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Abstract: The human body is a highly aerobic organism, in which it is necessary to match oxygen supply at tissue 

levels to the metabolic demands. Along metazoan evolution, an exquisite control developed because although oxy-

gen is required as the final acceptor of electron respiratory chain, an excessive level could be potentially harmful. 
Understanding the role of the main factors affecting oxygen availability, such as the gradient of pressure of oxygen 

during normal conditions, and during hypoxia is an important point. Several factors such as anaesthesia, hypoxia, 

and stress affect the regulation of the atmospheric, alveolar, arterial, capillary and tissue partial pressure of oxygen 

(PO
2
). Our objective is to offer to the reader a summarized and practical appraisal of the mechanisms related to 

the oxygen’s supply within the human body, including a facilitated description of the gradient of pressure from the 

atmosphere to the cells. This review also included the most relevant measuring methods of PO
2
 as well as a practi-

cal overview of its
 
reference values in several tissues.
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Introduction

The human body is a highly aerobic organism 

that consumes oxygen according to its meta-

bolic demand [1]. During aerobic respiration 

the presence of oxygen in addition to pyruvate, 

produces adenosine triphosphate (ATP), thus 

yielding energy to the entire organism [2]. To 

maintain homeostasis, the amount of oxygen 

within the tissues should respond to a gradient 

of pressure that pushes oxygen by diffusion 

throughout the membranes into the tissues [3]. 

The amount of dissolved oxygen within the tis-

sues and the cells depends on several factors 

including: barometric pressure (BP), climato-

logical conditions (temperature, relative humid-

ity, latitude, altitude), as well as physiological, 

pathological, and physical-chemical processes 

within the organism itself [4, 5]. 

The composition of gases within the tropo-

sphere is constant at approximately the follow-

ing ratio: 78.08% nitrogen, 20.95% oxygen, 

0.93% argon and finally less than 0.038% for 
carbon dioxide and other gases [6].

Dalton’s law establishes that within a combina-

tion of any given gases, the total pressure is  

the same as the sum of the partial pressures  

of each individual gas present in that mixture 

[7]. Thus, the partial pressure of oxygen (PO
2
) 

depends mainly on the atmosphere’s baromet-

ric pressure (BP) and its fractional concentra-

tion [8]. Geographical altitude is an important 

factor affecting BP, because as altitude 

increases, the amount of gas molecules in the 

air decreases, so the air becomes less dense 

than at sea level. At sea level BP is about 760 

mmHg, although can be affected not only by 

altitude: latitude, humidity, temperature and 

even the season of the year may also affect BP 

[9, 10]. This changes are normally local, conse-

quently, short-term temporal (time scale of min-

utes, hours, days and weeks) variations in BP in 

a same location usually range around 5-15 

mmHg [9].

Partial pressure of oxygen

Within the troposphere (lowest region of the 

atmosphere), PO
2
 depends on several vari-
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ables, but mainly on barometric pressure 

(Figure 1) [4]. Under physiological conditions, 

this relationship will be affected by any change 

in elevation or by modifying the fraction of 

inspired oxygen (FiO
2
) under controlled circum-

stances [3, 11, 12].

Atmospheric partial pressure of oxygen 

(
Atm

PO
2
)

Humans depend on oxygen for survival, and 

this gas is acquired from the atmosphere where 

the partial pressure of oxygen (
Atm

PO
2
) within 

(37°C), and it is strongly temperature depen-

dent [11]. This results in an effective reduction 

at the alveolar level in the partial pressure of 

oxygen (PAO
2
) from 159 to 149 mmHg that is 

not likely to be physiologically relevant at sea 

level, because only represents about 6% of  

the total 
Atm

PO
2
 [16]. However, when the BP is 

already low, such as at the summit of Mount 

Everest (altitude 8,848 m), a reduction of 47 

mmHg (the water vapour pressure) represents 

almost 20% of the available 
Atm

PO
2
, making this 

reduction life threatening [17, 18].

Figure 1. Relationship between elevation and Barometric Pressure (filled cir-
cles) and Atmospheric Partial Pressure of Oxygen (hollow circles). *Calculations 
were based on the standard atmosphere and were done by the authors.

Figure 2. Arterial oxygen tension (PaO
2
) at different altitudes in humans accord-

ing to the values given in several reports [3, 4, 12, 17]. 

the troposphere depends 

on BP according to the 

Dalton’s Law [13]: 

Atm
PO

2
 = 0.21 · 760 mmHg = 

159 mmHg

Humans are constantly 

exposed to changes in BP, 

either artificially or natural-
ly, thus, pressure of ins- 

pired oxygen (as well as  

the other gasses) its inver- 

sely proportional reduced 

among those exposed to 

hypobaric or normobaric 

hypoxia [3, 14] (Figure 1).

Alveolar partial pressure of 

oxygen (PAO
2
)

Once air is warmed and 

humidified in the nose and 
upper respiratory tract, the 

pressure of oxygen decrea- 

ses while concentration of 

H
2
O increases, thus alter-

ing effective PO
2
 in this gas 

mixture. Therefore, oxygen 

partial pressure within the 

upper airway is noted in- 

spired PO
2
 (PiO

2
) [15]. The 

reduction of pressure of 

oxygen is caused by the 

addition of water vapour 

(humidification) to the en- 
tire mixture of gases, thus 

reducing the pressure of 

the other gases [4]. The 

pressure of water vapour is 

constant at 47 mmHg at 

normal body temperature 
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Moreover, once the inspired air has been 

humidified, there is an additional reduction in 
PO

2
 from the trachea to the alveolus, due to the 

dead space and the mixing of inspired and 

expired gases [19]. This fall in the pressure of 

oxygen from the upper airways to the alveolus 

is almost all accounted for by the alveolar pres-

sure of carbon dioxide (PACO
2
) [10, 20]. Since 

inspired PCO
2
 is zero and the PACO

2
 is usually in 

the range of 40 mmHg, the partial pressure of 

oxygen must fall [21]. 

When oxygen is transported into the venous 

pulmonary capillary, an important gradient of 

pressure from the upcoming arterial blood 

pushes the CO
2
 out to the alveoli [22]. 

The alveolar partial pressure of oxygen (PAO
2
) 

in the alveoli-capillary barrier at sea level is cal-

culated based on the fraction of inspired oxy-

gen (FiO
2
). At least in the troposphere, air con-

tains a standard 20.95% of oxygen, thus the in 

order to estimate the alveolar PO
2
 the following 

equation is used:

PAO
2
 = FiO

2
 (PB-47) - 1/R (PACO

2
)

Where R is the respiratory exchange ratio and 

equals 0.8 most of the time and the 47 corre-

spond to the water vapour pressure at normal 

body temperature (37°) [4].

Arterial partial pressure of oxygen (PaO
2
)

Once in the lungs, oxygen diffuses across the 

alveolar-capillary barrier from the alveoli into 

the arterial circulation. The initial diffusion gra-

dient of pressures in the microcirculation aris-

es when arterial partial pressure of oxygen 

(PaO
2
) with a higher pressure is mixed with the 

pressure of oxygen within the veins (PVO
2
) [23]. 

The rate of oxygen diffusion across the alveoli-

capillary membrane in addition to a faster and 

easier elimination of CO
2
, assures that capillary 

PaO
2
 is almost equal to the alveolar PAO

2
 and 

during normal conditions (at sea level) it corre-

spond to 75 to 100 mmHg [24].

At sea level, during normal conditions, the par-

tial pressure of oxygen in the arteries is high 

enough to satisfy the oxygen demands for the 

entire organism [10]. However, during high alti-

tude exposure (hypobaric hypoxia), as baromet-

ric pressure descends, the pressure of oxygen 

in the arterial circulation is inversely proportion 

reduced [25, 26]. This reduction attributes to 

the significant reduction in 
Atm

PO
2
 and deter-

mines the actual pressure of oxygen available 

for tissue and cellular requirements [27, 28] 

(Figure 2). 

Tissue partial pressure of oxygen (PtO
2
)

Once oxygen has reached the arteries, the dif-

ference in pressures (gradient of pressure) 

between the capillary to the cytosol of sur-

rounding cells results in a steep diffusion gradi-

ent, the greatest in the body reaching more 

than 42% [4]. The average partial pressure in 

the tissue is called the tissue partial pressure 

of oxygen (PtO
2
) [10].

The transport of oxygen from the atmosphere 

into the entire body is mediated by the rate dif-

fusion as well as the rate of consumption 

between physiological barriers [29]. Diffusion 

is based on the kinetic theory that encompass-

es the rapid movement of molecules, causing a 

self-generated energy source to rapidly cross 

membranes [30]. Whereas convective trans-

port refers to the heat transferred and energy-

consuming combination of molecules to cause 

the movement of oxygen in the trachea and the 

bronchial tree with the surrounding alveoli-cap-

illary circulation [31]. The diffusive transport is 

the passive movement of oxygen across sever-

al barriers, such as the endothelium, the alveo-

lus and the mitochondrial membrane [32]. The 

amount of diffusive oxygen movement depends 

on the gradient of partial pressure of oxygen, 

the available surface area to diffusion, the per-

meability and thickness of diffusion barriers 

and the local metabolic demand [33, 34].

Tissue partial pressure of oxygen (PtO
2
) is regu-

lated by the blood flow, the availability of oxy-

gen and the consumption rate from one region 

to another [3, 24, 35, 36]. The Bohr effect 

allows that hemoglobin releases more oxygen 

in response to the metabolic rate of that tissue 

in highly aerobic tissues [37]. For instance, neu-

rons and cardiac myocytes are largely aerobic 

and depend on the presence of oxygen for their 

survival, although some lactate can be pro-

duced within the brain, most of them depended 

on the metabolic rate of oxygen consumption 

[36, 38]. Other cells, such as the bladder myo-

cytes or the skeletal myocytes are more toler-

ant to hypoxia, and are able to obtain energy 

without the presence of oxygen for longer peri-

ods of time than can neurons in the brain [10].
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Table 1. References values of PtO
2
 measurements using different techniques

PtO
2
 (mmHg) Organ and Tissue Reference Methods Species

30-48 Brain Meixensberger [51], Hoffman [52], Ortiz-Prado [3] Positron emission tomography (PET) Human

And rats

104-108 Alveoulus Guyton [4] Polarographic measurements of tissue oxygen tension using gold microelectrodes Human

8 Skin epidermis Wang [35], Carreau [53] Microelectrodes Human

24 Dermal papillae

35.2 Sub-papillary plexus

61.2 Small bowel Müller [54, 55], Carreau [53] Electron paramagnetic resonance oximetry (EPR) Human

57.6 Large bowel Müller [54, 55], Carreau [53] Electron paramagnetic resonance oximetry (EPR) Human

55.5 ± 21.3 Liver Leary [56] Electron paramagnetic resonance oximetry (EPR) with Indian ink. Human

72 ± 20 Superficial cortex of the kidney Muller [57], Carreau [53] Phosphorescence lifetime technique Human

28.9 ± 3.4 Muscle fibers Beerthuizen [58], Carreau [53] Proton NMR spectra of myoglobin Human

29.6 ± 1.8

51.8 ± 14.5 Bone Marrow Carreau [53] The technique of aspiration in a syringe Human

34 ± 1.6 Femur Bone Maurer [59] Technique of radioactive microspheres in interosseous blood samples and blood flow in the 
bone

Human

71.4 Mandibule

55 Suprarenal Gland Bloom [60] Phosphorescence lifetime technique Calf

88 Ovaries Fraser [61] Clark electrode for pO
2

Human

18 Umbilical Arteries Gluckman [62], Carreau [53] Umbilical cord blood gas Human

29.2 Umbilical Vein Guyton [4], Gluckman [62], Carreau [53] Umbilical cord blood gas Human

90 ± 5 Arterial PO
2

Mah and Cheng [20], Guyton [4] Gasometry Human

40 ± 5 Venous PO
2

Mah and Cheng [20], Guyton [4] Gasometry Human

48.2 ± 3.1 Synovial Fluid Richman [63] Routine macroscopic and microscopic examination Human

30.6 ± 3.1 Cornea Bonanno [64] Oxygen sensitive dye, Pd-meso-tetra (4-carboxyphenyl) porphine, bound to bovine serum 

albumin, was incubated with contact lenses

Human

22 The Eye Bonanno [64] The T1 mapping method was applied Human
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Intracellular partial pressure of oxygen 

Once oxygen reaches the cells, the metabolic 

demand must to be satisfied. The gradient of 
partial pressure of oxygen, from the extracellu-

lar space into the cell determines the availabil-

ity of oxygen to the mitochondria [39, 40].

In highly aerobic cells, such as the neurons, 

energy production depends largely on the avail-

ability of oxygen supplied to the mitochondria 

[41]. Inside this organelle, a series of enzyme-

catalysed chemical reactions occur, converting 

metabolites into carbon dioxide and water to 

generate a form of usable energy in the form of 

high energy phosphates [42].

Although it has long been reported that the 

intracellular partial pressure of oxygen (iPO
2
) 

drops around the oxygen-consuming organelle, 

the mitochondrion PO
2
 must be very small [39]. 

Various attempts to determine the gradient of 

oxygen between the mitochondria and the 

extracellular fluids have led to some incongru-

ous results [40, 43, 44]. Reported values range 

from one type of cell to another and ranges 

from below 1 mmHg measured by indirect 

methods to 1 to 10 mmHg by intracellular direct 

methods [45]. The classic insensitivity of mito-

chondrial respiration to local PO
2
 has been 

challenged recently by in vivo [46] and in vitro 

[47] studies, in which mitochondrial oxygen 

consumption is dependent on PO
2
 over the full 

physiological range.

Partial pressure of oxygen in different tissues

Once the arteries bring O
2
 to the cells, the dif-

ference in pressure between the arterial vascu-

lar lumen and the tissue will cause that gases 

that are at higher pressures diffuse to those 

tissues with lower pressure, exchanging oxygen 

and carbon dioxide (CO
2
) in both directions 

[29]. The average partial pressure in the tissue 

along this diffusion gradient is called the tissue 

partial pressure of oxygen (PtO
2
) and varies 

according with oxygen consumption, capillary 

density, metabolic rate and blood flow [10, 48].

While under normal circumstances alveolar 

PO
2
 is equal to 104 mmHg, the lungs will trans-

fer this oxygen through the alveolar-capillary 

barrier, reaching the same PO
2
 (104 mmHg), 

however, before reaching the left atria, the pul-

monary shunt blood coming from the bronchial 

veins (40 mmHg) will mix with blood from pul-

monary veins, reaching the atria with an arterial 

PO
2
 of 95 mmHg. This is known as “pulmonary 

venous admixture” [10, 49].

From the aorta, the amount of oxygen that is 

released from the hemoglobin will depend upon 

the metabolic demands from that specific 
organ, that are usually matched to the arterial 

oxygen supply and vasomotor sensitivity [50].

In the following section we summarized the 

range of PO
2
 according to the type of tissue, 

describing in more depth those which have 

more available data in humans. It is important 

to point out that due to the lack of studies in 

controlled environments, an specific range 
mean value is hard to be provided, therefore, 

we state the reference value according to the 

lowest-highest range described (Table 1). 

Partial pressure of oxygen in the brain

The brain is an organ with one of the highest 

oxygen and glucose requirements, although it 

is not able to store metabolic products for fur-

ther use, its blood supply is highly dependent of 

vasoactive substances, arterial blood gases 

and metabolic demand allowing the availability 

of these nutrients [3, 65, 66]. 

Changes in tissue brain Partial Pressure of 

Oxygen depends on the cerebral metabolic rate 

(CMR), the local cerebral blood flow (CBF) and 
the systemic exposure of hypoxia [3, 36, 67, 

68]. Brain PtO
2
 can change due to several fac-

tors like CMR, hypoxia, exercise, angiogenesis, 

stress and Anesthesia [3]. In general and con-

sidering that humans are in constant activity 

and many cofounders cannot be controlled, the 

available evidence suggest that cortical PtO
2
 

ranges from 20-25 mmHg in rest and low alti-

tude and reach up to 48 mmHg in high altitudes 

or intense physical activity [51, 52, 69].

Partial pressure of oxygen in the liver

The liver receives more than 6% of the cardiac 

output per minute and more than 26% of the 

cardiac output when considering the portal 

venous system [10]. This organ seems to be 

highly oxygenated, however, during sympathet-

ic vascular tone changes, anesthesia, restrain-

ing and also depending of the method of mea-

surement, liver tissue PO
2
 fluctuates [56]. The 
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Table 2. Adapted from Harold M. Swartz; Jeff F. Dunn * Minimum Volume Sampled

Method Parameter measured Mechanism of measurement Site of measurement *Volume sampled

Microelectrode pO
2

Current generated by the electrolytic decom-

position of dioxygen

Interstitial volume in contact with the tip μl

Near infrared monitoring of haemoglobin 

and myoglobin

Physiological parameter relative or 

absolute changes in saturation 

Amount or fraction of haemoglobin (Hb) 

or myoglobin (Mb) and its relative oxygen 

saturation 

Location of the proteins. In the vascular 

system by non-linear weighting of Hb related 

to vessel diameter. Idem in muscle for Mb.

ml’s

Near infrared monitoring or cytochromes Physiological parameter relative 

changes in cytochrome oxidation

Redox state of cytochoromes Intracellular cytochromes 5 ml’s

Phosphorescent and fluorescent methods 
based on redox states of intermediates

Physiological parameter based on 

redox potential

Ratio of reduced and oxidized states of redox 

couples

Sites of the redox intermediates (usually 

intracellular)

μl’s

Phosphorescent and fluorescent methods 
based on quenching by oxygen

O
2

Change in lifetimes of the excited states Sites of the introduced probe molecules, 

intravascular or at a catheter tip

μl’s

NMR perfluorocarbon relaxation O
2

Effect on relaxation rates of fluonne nuclei Sites of the introduced emulsion μl-ml’s

Substances that localize in hypoxic areas Physiological parameter Amount of material that localizes in the 

tissue, related to perfusion and O
2
 at time of 

administration 

Tissues where substances localize <10 μ in biopsy

EPR oximetry based on soluble materials pO
2

Effect on linewidth of EPR spectrum Sites of the particles (usually interstitial) 100 μl

EPR oximetry based on soluble materials O
2

Effect on linewidth of EPR spectrum or relax-

ation rates

Sites of the soluble molecules (usually 

throughout the tissues)

-1 ml

NMR spectroscopy Physiological parameter metabolic 

correlates with oxygen

Concentrations of metabolites which change 

with oxidative status of cells 

Sites of metabolites -1 ml

25 μl-ml’s

Proton NMR spectra of myoglobin Physiological parameter relative or 

absolute change in oxymyoglobin

Relative concentrations of deoxy and oxymyo-

globin

Muscle (myoglobin) -1 ml

μl-ml’s

NMR overhauser effect O
2

Relaxation rates of protons that couple to free 

radicals 

Sites of the soluble free radicals (usually 

throughout the tissues)

Potential resolution of MRI

NMR bold effect Physiological parameter Amount of deoxyhemoglobin in the voxels Vascular system with a non-uniform weight-

ing to vascular diameters

<0.2 ml

μl-ml’s

*The minimum volume of tissue that was sampled for theoretical rather than practical interest. 
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liver can survive with less than 60% of the total 

liver blood supply due to sympathetic electric 

nerve stimulation, resulting in an important 

reduction of tissue PO
2
, however under normal 

conditions the very few reports available in 

humans refer that PO
2
 ranges from 50-55 

mmHg [56, 70].

Partial pressure of oxygen in skeletal muscle 

The muscle is a highly effective oxygen con-

suming tissue that responds to blood flow 
requirements and oxygen availability [71]. The 

local tissue oxygenation of the skeletal muscle 

is highly variable, being skeletal muscle one of 

the most tolerant tissues to hypoxia and meta-

bolic acidosis [72]. Tissue oxygenation level 

depends on the rate of oxygen supply and the 

rate of oxygen consumption per tissue [73]. The 

critical level in which the muscle will suffer isch-

emia has not been explored, however, muscle 

PO
2
 and its relationship with systemic factors 

such as sepsis and infections have been report-

ed several times [58, 74]. Considering the 

reports available, skeletal muscle oxygenation 

ranges from 7.5 to 31 mmHg [74].

Partial pressure of oxygen in the skin 

The skin is one of the most vasoactive tissue 

within the body, reacting strongly to sympathet-

ic, thermic and metabolic changes [10]. At rest 

and in neutral thermal conditions, less than 2% 

of the total cardiac output goes to the skin [75], 

however, fluctuations in skin blood flow are 
always occurring due to sympathomimetic vari-

ability [76]. The oxygen availability measured 

locally depends on the influence of the microcir-
culation and the skin PtO

2
 ranges according to 

the skin layers. The more external layer ranges 

from 3.2 to 8 mmHg, the papillary dermis from 

6.4 to 24 mmHg and below the subcutaneous 

fat, the skin PtO
2
 ranges from 8 to 38 mmHg 

[53, 75].

Methods to measure tissue partial pressure of 

oxygen

Several methods have been used to measure 

the availability of oxygen within the tissues 

(PtO
2
). In Table 2 we summarize the methods 

that are available nowadays with some techni-

cal specifications such as the mechanism of 
measurement, the site of data collection and 

minimum sample volume needed (Table 2).

Qualitative methods to measure tissue PtO
2

The most common qualitative methods avail-

able to measure brain PtO
2
 include, but are not 

limited, to positron emission tomography (PET), 

near-infrared spectroscopy (NIR) and magnetic 

resonance imaging (MRI) or nuclear magnetic 

resonance (NMR) [77, 78].

Positron emission tomography (PET)

Positron emission tomography (PET) is an imag-

ing technique that uses positron emitting iso-

topes which are injected into the tissue to pro-

vide a three-dimensional image or picture of 

functional processes in the body [79]. The 

parameters used to measure brain oxygenation 

are based on the oxygen extraction fraction 

(OEF) or the cerebral metabolic rate for oxygen 

(CMRO
2
). The use of PET in brain oxygenation 

studies has been reported several times, 

although its use is reduced in the clinical set-

ting due to its high cost and technical complex-

ity [77, 80].

Near infrared spectroscopy (NIR)

Near infrared spectroscopy (NIR) is a technolo-

gy based on light absorption in the near infra-

red spectrum (700-1000 nm) [81]. It is charac-

terized for its ability to scatter through skin, 

bone and other tissues, thus detecting low 

resolution but real time changes in regional 

hemoglobin content and rarely with brain cere-

bral perfusion [82, 83].

Blood oxygenation level dependent MRI 

(BOLD MRI)

Oxyhemoglobin has diamagnetic properties 

whereas deoxyhemoglobin is a paramagnetic 

molecule [84]. These magnetic properties can 

be used as an endogenous source of contrast 

to visualize tissue oxygenation [85-87]. This 

technology can be used to measure brain oxy-

genation based on the concept that changes  

in deoxyhemoglobin modulate the MRI signal 

intensity. For example, an increase in regional 

cerebral blood flow caused by neural activity is 
accompanied by a local reduction in deoxyhe-

moglobin content [88].

Quantitative methods to measure brain PtO
2

The physical and chemical characteristics of 

oxygen can be measured according to its spe-
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cific interaction with determined oxygen-reac-

tive molecules [89]. The measurement of  

tissue partial pressure of oxygen (PtO
2
) is 

expressed in mmHg, kPa or Torr and is one of 

the main “direct” measurements of oxygen-

ation in the tissue [77].

Polarographic microelectrodes

Molecules of oxygen are electron acceptors 

and this oxidative reaction can be measured 

using microelectrodes [90]. This oxygen reduc-

tion reaction allows a signal that creates a 

potential difference which is recorded by the 

electrode [91]. The use of this type of elec-

trodes has allowed the measurement of brain 

PtO
2
 during various conditions, including head 

trauma, brain surgery, hypothermia and hiber-

nation [92-96].

Electron paramagnetic resonance oximetry

Electron paramagnetic resonance oximetry 

(EPR) is a spectroscopic technique that detects 

chemical species that have unpaired electrons 

[97]. EPR oximetry is a relatively non-invasive 

method for monitoring tissue partial pressure 

of oxygen (PtO
2
) using paramagnetic oxygen 

sensitive materials including perchlorotriphe-

nylmethyl molecules or lithium phthalocyanine 

(LiPc) crystals [85, 97-100].

The fundamental mechanism of this technique 

is the detection of unpaired electron species 

which react with the implanted materials (i.e. 

LiPc crystals) [101]. The identification of these 
chemical species co-existing in the determined 

paramagnetic spectrum can be observed and 

interpreted as oxygen tensions [100, 102- 

104].

The use of EPR oximetry for the study of tissue 

oxygenation allows multiple measurements to 

be performed through the use of crystals that 

are highly sensitive to low PtO
2
 [98]. The advan-

tages of this method are stable calibration and 

relative unresponsiveness to changes in pH or 

redox reactions [104, 105].

Mass spectrometry and brain PtO
2
 measure-

ments

Mass spectrometry (MS) is a technique that 

make it possible to obtain analytical informa-

tion of the molecular mass and its elemental 

composition of a sample or molecule [106]. For 

this it is necessary to ionize molecules using 

different techniques such as chromatographic 

separation in order to measure the mass to 

charge ratio caused by external electric and 

magnetic fields [83, 106].

Mass spectrometry is a complicated technolo-

gy to use, Atoms are very reactive and they 

have a short live, thus, manipulation must be 

performed in a vacuum environment, with very 

low barometric pressures that ranges from 

~10-5 to 10-8 Torr [106]. These factors, plus the 

greater degree of invasively, and the response 

time and delay of mass spectrometers, make 

mass spectrometry less favourable as a meth-

od [83].

Fluorescence and phosphorescence-based 

probes

The optical methods of oxygen detection are 

based on the recognition of an atom or mole-

cule which has been electronically excited by 

the absorption of a photon [3]. This excitation 

facilitates the transitions of a species from  

high excitation state or activation, to a ground 

or low excitation state, this molecular reaction 

involves the emission of a photon of light [3].

Fiber optic optodes can be used to measure 

brain PtO
2
 in awake and unanesthetized sub-

jects, however its availability in human studies 

is limited. This technology is based on short 

pulses of light that are transmitted along a fiber 
optic sensor, exciting the platinum (new ver-

sion) or ruthenium (older version) based tip, 

producing a photon-molecular reaction that is 

quenched by the presence of oxygen [3, 45, 

107, 108].

One of the most important physiological advan-

tages of this optical technique is that it is very 

sensitive during hypoxia [3]. This feature is clini-

cally relevant when studying tumour growth 

which depends on oxygenation as well as when 

studying ischemia or brain injuries [109]. Ano- 

ther important feature of this technology is its 

insensitivity to magnetic fields. This technology 
allows us to measure brain PtO

2
 while applying 

simultaneously other exploration or imaging 

techniques, such as MRI or EPR. This feature 

can be used to validate two or more methods 

[110].
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The effects of acute and chronic hypoxia on 

Tissue PO
2

The effects of hypoxia (acute or chronic) and 

the presence of oxygen deprivation in different 

tissues have been reported as early as the 

1950’s [111]. The hypoxic environment was 

simulated using different fractions of inspired 

oxygen (normobaric hypoxia) or by exposing the 

subject to lower barometric pressure (hypobar-

ic hypoxia), either by using low pressure cham-

bers, or taking the subject to high altitude [8, 

112].

Although oxygen levels are critical parameters 

in order to asses tissue survival, monitoring the 

level of oxygen at a tisular level remains a chal-

lenge [3, 52, 68, 110]. Real time, in vivo mea-

surements during acute inflammation, hypoxia 
or hyperoxia have been done very few times 

and is not widely available [80]. 

Measuring tissue oxygenation during acute or 

chronic is a difficult task, especially due to the 
presence of cofounders like exercise, anesthe-

sia, time of exposure or restraining the animal 

model [113, 114]. In humans, acclimation to 

high altitude exposure or controlled normobaric 

hypoxia will cause different readings in terms  

of PtO
2
 [68]. Adaption on the other hand will 

cause differences between populations, mak-

ing extrapolation a difficult task [115]. Obtaining 
reference values in such conditions is very dif-

ficult due to the implications of such a chal-
lenge and the ethical limitations of these type 

of technologies in humans. 

Discussion

This practical review of the available literature 

about the gradient of pressure of oxygen 

revealed complex, varied and often not conclu-

sive results. We tried to summarize the most 

relevant information to present it as friendly as 

possible for educational purposes. A more pro-

found analysis of cellular and molecular hypox-

ia and normoxia signalling we recommend 

Keeley and Mann review [116].

The usefulness of understanding the gradient 

of PO
2
 among healthcare providers is essential. 

Understanding how the gradient of pressure 

works and how oxygen is delivered is related to 

an entire spectrum of clinical uses. Some of the 

most important results come from athletes per-

formance [117], forecasting mortality due to 

prevalent diseases [118], wound healing evalu-

ation [119], treatment effectiveness in ulcers, 

burns, cancer or cerebral and cardio vascular 

disease [120-125]. 

In this sense, we have exposed the physiologi-

cal mechanisms, the methods for measuring 

and the pressures values reported in different 

organs from the atmosphere to the mitochon-

dria. Tissue partial pressure of oxygen reflects 
a balance between arterial blood flow and  
tissue oxygen consumption rate [92]. Due to 

technical limitations and confounding factors 

such as anesthesia, inflammation, restraint 
and hypoxia, an appraisal of partial pressure of 

oxygen during normal conditions is very diffi-

cult. However, in vivo and clinical data available 

have been included to offer the reader a better 

perspective of how partial pressure of oxygen 

behaves within the human body. 

Conclusions

The human body is a complex living organism, 

which has developed mechanisms to keep oxy-

gen levels in a suitable level as to cover the 

metabolic demand, while avoiding excessive 

oxygen pressure.

The partial pressure of oxygen varies in the dif-

ferent structures of the organism. Each organ 

and tissue have its own requirements in order 

to correctly function. For example, the partial 

pressure of oxygen in the lungs for carrying out 

the gas exchange is different from the partial 

pressure of oxygen within the pulmonary tis-

sue. We have emphasized that the organism 

has been able to develop physiological mecha-

nisms that allow it to respond to short-term and 

long-term changes not only of the oxygen par-

tial pressure, but also of the different gases in 

the atmosphere. This fascinating response 

capacity is responsible of how the human body 

manages to function correctly when it finds 
itself in different climates and altitudes.
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