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Partial Regularity of Free Discontinuity Sets, II

LUIGI AMBROSIO - NICOLA FUSCO - DIEGO PALLARA

1. - Introduction

In this paper we continue the study, started in [5], of the regularity of (quasi)
minimizers of a class of free discontinuity problems including the minimization
of the Mumford-Shah functional

where c R" is an open set, g E LI(Q), a, fl &#x3E; 0 and ?~n-1 (K~ is the
Hausdorff measure of K. In ( 1.1 ), K varies in the class of

relatively closed subsets of 0 and u E C 1 (S2 B K) (see [20], [6], [19], [16], [ 11 ]).
Notice that, given K, the optimal function u is the solution of the Neumann

problem

in S2 B K . Namely, we prove in Theorem 3.1 that any optimal free discontinuity
set K is a c1,a hypersurface except for a closed singular set S satisfying

0. Moreover, we give a characterization of singular points which
could be exploited to get further information on the dimension and the structure
of S.

The starting point of this paper is a criterion, proved in [5], for the c1,a
local regularity of optimal sets K. The criterion involves the rate of decay of
the quantity
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measuring the flatness of K (here ,,4 denotes the set of affine hyperplanes in
and of the scaled Dirichlet energy

The application of such a criterion to our partial regularity result is based on
two decay estimates. The first one, concerning the flatness improvement has
been already proved in [5] (see Theorem 3.4 below). Heuristically, (see [5]) a
first variation argument and the rectifiability of K show that the Dirichlet energy
controls the mean curvature of K. Hence, the proof of flatness improvement
has a more geometric flavour and involves some typical arguments of minimal
surfaces theory.

The second decay estimate is concerned with the Dirichlet energy. Assum-
ing the decay estimate to be false, we find a sequence of quasi minimizers

and a sequence of balls B,,h. Scaling and normalizing, we obtain a
sequence of quasi minimizers Kh ) in a fixed ball BR whose gradients weakly
converge to the gradient of a function v which is harmonic in the upper and
lower half balls, with zero normal derivative on {xn = 01. An easy reflection
argument shows that the scaled Dirichlet energy of v on Bp decays like p. To
transfer this property to the sequence vh (thus getting a contradiction) we need
to prove strong convergence of the gradients. To obtain this convergence at least
in a smaller ball, we introduce functions obtained by taking the composition
of vh with deformation maps pushing a large part of Kh on suitable minimal
surfaces. An energy comparison argument leads to the strong convergence of
gradients and to the desired contradiction.

A feature of our problem is that the flatness improvement theorem involves
also the Dirichlet energy, and viceversa. For this reason an iteration argu-
ment leading to the improvement of both quantities is needed. The idea is to
use the decay of 7(x, p) if 7(x, p) controls D(x, p) and to use the decay of
D (x , p) if 7(x , p) is much smaller than D (x , p). This iteration argument seems
to be a natural tool for treating the partial regularity of free discontinuity
problems. Partial regularity results for minimizers of the Mumford-Shah func-
tional have also been obtained in the two dimensional case by Bonnet and David
(see [7] and [13]).

2. - Quasi minimizers

In the following a natural number n &#x3E; 2 will be fixed and we omit the
dependence of several constants on n. Since we will often deal with (n - 1)-
dimensional sets, we will use the notation m for n - 1.
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Let 0 c R’ be an open set. For any function u the set Su denotes
the the complement of the Lebesgue set of u, i.e.,

The space introduced by De Giorgi and Ambrosio in [15], consists
of all functions u with finite total variation in S2 such that the singular part
(with respect to Lebesgue measure) Dlu of the distributional derivative Du is
supported in Su, i.e.,

In the following, Vu stands for the density (with respect to Lebesgue measure)
of Du. Notice that

because the singular part of the distributional derivative of u is supported in Su.
In many variational problems involving volume and surface energies
can be formulated and have a solution (see [1], [2], [3], [4]). In this paper
very little of the theory will be used, because a density lower bound for
minimizers (see Proposition 2.4 below and (2.6)) allows a reduction to the study
of pairs (u, K(u)), with u E WI,I(Q B K(u)) and K(u) = 3u.

Now we give the definitions of local minimizers and quasi minimizers
assuming ~8=1. This assumption is not really restrictive, by a scaling argument.

DEFINITION 2.1 (local minimizers). We say that u E local

minimizer in Q if

and

whenever v E and u } C C A C C Q.

DEFINITION 2.2 (quasi minimizers). We will call deviation from minimality
Dev(u, Q) of a function u E satisfying (2.2) the smallest), E [0, 
such that

for any v E such that { v ~ u } C C A C C Q. Clearly, Dev(u, Q) = 0 if
and only if u is a local minimizer in Q. Moreover, we say that u is a quasi minimizer
in Q if there exists a nondecreasing function cv (t) : (0, +00) ~ [0, such that

for any ball Bp (x ) C Q. We denote by Mw(Q) the class of functions satisfying (2.3).
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REMARK 2.3. The canonical example of quasi minimizer is given by the
minimum u of the Mumford-Shah functional

with g E and a &#x3E; 0. Indeed, it is easy to check that

with M = This shows that and, for any competing function
v, the inequality F (u)  F(M n v u -M) implies that the deviation from

minimality of u in B p (x ) does not exceed Hence u E 
with 

-

Existence of minimizers follows by the compactness and lower semiconti-
nuity results of [1] and [4]. Using Proposition 2.4 below it can be seen (see
also [16]) that the minimum of F on SBB1oc(Q) is equal to the minimum of
the functional originally proposed by Mumford-Shah and Blake-Zissermann:

In (2.5), K varies in the relatively closed subsets of S2 and u varies in C’(S2BK).
PROPOSITION 2.4. Let U E Then, for any ball Bp(x) C S2 centered at

XES u we have

for some positive constants pw and 8w depending only on w. Moreover,

PROOF. See Theorem 2.7 and Proposition 2.8 of [5]. The density lower
bound for minimizers of the Mumford-Shah functional has been proved also
in [11] and [19]. 0

We will denote the set Su by K(u). If u E Proposition 2.4 and
the quasi minimality condition imply

for any V E such that
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3. - Statement of the main result

In the following, ,,4 stands for the set of affine hyperplanes in The
main result of our paper is the following:

THEOREM 3.1. Let be defined in Definition 2.1, U E Mw(Q), and
assume that

for some constants co &#x3E; 0, y &#x3E; 0 and let a = min{I/4, y }/ (m + 2). Then, there
is a positive constant 80 (co, y) such that for any x E K (u) and any ball B,, (X) C S2
with p  1, the condition

implies that Bpl2(x) f1 K(u) is a hypersurface.

REMARK 3.2. Let R be the set of regular points of K (u ), i.e., the set of
those points x E K (u ) such that (3.2) holds for a sufficiently small p E (0, 1).
Then, the complement S = K(u) B R is relatively closed in S2 and it is made
of all points satisfying either

or

It is easy to see that Jim (s) = 0. Indeed, (3.3) is not satisfied at any point
x E K (u) where K (u) has an approximate tangent space P (see [21, Th.

11.6]) because, to estimate the integral in (3.3) we can choose A = x + P,
thus obtaining that the limit is 0. Moreover, a differentiation theorem (see [21,
3.2(1)]) shows that 

-

for any Borel subset C of the set E of points x E S2 satisfying (3.4). The

inequality above implies that E has locally finite R’ -measure, hence = 0.

Using the inequality again we obtain that Jim ( E ) = 0.
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The proof of Theorem 3.1 is based, among other things, on a c1,a regularity
criterion proved in [5]. Let us introduce a notation for the Dirichlet integral
of u

and the flatness of K(u)

We can state the following result:

THEOREM 3.3. Let U E and assume that there exist
such that cv ( p)  Cp2a and

for any ball Bp (x) C Q centeredatx E K(u). is a hypersurface
with a = + 2).

PROOF. See [5], Theorem 5.3 and Remark 5.4. 0

To verify the assumption of Theorem 3.3 in (with x satisfying (3.2))
we need to know that A and D satisfy good decay properties. The following
typical decay property of A has been proved in Theorem 6.2 of [5]: it says
that if K(u) is sufficiently flat near x, it is flatter on a smaller scale, provided

p) and are comparable with A(x, p) (remember that the
Dirichlet integral is related to the curvature of ~(~)). ,

THEOREM 3.4 (flatness improvement). For any choice of fl E (0, 1 / 112) and
77 &#x3E; 0 there exists E (p, TJ, w) &#x3E; 0 such that, for any u E the conditions

and x E K(u) imply

with C depending only on w.

The following theorem is the natural counterpart of the flatness improvement
theorem: it says that in the regions where A is much smaller than D there is
improvement of D.
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THEOREM 3.5 (energy improvement). For any choice of fl e (o, 6/7) there
exist B2(fJ, w) &#x3E; 0 and w) e (0,1) such that, for any u E the
conditions

and x E K (u) imply

A large part of this paper will be devoted to the proof of the energy
improvement theorem. Using a careful choice of the constants in both decay
theorems, and using in an essential way the independence of the constant C
of Theorem 3.4 on fl and TJ, we will be able to perform in Lemma 6.1 and
Corollary 6.2 a joint iteration leading to the desired estimates on A and D.

4. - Preliminary results

The following theorem is concerned with the asymptotic behaviour of se-
quences of quasi minimizers assuming that Dirichlet energy tends to zero and
the jump sets become flatter and flatter.

THEOREM 4.1. Let (uh) c (Sh) C A be satisfying the conditions

for any p E (0, R) and

Then S contains the origin and the following properties hold:

(i) for any p E (0, R) the height

is infinitesimal as h ~ -~oo;
(ii) denoting by the two connected components of

we have

(iii) the measures Jim L K (uh ) weakly converge to Jim L S in BR.



46

PROOF. Let xh E be converging to 0 and

Using Proposition 2.4, if (a subsequence of) ph is not infinitesimal, for h large
enough we get

a contradiction. Hence, the distances of Sh from 0 are infinitesimal, S contains
the origin and

for any p E (0, R). Then, (i) follows again by the density lower bound (see [5,
Proposition 5.1 ]). The properties (ii), (iii) are proved in Step 4 and Step 5 of
Theorem 4.3 [5] (see also Lemma 6.1 of the same paper). 0

The next lemma is based on a well known reflection argument.

LEMMA 4.2. Let B+ be the upper unit half ball in and v : B+ --+ R. For
a E (0, 1), let Sa = { (z, y) E BI : y &#x3E; a } and let us assume that v E 
any a &#x3E; 0. Then

(i) v belongs to H 1 (B+) if and only E L2 (B+);
(ii) if v E H 1 (B+) and

the function y) = v (z, -y) is the harmonic extension of v to BI.

PROOF. (i) One implication is trivial. Assuming Vv E L2(B+), we need
only to show that v E L 2(B+). Clearly, the functions Vk = k A v v -k belong to

and IIVvII2 for any k &#x3E; 0; the Poincaré inequality (see [22,
Th. 4.4.2]) implies
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for some dimensional constant c, with Uk equal to the average of vk on
Letting k - +oo we get

hence v E L2(B+).
(ii) It is well known that v E HI(B¡). For any test function 0 E CJ(BI), using
two times (4.1 ) and a change of variables we get

with ~(z, y) = ~(z, -y). is harmonic. o

For any 1-Lipschitz function v on a BR, let us denote by V : BR --~ R the
solution of the minimum problem

and let

We are interested to estimate the convergence to 0 of
tends to 0.

LEMMA 4.3 (area excess estimate). Let v : R be a 112-Lipschitz
function. For any a &#x3E; 1 we have

provided  R/(2a).

PROOF. The transformation

preserves the Lipschitz constant and maps functions on BR to functions on Bl.
Hence, we can assume with no loss of generality that R = 1.
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Let By the equations (in polar coordinates)

we infer that 1/2 and 1/2, hence va is a I-Lipschitz
function. In particular

LEMMA 4.4 (deformation lemma). Let g+, g-, g : B 1 --~ R be Lipschitz
functions such that g+ = g- = g on a Bm and

Let C be the cylinder Bi x (-3, 3), r(g) C C be the graph of g, Wee be the
open set above the graph of g+ and below the graph of g-.

Then, for any v E SBV (C) there exists W E SBV (C) such that the traces of v
and w on a C are equal and

with M depending only on the Lipschitz constants of g+, g-, g.
PROOF. Let x = (z, y), (D : C -+ C be the map defined by

It is easy to check that the restriction of 4) to a C is the identity map, 4) : W o
C B r (g) is invertible and the norm of the Jacobian matrices of (D and ~-1 can
be uniformly estimated with the Lipschitz constants of g+, g-, g. The function
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. (arbitrarily defined on r (g)) has the same trace of v on aC and
fl W), hence

Moreover

THEOREM 4.5 (Lipschitz approximation). There exist constants R(w) &#x3E; 0 and

&#x3E; 0 with the following property: let U E Mw(B7r) for some r  R and let

Then, if PA  and K(u) fl Brl 16 0 0 there exists a Lipschitz function f :
T --+ with Lipschitz constant less than 1/2 such that

and, denoting by r ( f ) the graph of f, we have

PROOF. Let R = 1/2) be the costant defined before Theorem 5.2
of [5]. We will indicate by c the generic constants depending only on n and
cv appearing in the estimates of Theorem 5.2 of [5]. Then, this theorem states
that A/rm+2  c and K(u) rl 8,.~16 ~ ~ imply the existence of a Lipschitz
continuous function f : T --~ T~ with Lipschitz constant less than 1/2 such
that sup and



50

where X is the projection on of r ( f ) B K (u) and II Sx - represents the
distance of the approximate tangent space Sx to at x from T (see [5] for
details).

Using the tilt lemma (see Lemma 6.1 of [5]) we obtain (4.6) from (4.7)
and the estimate ~m (X )  c(A/r2 + D + L). The second inequality in (4.4)
can be easily deduced from the first one by evaluating separately the integral
on X and the integral on Z~ B X.

Finally, the inequality (4.5) can be proved with the same method using the
tilt lemma and noticing that 1/2 and

where v is the normal to the graph of f at x = (z, f (z)), with ,z E X differ-
entiability point of f (see Step 2 in Theorem 6.2 of [5]). 0

5. - Proof of the energy improvement theorem

We assume without loss of generality that w (t) &#x3E; 0 for any t &#x3E; 0. As

usual, to prove Theorem 3.5 we argue by contradiction, getting sequences (Zh) C

Mw(Bph (yh)), (Sh), C .~4 satisfying

for a suitable infinitesimal sequence yh and

To rescale all the functions to a fixed ball we will use the following remark.
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REMARK 5.1 (scaling). Let u E and let Bp(xo) C Q. Then, it is

easy to check that

belongs to S B V (0,,,) with Qp = Moreover, for any ball C

S2p we have

In particular, if p  1, the monotonicity of w (p) shows that

Let R = be given by Theorem 4.5. By (5.1), (5.2), (5.3) and our
assumption on cv we obtain that for h large enough. Hence, scaling
the functions by a factor as in Remark 5.1, we obtain new sequences
(Uh) C (Th), (Th ) satisfying the conditions

and

The deviation from minimality of uh in satisfies
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Denoting by T the hyperplane {xn = 0}, by a rotation and a translation we can
assume with no loss of generality that T, T (Xh) = 0 and Th converges
to some hyperplane S. Using (5.5) and the density lower bound it is easy
to see, by the same argument used in Theorem 4.1, that xh -~ 0 (notice that
xh E By Theorem 4.1 (iii) and (5.4), (5.7) we obtain that 
weakly converges in BR to and S contains the origin. Since

we infer that T = S. Setting now

and defining vh = uh /sh we can rewrite (5.4), (5.5), (5.6) as follows

We point out that, by (2.6), the functions vh are quasi minimizers in
of the rescaled functionals

and, denoting by Devh the deviation from minimality of (5.7) yields

for any p  R (notice that Bp C BR (xh) for h large enough).
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STEP 1. Let us use y - xn to denote the "vertical" coordinate. By (5.8)
and Theorem 4.1(i) we obtain

In particular, the maximal height of in B R/2 is infinitesimal. For any
a &#x3E; 0 we denote by (respectively Sj) the set of points x E BR12 such that
y &#x3E; a (respectively y  -a), we denote by cl the average of vh on and

we assume, up to a change of sign, that ct a ch . By Theorem 4.1(ii) we
obtain that the sequence has no infinitesimal subsequences, hence
(c+ - ch ) diverges.

For any a &#x3E; 0 (5.13) implies the existence of ha E N such that vh - Ch
belongs to for h &#x3E; ha. Moreover, if a  R/4, the average of vh - cl
is zero on C Sal and the Poincar6 inequality (see [22, Th. 4.4.2]) implies
that the family {vh - is bounded in H1 (Sa ). Possibly extracting a
subsequence, by a diagonal argument we can find a function v : BR12 B 
such that weakly converges to v in H 1 (S,,’), and also pointwise in Sa,
for any a E (0, R /4) . By lower semicontinuity of the Dirichlet integral and the
first equality in (5.10) we infer

In particular, Lemma 4.2(i) yields v E 
STEP 2. Now we show that v in harmonic in B R/2 B T and its normal

derivative on T is zero.

Using (5.12) and comparing with + q5) for 0 E CJ(BR/2 B T),
it is easy to check that v is harmonic in B R/2 B T. 

2Possibly passing to a subsequence we can assume that the measures 
/7* are weakly converging in BR12 to some measure A. Since weakly
converges to Q v in BR~2 we have p a 

Comparing with .~’h (~ Cv + ct) + (1 - with
and using again (5.12) we get the inequality

for any 8 &#x3E; 0. Using the strong convergence of
letting first h - +oo then 8 -- 0 we find
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Since 0 is arbitrary, we obtain that JLL(BR/2 B T) _ ~ IVvI2.en, hence the abso-
lutely continuous part of it is obviously 1 V v 12.en and the singular part must be
supported in T.

We now claim that v has zero normal derivative on T n BR12, i.e.,

for any 0 E CJ(BR/2). Indeed, let 0 E CJ(BR/2), 8 &#x3E; 0 and let 1/1 : R

be a smooth non decreasing function such 0, ~ (-~-oo) = 1

and for any t E R. By (5.12) the sequence zh - BR~2 )
is infinitesimal. Hence, denoting by ch the average of c+ and c- comparing

with -I- and dividing both sides by J§ we
obtain

Since Vvh weakly converges to Vv in and Ch) strongly
converges to (here we use the fact that Ch - +00) we obtain

o

As E and 0 are arbitrary, (5.15) is proved for st. The argument for So is
similar. By Lemma 4.2(ii) we infer that the restrictions of v to So can be
prolonged by reflection along T to harmonic functions on BR~2. In particular,
v and o v are locally bounded in BR12 and

STEP 3. Now we prove an estimate from below on the size of 

namely 
-

for any cylinder Cp = Bp (xo) x (- p, p) contained in B R/2. Let Zh C B"’(xo)
be the projection of on T ; by well know properties of Hausdorff
measures it suffices to prove that Let 
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given a E (0, p ) we have that the functions vh (z, ~ ) are absolutely continuous
in (-a, a) for £"’-almost every z E Gh, hence

On the other hand, the integrals

are bounded because of the convergence of (vh - c~) to v. Since (ct - c~)
tends to from (5.17) we infer that is infinitesimal, hence

for any a E (0, p). Assuming by contradiction that 8 hk for some
8 &#x3E; 0 and some subsequence (hk), by (5.17) and (5.18) we obtain

for k large enough depending on a. Since a is arbitrary we find that 

Chk) tends to 0, a contradiction with Theorem 4.1 (ii).
STEP 4. Applying Theorem 4.5 to the functions uh with r = we

can find 1 /2-Lipschitz functions fh : B ~4 - R such that (we use (4.4), (4.5),
(5.9), (5.7))

for some constant Q &#x3E; 0. Possibly extracting a subsequence, we can assume
that the measures 

1
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are weakly converging in B,. to some measure v. Since the maximal height of
is infinitesimal, the measure v is supported in T.

. STEP 5. We will prove that p = is absolutely continuous
with respect to /~". The convergence of the Dirichlet integrals and the final
contradiction will follow at once.

Let us fix a cylinder C = x (- 3 p , 3 p ) contained in and
assume that p and xo fulfil the conditions

Let h (k) be a subsequence such that

and let gk : -~ R be the 1-Lipschitz solutions of the least area prob-
lems (4.2) with Bm (xo) in place of BR and fh(k) in place of v. Let

It is well known (and easy to check) that gk and gk are respectively the largest
and the smallest 1-Lipschitz extensions of the restriction of fh(k) to 8BP (xo).
In particular

and

Since fh uniformly converges to 0 in the functions gk uniformly
converge in to we set

For k large enough we have  2p, hence we can apply Lemma 4.4,
getting functions Wk E with the same trace of of a C, such that

and
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where Wk denotes the open portion of C above the graph of g+ and below the
graph of gk . Using Lemma 4.3 and taking into account (5.19) and (5.20) we
have 

- -~ ~ -. - , ~ ,

for any a ~ 1, hence Using the fact that

Wk does not intersect the graph of fh~k~ we obtain the following estimate on

Now, we define

and we compare with · Taking into account (5.12) and
(5.24) we get

Now, by Step 3, Jim (s,h(k) n C) exceeds wmpm up to an infinitesimal faster
than ~h(k) ~ Hence, letting k -~ -~oo in (5.27) and using (5.26) we obtain

Finally, our choice of p and the fact that and v are both supported in T
guarantees that = v(Woo) = 0 and

Hence,

By a standard approximation argument, the inequality remains true even
if (5.22) or (5.23) are not fulfilled. Indeed, the set of radii p for which (5.22)
is false is at most countable, and the set of radii p for which (5.23) is false is
,C 1-negligible, by (5.20) .,and the Fatou lemma. Since the cylinder C C Br/4 is

arbitrary, it follows that L B,14 = 0. 
12STEP 6. End of the proof. From Step 5, it follows that IVvhl2.en weakly

converges to in · In particular,
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Choosing p = PR125 and passing to the limit as h --~ +oo in (5.10) we obtain

This contradicts the energy estimate (5.16) with p = 0

6. - Proof of partial regularity

In this section we will prove the partial regularity of quasi minimizers,
stated in Theorem 3.1. Since w is a fixed function, we omit in this section the

dependence of the constants on w. Let 0, y &#x3E; 0, be given by (3.1 ).
If u E and x E K(u) we define

By Theorem 3.4 we obtain that, for any choice of fl E (0, 1 / 112), A satisfies the
following decay property, that for convenience we restate in a slightly different
way:

(i) For any q &#x3E; 0 there exists 81 (p, q) &#x3E; 0 such that the conditions

imply with C depending only on co, y.
Similarly, using Theorem 3.5, we obtain that D satisfies for any p E (0, 6/7)

the following decay property:
(ii) there exist &#x3E; 0 and E (0, 1) such that the conditions

LEMMA 6.1. Let P E (0, 1 ), A, D : (0, p) - R+ be nondeereasing functions
satisfying (i) and (ii) above. Then, for {3 &#x3E; 0 sufficiently small (see (6.3) below)
there are constants e, ?7, L &#x3E; 0 such that, setting

the following implication holds
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PROOF. We fix a constant p E (0, 1/(l 12)3) so small that

and we fix &#x3E; 0 according to (ii). Finally, we set

and we choose L &#x3E; 0 satisfying the conditions

Let us assume that E(p)  s and E(fJp) &#x3E; LpY for some p E (0, p).
CASE 1. Assume that

Our choice of 8 implies D(p)  moreover, using the inequality
&#x3E; LpY we get

and our choice of L implies Hence, we can apply (ii).
This, together with (6.4) yields

In this case (6.3) yields T:ll/4E(p).
CASE 2. Now we assume that (6.4) does not hold, hence

Our choice of E implies
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Moreover, (6.5) and &#x3E; LpY yield

and our choice of L yields , Since fl  1 we have also

Hence we can apply (i) with fJI/3 and P. This, together with (6.5), yields

In this case (6.3) gives
COROLLARY 6. 2. With the assumptions and the notations of Lemma 6. l, E ( p ) 

e implies

with a = min{l/4, y}.
PROOF. Let us assume that E(p)  c for some p E (0, p). We inductively

define an infinitesimal sequence of radii ( pk ) such that po = p, E

{~Ti,T2) and

Clearly, (6.6) holds with k = 0. Assume that the inequality is valid for pk; if

we choose pk+ 1 = ppk. Otherwise, L pk and Lemma 6.1 yields
that (6.6) is valid either with pk+1 = 1’1 Pk or with pk+1 = r2pk.

Given r E (0, p) there exists a unique k such that pk+i s r  pk; since

tl = fl/25  p  r2 = we have

and the statement follows.
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CONCLUSION OF THE PROOF. be given by Corollary 6.2. We need only
to choose Eo so small that (3.2) implies

By Corollary 6.2 we obtain that the assumptions of Theorem 3.3 are satisfied
in Q = Bp/2(X).
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