
__

-_
--

__
__

__
__

--
--

--
--

--
--

--
--

--
--

--
--

I
T

yp
e

in
fe

re
nc

e
fo

r
th

e
om

eg
a-

or
de

r
po

ly
m

or
ph

ic

la
m

bd
a

C
al

C
U

lu
S

.

m
od

ul
e

tp
go

ly
.

im
po

rt

tp
-s

im
pl

e
tp

go
ly

ty
ge

s
tp

-t
yp

es
.

m
od

ul
e

tp
-s

im
pl

e.

im
po

rt

tp
_t

yp
es

.

te
rm

ty
pe

(1

1
U

)
(1

1
V

)
A

lp
ha

:-

!,

A

lp
ha

-

(d
d

B
et

a)
,

(p
i

T
he

ta
\

(t
er

m
ty

pe

(U

T
he

ta
)

(V

T
he

ta
)

(b
et

a
T

he
ta

))
).

ty
pe

te

rm
ty

pe

te
rm

->

te

rm

->

tp

->

0.

ty
pe

va

rty
pe

te

rm

--
>

tp

-b

0.

ty
pe

co

nt
yp

e
te

rm

->

tp

->

0.

S
 t

er
m

ty
pe

0

V
 A

lp
ha

8
ex

te
rn

al
.

te
rm

ty
pe

(U

4L

)

(V

6
G

am
m

a)
 A

lp
ha

:-

!,

A

lp
ha

=

(B
et

a
G

am
m

a)
,

te
rm

ty
pe

U

 V

(d
d

B
et

a)
.

S
 t

ak
es

a

pa
rt

ia
lly

ty

pe
d

te
rm

0

an
d

re
tu

rn
s

fu
lly

ty

pe
d

te
rm

V

.
S

 A
lp

ha

m
ay

be

a

co
ns

tr
ai

nt

(t
he

ty

pe

w
e

kn
ow

th

at

U
 s

ho
ul

d
Z

ha

ve
)

or

a
re

su
lt

(t
he

in

fe
re

d
ty

pe

of

U
l.

te
rm

ty
pe

(U

c

G
am

m
a)

(V

L

G
am

m
a)

 A
lp

ha

:-

!,

A
lp

ha

-
(B

et
a

G
am

m
a)

,
te

rm
ty

pe

U
 V

(d

d
B

et
a)

.

*
V

aK
ty

pe

X

B
et

a
*

re
co

rd
s

th
e

ty
pe

s
th

at

w
er

e
ln

fe
re

d
fo

r
bo

un
d

va
ria

bl
es

.
%

 T
he

ty

pe
s

of

fre
e

va
ria

bl
es

sh

ou
ld

be

gi

ve
n

in

th
e

en
vi

ro
nm

en
t,

+
bu

t
m

ay

of

co
ur

se

be

va
ria

bl
e.

S

ee

tp
-s

im
pl

e-
ex

fo

r
an

ex

am
pl

e.

I
T

he

si
m

pl
es

t
cl

au
se

he

re

w
ou

ld

be

S
 t

er
m

ty
pe

(o

la
m

U

)
(la

m

B
et

a
V

)
(B

et
a

-=
>

G
am

m
a)

 :
-

b
(p

i
X

\
(v

ar
ty

pe

X

B
et

a
->

te

nn
ty

pe

(U

X
)

(V

X
)

G
am

m
a)

).

S
 b

ut

th
at

w

ou
ld

be

un

ne
ce

ss
ar

ily

in
ef

fic
ie

nt
.

__
__

__
__

__
__

__
_-

--
__

--
--

--
--

--
--

--
-

__
__

__
__

__
__

__
__

__
__

--
--

--
--

--
--

--
-

S

E
xt

en
d

la
ng

ua
ge

an

d
ty

pe

in
fe

re
nc

e
to

ge

ne
ric

al
ly

ty

pe

'le
t'.

C

 H
ay

be

in

cl
ud

ed

w
ith

tp

-s
im

pl
e

or

tp
go

ly
.

m
od

ul
e

tp
-m

l.

im
po

rt

tp
_t

yp
es

.

te
rm

ty
pe

(o

la
m

U

)
(la

m

B
et

a
V

)
A

lp
ha

:-

!,

A

lp
ha

-

(B
et

a
--

>
G

am
m

a)
,

(p
i

X
\

(v
ar

ty
pe

X

B

et
a

->

te
rm

ty
pe

(U

 X
)

(V

X
l

G
am

m
a)

).

ty
pe

te

nn
ty

pe

te
rm

->

te

rm

->

tp

->

0.

ty
pe

va

rty
pe

te

rm

->

tp

->

0.

ty
pe

tle

t
(t

er
m

->

te

rm
)

->

te
rm

->

te

rm
.

%
 g

en
er

ic
al

ly

ty
pe

d
le

t.

ty
pe

gv

ar
bi

nd
in

g
te

rm

->

te
rm

->

0.

te
rm

ty
pe

(la

m

B
et

a
U

)
(la

m

B
et

a
V

)
A

lp
ha

:-

!,

A

lp
ha

-

B
et

a
==

>
G

am
m

a)
,

(p
i

X
\

(v
ar

ty
pe

X

B

et
a

->

te
rm

ty
pe

(U

 X
)

(V

X
)

G
am

m
a)

).

g
gv

ar
bi

nd
in

g
X

 V
O

Z

re

m
em

be
rs

th

at

X

is

a
ge

ne
ric

al
ly

ty

pe
d

va
ria

bl
e

w
ith

'd

ef
in

iti
on

"
b

vo
.

V
O

 a
nd

th

er
ef

or
e

its

fre
e

ty
pe

va

ria
bl

es

ar
e

re
pl

ic
at

ed

w
he

re
ve

r
0

X

ap
pe

ar
s.

te
rm

ty
pe

(U

O
 @

 U
l)

(V
O

 I
!

V
l)

A
lp

ha

:-

!,

te
rm

ty
pe

U

O
 V

O

(B
et

a
==

>
A

lp
ha

),

te
rm

ty
pe

U

l
V

l
B

et
a.

te
rm

ty
pe

&

le
t

U
O

 V
O

)
(t

le
t

U
l

V
l)

A
lp

ha

:-

!,

te
rm

ty
pe

V

O

V
l

A
rg

T
yp

e,

(p
l

X
\

(g
va

rb
in

di
ng

X

 V
O

 -
>

te
rm

ty
pe

(U

O
 X

)
W

l
X

)
A

lp
ha

))
.

te
rm

ty
pe

X

X

 A
lp

ha

:-

va
rty

pa

X
 A

lp
ha

.
va

rty
pe

X

 A
lp

ha

:-

Q
V

ar
bl

nd
in

Q

X
 V

O
,

!,

te
rm

ty
pe

V

O
 V

I
A

lp
ha

.

te
rm

ty
pe

C

 C
 A

lp
ha

:-

co

nt
yp

e
C

 A
lp

ha
.

B(9, r, x, e> = xY:fJ * w *.f XVY & * a where 8:Type E r

w,r,x,+) = v .fxCfrOg * g>) where y:$ E 9

B(!P,l”,x,acq...a,) = Xxl...Xx,.Xz:AB1...AB,.81~...~~8,~a(~1...8,.

V.fx(f(r[l...[lx1 . . .x,> (Xg . g B(@, r, Xl, al). . .B(‘@, r, &I, curl)>>

B(@,r,x,a *P> = ~yk?*~f.f(xY)Vz(~g .gB(~,r,Y,a)B(~,r,z,P)))
B(9, r, x, AB . a) = xy ne . of .f (X [e]) (fy (xg . g ~(9, r e3 8x, y, c+)

Figure 2: Definition of translation B.

w@,r,@~P) = AJAY. Af.fxCry(%4. g~(m,r,x,~)B(~,r,y,P)))
D(@, r, F A G) = Xg . g D(@, r,F) D(!p, r, G)

D@,r,Ei&K.F) = Xx.D(!iQ$:K@x&r,F)

D(!& r, V&K. F) = A~:K . ~(9, r e 8x, fl

Figure: 3: Definition of translation D.

6 References

PI

r21

131

t41

151

Eel

[71

@I

Peter B. Andrews, Dale Miller, Eve Cohen, and
Frank Pfenning. Automating higher-order logic.
Contemporary Mathematics, 29: 169-192., August
1984.

Hans-J. Boehm. Partial polymorphic type infer-
ence is undecidable. In 26th Annual Symposium on

Foundations of Computer Science, pages 339-345,
IEEE, October 1985.

Alonzo Church. The Calculi of Lambda-
Conversion. Princeton University Press, Princeton,
New Jersey, 1941.

Alonzo Church. A formulation of the simple theory
of types. Journal of Symbolic Logic, 5~56-68, 1940.

H. B. Curry and R. Feys. Combinatory Logic.
North-Holland, Amsterdam, 1958.

William M. Farmer. A Unification Algorithm for

Second-Order Monadic Terms. Technical Report,
Mitre Corporation, Bedford, Massachusetts, June
1986.

Jean-Yves Girard. Interpretation fonct,ionelle et
elimination des coupures de l’arithmttique d’ordere
superieur. PhD thesis, Universite Paris VII, 1972.

Jean-Yves Girard. Une extension de l’interpretation
de Gijdel a l’analyse, et son apphcation a

PI

[lOI

[ill

[121

1133

II141

l’elimination des coupures dans l’analyse et la the-
orie des types. In J. E. Fenstad, editor, Proceed-

ings of the Second Scandinavian Logic Symposium,
pages 63-92, North-Holland Publishing Co., Ams-
terdam, London, 197 1.

Warren D. Goldfarb. The undecidability of the
second-order unification problem. Theoretical
Computer Science, 13:225-230, 1981.

J. Roger Hindley. The principal type-scheme of an
object in combinatory logic. Transactions of the
American Mathematical Society, 146:2940, De-
cember 1969.

Gerard Huet. A unification algorithm for typed X-
calculus. Theoretical Computer Science, 1:27-57,
1975.

Gerard Huet and Bernard Lang. Proving and
applying program transformations expressed with
second-order patterns. Acta Znformatica, 11:31-55,
1978.

Daniel Leivant. Polymorphic type inference. In
Proceedings of the 10th Annual ACM Symposium
on Principles of Programming Languages, ACM,
1983.

Nancy McCracken. The typechecking of programs
with implicit type structure. In G. Kahn, D.B. Mac-
Queen, and G. Plotkin, editors, Semantics of Data

162

Types, pages 301-315, Springer-Verlag LNCS 173,
1984.

[15] Dale A. Miller. Unification under mixed prefixes.
1987. Unpublished manuscript.

[161 Dale A. Miller and Gopalan Nadathur. Higher-order
logic programming. In Proceedings of the Third

International Conference on Logic Programming,
Springer Verlag, July 1986.

[17] Arthur J. Mimer. A theory of type polymorphism
in programming. Journal of Computer and System

Sciences, 17, August 1978.

[18] Robin Mimer. The Standard ML core language.
Polymorphism, II(2), October 1985.

[19] John Mitchell. vpe inference and type contain-
ment. In G. Kahn, D.B. MacQueen, and G. Plotkin,
editors, Semantics of Data Types, pages 257-277,
Springer-Verlag LNCS 173, 1984.

[20] John Mitchell and Gordon Plotkin. Abstract types
have existential type. In Conference Record of the
Twelfth Annual ACM Symposium on Principles of

Programming Languages, pages 37-5 1, ACM, Jan-
uary 1985.

[211 John C. Mitchell. Second-order unification and
types. June 1984. Unpublished notes.

[22] Lawrence Paulson. Natural deduction as higher-
order resolution. Journal of Logic Programming,

3:237-258, 1986.

[23] Lawrence C. Paulson. The Representation of Logics

in Higher-Order Logic. Technical Report 113, Uni-
versity of Cambridge, Cambridge, England, August
1987.

[24] Frank Pfenning and Conal Elliott. Higher-order ab-
stract syntax. In Proceedings of the SZGPLAN ‘88
Symposium on Language Design and Implementa-
tion, ACM, June 1988. To appear.

[25] John Reynolds. Towards a theory of type struc-
ture. In Proc. Colloque sur la Programmation,

pages 408-425, Springer-Verlag LNCS 19, New
York. 1974.

163

