Partial Regularity for Stationary Harmonic Maps into Spheres

LAWRENCE C. EVANS

Communicated by D. Kinderlehrer

1. Introduction

In an interesting recent paper [12], F. HÉLEIN has shown that any weakly harmonic mapping from a two-dimensional surface into a sphere is smooth.

I present here a kind of generalization to higher dimensions, asserting in effect that a stationary harmonic mapping from an open subset of $\mathbb{R}^n (n \ge 3)$ into a sphere is smooth, except possibly for a closed singular set of (n-2)-dimensional Hausdorff measure zero. My proof crucially depends upon several of Hélein's observations (as streamlined by P.-L. Lions).

To state the result precisely let us suppose that m, $n \ge 2$, U is a smooth open subset of \mathbb{R}^n , and S^{m-1} denotes the unit sphere in \mathbb{R}^m . A function u in the Sobolev space $H^1(U; \mathbb{R}^m)$, $u = (u^1, \ldots, u^m)$, belongs to $H^1(U; S^{m-1})$ provided |u| = 1 a.e. in U.

Definition. A function $u \in H^1(U; S^{m-1})$ is a weakly harmonic mapping of U into S^{m-1} provided

$$-\Delta u = |Du|^2 u \quad \text{in } U. \tag{1.1}$$

This system of partial differential equations is to hold in the weak sense, that is,

$$\int_{U} Du : Dw \ dx = \int_{U} |Du|^{2} u \cdot w \ dx \tag{1.2}$$

for each test function $w \in H^1(U; \mathbb{R}^m) \cap L^{\infty}(U; \mathbb{R}^m)$ having compact support, $w = (w^1, \ldots, w^m)$. We employ the notation

$$Du = \left(\left(\frac{\partial u^i}{\partial x_k} \right) \right)_{\substack{1 \le k \le n \\ 1 \le i \le m}},$$

$$Du: Dw = \frac{\partial u^i}{\partial x_k} \frac{\partial w^i}{\partial x_k}, \quad |Du|^2 = Du: Du.$$

Now let $g: \partial U \to S^{m-1}$ be a given smooth function. It is easy to check that (1.1) is the Euler-Lagrange equation for the variational problem of minimizing

the Dirichlet energy

$$I[w] = \int_{U} |Dw|^2 dx$$

among functions w lying in the admissible class

$$\mathscr{A} \equiv \{ w \in H^1(U; S^{m-1}) | w = g \text{ on } \partial U \text{ in the trace sense} \}.$$

If u is a minimizer of $I[\cdot]$ within \mathcal{A} , then u in addition to (1.2) satisfies the integral identity

$$\int_{U} |Du|^{2} (\operatorname{div} \zeta) - 2u_{x_{k}}^{i} u_{x_{l}}^{i} \zeta_{x_{l}}^{k} dx = 0$$
 (1.3)

for each vector field $\zeta \in C^1(U; \mathbb{R}^n)$, $\zeta = (\zeta^1, \ldots, \zeta^n)$, having compact support within U. To deduce (1.3) set $u^t(x) \equiv u(x + t\zeta(x)) \in \mathscr{A}$ and compute $\frac{d}{dt} I[u^t]|_{t=0} = 0$. Observe also that (1.3) follows directly from (1.2) if u is smooth: take $w = (Du) \zeta$.

Definition. A function $u \in H^1(U; S^{m-1})$ is a weakly stationary harmonic map from U into the sphere S^{m-1} if u satisfies the identities (1.2), (1.3) for all test functions w, ζ as above.

The idea is that (1.2) says u is stationary with respect to variations of the target S^{m-1} , whereas (1.3) says u is stationary with respect to variations of the domain U. See Schoen's article [18] for more information. In particular we recall that a stationary mapping u satisfies the monotonicity inequalities

$$\frac{1}{r^{n-2}} \int_{B(x,r)} |Du|^2 dy \le \frac{1}{R^{n-2}} \int_{B(x,R)} |Du|^2 dy$$
for all concentric balls $B(x,r) \in B(x,R) \in U$. (1.4)

This was apparently first proved by PRICE [17]. A quick derivation of (1.4) follows. Given $B(0, r) \subset U$, set

$$\zeta = \phi(|y|) y$$

in (1.3), where

$$\phi(s) = \begin{cases} 1 & \text{for } s \le r, \\ 1 + \frac{r - s}{h} & \text{for } r \le s \le r + h, \\ 0 & \text{for } s \ge r + h. \end{cases}$$

After some calculations we send $h \rightarrow 0^+$ and deduce for almost every r that

$$(n-2) \int_{B(0,r)} |Du|^2 dy = -\frac{2}{r} \int_{\partial B(0,r)} |(Du)| y|^2 dH^{n-1} + r \int_{\partial B(0,r)} |Du|^2 dH^{n-1}.$$

Discarding the first term on the right we compute

$$\frac{d}{dr} \left(\frac{1}{r^{n-2}} \int_{B(0,r)} |Du|^2 dy \right) \ge 0$$

for almost every r satisfying $0 < r < \text{dist } (0, \partial U)$. Inequality (1.4) for x = 0 follows.

We now state our main result, the following regularity assertion:

Theorem 1. Assume that $u \in H^1(U; S^{m-1})$ is a weakly harmonic mapping which satisfies the monotonicity inequalities (1.4). Then there exists an open subset $V \subset U$ such that

$$u \in C^{\infty}(V; S^{m-1}), \tag{1.5}$$

$$H^{n-2}(U-V) = 0. (1.6)$$

Here H^{n-2} denotes (n-2)-dimensional Hausdorff measure.

Remarks. (i) If n = 2, the monotonicity inequalities (1.4) are automatic and $H^{n-2} = H^0$ is counting measure. Thus a weakly harmonic mapping from $U \subset \mathbb{R}^2$ into S^{m-1} is everywhere smooth. We consequently recover Hélein's Theorem [12].

(ii) If $n \ge 3$, the monotonicity (1.4) is a consequence of domain stationarity (1.3). Hence a stationary harmonic mapping from $U \subset \mathbb{R}^n$ into S^{m-1} is smooth, except possibly for a closed set of H^{n-2} -measure zero.

Our proof of Theorem 1 depends upon using the constraint |u| = 1 to rewrite the right-hand side of the partial differential equation (1.1) to reveal that this term belongs to the Hardy space \mathcal{H}^1 . This is Hélein's key observation, which for n = 2 immediately implies continuity (and therefore smoothness) of u in everywhere in U (cf. Wente [22]). For $n \ge 3$, we note additionally that monotonicity inequalities (1.4) provide bounds for u in BMO: this turns out to be useful in light of C. Fefferman's identification [5] of $(\mathcal{H}^1)^*$ with BMO.

In §2 we recall the relevant facts about BMO and \mathcal{H}^1 , and in particular reproduce the observation of Coifman, Lions, Meyer & Semmes [4] that $Du \cdot v \in \mathcal{H}^1$ if $u \in H^1$, $v \in L^2$ and div v = 0. (Their proof was inspired by earlier calculations of Müller [16]).

Sections 3 and 4 establish the proof of Theorem 1. The main idea, as usual for partial regularity, is to show that u is continuous in any region in which the scaled energy is sufficiently small. The new point is that whereas u does not obviously have small oscillation in such a region, it is small in BMO. This turns out to be good enough since $(\mathcal{H}^1)^* = BMO$. We implement these ideas within a routine blow-up argument, although a direct proof is possible as well.

There is a vast literature on partial regularity for energy *minimizers* in the calculus of variations. Giaquinta's book [7] is the best source for this theory in the unconstrained case, for many further references, etc. See also Schoen &

104 L. C. Evans

UHLENBECK [19] for the basic partial regularity theory for minimizing harmonic maps. Grüter [9] proved that a conformal harmonic map from a surface into a manifold is everywhere smooth, and Schoen [18] extended this assertion to stationary harmonic maps from surfaces. Morrey (cf. [15]) had much earlier shown that a harmonic minimizer from a surface into a manifold is smooth. Other interesting related papers include Bethuel & Brezis [1], Giaquinta, Modica & Souček [8], Hardt & Lin [11], Hardt, Kinderlehrer & Lin [10], Luckhaus [14], etc.

The following proof makes explicit and exact use of the structure of the target sphere S^{m-1} . Chen [3] and Shatah [20] seem to be have been the first to deduce useful analytic consequences from symmetries of the target manifolds for the general weakly harmonic maps. They showed in particular that a weak limit in H^1 of solutions of system (1.1) is still a solution; this is interesting since the term $|Du|^2u$ is not weakly continuous. Very recently Hélein [13] has extended his regularity theory to cover weakly harmonic maps from surfaces into homogeneous spaces; Schoen and Uhlenbeck have made similar observations. I conjecture the partial regularity theory set forth in this paper will extend as well.

Finally, let me note that S. Chanillo [2] has recently found a completely elementary derivation of the main inequality used in this work, namely,

$$\left| \int_{\mathbb{R}^n} fg \cdot Dh \ dx \right| \leq C \|Df\|_{L^2} \|g\|_{L^2}, \tag{1.7}$$

where $f, h \in H^1(\mathbb{R}^n), g \in L^2(\mathbb{R}^n; \mathbb{R}^n), \text{ div } g = 0, \text{ and }$

$$\sup \frac{1}{r^{n-2}} \int_{B(x,r)} |Dh|^2 dy \equiv C' < \infty.$$

The constant C in (1.7) depends only on n and C'. The interested reader can verify that we could invoke (1.7) in place of the \mathcal{H}^1/BMO inequality (2.4). I am very grateful to H. Brezis for explaining F. Hélein's proof to me.

§ 2. BMO and \mathcal{H}^1

This section reviews definitions and properties of the spaces BMO and \mathcal{H}^1 . See Fefferman & Stein [6] or Torchinsky [21] for more information. If $f: \mathbb{R}^n \to \mathbb{R}$ is locally summable, we set

$$||f||_* \equiv \sup \left\{ \int_{B(x,r)} |f - (f)_{x,r}| \ dy | x \in \mathbb{R}^n, r > 0 \right\}, \tag{2.1}$$

where

$$(f)_{x,r} \equiv \int_{B(x,r)} f \, dy = \frac{1}{|B(x,r)|} \int_{B(x,r)} f \, dy.$$

We say that f has bounded mean oscillation provided $||f||_* < \infty$. Note that $||f||_* = 0$ if and only if f is constant a.e.

Assume now that $g \in L^1(\mathbb{R}^n)$. Let ϕ be any smooth function with support in the unit ball, $\int_{\mathbb{R}^n} \phi \, dx = 1$. We set

$$g^*(x) \equiv \sup_{r>0} \left| \frac{1}{r^n} \int g(y) \phi\left(\frac{x-y}{r}\right) dy \right|$$
 (2.2)

and say that g belongs to the Hardy space \mathcal{H}^1 if $g^* \in L^1(\mathbb{R}^n)$. We write

$$||g||_{\mathscr{H}^1(\mathbb{R}^n)} = ||g^*||_{L^1(\mathbb{R}^n)}.$$
 (2.3)

See [4] for equivalent definitions. Observe that $g \in \mathcal{H}^1$ implies $\int_{\mathbb{R}^n} g \, dx = 0$. A fundamental theorem of C. Fefferman [5], [6] asserts that $(\mathcal{H}^1)^* = BMO$ and in particular provides the inequality

$$\left| \int_{\mathbb{R}^n} fg \ dx \right| \le C \|f\|_* \|g\|_{\mathscr{H}^1(\mathbb{R}^n)} \tag{2.4}$$

for $f \in L^{\infty}(\mathbb{R}^n)$, $g \in \mathcal{H}^1(\mathbb{R}^n)$. The constant C depends only on n.

Finally we reproduce for the reader's convenience a result of Coifman, Lions, Meyer & Semmes [4], based upon important contributions due to Müller [16].

Proposition 2.1. Assume $u \in H^1(\mathbb{R}^n)$, $v \in L^2(\mathbb{R}^n; \mathbb{R}^n)$, and

$$\operatorname{div} v = 0$$
 in the distribution sense. (2.5)

Then $Du \cdot v \in \mathcal{H}^1(\mathbb{R}^n)$, with the bound

$$||Du \cdot v||_{\mathcal{Z}^1(\mathbb{R}^n)} \le C(||u||_{H^1(\mathbb{R}^n)}^2 + ||v||_{L^2(\mathbb{R}^n;\mathbb{R}^n)}^2). \tag{2.6}$$

Proof. Clearly $Du \cdot v \in L^1(\mathbb{R}^n)$. Now fix ϕ as above, choose $x \in \mathbb{R}^n, r > 0$, and set $\phi_r(y) = \phi\left(\frac{x-y}{r}\right)$. Then

$$\frac{1}{r^n} \int_{\mathbb{R}^n} Du \cdot v \, \phi_r \, dy = \frac{-1}{r^n} \int_{B(x,r)} \left(u - (u)_{x,r} \right) v \cdot D\phi_r \, dy$$

by (2.5). Thus

$$\left| \frac{1}{r^n} \int_{\mathbb{R}^n} Du \cdot v \, \phi_r \, dy \right| \leq \frac{C}{r^{n+1}} \int_{B(x,r)} |u - (u)_{x,r}| \, |v| \, dy.$$

Choose any
$$2 and let $1 < q = \frac{p}{p-1} < 2$. Then$$

$$\left| \frac{1}{r^{n}} \int Du \cdot v \phi_{r} \, dy \right| \leq \frac{C}{r^{n+1}} \left(\int_{B(x,r)} |u - (u)_{x,r}|^{p} \, dx \right)^{1/p} \left(\int_{B(x,r)} |v|^{q} \, dx \right)^{1/q}$$

$$\leq \frac{C}{r^{1+n/p}} \left(\int_{B(x,r)} |u - (u)_{x,r}|^{p} \, dx \right)^{1/p} \left(\int_{B(x,r)} |v|^{q} \right)^{1/q}$$

$$\leq C \left(\int_{B(x,r)} |Du|^{r} \, dx \right)^{1/r} \left(\int_{B(x,r)} |v|^{q} \right)^{1/q},$$

where $p = r^*$, that is, $r = \frac{pn}{p+n} < 2$. Consequently,

$$\left| \frac{1}{r^n} \int_{\mathbb{R}^n} Du \cdot v \phi_r \, dy \right| \leq CM(|Du|^r)^{1/r} M(|v|^q)^{1/q}$$

$$\leq C[M(|Du|^r)^{2/r} + M(|v|^q)^{2/q}],$$

 $M(\cdot)$ denoting the Hardy-Littlewood maximal function. Now $|Du|^r \in L^{2/r}$, 2/r > 1. Thus

$$||M(|Du|^r)||_{L^{2/r}} \le C|||Du|^r||_{L^{2/r}}$$

and so

$$\int_{\mathbb{R}^n} M(|Du|^r)^{2/r} dx \le C \int_{\mathbb{R}^n} |Du|^2 dx.$$

Similarly,

$$\int_{\mathbb{D}^n} M(|v|^q)^{2/q} dx \le C \int_{\mathbb{D}^n} |v|^2 dx.$$

Consequently we deduce

$$(Du \cdot v)^* \equiv \sup_{r>0} \left| \frac{1}{r^n} \int_{\mathbb{R}^n} Du \cdot v \phi_r \, dy \right| \in L^1,$$

$$||(Du \cdot v)^*||_{L^1} \le C(||u||_{H^1}^2 + ||v||_{L^2}^2).$$

§ 3. Energy decay and blow-up

This section and the next provide the proof of Theorem 1. Assume henceforth that $u \in H^1(U; S^{m-1})$ satisfies the hypothesis of Theorem 1. If $B(y, r) \subset U$, we define the scaled energy

$$E(x,r) = \frac{1}{r^{n-2}} \int_{B(x,r)} |Du|^2 dy.$$
 (3.1)

The key to the proof of Theorem 1 is this assertion about energy:

Proposition 3.1. There exist constants $0 < \varepsilon_0, \tau < 1$ such that

$$E(x,r) \le \varepsilon_0 \tag{3.2}$$

implies

$$E(x, \tau r) \le \frac{1}{2} E(x, r) \tag{3.3}$$

for all $x \in U$, $0 < r < \text{dist } (x, \partial U)$.

Proof. We argue by contradiction, for $\tau > 0$ selected as below. Were (3.2), (3.3) false, there would exist balls $B(x_k, r_k) \subset U$ such that

$$E(x_k, r_k) \equiv \lambda_k^2 \to 0, \tag{3.4}$$

whereas

$$E(x_k, \tau r_k) > \frac{1}{2} \lambda_k^2. \tag{3.5}$$

We rescale our variables to the unit ball $B(0, 1) \subset \mathbb{R}^n$, as follows. If $z \in B(0, 1)$, write

$$v_k(z) \equiv \frac{u(x_k + r_k z) - a_k}{\lambda_k},\tag{3.6}$$

where

$$a_k \equiv \int_{B(x_k, r_k)} u \, dy = (u)_{x_k, r_k}$$

denotes the average of u over $B(x_k, r_k)$, $k = 1, \ldots$

Utilizing (3.1), (3.4), (3.5) and (3.6) we verify that

$$\sup_{k} \int_{B(0,1)} |v_k|^2 dz < \infty, \qquad \int_{B(0,1)} |Dv_k|^2 dz = 1, \tag{3.7}$$

but

$$\frac{1}{\tau^{n-2}} \int_{B(0,\tau)} |Dv_k|^2 dz > \frac{1}{2} \quad (k = 1, 2, \dots).$$
 (3.8)

The sequence $\{v_k\}_{k=1}^{\infty}$ is thus bounded in $H^1(B(0,1); \mathbb{R}^m)$, whence there exists a subsequence (which we reindex as necessary and denote also by $\{v_k\}_{k=1}^{\infty}$) such that

$$v_k \rightarrow v$$
 strongly in $L^2(B(0,1); \mathbb{R}^m)$ (3.9)

$$Dv_k \rightharpoonup Dv$$
 weakly in $L^2(B(0,1); M^{m \times n})$, (3.10)

 $M^{m \times n}$ being the space of real $m \times n$ matrices.

Next select any smooth function $w: B(0, 1) \to \mathbb{R}^m$ with compact support. Define

$$w_k(y) \equiv w\left(\frac{y-x_k}{r_k}\right) \quad (y \in B(x_k, r_k)).$$

Since u is a weakly harmonic, (1.2) gives

$$\int_{B(x_k,r_k)} Du : Dw_k \, dy = \int_{B(x_k,r_k)} |Du|^2 \, u \cdot w_k \, dy.$$

We rescale this identity to the unit ball, obtaining thereby the equality

$$\int_{B(0,1)} Dv_k : Dw \ dz = \lambda_k \int_{B(0,1)} |Dv_k|^2 \ (a_k + \lambda_k v_k) \cdot w \ dz. \tag{3.11}$$

Observe also that (3.6) implies

$$|a_k + \lambda_k v_k|^2 = 1$$
 a.e. in $B(0, 1)$. (3.12)

We send k to infinity in (3.11), invoking (3.7) and (3.12) to deduce

$$\int_{B(0,1)} Dv : Dw \ dz = 0. \tag{3.13}$$

This equality obtains for all w as above. Consequently

$$\Delta v = 0$$
 in $B(0, 1)$

in the weak, and therefore classical, sense. Hence v is smooth, and we have the bound

$$||Dv||_{L^{\infty}(B(0,\frac{1}{2}),M^{m\times n})}^{2} \le C \int_{B(0,1)} v^{2} dz < \infty.$$

In particular, therefore,

$$\frac{1}{\tau^{n-2}} \int_{B(0,\tau)} |Dv|^2 dz \le C\tau^2 < \frac{1}{2}, \tag{3.14}$$

provided we adjust $0 < \tau < \frac{1}{2}$ to be small enough.

Next we utilize Proposition 4.1, to be proved in §4 following. This asserts

$$Dv_k \rightarrow Dv$$
 strongly in $L^2(B(0, \frac{1}{2}); M^{m \times n})$. (3.15)

But then (3.8) forces

$$\frac{1}{\tau^{n-2}} \int_{B(0,\tau)} |Dv|^2 dz \ge \frac{1}{2},$$

a contradiction to (3.14).

Proof of Theorem 1. Set

$$V \equiv \{x \in U | E(x, r) < \varepsilon_0 \text{ for some } 0 < r < \text{dist}(x, \partial U)\}.$$

Then V is open, and standard covering arguments imply $H^{n-2}(U-V)=0$. Furthermore if $x \in V$, we have

$$E(y,r) \le Cr^{\gamma} \tag{3.16}$$

for some $\gamma > 0$, C > 0, all y near x, and all sufficiently small radii r > 0. See GIAQUINTA [7] for a proof of (3.16) from Proposition 3.1. It follows that u is uniformly Hölder continuous with exponent $\gamma/2$ on each compact subset of V: again see GIAQUINTA [7]. Hence $u \in C^{0,\gamma/2}(V; S^{m-1})$, and routine elliptic regularity theory then proves that $u \in C^{\infty}(V; S^{m-1})$; see Schoen & Uhlenbeck [19] and references therein. \square

§ 4. Compactness

All of the calculations and assertions in §3 are routine, except for the compactness assertion (3.15), to which we now turn our attention. First, select a smooth cutoff function $\zeta: \mathbb{R}^n \to \mathbb{R}$ satisfying

$$0 \le \zeta \le 1,$$

$$\zeta = 1 \quad \text{on } B(0, \frac{1}{2}),$$

$$\zeta = 0 \quad \text{on } \mathbb{R}^n - B(0, \frac{5}{8}).$$

$$(4.1)$$

Lemma 4.1. The sequence $\{\zeta v_k\}_{k=1}^{\infty}$ is bounded in BMO(\mathbb{R}^n ; \mathbb{R}^m).

Proof. Fix any point $z_0 \in B(0, \frac{7}{8})$ and any radius $0 < r \le \frac{1}{8}$. Write

$$y_k \equiv x_k + r_k z_0 \in B(x_k, \frac{7}{8} r_k).$$

From the monotonicity inequalities (1.4) we have

$$\frac{1}{(rr_k)^{n-2}} \int_{B(y_k, rr_k)} |Du|^2 dy \le \frac{8^{n-2}}{r_k^{n-2}} \int_{b(y_k, \frac{1}{8}r_k)} |Du|^2 dy$$

$$\le \frac{8^{n-2}}{r_k^{n-2}} \int_{B(x_k, r_k)} |Du|^2 dy$$

$$= 8^{n-2} \lambda_k^2.$$

Rescaling this estimate we obtain the bound

$$\frac{1}{r^{n-2}} \int_{B(z_0, r)} |Dv_k|^2 dz \le 8^{n-2}$$

for $k = 1, \ldots$ and all $0 < r \le \frac{1}{8}$, $z_0 \in B(0, \frac{7}{8})$. Consequently

$$\oint_{B(z_0,r)} |v_k - (v_k)_{z_0,r}| \ dz \le C < \infty$$
 (4.2)

for k, r and z_0 as above. Since $\{v_k\}_{k=1}^{\infty}$ is bounded in $L^2(B(0, 1); \mathbb{R}^m)$, the John-Nirenberg inequality implies

$$\{v_k\}_{k=1}^{\infty}$$
 is bounded in $L^p(B(0, \frac{7}{8}); \mathbb{R}^m)$ $(1 \le p < \infty)$. (4.3)

As ζ is smooth,

$$|(\zeta v_k)_{z_0,r} - \zeta(v)_{z_0,r}| \le Cr \oint_{B(z_0,r)} |v_k| dz$$
 on $B(z_0,r)$

for any ball $B(z^0, r)$. Thus if $z_0 \in B(0, \frac{3}{4})$, $0 < r \le \frac{1}{8}$, we have

$$\int_{B(z_0,r)} |\zeta v_k - (\zeta v_k)_{z_0,r}| dz \leq \int_{B(z_0,r)} |v_k - (v_k)_{z_0,r}| dz + Cr \int_{B(z_0,r)} |v_k| dz$$

$$\leq C + \frac{C}{r^{n-1}} \int_{B(z_0,r)} |v_k| dz \quad \text{by (4.2)}$$

$$\leq C + \frac{C}{r^{n-1}} \left(\int_{B(0,\frac{7}{8})} |v_k|^n dz \right)^{1/n} r^{n(1-\frac{1}{n})}$$

$$\leq C < \infty, \quad \text{by (4.3)}.$$

This same inequality obtains for $z_0 \in \mathbb{R}^n - B(0, \frac{3}{4})$, $0 < r \le \frac{1}{8}$, since $\zeta \equiv 0$ on $\mathbb{R}^n - B(0, \frac{5}{8})$. We recall that

$$\sup_{L} \|\zeta v_k\|_{L^1} < \infty$$

to conclude the proof. \Box

Next define

$$b_{k,l}^{ij} \equiv v_{k,x_l}^j (a_k^i + \lambda_k v_k^i) - v_{k,x_l}^i (a_k^j + \lambda_k v_k^j)$$

for $1 \le i, j \le m, \ 1 \le l \le n, \ k = 1, \dots$

Lemma 4.2. For each function $\phi \in H^1(B(0, 1)) \cap L^{\infty}(B(0, 1))$ with compact support,

$$\int_{B(0,1)} \phi_{x_l} b_{k,l}^{ij} dz = 0 \tag{4.4}$$

for $1 \le i, j \le m, k = 1, ...$

Proof. We compute

$$\int_{B(0,1)} \phi_{x_{l}} b_{k,l}^{ij} dz = \int_{B(0,1)} \phi_{x_{l}} [v_{k,x_{l}}^{i} (a_{k}^{i} + \lambda_{k} v_{k}^{i}) - v_{k,x_{l}}^{i} (a_{k}^{i} + \lambda_{k} v_{k}^{i})] dz$$

$$= \int_{B(0,1)} v_{k,x_{l}}^{i} ((a_{k}^{i} + \lambda_{k} v_{k}^{i}) \phi)_{x_{l}} - v_{k,x_{l}}^{i} ((a_{k}^{i} + \lambda_{k} v_{k}^{i}) \phi)_{x_{l}} dz$$

$$= \lambda_{k} \int_{B(0,1)} |Dv_{k}|^{2} [(a_{k}^{i} + \lambda_{k} v_{k}^{i}) (a_{k}^{i} + \lambda_{k} v_{k}^{i}) - (a_{k}^{i} + \lambda_{k} v_{k}^{i}) (a_{k}^{i} + \lambda_{k} v_{k}^{i})] \phi dz$$

$$= 0, \quad \text{according to (3.11).} \quad \Box$$

Lemma 4.3. For each $1 \le i, j \le m$, the sequence $\{(\zeta v_k^i)_{x_l} b_{k,l}^{ij}\}_{k=1}^{\infty}$ is bounded in $\mathcal{H}^1(\mathbb{R}^n)$.

Proof. This is an immediate consequence of Lemma 4.2 and Proposition 2.1. \Box

Proposition 4.1. The rescaled functions $\{Dv_k\}_{k=1}^{\infty}$ converge strongly in $L^2(B(0,\frac{1}{2}); M^{m \times n})$.

Proof. Subtracting (3.13) from (3.11) we find

$$\int_{B(0,1)} (Dv_k - Dv) : Dw \, dz = \lambda_k \int_{B(0,1)} |Dv_k|^2 (a_k + \lambda_k v_k) \cdot w \, dz \tag{4.5}$$

for smooth $w: B(0, 1) \to \mathbb{R}^m$ with compact support. By approximation the same identity obtains for $w \in H_0^1(B(0, 1); \mathbb{R}^m) \cap L^{\infty}(B(0, 1); \mathbb{R}^m)$. We now insert

$$w \equiv \zeta^2 (v_k - v)$$

into (4.5). The left-hand side of (4.5) is

$$L_{k} \equiv \int_{B(0,1)} \zeta^{2} |Dv_{k} - Dv|^{2} dz + 2 \int_{B(0,1)} \zeta(v_{k} - v) \cdot (Dv_{k} - Dv) \cdot D\zeta dz$$

$$\geq \int_{B(0,\frac{1}{2})} |Dv_{k} - Dv|^{2} dz + o(1)$$
(4.6)

as $k \to \infty$, in view of (3.9) and (3.10). The right-hand side of (4.5) reads

$$\begin{split} R_k &\equiv \lambda_k \int_{B(0,1)} \zeta^2 |Dv_k|^2 (a_k + \lambda_k v_k) \cdot (v_k - v) \ dz \\ &= \lambda_k \int_{B(0,1)} \zeta^2 v_{k,x_l}^i (v_{k,x_l}^i (a_k^i + \lambda_k v_k^i) (v_k^i - v^i)) \ dz \\ &= \lambda_k \int_{B(0,1)} \zeta^2 v_{k,x_l}^i (v_{k,x_l}^i (a_k^i + \lambda_k v_k^i) - v_{k,x_l}^i (a_k^i + \lambda_k v_k^i)) \ (v_k^i - v^i) \ dz, \end{split}$$

the last equality holding in light of (3.12). (Here is Hélein's trick.) Thus

$$R_{k} = \lambda_{k} \int_{B(0,1)} \zeta^{2} v_{k,x_{l}}^{i} b_{k,l}^{ij}(v_{k}^{i} - v^{i}) dz$$

$$= \lambda_{k} \int_{\mathbb{R}^{n}} (\zeta v_{k}^{i})_{x_{l}} b_{k,l}^{ij} (\zeta (v_{k}^{i} - v^{i})) dz - \lambda_{k} \int_{\mathbb{R}^{n}} v_{k}^{i} \zeta_{x_{l}} b_{k,l}^{ij} \zeta (v_{k}^{i} - v^{i}) dz$$

$$\equiv \lambda_{k} (R_{k}^{1} + R_{k}^{2}). \tag{4.7}$$

Now

$$\sup_{k}|R_{k}^{2}|<\infty,$$

since $\{v_k\}_{k=1}^{\infty}$ is bounded in $L^4(B(0,\frac{7}{8});\mathbb{R}^m)$ and $\{b_{k,l}^{ij}\}_{k=1}^{\infty}$ is bounded in $L^2(B(0,\frac{7}{8}))$.

Finally, the \mathcal{H}^1/BMO inequality (2.4) gives

$$\sup_{k} |R_{k}^{1}| \leq \sum_{i,j=1}^{m} C \sup_{k} \|\zeta(v_{k}^{i} - v^{i})\|_{*} \|(\zeta v_{k}^{i})_{x_{l}} b_{k,l}^{ij}\|_{\mathscr{H}^{1}} < \infty,$$

112 L. C. Evans

according to Lemmas 4.1 and 4.3. Thus $R_k = O(\lambda_k) = o(1)$ as $k \to \infty$. Hence

$$\int_{B(0,\frac{1}{2})} |Dv_k - Dv|^2 dz \le o(1) \quad \text{as } k \to \infty,$$

and we are done. \square

Note added in proof. HÉLEIN has now extended his regularity theory to cover weakly harmonic maps from surfaces into general targets. Also T. RIVIERE has constructed a weakly harmonic (but nonstationary!) map from the unit ball $B(0, 1) \subset \mathbb{R}^3$ into S^2 , with singularities forming a line segment.

Acknowledgment. This research was supported in part by the National Science Foundation grant DMS-89-03328.

References

- 1. F. Bethuel & H. Brezis, Regularity of minimizers of relaxed problems for harmonic maps, preprint 1990.
- 2. S. Chanelo, Sobolev inequalities involving divergence free maps, *Comm. Part. Diff. Eqs.*, to appear.
- 3. Y. M. CHEN, Weak solutions to the evolution problem for harmonic maps, preprint.
- R. COIFMAN, P.-L. LIONS, Y. MEYER & S. SEMMES, Compacité par compensation et espaces de Hardy, Comptes Rendus Acad. Sci. Serie I, t. 309 (1981), 945-949.
- 5. C. Fefferman, Characterizations of bounded mean oscillation, *Bulletin AMS* 77 (1971), 585-587.
- C. Fefferman & E. Stein, H^p spaces of several variables, Acta Math 129 (1972), 137-193.
- 7. M. GIAQUINTA, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton Univ. Press, 1989.
- 8. M. GIAQUINTA, G. MODICA & J. SOUČEK, The Dirichlet energy of mappings with values in a sphere, *Manuscripta Math.* 65 (1989), 489-507.
- 9. M. Grüter, Regularity of weak H-surfaces, J. Reine Angew. Math. 329 (1981), 1-15.
- 10. R. HARDT, D. KINDERLEHRER & F-H. LIN, Stable defects of minimizers of constrained variational principles, *Ann. IHP, Analyse Nonlinéaire* 5 (1988), 297-322.
- 11. R. HARDT & F-H. LIN, Mappings minimizing the L^p norm of the gradient, Comm. Pure Appl. Math. 40 (1987), 556-588.
- 12. F. HÉLEIN, Regularité des applications faiblement harmoniques entre une surface et une sphere, *Comptes Rendus Acad. Sci.*, to appear.
- 13. F. Hélein, Regularity of weakly harmonic maps from a surface in a manifold with symmetries, preprint, 1990.
- 14. S. Luckhaus, Partial Hölder continuity for minima of certain energies among maps into a Riemannian manifold, *Indiana Univ. Math. Jour.* 37 (1988), 349-367.
- 15. C. B. Morrey, Jr., Multiple Integrals in the Calcules of Variations, Springer-Verlag, 1966.
- 16. S. MÜLLER, A surprising higher integrability property of mappings with positive determinant, Bull. Amer. Math. Soc. 21 (1989), 245-248.
- 17. P. PRICE, A monotonicity formula for Yang-Mills fields, *Manuscripta Math.* 43 (1983), 131-166.

- 18. R. Schoen, Analytic aspects of the harmonic map problem, in *Seminar on Nonlinear Partial Differential Equations* (edited by S. S. Chern), MSRI Publications 2, Springer-Verlag, 1984.
- 19. R. Schoen & K. Uhlenbeck, A regularity theory for harmonic maps, *Jour. Diff. Geom.* 17 (1982), 307-335.
- 20. J. Shatah, Weak solutions and development of singularities of the SU(2) σ-model, Comm. Pure Appl. Math. 41 (1988), 459-469.
- 21. A. Torchinsky, Real Variable Methods in Harmonic Analysis, Academic Press, 1986.
- 22. W. C. Wente, The Dirichlet problem with a volume constraint, *Manuscripta Math.* 11 (1974), 141-157.

Department of Mathematics University of California Berkeley, California 94720

(Received March 14, 1991)