Partial Regularity For

Anisotropic Functionals of Higher Order

Menita Carozza* Antonia Passarelli di Napoli**
* Dipartimento Pe.Me.Is - Università degli studi del Sannio Piazza Arechi 2- 82100 Benevento e-mail:carozza@unisannio.it
** Dipartimento di Matematica e Applicazioni "R. Caccioppoli"
Università di Napoli "Federico II", Via Cintia - 80126 Napoli
e-mail: antonia.passarelli@unina.it

Abstract

We prove a $C^{k, \alpha}$ partial regularity result for local minimizers of variational integrals of the type $I(u)=\int_{\Omega} f\left(D^{k} u(x)\right) d x$, assuming that the integrand f satisfies (p, q) growth conditions.

AMS Classifications. 35G99; 49N60; 49N99.

1 Introduction

Higher order variational functionals, emerging in the study of problems from materials science and engineering, have attracted a great deal of attention in last few years (e.g. [4], see [5]). In particular, the regularity of minimizers of such functionals has been studied very recently. In [15] and [16] the partial $C^{k, \alpha}$ regularity has been established for quasiconvex integrals with a p-power growth with respect to the gradient and in [3] for convex integrals having subquadratic nonstandard growth condition, only in dimension 2 .

The aim of this paper is to establish the partial regularity of minimizers of integral functionals of the type

$$
\begin{equation*}
I(u)=\int_{\Omega} f\left(D^{k} u(x)\right) d x \tag{1}
\end{equation*}
$$

where Ω is a bounded subset of $\mathbb{R}^{n}, u: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}, N \geq 1, k>1$ and f is a C^{2} convex integrand satisfying the non standard growth condition:

$$
\begin{equation*}
C|\xi|^{p} \leq f(\xi) \leq L\left(1+|\xi|^{q}\right) \tag{2}
\end{equation*}
$$

with $p<q$, without restriction on the dimension and on the order of derivatives involved, in the superquadratic case.

Nonstandard growth conditions have been introduced by Marcellini, in the scalar case for $k=1$. He observed that, even in the scalar case, minimizers of (1) may fail to be regular (see [13], [18]), when q is too large with respect to p. On the other hand, one can prove regularity of scalar minimizers of (1) if q is not too far away from p (see e.g. [19] and its references). More precisely, in [19] it is shown that if one writes down the Euler equation for the functional I, under suitable assumptions on p and q, the Moser iteration argument still works, thus leading to a sup estimate for the gradient $D u$ of the minimizer.

Clearly this approach can not be carried on in the vector valued case, i.e. when $N>1$. First regularity results for systems are proved in [1] and [20] under special structure assumptions and in [22] in a more general setting. Moreover, higher integrability results for the gradient of the minimizers of (1) are avalaible in the vectorial case (see the references in [2], [8] and [9]).

In this paper we prove that, for $k>1$, differently from all previous quoted results, if f satisfies (2) and the strong ellipticity assumption

$$
\begin{equation*}
\left\langle D^{2} f(\xi) \eta, \eta\right\rangle \geq \gamma\left(1+|\xi|^{2}\right)^{\frac{p-2}{2}}|\eta|^{2} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
2 \leq p<q<\min \left\{p+1, \frac{p n}{n-1}\right\} \tag{4}
\end{equation*}
$$

a minimizer $u \in W^{k, p}\left(\Omega ; \mathbb{R}^{N}\right)$ of functional (1) is $C^{k, \alpha}$ for all $\alpha<1$ in an open set $\Omega_{0} \subset \Omega$ such that meas $\left(\Omega \backslash \Omega_{0}\right)=0$.

We point out that apart from condition (4), no special structure assumption is needed on f and the condition on the exponents does not depend on k, i.e. the order of derivatives involved.

The proof of our result goes through a more or less standard blow-up argument aimed to establish a decay estimate on the excess function for the k - order derivatives

$$
U\left(x_{0}, r\right)=f_{B_{r}\left(x_{0}\right)}\left|D^{k} u-\left(D^{k} u\right)_{x_{0}, r}\right|^{2}+\left|D^{k} u-\left(D^{k} u\right)_{x_{0}, r}\right|^{p} d x .
$$

Here, first order techniques have to be combined with new theoretical arguments needed to face the analytical and geometrical constraints of higher order derivatives. In particular, the essential tool is a Lemma due to Fonseca and Malý (see [11] and also Lemma 2.4 below) which makes possible to connect in an annulus $B_{r} \backslash B_{s}$ two $W^{k, p}$ functions v and w with a more regular function function $z \in W^{k, q}\left(B_{r} \backslash B_{s}\right)$ with $p<q<\frac{p n}{n-1}$.

2 Statements and preliminary Lemmas

Let us consider the functional

$$
I(u)=\int_{\Omega} f\left(D^{k} u(x)\right) d x
$$

where Ω is a bounded open subset of $\mathbb{R}^{n}, n \geq 2$. Let $f: \mathbb{R}^{M N} \rightarrow \mathbb{R}$, where $M=\frac{(n-k-1)!}{k!(n-1)!}$ and $N \geq 2$, satisfy the following assumptions:

$$
\begin{gather*}
f \in C^{2} \tag{H1}\\
C|\xi|^{p} \leq f(\xi) \leq L\left(1+|\xi|^{q}\right) \tag{H2}\\
\left\langle D^{2} f(\xi) \eta, \eta\right\rangle \geq \gamma\left(1+|\xi|^{2}\right)^{\frac{p-2}{2}}|\eta|^{2} \tag{H3}
\end{gather*}
$$

where

$$
2 \leq p<q<\min \left\{p+1, \frac{p n}{n-1}\right\}
$$

It is well known that

$$
\begin{equation*}
|D f(\xi)| \leq c\left(1+|\xi|^{q-1}\right) \tag{H4}
\end{equation*}
$$

We say that $u \in W^{k, p}\left(\Omega, \mathbb{R}^{N}\right)$ is a minimizer of I if

$$
I(u) \leq I(u+v)
$$

for any $v \in u+W_{0}^{k, p}\left(\Omega ; \mathbb{R}^{N}\right)$.
REmARK 2.1. If u is a local minimizer of I and $\phi \in C_{0}^{k}\left(\Omega ; \mathbb{R}^{N}\right)$ from the minimality condition one has for any $\varepsilon>0$
$0 \leq \int_{\Omega}\left[f\left(D^{k} u+\varepsilon D^{k} \phi\right)-f\left(D^{k} u\right)\right] d x=\varepsilon \int_{\Omega} d x \int_{0}^{1} \frac{\partial f}{\partial \xi_{\alpha}^{i}}\left(D^{k} u+\varepsilon t D^{k} \phi\right) D_{\alpha} \phi^{i} d t$
where $|\alpha|=k$. Dividing this inequality by ε, and letting ε go to zero, from (H4) and the assumption $q \leq p+1$ we get

$$
\int_{\Omega} \frac{\partial f}{\partial \xi_{\alpha}^{i}}\left(D^{k} u\right) D_{\alpha} \phi^{i} d x \geq 0
$$

and therefore, by the arbitrariness of ϕ, the usual Euler-Lagrange system holds:

$$
\int_{\Omega} \frac{\partial f}{\partial \xi_{\alpha}^{i}}\left(D^{k} u\right) D_{\alpha} \phi^{i} d x=0 \quad \forall \phi \in C_{0}^{k}\left(\Omega ; \mathbb{R}^{N}\right)
$$

The aim of this paper is proving the following

Theorem 2.1. Let f satisfy the assumptions (H1),(H2),(H3) and let $u \in$ $W^{k, p}\left(\Omega ; \mathbb{R}^{N}\right)$ be a minimizer of I. Then there exists an open subset Ω_{0} of Ω such that

$$
\operatorname{meas}\left(\Omega \backslash \Omega_{0}\right)=0
$$

and

$$
u \in C^{k, \alpha}\left(\Omega_{0}, \mathbb{R}^{N}\right) \quad \text { for all } \quad \alpha<1
$$

In what follows, we will denote by u a $W^{k, p}\left(\Omega ; \mathbb{R}^{N}\right)$ minimizer of the integral functional (1) and assume that its integrand f satisfies (H1), (H2), (H3). We set for every $B_{r}\left(x_{0}\right) \subset \Omega$

$$
f_{B_{r}\left(x_{0}\right)} g=(g)_{x_{0}, r}=\frac{1}{\operatorname{meas}\left(B_{r}\left(x_{0}\right)\right)} \int_{B_{r}\left(x_{0}\right)} g .
$$

Moreover, given $p>1$ and $u \in W^{k, p}\left(\Omega ; \mathbb{R}^{N}\right), k \geq 1$, we will denote by $P(y)=P_{u}(x, R, y)$ the unique polynomial of degree $k-1$ such that

$$
\int_{B_{r}(x)} D^{l}(u(y)-P(y)) d y=0 \quad l=1, \ldots, k-1
$$

Its coefficients depend on x, R and also on the derivatives of u (see [12]). When no confusion will arise, we will omit the dependence of P on x, R and u.
Next Lemma can be found in [11], (Theorem 3.3), in a slightly different form.

Lemma 2.2. Let $v \in W^{k, p}\left(B_{1}(0)\right)$ and $0<s<r<1$. There exists a linear operator $T: W^{k, p}\left(B_{1}(0)\right) \rightarrow W^{k, p}\left(B_{1}(0)\right)$ such that

$$
T v=v \quad \text { on } \quad\left(B_{1} \backslash B_{r}\right) \cup B_{s}
$$

and for all $\mu>0$, for all $q<p \frac{n}{n-1}$

$$
\begin{aligned}
& \left(\int_{B_{r} \backslash B_{s}}\left|D^{k} T v\right|^{2}\right)^{\frac{1}{2}}+\mu\left(\int_{B_{r} \backslash B_{s}}\left|D^{k} T v\right|^{q}\right)^{\frac{1}{q}} \\
\leq & C(r-s)^{\rho}\left\{\left[\sup _{t \in(s, r)}(t-s)^{-\frac{1}{2}}\left(\int_{B_{r} \backslash B_{s}} \mid D^{k} v\right)^{2}+\sup _{t \in(s, r)}(r-t)^{-\frac{1}{2}}\left(\int_{B_{r} \backslash B_{s}}\left|D^{k} v\right|^{2}\right)^{\frac{1}{2}}\right]\right.
\end{aligned}
$$

$$
\begin{equation*}
\left.+\mu\left[\sup _{t \in(s, r)}(t-s)^{-\frac{1}{p}}\left(\int_{B_{r} \backslash B_{s}}\left|D^{k} v\right|^{p}\right)^{\frac{1}{p}}+\sup _{t \in(s, r)}(r-t)^{-\frac{1}{p}}\left(\int_{B_{r} \backslash B_{s}} \mid D^{k} v\right)^{p}\right]\right\} \tag{5}
\end{equation*}
$$

where $C=C(n, p, q)>0$, and $\rho=\rho(n, p, q)>0$.
Let us recall an elementary Lemma proved in [10].

Lemma 2.3. Let ψ be a continuous nondecreasing function on an interval $[a, b], a<b$. There exist $a^{\prime} \in\left[a, a+\frac{1}{3}(b-a)\right], b^{\prime} \in\left[b-\frac{1}{3}(b-a), b\right]$ such that $a \leq a^{\prime}<b^{\prime} \leq b$ and

$$
\begin{aligned}
& \frac{\psi(t)-\psi\left(a^{\prime}\right)}{t-a^{\prime}} \leq 3 \frac{(\psi(b)-\psi(a))}{b-a} \\
& \frac{\psi\left(b^{\prime}\right)-\psi(t)}{b^{\prime}-t} \leq 3 \frac{(\psi(b)-\psi(a))}{b-a}
\end{aligned}
$$

for all $t \in\left(a^{\prime}, b^{\prime}\right)$.
Finally, combining the previous two Lemmas we obtain a generalization to the case of higher order derivatives of Lemma 2.4 in [10]. We give the proof here for completeness.

Lemma 2.4. Let $v, w \in W^{k, p}\left(B_{1}(0)\right)$ and $\frac{1}{4}<s<r<1$. Fix $p<q<\frac{n p}{n-1}$, for all $\mu>0$ and $m \in I N$ there exist a function $z \in W^{k, p}\left(B_{1}(0)\right)$ and $\frac{1}{4}<s<s^{\prime}<r^{\prime}<r<1$ with r^{\prime}, s^{\prime} depending on v, w and μ, such that

$$
\begin{gathered}
z=v \quad \text { on } \quad B_{s^{\prime}}, \quad z=w \quad \text { on } \quad B_{1} \backslash B_{r^{\prime}}, \\
\frac{r-s}{m} \geq r^{\prime}-s^{\prime} \geq \frac{r-s}{3 m}
\end{gathered}
$$

and

$$
\begin{gather*}
\left(\int_{\left.B_{r^{\prime} \backslash B_{s^{\prime}}}\left|D^{k} z\right|^{2}\right)^{\frac{1}{2}}+\mu\left(\int_{B_{r^{\prime}} \backslash B_{s^{\prime}}}\left|D^{k} z\right|^{q}\right)^{\frac{1}{q}}}^{\leq} \quad \begin{array}{c}
(r-s)^{\rho} \\
m \rho
\end{array} f_{B_{r} \backslash B_{s}}\left(1+\sum_{l=0}^{k}\left|D^{l} v\right|^{2}+\sum_{l=0}^{k}\left|D^{l} w\right|^{2}+\frac{m^{2}}{(r-s)^{2}} \sum_{l=1}^{k-1}\left|D^{l}(v-w)\right|^{2}\right)\right. \\
\left.+\quad \mu^{p} f_{B_{r} \backslash B_{s}}\left(1+\sum_{l=0}^{k}\left|D^{l} v\right|^{p}+\sum_{l=1}^{k}\left|D^{l} w\right|^{p}+\frac{m^{p}}{(r-s)^{p}} \sum_{l=0}^{k-1}\left|D^{l}(v-w)\right|^{p}\right)\right]^{\frac{1}{2}}
\end{gather*}
$$

where $C=C(n, p, q)>0$ and $\rho=\rho(p, q, n)>0$.

Proof. As in Lemma 2.4 in [10], choose $m \in I N$ and set

$$
\begin{gathered}
f=1+\sum_{l=0}^{k}\left|D^{l} v\right|^{2}+\sum_{l=0}^{k}\left|D^{l} w\right|^{2}+\frac{m^{2}}{(r-s)^{2}} \sum_{l=0}^{k-1}\left|D^{l}(v-w)\right|^{2} \\
+\mu^{p}\left(1+\sum_{l=0}^{k}\left|D^{l} v\right|^{p}+\sum_{l=0}^{k}\left|D^{l} w\right|^{p}+\frac{m^{p}}{(r-s)^{p}} \sum_{l=0}^{k-1}\left|D^{l}(v-w)\right|^{p}\right)
\end{gathered}
$$

We may find $h \in\{1, \ldots, m\}$ such that

$$
\int_{B_{s+\frac{h(r-s)}{m}}^{m} \backslash B_{s+\frac{(h-1)(r-s)}{m}}^{m}} f d x \leq \frac{1}{m} \int_{B_{r} \backslash B_{s}} f d x
$$

Set, for $t \in\left[s+\frac{(h-1)(r-s)}{m}, s+\frac{h(r-s)}{m}\right]$,

$$
\psi(t)=\int_{B_{t} \backslash B_{s}} f d x
$$

which is a continuous increasing function. By Lemma 2.3, there exists $\left[s^{\prime}, r^{\prime}\right] \subset\left[s+\frac{(h-1)(r-s)}{m}, s+\frac{h(r-s)}{m}\right]$ such that

$$
\frac{r-s}{m} \geq r^{\prime}-s^{\prime} \geq \frac{r-s}{3 m}
$$

and

$$
\begin{gather*}
\int_{B_{t} \backslash B_{s^{\prime}}} f d x \leq 3 \frac{\left(t-s^{\prime}\right) m}{r-s} \int_{B_{s+\frac{h(r-s)}{m} \backslash B_{s+}} f(h-1)(r-s)}^{m} f d x \\
\leq 3 \frac{t-s^{\prime}}{r-s} \int_{B_{r} \backslash B_{s}} f d x \tag{8}\\
\int_{B_{r^{\prime} \backslash B_{t}}} f d x \leq 3 \frac{r^{\prime}-t}{r-s} \int_{B_{r} \backslash B_{s}} f d x \tag{9}
\end{gather*}
$$

for all $t \in\left(s^{\prime}, r^{\prime}\right)$. Set

$$
u= \begin{cases}v(x) & \text { if } x \in B_{s^{\prime}} \\ \frac{\left(r^{\prime}-|x|\right) v(x)+\left(|x|-s^{\prime}\right) w(x)}{r^{\prime}-s^{\prime}} & \text { if } x \in B_{r^{\prime}} \backslash B_{s^{\prime}} \\ w(x) & \text { if } x \in B_{1} \backslash B_{r^{\prime}}\end{cases}
$$

A direct computation shows that

$$
\sum_{l=0}^{k}\left|D^{l} u\right|^{2}+\mu^{q}\left(\sum_{l=0}^{k}\left|D^{l} u\right|^{p}\right) \leq C f
$$

If we apply Lemma 2.2 to the function u, we then find $z \in W^{k, p}\left(B_{1}\right)$ satisfying (6). Moreover, from (8) and (9), using (5), one readily cheks that

$$
\begin{aligned}
& \left(\int_{B_{r^{\prime}} \backslash B_{s^{\prime}}}\left|D^{k} z\right|^{2}\right)^{\frac{1}{2}}+\mu\left(\int_{B_{r^{\prime} \backslash B_{s^{\prime}}}}\left|D^{k} z\right|^{q}\right)^{\frac{1}{q}} \\
\leq & c\left(r^{\prime}-s^{\prime}\right)^{\rho}\left\{\frac{\left|B_{r^{\prime}} \backslash B_{s^{\prime}}\right|^{\frac{1}{2}}}{\left(r^{\prime}-s^{\prime}\right)^{\frac{1}{2}}}\left(f_{B_{r} \backslash B_{s}} f\right)^{\frac{1}{2}}\right. \\
+ & \left.\frac{\left|B_{r^{\prime}} \backslash B_{s^{\prime}}\right|^{\frac{1}{p}}}{\left(r^{\prime}-s^{\prime}\right)^{\frac{1}{p}}}\left(f_{B_{r} \backslash B_{s}} f\right)^{\frac{1}{p}}\right\} \\
\leq & c\left(r^{\prime}-s^{\prime}\right)^{\rho}\left\{\left(f_{B_{r} \backslash B_{s}} f\right)^{\frac{1}{2}}+\left(f_{B_{r} \backslash B_{s}} f\right)^{\frac{1}{p}}\right\}
\end{aligned}
$$

from which (7) follows.■

3 The decay estimate

As usual, to get the partial regularity result stated in Theorem 2.1, we need a decay estimate for the excess function $U\left(x_{0}, r\right)$ defined as follows

$$
U\left(x_{0}, r\right)=f_{B_{r\left(x_{0}\right)}}\left[\left|D^{k} u-\left(D^{k} u\right)_{x_{0}, r}\right|^{2}+\left|D^{k} u-\left(D^{k} u\right)_{x_{0}, r}\right|^{p}\right] d y
$$

which measures how the k-order derivatives are far from being constant in the ball $B_{r\left(x_{0}\right)}$. The desired decay estimate is established in the next Proposition.

Proposition 3.1. Fix $M>0$. There exists a constant $C_{M}>0$ such that for every $0<\tau<\frac{1}{4}$, there exists $\epsilon=\epsilon(\tau, M)$ such that, if

$$
\left|\left(D^{k} u\right)_{x_{0}, r}\right| \leq M \quad \text { and } \quad U\left(x_{0}, r\right) \leq \epsilon
$$

then

$$
U\left(x_{0}, \tau r\right) \leq C_{M} \tau^{2} U\left(x_{0}, r\right)
$$

Proof. Fix M and τ. We shall determine C_{M} later. We argue by contradiction assuming that there exists a sequence $B_{r_{h}}\left(x_{h}\right)$ satisfying

$$
B_{r_{h}}\left(x_{h}\right) \subset \Omega, \quad\left|\left(D^{k} u\right)_{x_{h}, r_{h}}\right| \leq M, \quad \lim _{h} U\left(x_{h}, r_{h}\right)=0
$$

but

$$
\begin{equation*}
U\left(x_{h}, \tau r_{h}\right)>C_{M} \tau^{2} U\left(x_{h}, r_{h}\right) \tag{10}
\end{equation*}
$$

Set

$$
A_{h}=\left(D^{k} u\right)_{x_{h}, r_{h}} \quad \lambda_{h}^{2}=U\left(x_{h}, r_{h}\right)
$$

and let P the polynomial such that

$$
\int_{B_{r_{h}}\left(x_{h}\right)} D^{l}(u-P)=0 \quad l=0, \ldots, k
$$

Step 1. Blow up. We rescale the function u in each $B_{r_{h}}\left(x_{h}\right)$ to obtain a sequence of functions on $B_{1}(0)$. Set

$$
v_{h}(y)=\frac{1}{\lambda_{h} r_{h}^{k}}\left[u\left(x_{h}+r_{h} y\right)-P\left(x_{h}+r_{h} y\right)\right]
$$

then

$$
D^{k} v_{h}(y)=\frac{1}{\lambda_{h}}\left[D^{k} u\left(x_{h}+r_{h} y\right)-A_{h}\right]
$$

Clearly we have

$$
\left(D^{l} v_{h}\right)_{0,1}=0 \quad l=0, \ldots, k
$$

Moreover,

$$
\begin{equation*}
\frac{U\left(x_{h}, r_{h}\right)}{\lambda_{h}^{2}}=f_{B_{1}}\left[\left|D^{k} v_{h}\right|^{2}+\lambda_{h}^{p-2}\left|D^{k} v_{h}\right|^{p}\right] d y=1 \tag{11}
\end{equation*}
$$

Then, passing possibly to a subsequence, we may suppose that

$$
\begin{equation*}
v_{h} \rightharpoonup v \quad \text { weakly } \quad \text { in } \quad W^{k, 2}\left(B_{1} ; \mathbb{R}^{N}\right) \tag{12}
\end{equation*}
$$

and, since $\forall h \quad\left|A_{h}\right| \leq M$,

$$
\begin{equation*}
A_{h} \rightarrow A \tag{13}
\end{equation*}
$$

Step 2. v solves a linear system. Now we show that

$$
\begin{equation*}
\int_{B_{1}(0)} \frac{\partial^{2} f}{\partial \xi_{\alpha}^{i} \partial \xi_{\beta}^{j}}(A) D_{\beta} v^{j} D_{\alpha} \phi^{i} d y=0 \quad \forall \phi \in C_{0}^{k}\left(B_{1} ; \mathbb{R}^{N}\right) \tag{14}
\end{equation*}
$$

Since we assume $q-1 \leq p$ we can write the usual Euler-Lagrange system for u (see Remark 2.1). Then, rescaling in each $B_{r_{h}}\left(x_{h}\right)$, we get for any $\phi \in C_{0}^{k}\left(B_{1} ; \mathbb{R}^{N}\right)$ and any $1 \leq i \leq N$

$$
\int_{B_{1}(0)} \frac{\partial f}{\partial \xi_{\alpha}^{i}}\left(A_{h}+\lambda_{h} D^{k} v_{h}\right) D_{\alpha} \phi^{i} d y=0
$$

where $|\alpha|=k$. Then

$$
\begin{equation*}
\frac{1}{\lambda_{h}} \int_{B_{1}(0)}\left[\frac{\partial f}{\partial \xi_{\alpha}^{i}}\left(A_{h}+\lambda_{h} D^{k} v_{h}\right)-\frac{\partial f}{\partial \xi_{\alpha}^{i}}\left(A_{h}\right)\right] D_{\alpha} \phi^{i} d y=0 \tag{15}
\end{equation*}
$$

Let us split

$$
B_{1}=E_{h}^{+} \cup E_{h}^{-}=\left\{y \in B_{1}: \lambda_{h}\left|D^{k} v_{h}(y)\right|>1\right\} \cup\left\{y \in B_{1}: \lambda_{h}\left|D^{k} v_{h}(y)\right| \leq 1\right\}
$$

then, by (11), we get

$$
\begin{equation*}
\left|E_{h}^{+}\right| \leq \int_{E_{h}^{+}} \lambda_{h}^{2}\left|D^{k} v_{h}\right|^{2} d y \leq \lambda_{h}^{2} \int_{B_{1}(0)}\left|D^{k} v_{h}\right|^{2} d y \leq c \lambda_{h}^{2} \tag{16}
\end{equation*}
$$

Now, by (H4) and Hölder's inequality, we observe that

$$
\begin{aligned}
& \frac{1}{\lambda_{h}}\left|\int_{E_{h}^{+}}\left[D f\left(A_{h}+\lambda_{h} D^{k} v_{h}\right)-D f\left(A_{h}\right)\right] D \phi d y\right| \\
\leq & \frac{c}{\lambda_{h}}\left|E_{h}^{+}\right|+c \lambda_{h}^{q-2} \int_{E_{h}^{+}}\left|D^{k} v_{h}\right|^{q-1} d y \\
\leq & c \lambda_{h}+c\left(\int_{E_{h}^{+}} \lambda_{h}^{p-2}\left|D^{k} v_{h}\right|^{p} d y\right)^{\frac{q-1}{p}} \lambda_{h}^{\frac{2 q-p-2}{p}}\left|E_{h}^{+}\right|^{\frac{p-q+1}{p}} \leq c \lambda_{h}
\end{aligned}
$$

where we used again the assumption $q-1 \leq p$.
From this it follows that

$$
\begin{equation*}
\lim _{h} \frac{1}{\lambda_{h}} \int_{E_{h}^{+}}\left[D f\left(A_{h}+\lambda_{h} D^{k} v_{h}\right)-D f\left(A_{h}\right)\right] D \phi d y=0 \tag{17}
\end{equation*}
$$

On E_{h}^{-}we have

$$
\begin{aligned}
& \frac{1}{\lambda_{h}} \int_{E_{h}^{-}}\left[D f\left(A_{h}+\lambda_{h} D^{k} v_{h}\right)-D f\left(A_{h}\right)\right] D \phi d y \\
= & \int_{E_{h}^{-}} \int_{0}^{1} D^{2} f\left(A_{h}+s \lambda_{h} D^{k} v_{h}\right) D^{k} v_{h} D \phi d s d y
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{E_{h}^{-}} \int_{0}^{1}\left[D^{2} f\left(A_{h}+s \lambda_{h} D^{k} v_{h}\right)-D^{2} f\left(A_{h}\right)\right] D^{k} v_{h} D \phi d s d y \\
& +\int_{E_{h}^{-}} D^{2} f\left(A_{h}\right) D^{k} v_{h} D \phi d y .
\end{aligned}
$$

Note that (16) ensures that $\chi_{E_{h}^{-}} \rightarrow \chi_{B_{1}}$ in $L^{r}\left(B_{1}\right)$ for all $r<\infty$ and by (11) we have, passing possibly to a subsequence,

$$
\lambda_{h} D^{k} v_{h}(y) \rightarrow 0 \quad \text { a.e. } \quad \text { in } \quad B_{1} .
$$

Then, by (12), (13) and the uniform continuity of $D^{2} f$ on bounded sets, we get

$$
\begin{gathered}
\lim _{h} \frac{1}{\lambda_{h}} \int_{E_{h}^{-}}\left[D f\left(A_{h}+\lambda_{h} D^{k} v_{h}\right)-D f\left(A_{h}\right)\right] D \phi d y \\
=\int_{B_{1}} D^{2} f(A) D^{k} v D \phi d y
\end{gathered}
$$

Collecting (15), (17) and the above equality, we obtain that v satisfies system (14), which is linear and elliptic with constant coefficients by (H3). By standard regularity results (see [12]), we have for any $0<\tau<1$

$$
\begin{equation*}
f_{B_{\tau}}\left|D^{k} v-\left(D^{k} v\right)_{\tau}\right|^{2} d y \leq c \tau^{2} f_{B_{1}}\left|D^{k} v-\left(D^{k} v\right)_{1}\right|^{2} d y \leq c \tau^{2} \tag{18}
\end{equation*}
$$

Moreover we have

$$
\begin{equation*}
v \in C^{\infty}\left(B_{1} ; \mathbb{R}^{N}\right) \tag{19}
\end{equation*}
$$

and

$$
\lambda_{h}^{\frac{p-2}{p}}\left(v_{h}-v\right) \rightharpoonup 0 \quad \text { weakly in } W_{\text {loc }}^{k, p}\left(B_{1} ; \mathbb{R}^{N}\right)
$$

Step 3. Upper bound. We set

$$
f_{h}(\xi)=\frac{1}{\lambda_{h}^{2}}\left[f\left(A_{h}+\lambda_{h} \xi\right)-f\left(A_{h}\right)-\lambda_{h} D f\left(A_{h}\right) \xi\right]
$$

and, for every $r<1$, we consider

$$
I_{h, r}(w)=\int_{B_{r}} f_{h}\left(D^{k} w\right) d y
$$

Note that, by the strong ellipticity assumption (H3), it follows that $f_{h}(\xi) \geq$ 0 , for any ξ, and remember that v_{h} is a local minimizer for each $I_{h, r}$. Fix $\frac{1}{4}<s<1$. Passing to a subsequence we may always assume that

$$
\lim _{h}\left[I_{h, s}\left(v_{h}\right)-I_{h, s}(v)\right]
$$

exists.
We shall prove that

$$
\begin{equation*}
\lim _{h}\left[I_{h, s}\left(v_{h}\right)-I_{h, s}(v)\right] \leq 0 . \tag{20}
\end{equation*}
$$

Consider $r>s$ and fix $m \in I N$. Observe that, since $v \in W^{k, p}\left(B_{1}\right)$ and $v_{h} \in W^{k, p}\left(B_{1}\right)$, Lemma 2.4, with $\mu=\lambda_{h}^{\frac{q-2}{q}}$, implies that there exist $z_{h} \in W^{k, p}\left(B_{1}\right)$ and $\frac{1}{4}<s<s_{h}<r_{h}<r<1$ such that

$$
z_{h}=v \quad \text { on } \quad B_{s_{h}} \quad z_{h}=v_{h} \quad \text { on } \quad B_{1} \backslash B_{r_{h}}
$$

and

$$
\begin{aligned}
& \left(\int_{B_{r_{h}} \backslash B_{s_{h}}}\left|D^{k} z_{h}\right|^{2}\right)^{\frac{1}{2}}+\lambda_{h}^{\frac{q-2}{q}}\left(\int_{B_{r_{h}} \backslash B_{s_{h}}}\left|D^{k} z_{h}\right|^{q}\right)^{\frac{1}{q}} \\
\leq & C \frac{(r-s)^{\rho}}{m^{\rho}}\left[f_{B_{r} \backslash B_{s}}\left(1+\sum_{l=0}^{k}\left|D^{l} v\right|^{2}+\sum_{l=0}^{k}\left|D^{l} v_{h}\right|^{2}+\frac{m^{2}}{(r-s)^{2}} \sum_{l=1}^{k-1}\left|D^{l}\left(v-v_{h}\right)\right|^{2}\right)\right. \\
+ & \left.\lambda_{h}^{\frac{q-2}{q} p} f_{B_{r} \backslash B_{s}}\left(1+\sum_{l=0}^{k}\left|D^{l} v\right|^{p}+\sum_{l=0}^{k}\left|D^{l} v_{h}\right|^{p}+\frac{m^{p}}{(r-s)^{p}} \sum_{l=1}^{k-1}\left|D^{l}\left(v-v_{h}\right)\right|^{p}\right)\right]^{\frac{1}{2}}(21)
\end{aligned}
$$

Since by (19), $D^{k} v$ is locally bounded on B_{1} we get

$$
\begin{align*}
I_{h, s}\left(v_{h}\right)-I_{h, s}(v) & \leq I_{h, r_{h}}\left(v_{h}\right)-I_{h, r_{h}}(v)+I_{h, r_{h}}(v)-I_{h, s}(v) \\
& =I_{h, r_{h}}\left(v_{h}\right)-I_{h, r_{h}}(v)+\int_{B_{r_{h}} \backslash B_{s}} f_{h}\left(D^{k} v\right) \\
& \leq I_{h, r_{h}}\left(z_{h}\right)-I_{h, r_{h}}(v)+c(r-s) \\
& \leq \int_{B_{r_{h} \backslash B_{s_{h}}}\left[f_{h}\left(D^{k} z_{h}\right)-f_{h}\left(D^{k} v\right)\right]+c(r-s) .} . \tag{22}
\end{align*}
$$

where we used the minimality of v_{h}.
As $\left|f_{h}(\xi)\right| \leq c\left(|\xi|^{2}+\lambda_{h}^{q-2}|\xi|^{q}\right)$, we get by (21), using the fact that $\frac{r-s}{m}<1$ and that the quantity on square brackets is greater or equal than 1 ,

$$
\begin{aligned}
& I_{h, r_{h}}\left(z_{h}\right)-I_{h, r_{h}}(v) \leq c \int_{B_{r_{h}} \backslash B_{s_{h}}}\left|D^{k} z_{h}\right|^{2}+\lambda_{h}^{q-2}\left|D^{k} z_{h}\right|^{q} \\
\leq & c \frac{(r-s)^{2 \rho}}{m^{2 \rho}}\left[f_{B_{r} \backslash B_{s}}\left(1+\sum_{l=0}^{k}\left|D^{l} v\right|^{2}+\sum_{l=0}^{k}\left|D^{l} v_{h}\right|^{2}+\frac{m^{2}}{(r-s)^{2}} \sum_{l=1}^{k-1}\left|D^{l}\left(v-v_{h}\right)\right|^{2}\right)\right]^{\frac{q}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& +c \frac{(r-s)^{2 \rho}}{m^{2 \rho}}\left[\lambda_{h}^{\lambda^{q-2} p} f_{B_{r} \backslash B_{s}}\left(1+\sum_{l=0}^{k}\left|D^{l} v\right|^{p}+\sum_{l=0}^{k}\left|D^{l} v_{h}\right|^{p}+\frac{m^{p}}{(r-s)^{p}} \sum_{l=1}^{k-1}\left|D^{l}\left(v-v_{h}\right)\right|^{p}\right)\right]^{\frac{q}{2}} \\
& =J_{h, 1}+J_{h, 2}
\end{aligned}
$$

Since $D^{l} v_{h} \rightarrow D^{l} v$ strongly in $L^{2}\left(B_{1} ; \mathbb{R}^{N}\right)$ for every $l<k$, we have, using

$$
\begin{equation*}
\limsup _{h \rightarrow \infty} J_{h, 1} \leq c m^{-2 \rho} \tag{11}
\end{equation*}
$$

Moreover, since for $l=0, \ldots, k$

$$
\lambda_{h}^{\frac{p(q-2)}{q}} \int_{B_{1}}\left|D^{l} v_{h}\right|^{p} \leq c \lambda_{h}^{\frac{2(q-p)}{q}} \lambda_{h}^{p-2} \int_{B_{1}}\left|D^{k} v_{h}\right|^{p} \leq c \lambda_{h}^{\frac{2(q-p)}{q}}
$$

and

$$
\lambda_{h}^{\frac{p(q-2)}{q}} \int_{B_{1}}\left|D^{l}\left(v_{h}-v\right)\right|^{p} \leq c \lambda_{h}^{\frac{p(q-2)}{q}} \int_{B_{1}}\left|D^{k} v_{h}\right|^{p} \leq c \lambda_{h}^{\frac{2(q-p)}{q}}
$$

we have

$$
\lim _{h} J_{h, 2}=0 .
$$

Hence we conclude letting first $m \rightarrow \infty$ and then $r \rightarrow s$ in (22).
Step 4. Lower bound. We shall prove that, for a.e. $\frac{1}{4}<r<\frac{1}{2}$, if $t<r$ then $\underset{h}{\lim \sup } \int_{B_{t}}\left|D^{k} v-D^{k} v_{h}\right|^{2}\left(1+\lambda_{h}^{p-2}\left|D^{k} v-D^{k} v_{h}\right|^{p-2}\right) \leq \lim _{h}\left[I_{h, r}\left(v_{h}\right)-I_{h, r}(v)\right]$.

For any Borel set $A \subset B_{1}$, let us define

$$
\mu_{h}(A)=\int_{A} \sum_{l=0}^{k}\left|D^{l} v_{h}\right|^{2} d x
$$

Passing possibly to a subsequence, since $\mu_{h}\left(B_{1}\right) \leq c$, we may suppose

$$
\mu_{h} \rightharpoonup \mu \quad \text { weakly } * \text { in the sense of measures, }
$$

where μ is a Borel measure over B_{1}, with finite total variation. Then for a.e. $r<1$

$$
\mu\left(\partial B_{r}\right)=0
$$

and let us choose such a radius r. Consider $\frac{1}{4}<t<s<r$, also such that $\mu\left(\partial B_{s}\right)=0$, and fix $m \in I N$. Observe that, as $v_{h} \in W^{k, p}\left(B_{1}\right)$ Lemma 2.4
implies that there exist $z_{h} \in W^{k, p}\left(B_{1}\right)$ and $\frac{1}{4}<s<s_{h}<r_{h}<r<1$ such that

$$
\begin{gathered}
z_{h}=v_{h} \quad \text { on } \quad B_{s_{h}} \quad z_{h}=v_{h} \quad \text { on } \quad B_{1} \backslash B_{r_{h}} \\
r_{h}-s_{h} \geq \frac{r-s}{3 m}
\end{gathered}
$$

and

$$
\begin{align*}
& \left(\int_{B_{r_{h}} \backslash B_{s_{h}}}\left|D^{k} z_{h}\right|^{2}\right)^{\frac{1}{2}}+\lambda_{h}^{\frac{q-2}{q}}\left(\int_{B_{r_{h}} \backslash B_{s_{h}}}\left|D^{k} z_{h}\right|^{q}\right)^{\frac{1}{q}} \\
\leq & C \frac{(r-s)^{\rho}}{m^{\rho}}\left[f_{B_{r} \backslash B_{s}}\left(1+\sum_{l=0}^{k}\left|D^{l} v_{h}\right|^{2}\right)\right. \\
+ & \left.\lambda_{h}^{\frac{(q-2) p}{q}} f_{B_{r} \backslash B_{s}}\left(1+\sum_{l=0}^{k}\left|D^{l} v_{h}\right|^{p}\right)\right]^{\frac{1}{2}} \tag{23}
\end{align*}
$$

Passing possibly to a subsequence, we may suppose that

$$
z_{h} \rightharpoonup v_{r, s} \quad \text { weakly } \quad \text { in } \quad W^{k, 2}\left(B_{1}\right)
$$

and

$$
v_{r, s}=v \quad \text { in } \quad\left(B_{1} \backslash B_{r}\right) \cup B_{s}
$$

Moreover, from (23) and the interpolation inequality with $\frac{1}{p}=\frac{\theta}{2}+\frac{1-\theta}{q}$, we deduce that

$$
\begin{align*}
& \lambda_{h}^{p-2} \int_{B_{1}}\left|D^{k} z_{h}\right|^{p} \\
\leq & c \lambda_{h}^{p-2}\left(\int_{B_{1}}\left|D^{k} z_{h}\right|^{2}\right)^{\frac{\theta p}{2}}\left(\int_{B_{1}}\left|D^{k} z_{h}\right|^{q}\right)^{\frac{(1-\theta) p}{2}} \\
\leq & c \lambda_{h}^{p-2}\left(\int_{B_{1}}\left|D^{k} z_{h}\right|^{q}\right)^{\frac{(1-\theta) p}{2}} \\
\leq & c \lambda_{h}^{p-2}\left(c \lambda_{h}^{2-q}\right)^{\frac{p-2}{q-2}} \leq c \tag{24}
\end{align*}
$$

since $\theta=\frac{p-2}{q-2} \frac{q}{p}$.
Consider $\zeta_{h} \in C_{0}^{\infty}\left(B_{r_{h}}\right)$ such that $0 \leq \zeta_{h} \leq 1, \zeta_{h}=1$ on $B_{s_{h}}$ and $\left|D^{l} \zeta_{h}\right| \leq$ $\frac{C}{\left(r_{h}-s_{h}\right)^{l}}$, for $l=0, \ldots, k$, and set

$$
\psi_{h}^{\epsilon}=\zeta_{h}\left(z_{h}-v_{r, s}^{\epsilon}\right),
$$

where $v_{r, s}^{\epsilon}=\rho_{\epsilon} \star v_{r, s}$, and ρ_{ϵ} is the usual sequence of mollifiers. Now, setting $v^{\epsilon}=\rho_{\epsilon} \star v$, we observe that

$$
\begin{align*}
& I_{h, r_{h}}\left(v_{h}\right)-I_{h, r_{h}}\left(v^{\epsilon}\right)=\quad I_{h, r_{h}}\left(v_{h}\right)-I_{h, r_{h}}\left(z_{h}\right) \\
& +\quad I_{h, r_{h}}\left(z_{h}\right)-I_{h, r_{h}}\left(v_{r, s}^{\epsilon}+\psi_{h}^{\epsilon}\right) \\
& +I_{h, r_{h}}\left(\psi_{h}^{\epsilon}+v_{r, s}^{\epsilon}\right)-I_{h, r_{h}}\left(v_{r, s}^{\epsilon}\right)-I_{h, r_{h}}\left(\psi_{h}^{\epsilon}\right) \\
& +\quad I_{h, r_{h}}\left(v_{r, s}^{\epsilon}\right)-I_{h, r_{h}}\left(v^{\epsilon}\right) \\
& +\quad I_{h, r_{h}}\left(\psi_{h}^{\epsilon}\right) \\
& =\quad R_{h, 1}+R_{h, 2}+R_{h, 3}+R_{h, 4}+R_{h, 5} \tag{25}
\end{align*}
$$

To bound $R_{h, 1}$ we observe that

$$
\begin{aligned}
I_{h, r_{h}}\left(v_{h}\right)-I_{h, r_{h}}\left(z_{h}\right) & =\int_{B_{r_{h}} \backslash B_{s_{h}}} f_{h}\left(D^{k} v_{h}\right)-\int_{B_{r_{h}} \backslash B_{s_{h}}} f_{h}\left(D^{k} z_{h}\right) \\
& \geq \quad-\int_{B_{r_{h}} \backslash B_{s_{h}}} f_{h}\left(D^{k} z_{h}\right)
\end{aligned}
$$

on the other hand we have

$$
\begin{gathered}
\int_{B_{r_{h}} \backslash B_{s_{h}}} f_{h}\left(D^{k} z_{h}\right) \leq \int_{B_{r_{h} \backslash B_{s_{h}}}\left|D^{k} z_{h}\right|^{2}+\lambda_{h}^{q-2}\left|D^{k} z_{h}\right|^{q}}^{\leq c m^{-2 \rho}\left[f_{B_{r} \backslash B_{s}}\left(1+\sum_{l=0}^{k}\left|D^{l} v_{h}\right|^{2}\right)+\lambda_{h}^{\frac{q-2}{q} p} f_{B_{r} \backslash B_{s}}\left(1+\sum_{l=0}^{k}\left|D^{l} v_{h}\right|^{p}\right)\right]^{\frac{q}{2}}}
\end{gathered}
$$

and then arguing as we did in Step 3 to bound $J_{h, 1}$ we get

$$
\underset{h}{\lim \sup } \int_{B_{r_{h}} \backslash B_{s_{h}}} f_{h}\left(D^{k} z_{h}\right) \leq C m^{-2 \rho}
$$

hence, letting $h \rightarrow \infty$ we get

$$
\begin{equation*}
\underset{h}{\liminf } R_{h, 1} \geq-C m^{-2 \rho} \tag{26}
\end{equation*}
$$

We obtain that

$$
\begin{aligned}
R_{h, 2} & =\int_{B_{r_{h}} \backslash B_{s_{h}}} f_{h}\left(D^{k} z_{h}\right)-f_{h}\left(D^{k} \psi_{h}^{\epsilon}+D^{k} v_{r, s}^{\epsilon}\right) \\
& \geq-c \int_{B_{r_{h}} \backslash B_{s_{h}}}\left|D^{k} \psi_{h}^{\epsilon}+D^{k} v_{r, s}^{\epsilon}\right|^{2}+\lambda_{h}^{q-2}\left|D^{k} \psi_{h}^{\epsilon}+D^{k} v_{r, s}^{\epsilon}\right|^{q} \\
& \geq-c \int_{B_{r_{h}} \backslash B_{s_{h}}}\left|D^{k} z_{h}\right|^{2}+\lambda_{h}^{q-2}\left|D^{k} z_{h}\right|^{q}+\left|D^{k} v_{r, s}^{\epsilon}\right|^{2}+\lambda_{h}^{q-2}\left|D^{k} v_{r, s}^{\epsilon}\right|^{q}
\end{aligned}
$$

$$
\begin{aligned}
& -c \int_{B_{r_{h}} \backslash B_{s_{h}}}\left(\sum_{l=0}^{k-1} \frac{m^{2(k-l)}}{(r-s)^{2(k-l)}}\left|D^{l}\left(z_{h}-v_{r, s}^{\epsilon}\right)^{2}+\lambda_{h}^{q-2} \sum_{l=0}^{k-1} \frac{m^{q(k-l)}}{(r-s)^{q(k-l)}}\right| D^{l}\left(z_{h}-\left.v_{r, s}^{\epsilon}\right|^{q}\right)\right. \\
& =-S_{h, 1}-S_{h, 2}
\end{aligned}
$$

where we used the bound $r_{h}-s_{h} \geq \frac{r-s}{3 m}$. Denoting by P_{l} the polynomial of degree $k-1$ such that

$$
\int_{B_{1}}\left(D^{l}\left(P_{l}-z_{h}\right)\right)=0,
$$

for $l<k$, and setting

$$
p^{*}= \begin{cases}\frac{n p}{n-l p} & \text { if } p<\frac{n}{l} \\ r>p & \text { if } \quad p \geq \frac{n}{l},\end{cases}
$$

since $q<p^{*}$, we get by (23), for every $l=0, \ldots, k-1$

$$
\begin{aligned}
\int_{B_{1}} \lambda_{h}^{q-2}\left|D^{l} z_{h}\right|^{q} & \leq c \lambda_{h}^{q-2}\left\{\int_{B_{1}}\left|D^{l}\left(z_{h}-P_{l}\right)\right|^{q}+\left|D^{l}\left(P_{l}\right)\right|^{q}\right\} \\
& \leq c \lambda_{h}^{q-2}\left\{\left(\int_{B_{1}}\left|D^{l}\left(z_{h}-P_{l}\right)\right|^{p^{*}}\right)^{\frac{q}{p^{*}}}+\left(\int_{B_{1}}\left|D^{l}\left(P_{l}\right)\right|^{p^{*}}\right)^{\frac{q}{p^{*}}}\right\} \\
& \leq c \lambda_{h}^{q-2}\left(\int_{B_{1}}\left|D^{k} z_{h}\right|^{p}\right)^{\frac{q}{p}} \\
& \leq c \lambda_{h}^{\frac{2(q-p)}{p}}\left(\lambda_{h}^{p-2} \int_{B_{1}}\left|D^{k} z_{h}\right|^{p}\right)^{\frac{q}{p}}
\end{aligned}
$$

Therefore, using (24), we obtain

$$
\limsup _{h \rightarrow \infty} S_{h, 2} \leq c \sum_{l=0}^{k-1} \frac{m^{2(k-l)}}{(r-s)^{2(k-l)}} \int_{B_{\frac{1}{2}}}\left|D^{l}\left(v_{r, s}-v_{r, s}^{\epsilon}\right)\right|^{2} .
$$

To bound $S_{h, 1}$, observe that for every h

$$
\begin{aligned}
& \int_{B_{r_{h}} \backslash B_{s_{h}}}\left|D^{k} v_{r, s}^{\epsilon}\right|^{2} \leq c \int_{B_{r} \backslash B_{s}}\left|D^{k} v_{r, s}\right|^{2}+c \int_{B_{\frac{1}{2}}}\left|D^{k} v_{r, s}-D^{k} v_{r, s}^{\epsilon}\right|^{2} \\
\leq & \liminf _{j} c \int_{B_{r} \backslash B_{s}}\left|D^{k} z_{j}\right|^{2}+c \int_{B_{\frac{1}{2}}}\left|D^{k} v_{r, s}-D^{k} v_{r, s}^{\epsilon}\right|^{2} \\
= & c \operatorname{ciminf}_{j} \int_{\left(B_{r} \backslash B_{s}\right) \backslash\left(B_{r_{j}} \backslash B_{s_{j}}\right)}\left|D^{k} v_{j}\right|^{2}
\end{aligned}
$$

$$
+c \limsup _{j} \int_{B_{r_{j}} \backslash B_{s_{j}}}\left|D^{k} z_{j}\right|^{2}+c \int_{B_{\frac{1}{2}}}\left|D^{k} v_{r, s}-D^{k} v_{r, s}^{\epsilon}\right|^{2}
$$

We control the second integral as usual using Lemma 2.4, while the first is less or equal than $c \mu\left(B_{r} \backslash B_{s}\right)$.

Moreover we can estimate

$$
\int_{B_{r_{h}} \backslash B_{s_{h}}}\left|D^{k} z_{h}\right|^{2}+\lambda_{h}^{q-2}\left|D^{k} z_{h}\right|^{q}
$$

as we did in Step 3 to bound $J_{h, 1}$. Hence

$$
\begin{gather*}
\liminf _{h} R_{h, 2} \geq-c m^{-2 \rho}-c \mu\left(B_{r} \backslash B_{s}\right) \\
-c \int_{B_{\frac{1}{2}}}\left|D^{k} v_{r, s}-D^{k} v_{r, s}^{\epsilon}\right|^{2}-\sum_{l=0}^{k-1} \frac{m^{2(k-l)}}{(r-s)^{2(k-l)}} \int_{B_{\frac{1}{2}}}\left|D^{l}\left(v_{r, s}-v_{r, s}^{\epsilon}\right)\right|^{2} \tag{27}
\end{gather*}
$$

To bound $R_{h, 3}$ we observe that

$$
f_{h}(A+B)-f_{h}(A)-f_{h}(B)=\int_{0}^{1} \int_{0}^{1} D^{2} f_{h}(s A+t B) A B d s d t
$$

and, by the definition of f_{h},

$$
D^{2} f_{h}\left(s D^{k} v_{r, s}^{\epsilon}+t D^{k} \psi_{h}^{\epsilon}\right)=D^{2} f\left(A_{h}+s \lambda_{h} D^{k} v_{r, s}^{\epsilon}+t \lambda_{h} D^{k} \psi_{h}^{\epsilon}\right)
$$

is bounded and converges to $D^{2} f(A)$ a.e.. Since

$$
R_{h, 3}=\int_{B_{r_{h}}} d x \int_{[0,1] \times[0,1]} D^{2} f\left(A_{h}+s \lambda_{h} D^{k} v_{r, s}^{\epsilon}+t \lambda_{h} D^{k} \psi_{h}^{\epsilon}\right) D^{k} v_{r, s}^{\epsilon} D^{k} \psi_{h}^{\epsilon} d s d t
$$

and we may suppose that $\psi_{h}^{\epsilon} \rightharpoonup \psi^{\epsilon}$ weakly in $W^{k, 2}\left(B_{1}\right)$, and arguing as in the proof of (27), we have

$$
\int_{B_{1}}\left|D^{k} \psi^{\epsilon}\right|^{2} \leq \sum_{l=0}^{k-1} \frac{m^{2(k-l)}}{(r-s)^{2(k-l)}} \int_{B_{\frac{1}{2}}}\left|D^{l}\left(v_{r, s}-v_{r, s}^{\epsilon}\right)\right|^{2}+c \int_{B_{\frac{1}{2}}}\left|D^{k} v_{r, s}-D^{k} v_{r, s}^{\epsilon}\right|^{2}
$$

Then we get easily

$$
\begin{equation*}
\limsup _{h}\left|R_{h, 3}\right| \leq c(M)\left\|D^{k} v_{r, s}^{\epsilon}\right\|_{L^{2}\left(B_{\frac{1}{2}}\right)}\left\|D^{k} \psi^{\epsilon}\right\|_{L^{2}\left(B_{\frac{1}{2}}\right)} \tag{28}
\end{equation*}
$$

To bound $R_{h, 4}$ we observe that

$$
R_{h, 4}=\int_{B_{r_{h}} \backslash B_{s}}\left[f_{h}\left(D^{k} v_{r, s}^{\epsilon}\right)-f_{h}\left(D^{k} v^{\epsilon}\right)\right]
$$

$$
\begin{aligned}
& \geq-\int_{B_{r_{h}} \backslash B_{s-\epsilon}} f_{h}\left(D^{k} v^{\epsilon}\right) \\
& \quad \geq-c\left|B_{r} \backslash B_{s-\epsilon}\right| .
\end{aligned}
$$

Then

$$
\begin{equation*}
\liminf _{h} R_{h, 4} \geq-c\left|B_{r} \backslash B_{s-\epsilon}\right| . \tag{29}
\end{equation*}
$$

Moreover (H3) implies

$$
\begin{gather*}
\left|R_{h, 5}\right|=I_{h, r_{h}}\left(\psi_{h}^{\epsilon}\right)=\int_{B_{r_{h}}} f_{h}\left(D^{k} \psi_{h}^{\epsilon}\right) \\
\geq \gamma \int_{B_{t}}\left(1+\lambda_{h}^{p-2}\left|D^{k} v^{\epsilon}-D^{k} v_{h}\right|^{p-2}\right)\left|D^{k} v^{\epsilon}-D^{k} v_{h}\right|^{2} \tag{30}
\end{gather*}
$$

for ϵ small enough.
Passing to a subsequence we may suppose that

$$
\limsup _{h} R_{h, 5}=\lim _{h} R_{h, 5} .
$$

Therefore returning to (25), from (26), (27), (28), (29) and (30) we get

$$
\begin{aligned}
& \liminf \left[I_{h, r}\left(v_{h}\right)-I_{h, r}\left(v^{\epsilon}\right)\right] \\
& \geq \underset{h}{\gamma \lim \sup } \int_{B_{s}}\left(1+\lambda_{h}^{p-2}\left|D^{k} v^{\epsilon}-D^{k} v_{h}\right|^{p-2}\right)\left|D^{k} v^{\epsilon}-D^{k} v_{h}\right|^{2}-c\left|B_{r} \backslash B_{s-\epsilon}\right|-c \mu\left(B_{r} \backslash B_{s}\right) \\
& \left.-c\left\|D^{k} v_{r, s}^{\epsilon}\right\|_{L^{2}\left(B_{\frac{1}{2}}\right.}\right)\left|\left|D^{k} \psi^{\epsilon} \|_{L^{2}\left(B_{\frac{1}{2}}\right)}-c m^{-2 \rho}-\int_{B_{\frac{1}{2}}}\right| D v_{r, s}-D v_{r, s}^{\epsilon}\right|^{2} \\
& -c \sum_{l=0}^{k-1} \frac{m^{2(k-l)}}{(r-s)^{2(k-l)}} \int_{B_{\frac{1}{2}}}\left|D^{l}\left(v_{r, s}-v_{r, s}^{\epsilon}\right)\right|^{2} .
\end{aligned}
$$

Passing to the limit as $\epsilon \rightarrow 0^{+}$we get easily

$$
\underset{h}{\liminf }\left[I_{h, r}\left(v_{h}\right)-I_{h, r}(v)\right]
$$

$\geq \gamma \limsup \int_{B_{s}}\left(1+\lambda_{h}^{p-2}\left|D^{k} v-D^{k} v_{h}\right|^{p-2}\right)\left|D^{k} v-D^{k} v_{h}\right|^{2}-c\left|B_{r} \backslash B_{s}\right|-c \mu\left(B_{r} \backslash B_{s}\right)-c m^{-2 \rho}$ then passing to the limit as $m \rightarrow \infty$ and $s \rightarrow r$ we get $\underset{h}{\limsup } \int_{B_{r}}\left|D^{k} v-D^{k} v_{h}\right|^{2}\left(1+\lambda_{h}^{p-2}\left|D^{k} v-D^{k} v_{h}\right|^{p-2}\right) \leq \lim _{h}\left[I_{h, r}\left(v_{h}\right)-I_{h, r}(v)\right]$.

Step 5 (Conclusion): From the two previous steps we conclude that, for any B_{τ}, with $0<\tau<\frac{1}{4}$

$$
\lim _{h} \int_{B_{\tau}}\left|D^{k} v-D^{k} v_{h}\right|^{2}\left(1+\lambda_{h}^{p-2}\left|D^{k} v-D^{k} v_{h}\right|^{p}\right)=0
$$

Now, from this equality and by (18) we get

$$
\begin{aligned}
\lim _{h} \frac{U\left(x_{h}, \tau r_{h}\right)}{\lambda_{h}^{2}} & =\lim _{h} \frac{1}{\lambda_{h}^{2}} f_{B_{\tau r_{h}}\left(x_{h}\right)}\left(\left|D^{k} u-\left(D^{k} u\right)_{\tau r_{h}}\right|^{2}+\left|D^{k} u-\left(D^{k} u\right)_{\tau r_{h}}\right|^{p}\right) d x \\
& =\lim _{h} f_{B_{\tau}}\left(\left|D^{k} u-\left(D^{k} u\right)_{\tau}\right|^{2}+\lambda_{h}^{p-2}\left|D^{k} u-\left(D^{k} u\right)_{\tau}\right|^{p}\right) d y \\
& =f_{B_{\tau}}\left(\left|D^{k} v-\left(D^{k} v\right)_{\tau}\right|^{2}\right) d y \\
& \leq C_{M}^{*} \tau^{2}
\end{aligned}
$$

which contradicts (10) if we choose $C_{M}=2 C_{M}^{*} \cdot \bullet$
The proof of Theorem 2.1 follows by Proposition 3.1 by a standard iteration argument, see [12].

References

[1] E. Acerbi and N. Fusco, Partial regularity under anisotropic (p, q) growth conditions, J. Diff. Equat. 107 (1994), 46-67
[2] M. Bildhauer, Convex variational problems. Linear, nearly linear and anisotropic growth conditions. Lecture Notes in Mathematics, 1818. Springer-Verlag, Berlin, 2003.
[3] M. Bildhauer and M. Fuchs, Higher order variational problems with non-standard growth condition in dimension two: plates with obstacles. Annal. Acad. Scie. Fennicae Mathematica 26 (2001), 509 -518.
[4] M. Carriero, A. Leaci and F. Tomarelli Strong minimizers of Blake \mathcal{E}^{3} Zisserman functional- Ann. Scuola Norm. Sup. Pisa Cl. Sci. 15 no. 1-2 (1997), 257-285
[5] R. Choksi, R. V. Kohn and F. Otto Domain branching in uniaxial ferromagnets: a scaling law for the minimum energy Comm. Math. Phys. 201 no. 1 (1999), 61-79
[6] B. Dacorogna, Direct methods in the calculus of variations-Appl. Math. Sci. 78, Springer Verlag 1989
[7] G. Dal Maso, I.Fonseca, G. Leoni and M. Morini, Higher order quasiconvexity reduces to quasiconvexity Arch. Rational Mech. Anal. 171 no. 1 (2004), 55-81
[8] L. Esposito, F. Leonetti and G. Mingione, Regularity results for minimizers of irregular integrals with (p, q) growth - Forum Mathematicum 14 (2002), 245-272
[9] L. Esposito, F. Leonetti and G. Mingione, Sharp regularity for functionals with (p, q) growth -J. Diff. Equat. 204 (2004), 5-55
[10] I. Fonseca and J. Malý, Relaxation of multiple integrals in Sobolev spaces below the growth exponent for the energy density- Ann. IHP (Anal. Nonlineare) 14 (1997), 309-338
[11] I. Fonseca and J. Malý, From Jacobian to Hessian: distributional form and relaxation- Riv. Mat. Univ. Parma (7)4* (2005), Proc. Conf. "Trends in the Calculus of Variations" (E. Acerbi and G. Mingione eds)
[12] M.Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems-Annals of Math.Studies 105 (1983), Princeton Univ.Press
[13] M.Giaquinta, Growth conditions and regularity, a counterexampleManu. Math. 59 (1987), 245-248
[14] - E.Giusti, Metodi diretti in calcolo delle variazioni - U.M.I. (1994)
[15] M.Guidorzi, A remark on partial regularity of minimizers of quasiconvex integrals of higher order- Rend. Ist. Mat di Trieste XXXII (2000), 1-24
[16] M.Kronz, Partial regularity results for minimizers of quasiconvex functionals of higher order- Ann. Inst. H. Poincaré - Anal. Non linéaire 19, 1 (2002), 81-112
[17] P.Marcellini, Un example de solution discontinue d' un probéme variationel dans le cas scalaire- Preprint Ist. U.Dini, Firenze, 1987-88
[18] P.Marcellini, Regularity of minimizers of integrals of the calculus of Variations with non-standard growth conditions - Arch. Rat. Mech. Anal. 105 (1989), 267-284
[19] P.Marcellini, Regularity and existence of solutions of elliptic equations with (p, q) growth conditions -J. Diff. Equat. 90 (1991), 1-30
[20] P.Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions- Ann. Scuola Normale Sup. Pisa, Cl. Sci. 23 (1996) , 1-25
[21] S. Müller and V. Šverák, Convex integration for Lipschitz mappings and counterexamples to regularity Ann. of Math. (2) 157 no. 3 (2003), 715-742
[22] - A. Passarelli di Napoli and F. Siepe, A regularity result for a class of anisotropic systems - Rend. Ist. Mat di Trieste (1997), 13-31

