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Partial Regularity for
Stationary Harmonic Maps into Spheres
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Communicated by D. KINDERLEHRER

1. Introduction

In an interesting recent paper [12], F. HELEIN has shown that any weakly
harmonic mapping from a two-dimensional surface into a sphere is smooth.

I present here a kind of generalization to higher dimensions, asserting in
effect that a stationary harmonic mapping from an open subset of R"(n = 3)
into a sphere is smooth, except possibly for a closed singular set of (rn —2)-
dimensional Hausdorff measure zero. My proof crucially depends upon several
of HELEIN’s observations (as streamlined by P.-L.LIONS).

To state the result precisely let us suppose that m, n =2, Uis a smooth
open subset of R”, and $”~! denotes the unit sphere in R™. A function u in
the Sobolev space H'(U;R™), u= (u', ..., u™), belongs to H'(U;$™ ")
provided {u| =1 ae. in U

Definition. A function u € H (U;S™!) is a weakly harmonic mapping of U in-
to §™~! provided

—Au=|Du[*u in U. 1.1

This system of partial differential equations is to hold in the weak sense, that

is, .

§Du:Dwdx= SIDu|2u-wdx (1.2)

for each test function we€ H'(U; R™) n L™ (U; R™) having compact support,
w=(wl,..., w"). We employ the notation

3 i
0 1<k=n
=

<izm
ou’ ow'
x;, Ox;

Du:Dw = . |Du|?=Du:Du.

Now let g:0U—S™"! be a given smooth function. It is easy to check that
(1.1) is the Euler-Lagrange equation for the variational problem of minimizing
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the Dirichlet energy
Iw] = §|Dw|?dx
U

among functions w lying in the admissible class
HZ={weH (U; S"1)|w=g on dU in the trace sense}.

If u is a minimizer of I[-] within .2, then u in addition to (1.2) satisfies the
integral identity

ig[Du] 2(div ¢) — 2ulul L5 dx =0 (1.3)

for each vector field (€ CY(U; R™), ¢ = (¢%, ..., ("), having compact sup-
port within U To deduce (1.3) set u’(x) =u(x + #{(x)) € & and compute

d
E I[#']| ;=0 = 0. Observe also that (1.3) follows directly from (1.2) if « is

smooth: take w = (Du) .

Definition. A function u€ H'(U; S™!) is a weakly stationary harmonic map
from U into the sphere S™~! if u satisfies the identities (1.2), (1.3) for all test
functions w, { as above.

The idea is that (1.2) says u is stationary with respect to variations of the
target ™!, whereas (1.3) says u is stationary with respect to variations of
the domain U. See ScHOEN’s article [18] for more information. In particular
we recall that a stationary mapping u satisfies the monotonicity inequalities

1 1
Du|?dy < Du|? d
2 B(J‘E,r)| "y = R"2 B(£,R)‘ "y

(1.4

for all concentric balls B(x,r) C B(x,R) C U.

This was apparently first proved by Pricg [17]. A quick derivation of (1.4)
follows. Given B(0,r) C U, set

{=o(y))y
in (1.3), where
1 for s = r,
o (s) = 1+——-r;s for r=ss=sr+ha,
0 for sz r+h.

After some calculations we send £—0% and deduce for almost every r that

2
(n—2) | |Dul?dy=-=§ |(Du)y|>dH"'+r | |Dul*dH""".
B(0,r) ¥ 8B(0,r) aB(0,r)
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Discarding the first term on the right we compute

o (o ] Iput @) 20

dr \r*~ B(0,r)

for almost every r satisfying 0 < » < dist (0, 0U). Inequality (1.4) for x =0
follows.
We now state our main result, the following regularity assertion:

Theorem 1. Assume that u€ H (U; S™7!) is a weakly harmonic mapping which
satisfies the monotonicity inequalities (1.4). Then there exists an open subset
V C U such that

ueC®(v; smy, (1.5)
H'2(U-V) =0. (1.6)

Here H"~? denotes (n — 2)-dimensional Hausdorff measure.

Remarks. (i) If n =2, the monotonicity inequalities (1.4) are automatic and
H"2 = H' is counting measure. Thus a weakly harmonic mapping from U C R?
into S™' is everywhere smooth. We consequently recover HELEIN’s Theo-
rem [12].

(ii) If n = 3, the monotonicity (1.4) is a consequence of domain stationarity
(1.3). Hence a stationary harmonic mapping from U C R" into ™~ is smooth,
except possibly for a closed set of H" *-measure zero.

Our proof of Theorem 1 depends upon using the constraint |u| =1 to
rewrite the right-hand side of the partial differential equation (1.1) to reveal
that this term belongs to the Hardy space /#'. This is HELEIN’S key observa-
tion, which for » =2 immediately implies continuity (and therefore smooth-
ness) of u in everywhere in U (cf. WeNTE [22]). For n = 3, we note additionally
that monotonicity inequalities (1.4) provide bounds for # in BMO: this turns
out to be useful in light of C. FEFFERMAN’s identification [5] of (#')* with
BMO.

In §2 we recall the relevant facts about BMO and #!, and in particular
reproduce the observation of CorFmaN, LioNs, MEYER & SEMMES [4] that
Du-ve Z' if ueH', velL? and dive =0. (Their proof was inspired by
earlier calculations of MULLER [16]).

Sections 3 and 4 establish the proof of Theorem 1. The main idea, as usual
for partial regularity, is to show that u is continuous in any region in which
the scaled energy is sufficiently small. The new point is that whereas u does
not obviously have small oscillation in such a region, it is small in BMO. This
turns out to be good enough since (Z')* = BMO. We implement these ideas
within a routine blow-up argument, although a direct proof is possible as well.

There is a vast literature on partial regularity for energy minimizers in the
calculus of variations. GiaQuiNTA’s book [7] is the best source for this theory
in the unconstrained case, for many further references, etc. See also SCHOEN &
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UnLENBECK [19] for the basic partial regularity theory for minimizing har-
monic maps. GRUTER [9] proved that a conformal harmonic map from a sur-
face into a manifold is everywhere smooth, and ScHoEeN [18] extended this
assertion to stationary harmonic maps from surfaces. Morrey (cf. [15]) had
much earlier shown that a harmonic minimizer from a surface into a manifold
is smooth. Other interesting related papers include BeTHUEL & BrEezIs [1], Gia-
QUINTA, Mobica & Souc¢ex [8], Harpr & Lin [11], HARDT, KINDERLEHRER &
Li~n [10], LuckHAUs [14], etc.

The following proof makes explicit and exact use of the structure of the
target sphere $”~!. CHEN [3] and SHATAH [20] seem to be have been the first
to deduce useful analytic consequences from symmetries of the target
manifolds for the general weakly harmonic maps. They showed in particular
that a weak limit in H' of solutions of system (1.1) is still a solution; this is
interesting since the term |Du|2u is not weakly continuous. Very recently
HEeLEIN [13] has extended his regularity theory to cover weakly harmonic maps
from surfaces into homogeneous spaces; ScaHoEN and UHLENBECK have made
similar observations. I conjecture the partial regularity theory set forth in this
paper will extend as well.

Finally, let mie note that S. Cuanmio [2] has recently found a completely
elementary derivation of the main inequality used in this work, namely,

= C||Df{lr2 1 gllz2» (1.7)

§ fo-Dh dx
nen

where f, he H(R"), geL*(R*; R"), div g =0, and

1
sup — | |Dh|?dy=C'<e.
r B(x,r)

The constant € in (1.7) depends only on » and C’. The interested reader can
verify that we could invoke (1.7) in place of the #!/BMO inequality (2.4).
I am very grateful to H. Brezis for explaining F. HELEIN’s proof to me.

§2. BMO and #

This section reviews definitions and properties of the spaces BMO and
#*!. See FEFFERMAN & STEIN [6] or TorcHINSKY [21] for more information.
If f: R*— R is locally summable, we set

1l = sup {B(S 7= (el xR 7> o}, @1
where

= dy=—— dy.
(s, B(ir)f ) | B(x, r)| B(;‘E,r)f Y
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We say that f has bounded mean oscillation provided |f|+ <. Note that
Ifll« =0 if and only if f is constant a.c.

Assume now that g€ L'(R"). Let ¢ be any smooth function with support
in the unit ball, (¢ dx =1 We set

1 —_
p gg(y) ¢ (x—y> dyI 22)
r r

and say that g belongs to the Hardy space 7' if g* ¢ L'(R"). We write

g* (x) = sup
r>0

| gll 21 mmy =1l 8* Il (mry- 2.3

See [4] for equivalent definitions. Observe that g€ ! implies {gn g dx = 0.
A fundamental theorem of C. FEFFFERMAN [5], [6] asserts that (Z')* =
BMO and in particular provides the inequality

| 1o = Uslelistr @4

for fe L™ (R"), g€ Z'(R"). The constant C depends only on n.

Finally we reproduce for the reader’s convenience a result of CoIFMAN,
LionNs, MEYER & SeEMMES [4], based upon important contributions due to
MULLER [16].

Proposition 2.1. Assume u€ H'(R"), ve L>(R*; R"), and
dive =0 in the distribution sense. 2.5)
Then Du-v€ Z"(R"), with the bound
1Du- v 21 (omy = C (i oy + [ 0l|Z2 (grem)- (2.6)

Proof. Clearly Du-veL'(R"). Now fix ¢ as above, choose x € R",r > 0, and
set ¢,(y) = ¢<u) Then
r

1 -1
“n S Du'vd’r dy = s (u - (u)x,r)v'D¢r dy
reopn " B(x,r)

by (2.5). Thus

C

- x,r dy.
e, = ] o] &

1
-~ § Du-vo, dy
r pn

=
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= o and let 1<qE—p—<2. Then

n—2 p—1

C 1/p 1/q
— 14
= (1ol a) (1 1017 ax)
C 1/p 1/q
- P
r1+n/p (B(}c‘.,r) I u (u)x,rl dx) <B(£,r)| v 1 q)

i/r 1/q
c( g 1oura) (8 1017)"
B(x,r) B(x,r)

pn
p+n

Choose any 2 <p <2* =

1
’7 §Du- ve, dy
"

IIA

IIA

where p = r* that is, r=

< 2. Consequently,

in § Du- v, dy| < CM(|Du|")" M(|v| )4

T Re

< CIM(| Du|")*'" + M(|v|D*1],

M(-) denoting the Hardy-Littlewood maximal function. Now | Du| Te L2,
2/r>1. Thus

| M (| Du| "|2/r < C||| Du| (|27,
and so

{ M(|Du|"*" dx = C § | Dul|? dx.
R? (=4

Similarly,
f M| 92 dx s C §|v|*dx.
R R

Consequently we deduce

1
— § Du-vg, dy
F pn

(Du- v)* = sup eL’,

r>0

I(Du- v)¥ = Clulf + o], O

§ 3. Energy decay and blow-up
This section and the next provide the proof of Theorem 1. Assume

henceforth that we H'(U; S™~!) satisfies the hypothesis of Theorem 1. If
B(y, r) C U, we define the scaled energy

E(x,r) =

§ | Du|?dy. (3.1

"2 B



Stationary Harmonic Maps into Spheres 107
The key to the proof of Theorem 1 is this assertion about energy:

Proposition 3.1. There exist constants 0 < &y, T < 1 such that

E(x, 1) = & (3.2)
implies
Ex,tr) = % E(x,r) (3.3)

for all xe U, 0 < r < dist (x, aU).

Proof. We argue by contradiction, for 7 > 0 selected as below. Were (3.2), (3.3)
false, there would exist balls B(x, ) C U such that

E(x, 1) = A7 >0, (3.4)
whereas
E(x, ) > 1A% (3.5)

We rescale our variables to the unit ball B(0, 1) C R?, as follows. If z¢
B(0, 1), write
u(xk + rkz) —

i ; (3.6)

7(z) =

where
g= § udy=(u)q,,
B(xk,rk)

denotes the average of u over B(x,, i), k=1, ....
Utilizing (3.1), (3.4), (3.5) and (3.6) we verify that

sup | |u|?dz <oo, § |Dul*dz =1, 3.7
kB B(01)
but
— | |Dyl*d>L (k=12,...). (3.8)
T B(0,7)

The sequence {y}f2; is thus bounded in H'(B(0,1); R™), whence there exists
a subsequence (which we reindex as necessary and denote also by {u.}iz;)
such that

n—~v  strongly in L?(B(0, 1); R™) (3.9)

Do, —~Dv weakly in L*(B(0,1); M™ "), (3.10)

M™*" being the space of real mXxn matrices.
Next select any smooth function w:B(0, 1) > R™ with compact support.
Define

we(y) = w(y :x") (v € B(xi, ).

[
Since u is a weakly harmonic, (1.2) gives

§ Du:Dwidy= | |Dul?u-wady.
B(x, ) B (xk, )
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We rescale this identity to the unit ball, obtaining thereby the equality

{ Du:Dw dz =2 § |Dug|? (ap + Aay) - w dz. 3.11)
B BQD)

Observe also that (3.6) implies

lag + 2| =1 ae in B(0, 1). (3.12)
We send k to infinity in (3.11), invoking (3.7) and (3.12) to deduce
{ Dv:Dw dz =0. (3.13)
B(01)

This equality obtains for all w as above. Consequently
Av=0 in B(0,1)

in the weak, and therefore classical, sense. Hence v is smooth, and we have
the bound

2 2
DVl 80,1y, 0mxm = € § v?dz < oo.
B(OL)

In particular, therefore,
1

Tn_zB((j;T)[Dvl ldzs CrP <L, (3.14)

provided we adjust 0 < 7 <} to be small enough.
Next we utilize Proposition 4.1, to be proved in §4 following. This asserts

Dy.—Dv  strongly in L*(B(0,1); M™*"). (3.15)
But then (3.8) forces

1
Dv|%dz; =1,
T”‘ZB(('E,T)I | =2

a contradiction to (3.14). [l

Proof of Theorem 1. Set
V={xeU|E(x,r) < g for some 0 < r < dist(x, dU)}.

Then V is open, and standard covering arguments imply H'2(U~-V)=0.
Furthermore if x€ ¥, we have

E(y,r) = Cr? (3.16)

for some y > 0, C > 0, all y near x, and all sufficiently small radii » > 0. See
G1aQuinTa [7] for a proof of (3.16) from Proposition 3.1. It follows that u is
uniformly Hélder continuous with exponent p/2 on each compact subset of
V: again see GIAQUINTA [7]. Hence ue C%72(V; $™7'), and routine elliptic
regularity theory then proves that ue C”(V; $™1y: see ScHOEN & UHLEN-
BECK [19] and references therein. [J
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§4. Compactuness
All of the calculations and assertions in §3 are routine, except for the com-

pactness assertion (3.15), to which we now turn our attention. First, select a
smooth cutoff function {:R”— R satisfying

0=s(=1,
{=1 on B(0,1}),
{=0 on R"-B(0,3). @1
Lemma 4.1. The sequence {{vi}i~, is bounded in BMO(R"; R™).
Proof. Fix any point zo€B(0, ;) and any radius 0 < r <1. Write
V=X + 2o €B(xy, § 1)
From the monotonicity inequalities (1.4) we have
1 8n—2
—5 [Dul*dys —5 | |Dul*dy
(r7) "™ BGpm) T bping
8n—2
=—5 | |Du*dy
y: Bxp.rr)
= 8""%A%.
Rescaling this estimate we obtain the bound
! § | Dwl?dz <82
P2 B(z,7) -
for k=1,... and all 0 <r=3, z€B(0,]). Consequently
b o~ ()l dz=C<oo 4.2)

B(zg,7)

for k, r and z, as above. Since {n;}i2, is bounded in L?(B(0, 1); R™), the
John-Nirenberg inequality implies

fuidez1 is bounded in L?(B(0,3); R™) (1 =p < ). 4.3)
As ( is smooth,

| (Co)zpr = (W)l =Cr § |0l dz on Bz, r)
B(zg.1)
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for any ball B(z% r). Thus if zp€B(0, 3), 0<r =i, we have

§ , 'CUk - (Cvk)zo,rl dz = 5’ I’Uk - ('Uk)zu,rl dz + Cr 5: [Dk| dz

(2.7 B(zg,7) B(zy,1)
c S
=C+ -5 | |ul& by 42
r B(zg1)
C " 1/n (-1
=C+ ] s | v dz) pri=a

B(O,%)
=C<o, Dby (4.3).

This same inequality obtains for zo€ R — B(0,3), 0 <r=}, since {=0 on
R" — B(0,2). We recall that

sup|| {uefpr < oo
to conclude the proof. [J
Next define
b1 = v} (al + Ah) — vk (af + Aw))
for lsi,j=m, 1=l=snk=1,....

Lemma 4.2. For each function ¢ € H (B(0, 1)) n L= (B(0, 1)) with compact
support,

| ublidz=0 4.4
B(O1)
for i§i,j§m,k=1,....
Proof. We compute
5 ¢xlbléj,'l dZ = S ¢xl[1}]l;,xl(ai + Akv;'c) - 'U;.c,xl(a{c + /lkvjk)] dZ

B0, B(01)
= B(g b 'U]I;t,xl((alic + ’lkv;;r) ¢)xl - v;;r,xl((a;c +}'kvgc) ¢)xl dZ
=/lkB(.§) 1)| Dy *[(a} +Aw}) (ak +Awk) — (@ +Awk) (af + 4] & de
=0, according to (3.11). O

Lemma 4.3. For each 1 =i,j < m, the sequence {({v}),bi}i~, is bounded in
Z(RM).

Proof. This is an immediate consequence of Lemma 4.2 and Proposi-
tion 2.1. [
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Proposition 4.1. The rescaled functions {Dug}p~; converge strongly in L? (B(0, %);
men)‘

Proof. Subtracting (3.13) from (3.11) we find

| (Dy~Dv):Dwdz =2 | |Du*(ar + hwy)-wdz 4.5)
B(O) B(01)

for smooth w:B(0, 1)~ R™ with compact support. By approximation the

same identity obtains for w ¢ H}(B(0, 1); R™) n L= (B(0, 1); R™). We now
insert

w= (1 —v)
into (4.5). The left-hand side of (4.5) is

«= | %Dy — Dv|2d2+2 S C(vk—v) (Dv, — Dv) - D¢ dz
B(0,1)

B(gl | Dy, — Dv|? dz + o(1) (4.6)

as k—oo, in view of (3.9) and (3.10). The right-hand side of (4.5) reads

RkE A’k s Cz lD’l}kl 2(ak + Akvk) . (’Uk —'U) dZ
B(0,1)
= lkB(g H {Zvjl.c,xl(/ugc,xl(a;.c + Ak’l);c) (U}c —'Ui)) dZ

= AkB g 1 oy (Vs (ak + Apwh) — vl (ad Hwd)) (vh ~2) dz,
(01)

the last equality holding in light of (3.12). (Here is HELEIN’s trick.) Thus

Re=y § vl bii(vh—v') dz
B(D1)

=X § (bl (C(h —v") dz — &y § vil bl (vh —v') d2
R RE
= (Ri + R}). @.7)

Now S]],}p |R%| <o,

since {vgJ¢=; is bounded in L*(B(0, I); R™) and (bf}){>, is bounded in
L*(B(0,})).
Finally, the #/BMO inequality (2.4) gives

sup | Ri| = E C sup | {(vk =v") s | (Coh) bl 21 < oo,
i,j=1
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according to Lemmas 4.1 and 4.3. Thus R, = O(4;) = o(1) as k— . Hence

| |Duy~Do|?dz=0(l) as k= oo,
B(0,})

2

and we are done. [l

Note added in proof. HELEIN has now extended his regularity theory to cover
weakly harmonic maps from surfaces into general targets. Also T. RIvVIERE has
constructed a weakly harmonic (but nonstationary!) map from the unit ball
B(0,1) C R? into §%, with singularities forming a line segment.
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