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Partial Regularity for 
Stationary Harmonic Maps into Spheres 

LAWRENCE C.  EVANS 

Communica ted  by D. KINDERLEI-]I~]~ 

1. Introduction 

In an interesting recent paper [12], F. HI~LEIN has shown that any weakly 
harmonic mapping from a two-dimensional surface into a sphere is smooth. 

I present here a kind of  generalization to higher dimensions, asserting in 
effect that a stationary harmonic mapping from an open subset of  Nn(n __> 3) 
into a sphere is smooth, except possibly for a closed singular set of (n - 2 ) -  
dimensional Hausdorff  measure zero. My proof  crucially depends upon several 
of  H~L~IN's observations (as streamlined by P.-L. LIoNs). 

To state the result precisely let us suppose that m, n => 2, U is a smooth 
open subset of  Nn, and S m-1 denotes the unit sphere in Nm. A function u in 
the Sobolev space HI (U;Rm) ,  u =  (u 1 . . . .  ,urn),  belongs to H I ( U ; S  m- l )  

provided t u[ = 1 a.e. in U 

Definition. A function u ~ H 1 ( U; S m-l) is a weakly harmonic mapping of U in- 
to S m-1 provided 

- A u = l D u l 2 u  in U. (1.1) 

This system of  partial differential equations is to hold in the weak sense, that 
is, 

I D u : D w d x  = ~ l D u l 2 u  �9 w d x  (1.2) 
U U 

for each test function w E H 1 ( U; R m) r~ L = (U; R m) having compact support, 
w = (w  1 . . . . .  win). We employ the notation 

Du Oxk l<_k<<_n 
l < i < m  

Ou i Ow ~ 
Du : D w  -- , [ Du[ 2 = Du : Du.  

OXk OXk 

Now let g : O U - + S  m-1 be a given smooth function. It is easy to check that 
(1.1) is the Euler-Lagrange equation for the variational problem of  minimizing 
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the Dirichlet energy 

I[wl = I[Owl 2dx 
U 

among functions w lying in the admissible class 

5 ~ { w E H I ( U ,  Sm-1)[ w = g  on OU in the trace sense}. 

If  u is a minimizer of I[.] within S ,  then u in addition to (1.2) satisfies the 
integral identity 

~[Du] 2(div ~) - 2uikuit~kxt dx = 0 (1.3) 
U 

for each vector field ~ C I ( u ,  Rn), ~ = ((1 . . . . .  ~n), having compact sup- 
port within U. To deduce (1.3) set ut(x) =-- u (x + t~(x)) ~ S and compute 

d I[ut]lt= ~ = 0. Observe also that (1.3) follows directly from (1.2) if u is 
dt 
smooth: take w = (Du)~. 

Definition. A function u EHI(U; S m-~) is a weakly stationary harmonic map 
from U into the sphere S m-1 if u satisfies the identities (1.2), (1.3) for all test 
functions w, ~ as above. 

The idea is that (1.2) says u is stationary with respect to variations of the 
target S m-l, whereas (1.3) says u is stationary with respect to variations of 
the domain U. See SCI-IO•N'S article [18] for more information. In particular 
we recall that a stationary mapping u satisfies the monotonicity inequalities 

1 1 ~ lDu[2dy 
r n-2 B(x,r)~ IDul2dy<- R "-2 ~(~,R) 

for all concentric balls B(x, r) C B(x, R) C U. 
(1.4) 

This was apparently first proved by PRICE [17]. A quick derivation of (1.4) 
follows. Given B(0, r) C U, set 

in (1.3), where 

I 1 for s<_r, 

r - s  for r<_s<_r+h,  ~(s) = 1 + h 

0 for s > _ r + h .  

After some calculations we send h--,O + and deduce for almost every r that 

( n - 2 )  ~ [Dul2dy= - 2  I I(Du) yl e d H " - l + r  I ]Dul 2dHn-l" 
B(O,r) r OB(O,r) OB(O,r) 
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Discarding the first term on the right we compute 

d (r~_2 ~ [Dul2dy)~  0 
dr ~(O,r) 

for almost every r satisfying 0 < r < dist (0, OU). Inequality (1.4) for x = 0 
follows. 

We now state our main result, the following regularity assertion: 

Theorem 1. Assume that uEHI(U; S m-l) is a weakly harmonic mapping which 
satisfies the monotonicity inequalities (1.4). Then there exists an open subset 
V C U such that 

U E C ~176 (V; am-l), (1.5) 

Hn-2(U- V) = O. (1.6) 

Here H n-2 denotes ( n -  2)-dimensional Hausdorff  measure. 

Remarks. (i) If  n = 2, the monotonicity inequalities (1.4) are automatic and 
H n-2 = H ~ is counting measure. Thus a weakly harmonic mapping from U C •2 
into S m-x is everywhere smooth. We consequently recover H~LEIN'S Theo- 
rem [12]. 

(ii) If  n _> 3, the monotonicity (1.4) is a consequence of  domain stationarity 
(1.3). Hence a stationary harmonic mapping from U fi R ~ into S m-x is smooth, 
except possibly for a closed set of H~-2-measure zero. 

Our proof  of  Theorem 1 depends upon using the constraint [u[ = 1 to 
rewrite the right-hand side of  the partial differential equation (1.1) to reveal 
that this term belongs to the Hardy space AU 1. This is H~LEIN'S key observa- 
tion, which for n = 2 immediately implies continuity (and therefore smooth- 
ness) of  u in everywhere in U (cf. WENTE [22]). For n => 3, we note additionally 
that monotonicity inequalities (1.4) provide bounds for u in BMO: this turns 
out to be useful in light of  C. FEFrERMAN'S identification [5] of (AU1) * with 
BMO. 

In w we recall the relevant facts about BMO and X 1, and in particular 
reproduce the observation of  COIFMAN, LIONS, MEYER & SEMMES [4] that 
Du. v e ~,~ffl if u EH 1, v eL 2 and div v = 0. (Their proof  was inspired by 
earlier calculations of Mt3LLER [16]). 

Sections 3 and 4 establish the proof  of Theorem 1. The main idea, as usual 
for partial regularity, is to show that u is continuous in any region in which 
the scaled energy is sufficiently small. The new point is that whereas u does 
not obviously have small oscillation in such a region, it is small in BMO. This 
turns out to be good enough since (~,~1), = BMO. We implement these ideas 
within a routine blow-up argument, although a direct proof  is possible as well. 

There is a vast literature on partial regularity for energy minimizers in the 
calculus of  variations. GIAQUINTA'S book [7] is the best source for this theory 
in the unconstrained case, for many further references, etc. See also SCI-IOEN & 
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UHLENBECK [19] for the basic partial regularity theory for minimizing har- 
monic maps. GROTER [9] proved that a conformal harmonic map from a sur- 
face into a manifold is everywhere smooth, and SCHOEN [18] extended this 
assertion to stationary harmonic maps from surfaces. MORREY (cf. [15]) had 
much earlier shown that a harmonic minimizer from a surface into a manifold 
is smooth. Other interesting related papers include BETHUEL & BREZIS [1], GIA- 
QUINTA, MODICA & SOU(~EK [81, HARDT & LIN [11], HARDT, KINDERLEHRER & 
Lnq [10], LUCKI-IAUS [14], etc. 

The following proof makes explicit and exact use of the structure of the 
target sphere S m-l. CHEN [3] and SHATAH [20] seem to be have been the first 
to deduce useful analytic consequences from symmetries of the target 
manifolds for the general weakly harmonic maps. They showed in particular 
that a weak limit in H 1 of solutions of system (1.1) is still a solution; this is 
interesting since the term [Du[ 2u is not weakly continuous. Very recently 
H~LEIN [13] has extended his regularity theory to cover weakly harmonic maps 
from surfaces into homogeneous spaces; SCI-IOEN and UHLENBECK have made 
similar observations. I conjecture the partial regularity theory set forth in this 
paper will extend as well. 

Finally, let rile note that S. CHANILIuO [2] has recently found a completely 
elementary derivation of the main inequality used in this work, namely, 

fg .  Dh dx <= CllDfll~llgll~, 
Rn 

where f, hEHI(Rn), g~L2([En; R"), div g = 0, and 

1 ~ IDhl2dy=C,<~. 
sup ~ B(x,r) 

(1.7) 

The constant C in (1.7) depends only on n and C'. The interested reader can 
verify that we could invoke (1.7) in place of the AUi/BMO inequality (2.4). 

I am very grateful to H. BREZIS for explaining F. Hi~rEIN'S proof to me. 

w BMO and ~ 1  

This section reviews definitions and properties of the spaces BMO and 
y l .  See FEFI~E~AN & STEIN [6] or TORCHn~SKY [21] for more information. 

If  f :  R n ~ R  is locally summable, we set 

Ilfll* ~ sup I!B(,,) I f - - ( f )x , r l  dyl xe  ~% r > 01 , (2.1) 

where 

o%,- I say_  I f+.  
~(x,.) IB(x, r)[ 8(~,r) 
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We say that f has bounded mean oscillation provided ]lf[[* < oo. Note that 
I[fll* = 0 if and only if f is constant a.e. 

Assume now that g E Ll(Rn).  Let ~b be any smooth function with support 
in the unit ball, IR, q~ dx = 1. We set 

suo  I g*(x) ~ r>O ~ g(y) d~ dy (2.2) 

and say that g belongs to the Hardy space a~d 91 if g* ELI([Rn). We write 

I[ gl[Zl(R n) = II g'IlL 1 (~n). (2.3) 

See [4] for equivalent definitions. Observe that g E ~r implies JIR n g dx = 0. 
A fundamental theorem of C. Fm~FFERMAN [5], [6] asserts that (Yell) * = 

BMO and in particular provides the inequality 

Jnfg dx ~ Cllf l l ,  Ilgllzl(~.> (2.4) 

for f~L~ gE ~UI(Rn). The constant C depends only on n. 
Finally we reproduce for the reader's convenience a result of COII~MAN, 

LIONS, MEYER& SEMMES [4], based upon important contributions due to 
M~LLER [ 16]. 

Proposition 2.1. Assume u ~ H 1 ( ~ ) ,  v ~ L 2 ( [Rn; Rn), and 

div v = 0 in the distribution sense. (2.5) 

Then Du. v ~  a~l(Rn), with the bound 

[IDu" vll~l<~.> ~ C(ll u]121<Rn) + Ilv[lZ:z(n~n;R,",)). (2.6) 

Proof. Clearly Du. vELI([Rn). Now fix ~b as above, choose x~ P,n,r> 0, and 

set ~b~(y) = ~ b ( x - Y ) .  Then 
\ r /  

1 ~ Du" V Or  dy  --  r n B(x,r) r n Rn 
(U -- (U)x , r )  V" D4~r d y  

by (2.5). Thus 

r n 
D u  . v r dy 

~n 

C 
<= r.+l ~ l u -  (u)x,rl Ivl dy. 

B(x,r) 
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2n p 
Choose any 2 < p < 2 " =  <oo and let 1 < q =  < 2 .  Then 

n - 2  = p - 1  

1 dy C ( ! dx)l/P( dx) 1/q % IDu 'v~r  < ]U-- (U)x,rl p ~ Iv] q 
r n = y ~  B(,r) B(x,r) 

(! c I n -  (u)z:l ~ I~1 
r l+n/p B(,r) B(,r) 

~-~ C r dxIl/r IB(!,r)lV]qll/q, 

where p = r*  that is, r -  

r r n 

pn 
- - -  < 2. Consequently, 

p+n 

Ou. vO~ dy <= CM(lDu I r)l/r M([ V I q)l/q 
IR n 

< C[M(I Ou[ r)2/r q_ M( I v [ q)2/q], 

M(-)  denoting the Hardy-~Littlewood maximal  function. Now IDuJrEL 2/r, 
2/r > 1. Thus 

and so 

II M(I Du I ~)11:- -< CIIIDu I rllLe/r, 

M(IDul r)2/r dx <~ C ~ IDul 2 dx. 
[R n IRn 

Similarly, 

~M(JvJq)2Zqdx<_C ,~ jvj2 d x. 
Rn ~n  

Consequently we deduce 

(Du" v)* = sup 
r > O  

lrn RnI Uu " vdPr dY ELl'  

I1( Du" V)*IIL1 ~ C(llull~x +llvl[~2). [] 

w 3. Energy decay and blow-up 

This section and the next provide the proof  of  Theorem 1. Assume 
henceforth that u E HI(U; S "~-1) satisfies the hypothesis o f  Theorem 1. I f  
B(y, r) C U, we define the scaled energy 

1 
E(x,r) rn_2 ~ [DuI2 dy. (3.1) 

B(x,r) 
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The key to the proof of Theorem 1 is this assertion about energy: 

Proposition 3.1. There exist constants 0 < e0, r < 1 such that 

E(x ,  r) <= eo 
implies 

E(x ,  rr) < 1 E(x ,  r) 

for  all x E U, 0 < r < dist (x, OU). 

(3.2) 

(3.3) 

Proof. We argue by contradiction, for Z > 0 selected as below. Were (3.2), (3.3) 
false, there would exist balls B(xk, rk) C U such that 

E(xk, rk) = 2 2 ~ 0 ,  (3.4) 
whereas 

E(xk, zrk) > ~ 2 2. (3.5) 

We rescale our variables to the unit ball B(0, 1) C R n, as follows. If  z E 
B(0, 1), write 

u(xk + rkz) - ak 
vk(z) =-- , (3.6) 

2k 
where 

ak =-- ~ u dy = (U)xk, r k 
B(Xk, r k) 

denotes the average of u over B(xk, rD, k = 1 . . . . .  
Utilizing (3.1), (3.4), (3.5) and (3.6) we verify that 

sup ~ Ivkl 2 dz < o~, j IDvkl 2 dz = 1, 
k B(0,1) B(0,1) 

but 

(3.7) 

D u : D w k d y =  ~ ]Du[2u.wkdy. 
B(Xk, r k) B(Xk, r k) 

1 
Tn_2 S IDv 12dz>�89 (k = 1 , 2 , . . . ) .  (3.8) 

B(0,~) 

The sequence {v~}~=l is thus bounded in H 1 (B(0, 1) ; Rm), whence there exists 
V o~ a subsequence (which we reindex as necessary and denote also by { kJk=l) 

such that 
Vk~V strongly in L2(B(0,  1); [R m) (3.9) 

D v k ~ D V  weakly in L2(B(0,  1);Mm• (3.10) 

M T M  being the space of real m •  matrices. 
Next select any smooth function w:B(0,  1 ) ~  R m with compact support. 

Define 

x, r k /  

Since u is a weakly harmonic, (1.2) gives 
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We rescale this identity to the unit ball, obtaining thereby the equality 

Dvk:Dw dz = ).k I IDvkl2 (ak + Akvk) " w dz. (3.11) 
B(0,1) B(0,1) 

Observe also that (3.5) implies 

[ak + ;~kvkl 2 = 1 a.e. in B(0,  1). (3.12) 

We send k to infinity in (3.11), invoking (3.7) and (3.12) to deduce 

D v : D w  dz --- 0. (3.13) 
B(0,1) 

This equality obtains for all w as above. Consequently 

Av = O i n B ( 0 , 1 )  

in the weak, and therefore classical, sense. Hence v is smooth, and we have 
the bound 

2 IIDvlIL~(B(0,~),~• <-- c ~ vi dz <r162 
B(0,D 

In particular, therefore, 

1 ~ [Dvladz<eTa<~, (3.14) 
2 ---- 

T n -  B(0,r) 

provided we adjust 0 < z < ~ to be small enough. 
Next we utilize Proposition 4.1, to be proved in w following. This asserts 

Dvk~DV strongly in L 2(B(0 ,  !)  ; M TM) (3.15) 
2 

But then (3.8) forces 

1 1 Tn-2 J IDv l2dz~ ,  
B(0,r) 

a contradiction to (3.t4). [] 

Proof  of  Theorem 1. Set 

V ={xE  U IE(x, r) < e0 for some 0 < r < dist (x, aU)}. 

Then V is open, and standard covering arguments imply H n - 2 ( U -  V ) =  O. 
Furthermore if x ~ V, we have 

E(y, r) < Cr y (3.16) 

for some y > 0, C > 0, all y near x, and all sufficiently small radii r > 0. See 
GIAQmNTA [7] for a proof  of  (3.16) from Proposition 3.1. It follows that u is 
uniformly H61der continuous with exponent y/2 on each compact subset of  
V: again see GIAQUINTA [7]. Hence u~ C~ Sin-l), and routine elliptic 
regularity theory then proves that u ~ C~ sm-~); see SCnOEN & UnLEN- 
BECK [19] and references therein. [] 
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w 4. Compactness 

All of the calculations and assertions in w 3 are routine, except for the com- 
pactness assertion (3.15), to which we now turn our attention. First, select a 
smooth cutoff function ~: Nn._, [R satisfying 

0__<(__<1, 

~ 1 o n  B ( 0 ,  1 ~), 

r on ~ " - B ( o ,  ~). (4.1) 

Lemma 4.1. The sequence [(vk}~'=l is bounded in BMO(IRn; [Rm). 

Proof. Fix any point zo E B (0, ~) and any radius 0 < r = ~. Write 

y k = x k  + rkZo~B(xk, 7 rk). 

From the monotonicity inequalities (1.4) we have 

1 8 n-2  
,n--2 ~ [OulZdY <- r~-2 ~ lDulZdy 

rrk) B(yk'rrk) b (Yk,] rk) 

8n--2 
~ IDulEdy 4-2 B(xk, rk) 

Qn--2]2 
= o ~k" 

Rescaling this estimate we obtain the bound 

1 
rn-2 ~ IDVkl2 dz <- 8 n-2 

B(zo,r) 

for k = 1 . . . .  and all 0 < r <= ~, zoeB(O,  ~). Consequently 

Irk - (vk)zo,r I dz __< C < eo (4.2) 
B(zo,r) 

for k, r and z0 as above. Since {vk}ff= 1 is bounded in LZ(B(0, 1); [Rm), the 
John-Nirenberg inequality implies 

[vk}~_- 1 is bounded in L p (B(0, ~) ; [R m) (1 __< p < ao). (4.3) 

As ( i s  smooth, 

I ((Vk)zo,r -- ((V)zo,rl <-- Cr ~ I vgl dz on B(z0, r) 
B(zo,r) 
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for  any ball B(z  ~ r). Thus if z0 E B(0 ,  ~), 0 < r = ~, we have 

[(V k -- ((Vk)zo,r ] dz <= ~ [Vk -- (Vk)zo,,-I dz + Cr 
B(Zo,r) B(zo,r) B(zo,r) 

dz 

C 
<- C + __rn-~ ~ I vk[ dz by (4.2) 

B(zo,r) 

t ! dz) 1/n 1 C Vk [ n rn(1-~) 
_ C +  rn~5_l B(,~) 

_< C < ~ ,  by (4.3). 

This same inequali ty obtains for  z0 ~ R n - B(0 ,  ~), 0 < r _< ~, since (------ 0 on 
[~n _ n ( 0 ,  ~). We recall that  

suplI   IIL  < 

to conclude the proof .  

Next define 

[] 

l~!z ~ vJk,xl(a~ + 2kV~) -- Vik,xl(aJk + 2kVJk) 

for  l < i , j < m ,  l < l < n , k =  l, 

Lemm a  4.2. For each function 4~ E H 1 (B(O, 1)) n L ~ (B(0 ,  1)) with compact 
support, 

(~xlb~!l dz = 0 (4.4) 
B(0,1) 

for  l < = i , j < _ m , k =  l . . . . .  

Proof.  We compute  

c~xlb~J z dz = ~ 4~xl[VJk,xt(aik + 2kv~) -- vik,xt(aJk + ~.kvJk)] dz 
B(0,1) B(0,1) 

= ~ VJk,xt((a~ + &kv~) ~)xt -- V~,xl((aJk +;~k vjk) C~)xt dz 
B(0,1) 

=~k ~ IDvk[ 2[(a~c +J.kV~) (aik +,~kV~) --(a~ +AkV~)(aJk +2kV{)] ~b dz 
B(0,1) 

= 0, according to (3.11). []  

v i b y 1.emma 4.3. For each 1 <= i , j  <= m, the sequence {(( k)xl ~,t}k=~ is bounded in 
~.r (Rn) .  

P roof .  This is an immediate  consequence o f  Lemma 4.2 and Proposi-  
t ion 2.1. []  
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Proposition 4.1. The rescaled functions {Dvk}~~ 1 converge strongly in L2 ( B (0, 1 ~); 
gm• 0 

Proof. Subtracting (3.13) from (3.11) we find 

I (Dvk-Dv):Dwdz=2~ ~ IDvkl2(ak+AkVk).wdz 
B(O,1) B(0,1) 

(4.5) 

for smooth w:B(0 ,  1)---~[R m with compact support. By approximation the 
same identity obtains for w~H~(B(O, 1); [R m) nL~ 1); [Rm). We now 
insert 

W ~-- ~2(V k - -V)  

into (4.5). The left-hand side of  (4.5) is 

Lk-- ~ (2]Dvk-DvI2 dz +2 ~ ( ( vk -v )"  (Dvk-Ov) .O(dz  
B(0,1) B(0,1) 

>_ ~ [nvk -nv l2dz+o(1)  
B(%) 

(4.6) 

as k ~ o o ,  in view of (3.9) and (3.10). The right-hand side of  (4.5) reads 

Rk=~)~ ~ (2[Dvk[2(ak + )~kVk) �9 (Vk--V) dz 
B(0,1) 

B(0,1) 

= ;~ i r ( v % ( . i  + ~vi )  - vL , (a{  +.~v{)) ( 4  - v  ~) ,~z, 
B(O,1) 

the last equality holding in light of (3.12). (Here is HI~LEIN'S trick.) Thus 

R~ = ,~ i ~%,~b/!~(v~-v~) dz 
B(0A) 

= z~ l (CV~)x~a/~(~(v~ - v i ) )  dz - ~ ~ V~r - v  ~) dz 
~n Rn 

= 2~(R~ + R2). (4.7) 

Now sup I R~ I < ~o 

since {vk}k%l is bounded in L4(B(0,  7). [Rm) and "/J~= , t~'k,Z~k=l is bounded in 
L 2 (B(0 ,  ~)). 

Finally, the ~ I / B M O  inequality (2.4) gives 

sup [R~I _-< ~ C sup [l~(v~ -d)]], I[ ((VDx, bL!,llza <~o, 
i,j=l 
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according to Lemmas  4.1 and 4.3. Thus  Rk = O(2k) = o(1) as k ~ o o .  Hence 

[ D v k - D v [ 2 d z < o ( 1 )  as k--~ oo, 
B(0,�89 

and we are done. []  

Note added in proof  Ht]LEIN has now extended his regularity theory  to cover 
weakly ha rmonic  maps  f rom surfaces into general targets. Also T. RIVlERE has 
constructed a weakly ha rmonic  (but nons ta t ionary! )  map  f rom the unit  ball 
B(0, 1) C N3 into S 2, with singularities forming a line segment.  
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