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Abstract 

The Electric Vehicle Routing Problem with Time Windows (EVRPTW) is an extension to the 

well-known Vehicle Routing Problem with Time Windows (VRPTW) where the fleet consists of 

electric vehicles (EVs). Since EVs have limited driving range due to their battery capacities they 

may need to visit recharging stations while servicing the customers along their route. The 

recharging may take place at any battery level and after the recharging the battery is assumed to 

be full. In this paper, we relax the full recharge restriction and allow partial recharging 

(EVRPTW-PR) which is more practical in the real world due to shorter recharging duration. We 

formulate this problem as 0-1 mixed integer linear program and develop an Adaptive Large 

Neighborhood Search (ALNS) algorithm to solve it efficiently. We apply several removal and 

insertion mechanisms by selecting them dynamically and adaptively based on their past 

performances, including new mechanisms specifically designed for EVRPTW and EVRPTW-

PR. We test the performance of ALNS by using benchmark instances from the recent literature. 

The computational results show that the proposed method is effective in finding high quality 

solutions and the partial recharging option may significantly improve the routing decisions. 

Keywords: Electric vehicle; vehicle routing problem with time windows; adaptive large 

neighborhood search; metaheuristics; partial recharge.  
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1. Introduction 

Transportation systems account for about 20-25% of global energy consumption and CO2 

emissions. Road transport is a major contributor with 75% share (White Paper on Transport, 

2011). 95% of the world's transportation energy comes from fossil fuels, mainly gasoline and 

diesel. In the US, about 27% of total greenhouse gas (GHG) emissions in 2013 are transport 

related (www.epa.gov). 74% of the domestic freight in 2012 is moved by trucks and the freight 

volume is expected to grow by 39% in 2040 (Bureau of Transportation Statistics, 2014). 

Transport accounts for 63% of fuel consumption and 29% of all CO2 emissions in the EU. 

Freight transport activity is predicted to grow by around 80% in 2050 compared to 2005 

(ec.europa.eu).  

Transportation will continue to be a major and still growing source of GHGs. Hence, 

governments are considering new environmental measures and targets for reducing emissions 

and fuel resource consumptions. The US Administration aims at cutting the overall GHG 

emissions 17% below 2005 levels by 2020 and has recently established the toughest fuel 

economy standards for internal combustion engine (ICE) vehicles in the US history 

(www.state.gov). The EU targets 80–95% reduction of GHGs below 1990 levels by 2050, where 

a reduction of at least 60% is expected from the transport sector. The European Commission 

aims at reducing the transport-related GHG emissions to around 20% below their 2008 level by 

2030. The use of conventionally fuelled cars will be reduced by 50% in urban transport by 2030 

and phased out by 2050. City logistics in major European urban centers will be CO2-free by 2030 

(White Paper on Transport, 2011).  

The targets set by governments and the new regulations imposed encourage the usage of 

alternative fuel vehicles (AFV) such as solar, electric, biodiesel, LNG, CNG vehicles. Many 

municipalities, government agencies, non-profit organizations, and private companies are 

converting their fleets to include AFVs, either to reduce their environmental impact voluntarily 

or to meet new environmental regulations (Erdoğan and Miller-Hooks, 2012). Consequently, the 

advancements in the electric vehicle (EV) technology have gained momentum in parallel with 

the growing environmental concerns in societies.  

EVs move with electric propulsion and can provide emission-free urban transportation. They can 

be classified as battery electric vehicles (BEV), hybrid electric vehicles (HEV), and fuel-cell 

electric vehicles (FCEV) such as electric trains, airplanes, boats, motorcycles, scooters, and 

spacecrafts (Chan, 2002). In this paper, we refer to EV as a commercial road BEV such as a lorry 
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or van. A fleet of EVs can be used in a variety of transport needs such as public transportation, 

home deliveries from grocery stores, postal deliveries and courier services, distribution 

operations in different sectors. 

Although EVs enable low-emission logistics services, operating an EV fleet has several 

drawbacks such as: (i) low energy density of batteries compared to the fuel of combustion 

engined vehicles; (ii) limited number of public charging stations; and (iii) long recharging times 

(Touati-Moungla and Jost, 2011). Battery swap may remedy the last; however, swapping raises 

additional issues in battery design and compatibility, battery degradation, ownership, and swap 

station infrastructure. Under these limitations, routing an EV fleet arises as a challenging 

combinatorial optimization problem in the Vehicle Routing Problem (VRP) literature. 

The Electric Vehicle Routing Problem with Time Windows (EVRPTW) was introduced by 

Schneider et al. (2014) as an extension to the Green Vehicle Routing Problem (GVRP) of 

Erdoğan and Miller-Hooks (2012). GVRP concerns “green” vehicles which run with biodiesel, 

liquid natural gas, or CNG, and have a limited driving range. Hence, the vehicles may need 

refueling along their route. Refueling is fast; however, the stations for these fuels are scarce. 

EVRPTW is a variant of the classical VRPTW where the fleet consists of EVs that may need to 

visit stations to have their batteries recharged in order to continue their route, as in GVRP. On 

the other hand, the recharging operation may take a significant amount of time, especially when 

compared to relatively short refueling times of liquid fuels. Recharging may take place at any 

battery level and the recharge time is proportional to the amount charged. After the recharge the 

battery is assumed to be full. The number of stations is usually small and the stations are 

dispersed in distant locations, which increases the difficulty of the problem. In this paper, we 

relax the full recharge restriction and allow partial recharging which is more practical in the real 

world due to shorter recharging duration.  When the vehicle visits a station near the end of its 

route, full recharge may not be needed for the vehicle to return to the depot. A similar situation 

may exist between two consecutive recharges. Saving from recharging time may allow the 

vehicle to catch the time window of an otherwise unvisited customer, thus, may improve the 

solution. 

In the partial recharge (PR) scheme, the recharge quantity is associated with a continuous 

decision variable. We refer to this problem as EVRPTW and Partial Recharges (EVRPTW-PR) 

and formulate it as 0-1 mixed integer linear program. Note that determining the recharge 

quantities brings significant difficulties to the problem. Since the problem is intractable for large 

instances, we propose an Adaptive Large Neighborhood Search (ALNS) approach to solve it 
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efficiently. ALNS is based on the destroy-and-repair framework where at each iteration the 

existing feasible solution is destroyed by removing some customers and recharging stations from 

their routes and then repaired by inserting the removed customers to the solution along with 

stations when recharging is necessary. Several removal and insertion algorithms are applied by 

selecting them dynamically and adaptively based on their past performances. The new solution is 

accepted according to the Simulated Annealing criterion. Our approach combines the removal 

and insertion mechanisms presented in Ropke and Pisinger (2006a, 2006b), Pisinger and Ropke 

(2007) and Demir et al. (2012) with some new mechanisms designed specifically for EVRPTW 

and EVRPTW-PR. Our computational tests show that the proposed ALNS is effective in finding 

good quality solutions and improves some of the best-known solutions in the literature. 

Furthermore, our results reveal that the QF scheme may substantially improve the routing 

decisions. 

The contributions of this study can be summarized as follows: 

• We extend EVRPTW to a PR scheme, which is more general and practical, and present 

the mathematical programming formulation of the problem. 

• We propose an effective ALNS method to solve the EVRPTW and EVRPTW-PR. The 

proposed method introduces new removal and insertion mechanisms to tackle the more 

complex problem structure of VRPs where the fleet consists of EVs. 

• We validate the performance of the proposed method using the EVRPTW instances of 

Schneider et al. (2014) and improve the best-known solutions of 4 problems. 

• We show that the PR scheme improves the solutions obtained with the full charging (FC) 

scheme substantially. 

The remainder of the paper is organized as follows: Section 2 reviews the related studies in the 

literature. Section 3 describes the problem and formulates the mathematical model. The proposed 

ALNS method is presented in Section 4. Section 5 provides the computational study and 

discusses the results. Finally, concluding remarks and future research directions are given in 

Section 6. 

2. Related literature 

There are relatively few studies on route optimization of AFVs. Artmeirer et al. (2010) studied 

this problem within a graph-theoretic context and proposes extensions to general shortest path 

algorithms that address the problem of energy-optimal routing. They formalize energy-efficient 

routing in the presence of rechargeable batteries as a special case of the constrained shortest path 
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problem and present an adaption of a general shortest path algorithm that respects the given 

constraints. Wang and Shen (2007) developed a model that minimizes the number of tours and 

total deadhead time hierarchically. The driving range of the vehicle is limited but the charging 

durations, time windows and vehicle capacities are not considered. A multiple ant colony 

algorithm was proposed to solve the problem.  

Conrad and Figliozzi (2011) introduced the Recharging VRP (RVRP), a new variant of the VRP 

where the EVs are allowed to recharge at selected customer locations. The model has dual 

objectives: the primary objective minimizes the number of routes or vehicles whereas the 

secondary objective minimizes the total costs associated with the travel distance, service time 

and vehicle recharging. The latter is a penalty cost incurred at each recharge. The EV is charged 

while servicing the customer and the charging time is constant. The battery level departing from 

a customer depends on the choice of full charge or partial charging. In the partial charge case the 

battery is charged to a specified level such as 80% of battery capacity. Conrad and Figliozzi 

(2011) used an iterative construction and improvement procedure to solve this problem but did 

not provide its details. 

Wang and Cheu (2012) investigated the operations of an electric taxi fleet. Their model 

minimizes total distance travelled under the recharging constraints and maximum route time. The 

battery is consumed at a given rate per distance and can be replenished at the recharging stations. 

Charging times are constant and after charging the battery becomes full. They construct an initial 

solution using one of the nearest-neighbor, sweep and earliest time window insertion heuristics 

and improve it using Tabu Search (TS). They also suggested three different recharging plans 

which provide different driving ranges and compared the results against the full charging 

scheme. 

Omidvar and R. Tavakkoli-Moghaddam (2012) tackled an AFV routing problem with time-

windows and proposed a mathematical model that minimizes total costs related to the vehicles, 

distance travelled, travel time and emissions. The refueling times are assumed constant. They 

used the Simulated Annealing (SA) and Genetic Algorithm (GA) approaches and compared their 

performances. Worley et al. (2012) addressed the problem of locating recharging stations and 

designing EV routes simultaneously. The objective is to minimize the sum of the travel costs, 

recharging costs, and costs of locating recharging stations. A solution method was not proposed 

and left as future work. 
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Erdoğan and Miller-Hooks (2012) considered the routing of AFVs within the context GVRP and 

formulated the mathematical model. The model aims at minimizing the total distance travelled 

where the length of the routes is restricted. Fuel is consumed with a given rate per traveled 

distance and can be replenished at the alternative fuel stations. Refueling times are assumed to be 

fixed and after refueling the tank becomes full. The model does not involve time windows and 

vehicle capacity constraints. Erdoğan and Miller-Hooks (2012) proposed two heuristics to solve 

the GVRP. The first is a Modified Clarke and Wright Savings (MCWS) algorithm which creates 

routes by establishing feasibility through the insertion of AFSs, merging feasible routes 

according to savings values, and removing redundant AFSs. The second is a Density-Based 

Clustering Algorithm (DBCA) based on the cluster-first and route-second approach. DBCA 

forms clusters of customers such that every vertex within a given radius contains at least a 

predefined number of neighbors. Subsequently, the MCWS algorithm is applied to the identified 

clusters. To test the performance of these two heuristics, they designed two sets of problem 

instances. The first consists of 40 small-sized instances with 20 customers while the second 

involves 12 instances with up to 500 customers. 

Recently, Felipe et al. (2014) extended GVRP for EVs by allowing partial recharges using 

multiple technologies, i.e. using different power options. As in GVRP, the problem does not 

involve time windows but EVs have capacity and total route duration limits. The authors 

formulated the mathematical programming model and presented constructive and deterministic 

local search algorithms as well as a metaheuristic extension based on an SA framework. The 

computational tests on both randomly generated and GVRP data showed that using partial 

recharge strategies and providing multiple recharge technologies could achieve cost and energy 

savings and ensure feasibility in some instances. 

Schneider et al. (2014) developed a hybrid metaheuristic that combines the Variable 

Neighborhood Search (VNS) algorithm with TS for solving EVRPTW. They tested the 

performance of the proposed method on benchmark instances of GVRP and Multi-Depot VRP 

with Inter-Depot Routes. They also generated new instances for EVRPTW by modifying 

Solomon (1987) data and reported their results. Desaulniers et al. (2014) tackled the same 

problem by considering four recharging strategies (single-full recharge, single-partial recharge, 

multiple-full recharge, and multiple-partial recharge) and attempted to solve them optimality 

using branch-price-and-cut algorithms. Goeke and Schneider (2015) extended EVRPTW to the 

routing of a mixed fleet of EVs and ICE vehicles. Their objective function consisted of an energy 

consumption function of speed, gradient, and cargo load distribution, and they proposed an 
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ALNS approach to solve it. Hiermann et al. (2015) addressed the Fleet Size and Mix Vehicle 

Routing Problem with Time Windows where the fleet consists of EVs. They also implemented 

an ALNS algorithm equipped with local search and labeling procedures.  

ALNS was introduced by Ropke and Pisinger (2006a) as an extension of the Large 

Neighborhood Search (LNS) framework put forward by Shaw (1998). Ropke and Pisinger 

(2006b) developed a unified ALNS heuristic for a large class of VRP with Backhauls. Pisinger 

and Ropke (2007) improved this heuristic with additional algorithms and showed that the 

proposed framework gives competitive results in different VRP variants. Different 

implementations of ALNS for various VRP variants include cumulative capacitated VRP 

(Ribeiro and Laporte, 2012), pollution-routing problem (Demir et al., 2012), two-echelon VRP 

(Hemmelmayr et al., 2012), pickup and delivery problems with transshipment (Qu and Bard, 

2012) and with vehicle transfers (Masson et al., 2013), VRP with multiple routes (Azi et al., 

2014), periodic inventory routing problem (Aksen et al., 2014), and production routing problem 

(Adulyasak et al., 2014).  
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Figure 1. An illustrative example 

3. Problem Description 

EVRPTW-PR concerns a set of customers with known demands, delivery time window, and 

service durations. The deliveries are performed by a homogeneous fleet of EVs with fixed 

loading capacities and limited cruising ranges. While the vehicle is traveling, the battery charge 

level decreases proportionally with the distance traversed and the vehicle may need to visit a 

recharging station in order to continue its route. The battery is re charged at any quantity and the 
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duration of the recharge depends on the initial state of battery charge. Unlike EVRPTW where 

the vehicle departs from the depot/station with full battery and arrives at the depot/station with 

any state of charge, in EVRPTW-PR the vehicle departs from the depot/station at any state of 

charge and arrives at the depot/station with an empty battery. 

Fig. 1 illustrates an example involving 10 customers (C1-C10), 4 stations (S1-S4), and the depot 

(D) which can also be used for recharging. The percentage values along the route of EV3 show 

the battery state of charge when the vehicle arrives at a customer or a station and when it departs 

from the station after having its battery recharged. EV1 services C1 and C2, returns to the depot 

with its initial charge. EV2 visits S1 after servicing C4 and has its battery recharged before 

visiting C5 and C3. On the other hand, EV3 is recharged once in S4 and twice in S3. Note that a 

station can be visited multiple times by the same (see S3) or different vehicles and each station is 

not necessarily visited (see S2). In what follows, we provide the mathematical model for 

EVRPTW-PR following the formulation of Schneider et al. (2014).  

Let � = �1, … , �	 denote the set of customers and 
 denote the set of recharging stations. Since 

a recharging station may be visited more than once depending on the route structure, we create 


′which is the set of dummy vertices generated to permit several visits to each vertex in the set 


. Vertices 0 and � + 1 denote the depot and every route starts at 0 and ends at � + 1. Let � ′ be 

a set of vertices with � ′ = � ∪ 
′. In order to indicate that a set contains the respective instance 

of the depot, the set is subscripted with 0 or � + 1 . Hence ��
′ = � ′ ∪ �0	  and ����

′ = � ′ ∪

�� + 1	. Now we can define the problem on a complete directed graph � = (��,���
′ , �) with the 

set of arcs � = ��(�, �)|		�, � ∈ ��,���
′ , � ≠ ��. Each arc is associated with a distance � ! and travel 

time " !. The battery charge is consumed at a rate of # and every traveled arc consumes # ∙ � ! of 

the remaining battery. % is the recharge quantity in the quick charge option and is constant. Each 

vertex � ∈ � ′  has positive demand & , service time '  and time window () , * +. All EVs have a 

load capacity of , and battery capacity of -. At a recharging station, the battery is charged at a 

recharging rate of .. The decision variables, / , 0  and 1  keep track of the service starting time, 

remaining cargo level and remaining charge level at customer � ∈ ��,���
′ , respectively, and 2  is 

the battery state of charge on departure from station ∀� ∈ 
′ . The binary decision variable 

4 !			takes value 1 if arc (�, �) is traversed and 0 otherwise.  
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min			 ∑ � !4 ! 				 ∈9:
′ ,!∈9;<=

′ 	, >!           (1) 

subject to 

∑ 4 !!∈9;<=
′ 	, >! = 1											     ∀� ∈ �															    (2) 

∑ 4 !!∈9;<=
′ 	, >! ≤ 1																															    ∀� ∈ 
′     (3) 

∑ 4 ! ∈9:
′ 	, >! = ∑ 4!  ∈9;<=

′ , >! 																							   ∀� ∈ � ′     (4) 

/ + @" ! + ' A4 ! − *�@1 − 4 !A ≤ /! 											    ∀� ∈ ��, ∀� ∈ �C��
′ , � ≠ �   (5) 

/ + " !4 ! + .% − (*� + .-)@1 − 4 !A ≤ /!  ∀� ∈ 
′, ∀� ∈ �C��
′ , � ≠ �   (6) 

)! ≤ /! ≤ *! 		       ∀� ∈ ��,C��
′ 	     (7) 

0 ≤ 0! ≤ 0 − & 4 ! + ,@1 − 4 !A																   ∀� ∈ ��
′ , ∀� ∈ �C��

′ 	,				� ≠ �   (8) 

0 ≤ 0� ≤ ,					                        (9) 

0 ≤ 1! ≤ 1 − @# ∙ � !A4 ! + -@1 − 4 !A															  ∀� ∈ �, ∀� ∈ �C��
′ ,			� ≠ �	 (10) 

0 ≤ 1! ≤ 2 − (# ∙ � !)4 ! 	+ -@1 − 4 !A		   ∀� ∈ 
�
′ , ∀� ∈ �C��

′ 	, � ≠ � (11) 

2 = 1 + % 							                 ∀� ∈ 
�
′    (12) 

2 ≤ -        ∀� ∈ 
�
′    (13) 

4 ! ∈ �0,1		       ∀� ∈ ��
′ , ∀� ∈ �C��

′ 	,			� ≠ �	 (14) 

% ≥ 0							       ∀� ∈ 
�
′    (15) 

 

The objective function (1) minimizes total distance traveled. Constraints (2) and (3) handle the 

connectivity of customers and visits to recharging stations, respectively. The flow conservations 

constraints (4) enforce that the number of outgoing arcs equals to the number of incoming arcs at 

each vertex. Constraints (5) and (6) ensure the time feasibility of arcs leaving the customers (and 

the depot), and the stations, respectively. Constraints (7) enforce the time windows of the 

customers and the depot. In addition, constraints (5)-(7) eliminate the sub-tours. Constraints (8) 

and (9) guarantee that demand of all customers are satisfied. Constraints (10) and (11) keep track 

of the battery state of charge and make sure that it is never negative. Constraints (12) determine 

the battery state of charge after the recharge at a station. Constraints (13) make sure that the 
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battery state of charge does not exceed its capacity. Finally, constraints (14) and (15) define the 

decision variables. 

Proposition 1: If an optimal solution exists such that an EV leaves the depot with its battery 

partially charged, i.e.  2�
∗ < 1, then the same EV departing from the depot fully charged is also 

optimal, i.e. 2�
∗ = 1 is also optimal. 

Proof: Let  2�
∗ < 1 be optimal. Since fully recharging the battery at the depot does not delay the 

departure time of the EV 2�
∗ = 1 must also be optimal. 

Corollary 1: If  2�
∗ < 1 is optimal, then the problem has infinite multiple optima. 

Proof: Let 2G� < 1  be optimal and 2G� + ε		≤	1  not, where ε	  is a small positive scalar. Then 

following Proposition 1, multiple optima exist such that 2G�	≤	2�
∗	≤	1. 

Proposition 2: If an optimal solution exists such that an EV has been recharged at least once and 

returns to the depot at the end of its route with positive battery state, i.e.  1C��
∗ > 0, then its 

return to the depot with empty battery is also optimal, i.e. 1C��
∗ = 0 is also optimal. 

Proof: Let  1C��
∗ > 0 be optimal. Since recharging the battery less at the preceding station does 

not delay the departure time to cause any time window infeasibility, 1C��
∗ = 0 must also be 

optimal. 

Corollary 2: If  1C��
∗ > 0  is optimal, then the problem has infinite multiple optima. 

Proof: Let 1GC�� > 0  be optimal and 1GC�� + ε		 not, where ε	 is a small positive scalar. Then 

following Proposition 2, multiple optima exist such that 0	≤	1C��
∗ 	≤	1GC��. 

Without loss of generality, we assume that an EV departs from the depot with a battery charged 

in full and returns to the depot with its battery consumed if it has been recharged at least once 

along its route. 

4. Solution methodology 

We first construct a feasible initial solution using a heuristic similar to the insertion algorithm of 

Solomon (1987). We iteratively insert the customer which increases the total distance the least 

while satisfying time and battery charge constraints. If any customer cannot be inserted because 

of low battery level, then the candidate customer is inserted along with a recharging station. If no 

customer can be added to the current route due to capacity or time-window constraint, then we 

open a new route and continue the same procedure until all customers have been serviced. Then, 
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the existing feasible solution is destroyed by removing some customers and recharging stations 

from their routes and then repaired by inserting the removed customers to the solution along with 

stations when recharging is necessary.  

The proposed ALNS approach includes four classes of algorithms: Customer Removal (CR), 

Customer Insertion (CI), Station Removal (SR), and Station Insertion (SI). The removal and 

insertion algorithms are applied by selecting them dynamically and adaptively based on their 

past performances. The new solution is accepted according to the Simulated Annealing rule. 

 

 

 

 

 

 

4.1. Removal algorithms 

4.1.1. Customer removal 

The current solution is destroyed by removing I  customers from the solution according to 

different rules and adding them in a removal list ℒ. I depends on the total number of customers 

KL  and is determined randomly between KL  and KL  using a uniform distribution. The removal 

algorithms are selected in an adaptive manner from the set of algorithms CR. The general 

structure of the customer removal procedure is given in Algorithm 1. 

We utilize Random, Worst-Distance, Worst-Time, Shaw, Proximity Based, Demand Based, 

Time Based, Zone Removal algorithms (see Demir et al. (2012) for details) and adopt the Route 

Removal algorithms presented in Emeç et al. (2014).  

Random Route Removal (RRR): This algorithm randomly chooses M routes and removes all the 

customers visited in those routes. M depends on the number of routes in the current solution and 

is determined randomly between 10% and NO% of total number of routes.  

Greedy Route Removal (GRR): This algorithm removes M  routes in a greedy way. M  is 

determined in the same way as in RRR. The routes are sorted in the non-decreasing order of the 

number of customers serviced and M routes are removed starting from the first route in the order. 

Algorithm 1: The general structure of the removal procedure 

       PQRST: Current feasible solution VW, number of customers to be removed I 
      XSTRST: The set of customers which will be removed 
 
1     Initialize removal list (ℒ ← ∅) 
2     Apply a removal operator to find a set of customers for removal, [ 

3     ℒ ← (ℒ ∪ [) 

4     \]TS^Q		ℒ 
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The motivation is to distribute the customers in shorter routes into other existing routes in the 

solution in an attempt to reduce the number of vehicles. The procedure is illustrated in Fig. 2 for 

M=2. 

  

a) Current feasible solution b) Solution after GRR 

Figure 2. Illustration of Greedy Route Removal 

 

Note that we explicitly perform RRR and GRR after a predetermined number of iterations (�__) 

during a predetermined number of iterations (/) to extensively attempt to reduce the number of 

vehicles used. RRR and GRR remove the complete routes from the solution. On the other hand, 

since other removal algorithms remove customers from their routes the battery state, time, and 

remaining capacity of the EV at its arrival to a node should be updated. Furthermore, some 

recharges may no longer be necessary and those stations may be removed from the solution. In 

fact, an EV may visit a recharging station right before or after servicing a customer, and it might 

be beneficial to remove the customer from the solution with its preceding or succeeding station. 

So, we introduce the following two operators for the customer removal algorithms in addition to 

removing customers only (RCO) option: 

Remove Customer with Preceding Station (RCwPS): We remove the customer in the removal list 

along with the preceding station, if any exists. The idea is to eliminate the visit to a station where 

recharging is not necessarily needed at that battery state if EV no longer visits the removed 

customer.  

Remove Customer with Succeeding Station (RCwSS): We remove the customer in the removal 

list along with the succeeding station, if any exists. The idea is similar to RCwPS. The 

recharging may be needed after departing from a customer in order to be able to reach the next 

customer in the route. In that case, recharging is not necessarily needed at that battery state if the 

departure customer is removed from the solution and the station can be removed as well. 
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4.1.2. Station removal 

The recharging stations are the crucial components of the problem. Hence, removing them or 

changing their positions in the visit sequence of a route may also improve the solution. So, after 

a pre-determined number of iterations, an SR (followed by a Station Insertion) procedure is 

applied. The number of stations to be removed ` is determined in a similar fashion to I. The 

Random Station and Worst Distance Station Removal mechanisms are similar to their customer 

removal counterparts.  We also use the Worst Charge Usage Station Removal which aims at 

removing the stations visited with high battery levels and Full Charge Station Removal which 

aims at promoting the PR option.  

Worst Charge Usage Station Removal: The motivation of this algorithm is to make use of the 

battery as much as possible before a recharging is needed and increase the efficiency in using the 

stations. We promote the removal of the stations which an EV visits with relatively higher 

charge level. The stations are sorted in the non-increasing order of the battery level of the EVs 

that visit them for recharging and ` stations are removed starting from the first station in the 

order. The pseudocode is given in Algorithm 2. 

Algorithm 2: Worst Charge Usage Station Removal 

       PQRST: Current feasible solution V�, number of stations to be removed ` 
      XSTRST:  Destroyed solution Va, Route list to be repaired ℒ 
 
1 Initialize charge status hash map as	, ← ∅	 
2 Initialize number of removed stations as ' ← 0 
3 bX^ all stations in V� 
4  Determine battery charge state  of arriving EV 
5  Record the charge in , with station ID 
6 ]Qc	bX^ 
7 Sort charge states in , in non-increasing order 
8 dePf]	' < ` 

9  Select first element in , and identify station 
10  Remove that station from its route 
11  ' ← ' + 1 
12  Pb route number is not added in ℒ before Te]Q 
13   Add the route number to ℒ 
14 ]Qc	dePf] 
15 \]TS^Q	Va	gK�	ℒ 
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a) Feasible route before SR 

 

b) Time-window infeasible route after SR 

Figure 3. Example of time-window infeasibility after SR 
 
 

Full Charge Station Removal: The algorithm identifies the stations where EVs are fully charged  

and removes I of them randomly. 

After the removal algorithms, the destroyed solution may become infeasible with respect to the 

state of charge. Consider the route shown in Fig. 3(a) as an example. The % numbers above the 

route indicate the state of charge at the arrival to and departure from a node whereas the numbers 

under the route show the arrival and departure times. When S1 is removed from the route, the 

EV can still visit C1 and C2 in the given sequence. However, since its battery is empty, the 

recharging takes longer at S2, which delays its arrival to C3. Since the EV departs from C3 at a 

later time, it cannot return to D before the latest arrival time of 550 as shown in Fig. 3(b).  

 

 

a) Feasible route before SR 

 

b) Battery infeasible route after SR 

Figure 4. Example of battery infeasibility after SR 
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Fig. 4 illustrates how the battery infeasibility may occur after an SR. Consider the feasible route 

in Fig. 4(a). The EV is charged to full at S1. However, when S1 is removed, the battery level is 

not sufficient to return to the depot after visiting C3 as shown in Fig. 4(b).  

4.2. Insertion algorithms 

4.2.1. Customer insertion  

We use the Greedy, Regret-2, and Regret-3 Insertion algorithms from the literature (see Demir et 

al. (2012) for details). In addition, we propose the Time Based Insertion and adapt the zone 

insertion as follows:  

Time Based Insertion: In this algorithm, the insertion cost is calculated as the difference between 

the total route times before and after the insertion of a customer. For each customer, the 

algorithm determines the best insertion position among all routes based on this insertion cost. 

The customer which increases the route time the least is selected and inserted. The procedure is 

repeated for the remaining customers until all customers are inserted. The aim of this algorithm 

is to increase the number of customers visited by an EV by combining compatible customers 

with respect to their time windows or distances. 

Zone Insertion: The algorithms uses the Time Based Insertion cirterion above when selecting a 

customer. However, instead of investigating all routes in the solution, it considers the routes 

within a randomly selected zone only. 

To determine the battery state of charge and the recharge amount at a station visited in the 

implementation of CI algorithms we use the assumptions stated at the end of Section 3: an EV 

departs from the depot with a full battery and returns to the depot by completely consuming its 

battery if it has been recharged at least once along its route. So, in the case the EV is recharged 

only once during its route then: (i) if the customer is inserted between the depot and the station 

the insertion only affects the arrival state of charge at the station; (ii) if the customer is inserted 

between the station and the depot the recharge amount is increased such that the EV returns to 

the depot with empty battery. 

If multiple recharges exist along the route and the customer is inserted between the depot and the 

first station visited, we follow the procedure (i) described above. If the customer is inserted 

between two consecutive stations or between the last station visited and the depot the amount 

recharged at the station is increased by the additional energy needed to visit that customer. If the 
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recharge duration makes the insertion infeasible with respect to service time window of an 

existing customer, then we attempt to reduce the recharge duration by increasing the battery 

charge level at the arrival to that station. This is achieved by recharging the EV longer at the 

previous station making sure that the time-window feasibility of the customers visited between 

these two consecutive stations is maintained. In any case, if the insertion is feasible with respect 

to service time window but infeasible with respect to the battery state (referred to as charge 

infeasibility), the Greedy Station Insertion (see Section 4.2.2) is applied to make the destroyed 

solution charge feasible. 

 
4.2.2. Station insertion 

After removing some stations, the current feasible solution may become battery infeasible. In 

order to repair the solution, stations must be inserted to the infeasible routes. We make an 

infeasible route feasible by identifying the first customer at which the vehicle arrives with a 

negative battery level and inserting a station into the partial route prior to that customer. The 

difference from CI algorithms is that SI algorithms do not necessarily insert the stations which 

have been removed in SR. Since the stations are always available and it is assumed that as many 

stations as needed are available, any station can be inserted throughout the algorithm. The SR 

and SI procedure is illustrated on an example in Fig. 5. A feasible route is depicted in Fig. 5(a). 

Suppose, S1 is removed using an SR algorithm. Next, S2 is inserted between C1 and C2 by 

maintaining both time-window and battery feasibility. The resulting route in Fig. 5(b) is shorter 

than the initial. 

 

  

a) Feasible solution b) Improved solution after SR and SI 

Figure 5. An improved route after SR and SI procedure 

 

We use the following three SI algorithms: 

Greedy Station Insertion (GSI): This algorithm determines the first customer in the route at 

which the vehicle arrives with negative battery level and inserts the “best” (which increases the 
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distance least) station on the arc between that customer and the previous customer. If this 

insertion is not feasible, then the previous arcs are attempted in the same manner. 

Greedy Station Insertion with Comparison: The algorithm determines the best station on the arc 

leading to the customer where the battery level is negative as in GSI and compares the outcome 

with the case of inserting the corresponding best station on the immediate predecessor arc. The 

insertion which increases the route distance the least is performed. If both insertions are 

infeasible, the GSI procedure is applied by considering the previous arcs. 

Best Station Insertion: We determine the best station insertions on all the arcs between the 

customer that the EV arrives with negative battery level and the depot or a previously visited 

station. We select the best feasible insertion and perform it. 

The procedure is repeated for all customers where the EV arrives with negative battery level. If a 

station insertion cannot be performed feasibly, we return to the previous feasible solution. 

 

 

 

 

 

 

 

 

 

 

The battery state of the EV and/or the recharge quantities in the implementation of SI algorithms 

are determined in a similar fashion to CI. We also implement a strategy where the recharge 

amount is constant and test different amounts for comparison purposes. In this case, we first try 

the constant PR option. Whenever the PR is insufficient to complete the route we switch from 

PR to FC at the last station visited before the infeasibility occurs.  

1 Generate an initial solution 
2          � ← 1 
3      dePf]	('"hii�K.	j#�")#�hK	�'	Kh"	'g"�'k�)�)		cX 

4  Select CR algorithm and remove customers 
5  Pb destroyed solution infeasible Te]Q 

6   Perform Greedy Station Insertion 

7  Select CI algorithm and repair solution 
8  Accept solution using SA criterion 
9  � ← � + 1 

10  Pb � ≡ 0	(Nh�	�_m�) 	Te]Q 

11   Update adaptive weights of CR and CI algorithms 
12  Pb	� ≡ 0	(Nh�	�n_) Te]Q 

13                                Select SR algorithm and remove stations 

14   Select SI algorithm and repair solution 
15   Recall steps 8-10 
16   Pb � ≡ 0	(Nh�	�_ma) 	Te]Q 

17    Update adaptive weights of SR and SI algorithms 

18 ]Qc	dePf] 

Algorithm 3: ALNS algorithm 
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The general structure of the ALNS algorithm is given in Algorithm 3. 

5. Computational study 

To validate the performance of the proposed ALNS approach we perform computational 

experiments using the EVRPTW data of Schneider et al. (2014). This data set was generated 

based on the well-known 56 VRPTW instances of Solomon (1987) and includes three main 

problem classes where 100 customers and 21 recharging stations are clustered (C), randomly 

distributed (R), and both clustered and randomly distributed (RC) over a 100×100 grid. Each set 

has also two subsets, type 1 and type 2, which differ by the length of the time windows and the 

vehicle capacity. We first tuned the parameters values using a subset of EVRPTW instances. 

Then, we solved the large EVRPTW problems and compare the results with the benchmarks 

reported in the literature. Finally, we report the solutions we achieved using the EVRPTW-PR 

setting and discuss the results. The algorithm was coded in the Java programming language. 

5.1. Parameter tuning 

We adopted a parameter tuning methodology similar to that of Ropke and Pisinger (2006a, 

2006b), Pisinger and Ropke (2007), and Demir et al. (2012). We selected six large problems and 

performed ten runs for each parameter by considering reasonable values. At each step, we 

allowed one parameter to take a number of predefined values while the rest of the parameters 

were kept fixed. For each parameter, we selected the value that gave the least average deviation 

from the best achieved solution. After a parameter value has been determined, its value was fixed 

and this procedure was repeated for the remaining parameters until all parameters had been 

tuned. The details are given in Appendix A. 

We omitted C1 and C2 problem classes since they usually converged to the same solutions for 

different parameter values and did not provide much information about the contribution of the 

parameter value on the solution quality. Consequently, we selected the instances R107, RC101, 

RC104, RC105, R205 and RC205 for parameter tuning. 

We observed that if the score of the worse solution ( p̀) is greater than the score of the better 

solution ( à) it allows diversification by rewarding non-improved solutions as noted in Ropke 

and Pisinger (2006a) and Demir et al. (2012). So, our setting of the parameters �̀, à, and p̀ 

also rewards a worse solution more than a better solution as follows: �̀ ≥ p̀ ≥ à. 
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Ropke and Pisinger (2006a) set the number of iterations to 25,000 and noted that additional 

runtime had a minor contribution to the solution quality. Our convergence analysis showed 

similar results. So, we also set the number of iterations to 25,000.  

5.2. Numerical results for EVRPTW instances 

In Table 1 we compare our average results and the results reported in Goeke and Schneider 

(2015) and Hiermann et al. (2015) to those given in Schneider et al. (2014). All these results 

were obtained with fixed parameter values. The first column denotes the instances. ‘#Veh’ refers 

to the number of vehicles and ‘∆%’ is the percentage deviation from the distances reported in 

Schneider et al (2014), if the number of vehicles is same. A negative ∆% value means 

improvement.  

Table 1. Average results for EVRPTW obtained with fixed parameters 

Instance 

Type 

SSG   GS   HPH   KÇ 

#Veh     TD   #Veh ∆%   #Veh ∆%   #Veh ∆% 

c1 10.67 1050.04 10.67 -0.31 10.67 0.16 10.89 0.78 

c2 4.00 640.92 4.00 0.00 4.00 0.06 4.00 0.00 

r1 12.83 1268.60 12.83 -0.80 13.00 0.11 13.25 0.69 

r2 2.64 919.04 2.64 -0.47 2.64 0.53 2.82 -0.07 

rc1 13.13 1415.84 13.13 -0.50 13.00 -0.48 13.38 0.13 

rc2 3.13 1146.76   3.13 -0.15   3.13 0.95   3.25 0.08 

Average -0.41 0.25 0.25 

SSG: Schneider et al. (2014), GS: Goeke and Schneider (2015), HPH: Hiermann et al. (2015), and 

KÇ: Our ALNS 

 

Our results show that our ALNS approach performs better in type-2 problems but it converges to 

solutions with one additional vehicle in several instances as compared to other methods. Even 

though the performance of Hiermann et al. (2015) is better in type-1 problems, the overall 

performance of our approach is similar. We also observe that the recent work of Goeke and 

Schneider (2015) has a superior performance, improving many of the best solutions to date. We 

note that Goeke and Schneider (2015) used the numbers of vehicles achieved in Schneider et al. 

(2014) as a priori information to construct their initial routes, which might have a positive effect 

both in run time and solution quality. Nevertheless, with fixed parameters our approach 

improved the best solutions of 11 instances.  

In Table 2, we provide our best results along with the best known solutions (BKS) reported in 

the literature. ‘TD’ refers to the total distance. These results also show that our ALNS approach 

performs better in type-2 problems. Although it finds solutions with one additional vehicle in 

some instances, it improved the best known solutions of four instances, of which three are type-1 
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problems. Furthermore, it achieved the same best known solution in 16 instances. In comparison, 

Schneider et al. (2014) found the best known solutions in 18 instances whereas Hiermann et al. 

(2105) and Goeke and Schneider (2015) improved the solutions of 4 and 30 instances, 

respectively.  

Table 2. Comparison with the best known solutions of EVRPTW instances 

  BKS   KÇ     BKS   KÇ 

Inst. #Veh     TD Ref.   #Veh     TD ∆% Inst. #Veh     TD Ref.   #Veh     TD ∆% 

c101 12 1053.83 SSG 12 1053.83 0.00 c201 4 645.16 SSG 4 645.16 0.00 

c102 11 1051.38 GS 11 1056.12 0.45 c202 4 645.16 SSG 4 645.16 0.00 

c103 10 1034.86 GS 11 1001.81 - c203 4 644.98 SSG 4 644.98 0.00 

c104 10 961.88 GS 10 951.57 -1.08 c204 4 636.43 SSG 4 636.43 0.00 

c105 11 1075.37 SSG 11 1075.37 0.00 c205 4 641.13 SSG 4 641.13 0.00 

c106 11 1057.65 HPH 11 1057.65 0.00 c206 4 638.17 SSG 4 638.17 0.00 

c107 11 1031.56 SSG 11 1031.56 0.00 c207 4 638.17 SSG 4 638.17 0.00 

c108 10 1095.66 GS 11 1015.68 - c208 4 638.17 SSG 4 638.17 0.00 

c109 10 1033.67 GS 10 1069.16 3.32 

r101 18 1663.04 HPH   18 1679.06 0.95 r201 3 1264.82 SSG   3 1265.67 0.07 

r102 16 1487.41 GS 16 1524.14 2.41 r202 3 1052.32 SSG 3 1052.32 0.00 

r103 13 1271.35 GS 13 1312.50 3.14 r203 3 895.54 GS 3 895.54 0.00 

r104 11 1088.43 SSG 12 1071.89 - r204 2 779.49 GS 2 780.98 0.19 

r105 14 1442.35 GS 15 1383.29 - r205 3 987.36 GS 3 987.36 0.00 

r106 13 1324.10 GS 14 1276.15 - r206 3 922.19 GS 3 922.70 0.06 

r107 12 1150.95 GS 12 1148.43 -0.22 r207 2 845.26 GS 2 847.14 0.22 

r108 11 1050.04 SSG 11 1051.59 0.15 r208 2 736.12 GS 2 736.12 0.00 

r109 12 1261.31 GS 13 1214.72 - r209 3 867.05 GS 3 871.22 0.48 

r110 11 1119.50 GS 12 1097.89 - r210 3 846.20 GS 3 843.65 -0.30 

r111 12 1106.19 SSG 12 1109.14 0.27 r211 2 827.89 GS 3 761.56 - 

r112 11 1016.63 GS   11 1038.74 2.13                 

rc101 16 1726.91 HPH 16 1731.07 0.24 rc201 4 1444.94 SSG 4 1446.84 0.13 

rc102 14 1552.08 HPH 15 1551.69 - rc202 3 1410.74 GS 3 1450.34 2.73 

rc103 13 1350.09 GS 13 1351.73 0.12 rc203 3 1055.19 GS 3 1069.27 1.32 

rc104 11 1227.25 GS 11 1232.45 0.42 rc204 3 884.80 GS 3 887.45 0.30 

rc105 14 1475.31 HPH 14 1473.24 -0.14 rc205 3 1273.55 GS 3 1277.60 0.32 

rc106 13 1427.21 GS 14 1414.99 - rc206 3 1188.63 GS 3 1207.64 1.57 

rc107 12 1274.89 SSG 12 1283.05 0.64 rc207 3 985.03 GS 3 994.48 0.95 

rc108 11 1197.83 GS   11 1209.11 0.93   rc208 3 836.29 GS   3 841.34 0.60 

Avg 12.21     12.52 0.69     3.19     3.22 0.33 

SSG: Schneider et al. (2014), GS: Goeke and Schneider (2015), HPH: Hiermann et al. (2015), and KÇ: Our method 

 

With the respect to computational effort, Schneider et al. (2014) reported an average run time of 

15.34 minutes on an Intel Core i5 processor with 2.67 GHz speed and 4 GB RAM, operating on 

Windows 7 Professional. Goeke and Schneider (2015) uses an Intel Core i7 processor at 2.8GHz, 

8 GB of RAM running on Windows7 Enterprise and reported an average run time of 2.78 

minutes whereas Hiermann et al. (2105) run their experiments on a single core of a cluster 

system with an Intel Core2 Quad CPU Q6600 with 2.40 GHz, 4 GB RAM, operating on 64-Bit 
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Linux operating system and achieves an average run time of 15.92 minutes. Our average run 

time is 12.26 minutes on an Intel Xeon E5 processor with 3.30 GHz speed and 32 GB RAM 

using 64-bit Windows 7 operating system. 

5.3. Numerical results for EVRPTW-PR instances 

For the EVRPTW-PR, we tested two different versions of our ALNS method. In the first, the 

recharge quantity q can take any value whereas in the second it is set equal to a pre-determined 

constant. For performance comparison we tested the cases where q=0.3, q=0.4, and q=0.5. The 

results are reported in Table 4. These results show the advantage of using the PR strategy over 

the full charging restriction. We observe that the average distances improve significantly in type-

1 instances, c1 problem set in particular. Furthermore, we note that the number of vehicles is 

reduced by one vehicle in some instances, mostly in type-1 problems. As expected, ALNS using 

the variable recharge quantity has a better performance. Nevertheless, ALNS with the constant 

recharge quantity is also capable of obtaining high quality solution. Overall, these results suggest 

the PR scheme is effective, particularly in cases where the time windows are more restrictive. 

 

6. Conclusions and future research 

In this paper, we investigated the partial recharge strategies for the EVRPTW, namely 

EVRPTW-PR, and proposed an ALNS algorithm to solve it. Some of the existing ALNS 

mechanisms were adopted from the literature whereas new removal and insertion mechanisms 

specific to EVRPTW were developed to handle the visits to recharging stations and to 

incorporate the PR decisions. 

We used the instances generated by Schneider et al. (2014) to validate the performance of the 

proposed ALNS. We first solved the EVRPTW instances and benchmarked our results with 

those of reported in Schneider et al. (2014), Goeke and Schneider (2015), and Hiermann et al. 

(2015). We also reported 4 new best-known solutions. For the proposed EVRPTW-PR we solved 

the same instances. The results revealed that the routes can be significantly improved when PR is 

allowed, even if at a pre-determined constant level.  
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Table 4. EVRPTW-PR results for different recharge strategies 

  FC    PR (q free)   PR (q=0.3)   PR (q=0.4)   PR (q=0.5) 

Inst. #Veh     TD   #Veh ∆%   #Veh ∆%   #Veh ∆%   #Veh ∆% 

c101 12 1053.83 12 -0.25 12 -1.00 12 -0.75 12 0.00 

c102 11 1056.12 11 -1.71 11 -2.09 11 -2.29 11 -1.52 

c103 11 1001.81 10 - 10 - 10 - 10 - 

c104 10 951.57 10 -7.31 10 -6.79 10 -6.58 10 -6.44 

c105 11 1075.37 11 -3.62 11 -2.22 11 -2.22 11 -1.99 

c106 11 1057.65 11 -3.27 11 -2.64 11 -2.00 11 -1.06 

c107 11 1031.56 11 -1.11 11 -1.69 11 -1.77 11 -1.77 

c108 11 1015.68 11 -0.95 11 -1.61 11 -1.31 11 -1.51 

c109 10 1069.16 10 -11.37 10 -7.94 10 -12.88 10 -12.92 

c201 4 645.16   4 -2.41   4 -0.36   4 -0.36   4 -0.63 

c202 4 645.16 4 -2.41 4 -0.64 4 -0.64 4 -0.64 

c203 4 644.98 4 -2.39 4 -0.61 4 -0.61 4 -0.61 

c204 4 636.43 4 -1.03 4 -0.10 4 0.00 4 0.00 

c205 4 641.13 4 -1.77 4 -0.46 4 -1.56 4 -0.46 

c206 4 638.17 4 -1.30 4 0.46 4 -1.09 4 0.00 

c207 4 638.17 4 -1.30 4 0.46 4 0.00 4 0.00 

c208 4 638.17   4 -1.30   4 -0.63   4 -1.09   4 0.00 

r101 18 1679.06 18 -0.68 18 -2.59 18 -1.65 18 0.01 

r102 16 1524.14 16 -4.29 16 -3.92 16 -4.29 16 -3.83 

r103 13 1312.50 14 - 14 - 13 -3.68 13 -2.80 

r104 12 1071.89 12 -0.62 11 - 12 -0.63 12 -0.63 

r105 15 1383.29 15 -0.68 15 -0.19 15 -0.21 15 0.97 

r106 14 1276.15 13 - 14 0.99 14 1.50 14 0.63 

r107 12 1148.43 12 -2.64 12 -1.42 12 -1.54 12 -1.95 

r108 11 1051.59 11 -1.98 11 -0.54 11 -0.65 11 -0.30 

r109 13 1214.72 13 -1.02 13 -1.76 13 -0.45 13 -1.67 

r110 12 1097.89 12 -0.67 11 - 12 -0.17 12 -0.38 

r111 12 1109.14 12 -2.31 12 -0.64 12 -1.18 12 -0.71 

r112 11 1038.74 11 -2.11 11 -0.35 11 -2.09 11 -0.08 

r201 3 1265.67   3 -8.38   3 0.07   3 0.65   3 -0.28 

r202 3 1052.32 3 0.00 3 0.23 3 0.12 3 0.30 

r203 3 895.54 3 0.00 3 0.13 3 0.03 3 0.02 

r204 2 780.98 2 -0.11 3 - 3 - 2 2.53 

r205 3 987.36 3 0.00 3 0.17 3 0.77 3 0.42 

r206 3 922.70 3 0.00 3 0.29 3 1.30 3 0.32 

r207 2 847.14 2 -0.06 2 0.70 3 - 2 0.28 

r208 2 736.12 2 0.00 2 0.09 2 0.09 2 0.17 

r209 3 871.22 3 -0.26 3 0.01 3 0.09 3 0.04 

r210 3 843.65 3 -0.03 3 0.84 3 0.65 3 0.77 

r211 3 761.56   2 -   3 0.00   3 0.65   3 0.65 

rc101 16 1731.07   16 -2.38   15 -   16 -2.47   16 -1.58 

rc102 15 1551.69 15 -1.40 14 - 14 - 14 - 

rc103 13 1351.73 13 -1.67 13 -0.02 13 -0.69 13 -0.50 

rc104 11 1232.45 11 -2.45 11 -0.50 11 -0.25 11 -0.71 

rc105 14 1473.24 14 -1.01 14 -1.03 14 -0.40 14 -0.19 

rc106 14 1414.99 13 - 13 - 13 - 13 - 

rc107 12 1283.05 12 -1.75 12 -0.86 12 -1.41 12 -1.71 

rc108 11 1209.11   11 -1.98   11 -2.12   11 2.16   11 0.04 

rc201 4 1446.84 4 0.00 4 0.50 4 1.15 4 0.63 

rc202 3 1450.34 3 -2.36 4 - 4 - 4 - 

rc203 3 1069.27 3 0.00 3 1.88 3 2.10 3 1.36 

rc204 3 887.45 3 0.04 3 -0.02 3 0.54 3 -0.14 

rc205 3 1277.60 3 -1.22 4 - 4 - 4 - 

rc206 3 1207.64 3 0.51 3 -0.13 3 0.06 3 0.15 

rc207 3 994.48 3 -0.10 3 0.19 3 -0.24 3 -0.12 

rc208 3 841.34   3 -0.19   3 0.76   3 0.31   3 0.40 

Avg -1.67 -0.81 -0.92 -0.73 
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In this study, we only allowed PR using the same power level. The problem can be extended to a 

multiple recharge power options at different speeds and costs as discussed in Felipe et al. (2014). 

Further research on this topic may also address the heterogeneous fleet case. The heterogeneity 

within this context does not only arise from the vehicle capacities but from their batteries as well 

since the cruising range of EVs and discharge/recharge durations differ depending on their 

battery condition and age. 
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Appendix A: Parameter tuning 

The parameters are described in Table A.1. The values considered for tuning are given in Table 

A.2. For each parameter, the first line is the value and the second shows the deviation between 

the average solution achieved with that value and the best solution found in all runs. We reported 

the initial parameter values in the first column. The tuning sequence is from top to bottom.The 

best parameter values (the ones yielding the minimum deviations) are indicated in bold.  

Table A.1. Notation and description of the parameters 

`a Score of the better solution 
�_m� # of iterations between which adaptive weights are updated (for CR and CI algorithms) 

q Roulette wheel parameter 

�̀ Score of the best solution 
`p Score of the worse solution 
r� First Shaw parameter 
ra Second Shaw parameter 
rp Third Shaw parameter 
rs Fourth Shaw parameter 
t Cooling rate of SA 
u Start temperature control parameter of SA 
v Worst removal determinism factor 
w Shaw removal determinism parameter 
Kx Number of zones (Zone removal) 
�n_ # of iterations between which SR is performed 

�_ma # of iterations between which adaptive weights are updated (for SR and SI algorithms) 
NO Route removal upper bound 
�__ # of iterations between which route removal algorithms are performed 
/ Consecutive # of iterations during which route removal algorithms are performed 
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Table A.2. Parameter values and the corresponding deviations 

Parameters Parameter Values and Corresponding Deviations 

à 
Value 6 0 2 4 9 12 14 16 18 20 
Deviation 0.33 0.42 0.42 0.43 0.40 0.42 0.42 0.37 0.35 0.42 

�_m� 
Value 300 50 100 150 200 250 350 400 450 500 

Deviation 0.38 0.55 0.52 0.40 0.40 0.37 0.38 0.38 0.38 0.32 

q 
Value 0.35 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.45 0.5 
Deviation 0.60 0.55 0.62 0.60 0.50 0.53 0.58 0.53 0.57 0.58 

�̀ 
Value 33 5 10 20 25 30 35 40 45 50 
Deviation 0.50 0.57 0.50 0.55 0.53 0.58 0.58 0.57 0.53 0.53 

p̀ 
Value 3 6 9 12 13 15 21 24 27 30 
Deviation 0.53 0.55 0.55 0.57 0.58 0.55 0.50 0.62 0.55 0.57 

r� 
Value 0.5 1 3 5 7 9 11 13 15 
Deviation 0.55 0.53 0.58 0.50 0.60 0.57 0.52 0.52 0.65   

ra 
Value 9 0.25 1 3 5 7 11 13 15 
Deviation 0.55 0.48 0.48 0.55 0.55 0.53 0.55 0.62 0.55   

rp 
Value 11 0.15 1 3 5 7 9 13 15   
Deviation 0.52 0.57 0.50 0.50 0.53 0.55 0.50 0.48 0.53   

rs 
Value 8 0.25 1 2 3 4 5 6 7 9 
Deviation 0.53 0.52 0.58 0.62 0.60 0.52 0.55 0.57 0.52 0.55 

t 
Value 0.9996 0.999 0.9991 0.9992 0.9993 0.9994 0.9995 0.9997 0.9998 0.9999 
Deviation 0.53 0.52 0.55 0.50 0.57 0.55 0.48 0.52 0.55 0.58 

u 
Value 0.4 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.45 0.5 
Deviation 0.58 0.50 0.52 0.60 0.52 0.58 0.62 0.60 0.63 0.63 

v 
Value 6 1 2 3 4 5         
Deviation 0.58 0.48 0.53 0.53 0.53 0.50         

w 
Value 12 2 4 6 8 10         
Deviation 0.55 0.57 0.57 0.58 0.53 0.48         

Kx 
Value 15 5 7 9 11 13 19 21 25 30 
Deviation 0.52 0.60 0.55 0.58 0.57 0.60 0.53 0.52 0.57 0.60 

�n_ 
Value 50 10 20 30 40 60 70 80 90 100 
Deviation 0.58 0.52 0.62 0.55 0.55 0.52 0.58 0.57 0.58 0.62 

�_ma 
Value 3500 1000 1500 2000 2500 3000 4000 4500 5000 5500 
Deviation 0.58 0.50 0.58 0.60 0.53 0.60 0.60 0.62 0.52 0.53 

NO 
Value 0.4 0.3 0.5 0.6             
Deviation 0.50 0.55 0.52 0.57             

�__ 
Value 5000 2000 2500 3000 3500 4000 4500 5500 6000 6500 
Deviation 0.60 0.55 0.63 0.52 0.58 0.58 0.58 0.57 0.52 0.55 

/ 
Value 1000 750 1250 1500 1750 2000 2250 2500 2750 3000 
Deviation 0.47 0.58 0.52 0.50 0.50 0.55 0.53 0.55 0.57 0.58 
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