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1. Introduction

Let f be a locally bounded function from a p-dimensional Euclidean space K, to a
g-dimensional Euclidean space F,. For a given subset A of E, x F, we will consider condi-
tions on f of the following type: for each (£, %) €A, £€ E,, n€ F,, the function x—(z, f(x)>
has a certain regularity property in the direction & Here (-, > denotes the inner product
in F,. The problem is to determine the condition on A in order that these conditions on
f imply a corresponding (unrestricted) regularity property for the function f.

The answer to these problems is formulated in terms of the folldwing two algebraic
conditions on A. Let R denote the real numbers.

(4y if @ is a bilinear form (E,, F)~R and O(A)=0, then ®=0.

(d) if ® is a bilinear form (E,, F;)—R of rank 1 and ®(A)=0, then ®=0.

As examples of our results we mention the following. If the regularity property is
continuity or infinite differentiability, the condition (4) is necessary and sufficient for
an assertion of the above-mentioned type to hold. If we consider continuity of the first
derivatives, the condition (4) plays the same role. If { is locally bounded and <z, f)> is
constant in the direction & for each (£, ) €A, then it follows that f is constant if and only
if (4) holds. The same assumption implies that f is a polynomial, if and only if (4) holds.

If (4) holds, A contains at least pq elements. On the other hand, there exist subsets
A of E,x F,, which satisfy (4) and contain only p+q—1 elements. If g=1, then (4)
and (A) are equivalent and mean simply that the linear hull of {& (&, m)EA, n+0} is
equal to E,. An analogous statement holds of course if p=1. Qur results are trivial in
case p or ¢ is equal to one.

The above-mentioned problem becomes particularly interesting if the regularity in
question is described by the modulus of continuity. Then both of the conditions (4) and
1-672908 Acta mathematica. 119, Imprimé le 15 novembre 1967,
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(d) come into consideration. Assume that f is a locally bounded function from E, to F,
and that {x, f> has modulus of continuity <o(e) in the direction & for each (£, n)EA (see
section 1 for exact deffnition). If A satisfies (4), these assumptions imply that f is con-
tinuous, and that the modulus of continuity of f is < C6(e), where &(e) is related to o(g)
by formula (1.2), roughly é(c)ave i t-20(t)dt. The function 6(c) is always larger than of(e)
and sometimes of a strictly larger order of magnitude than ¢(g) when 0. If A satisfies
(4), the same assumptions imply that f has modulus of continuity < Ca(e). Theorem 1
gives complete information on these questions.

Our main results deal with bounds for differences instead of local regularity properties.
Assume that f is a continuous function from E, to F, and that any difference in the direc-
tion & of the function (7, >, i.e. any expression of the form [<{», f(x+2&)—f(x)>|, is bounded
by a constant C for all t€ER, x€E, and (£, 5)€A. If (4) holds we can then estimate an
arbitrary difference |f(z)—f(y)| by C,C, where O, depends only on A (Theorem 3 and
corollaries). If A satisfies only the weaker condition (4), we can not estimate the differ-
ences f(x) —f(y), but we obtain a similar estimate for the gth order differences, where ¢
is the dimension of ¥, (Theorem 5 and corollaries). These results are used to prove Theo-

rem 1.

1. The directional modulus of continuity
Let o be a function defined on the non-negative reals which tends to zero at the
origin.
Definition. K(o) denotes the set of functions f: E,~ F, such that to every compact
subset K< E, there exists a constant C such that for  and z+y in K
[(z+y)—f@)] <Cole), if |y|<e
If 0+-£€E,, we denote by K (£, ¢) the set of locally bounded functions f: E,— F, such that
to every compact subset K< E, there exists a constant C such that for x and z+{£€K,
¢ real
[z +t8)—f(x)] <Cole), if |t] <e.
Denote by X the set of all real-valued continuous subadditive and increasing func-
tions defined on the non-negative reals and vanishing at the origin. It is easy to see that

any class K(o) is equal to some K(g,) where o, €X. In fact we can take
o,(e) =inf {Zlo(e,); Xle; =, £, 20},
which is the largest subadditive and increasing minorant of o. If ¢, T€Z, the expression

0 <7 will mean that there is a constant C' such that o(e) <Ct(e) when ¢<1. Then ¢<r,

if and only if K(¢)< K(7). If 0 <7 and 7 < ¢, we write 0a v and say that ¢ is equivalent to 7.
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We will often use the following simple inequality. If ¢ >0, >0, and [a] denotes the
integral part of @, then

o(at) <o(([a] +1)¢) < (a+1)a(t). (1.1)
HoeX, we set
ale)=¢ (1 +a(1)+f1. t20(t) dt)), e>0. (1.2)
min(e, 1)

Lemma 1. If €, then 6€X and ¢ <4.

Proof. We will only prove that lim,_,¢ ¢(¢) =0 and that o <4. These statements follow

from the inequalities

S

1 1
a(e) ef 12t < ef t2a(t) dt < o(9) ef

£ £

1
t‘zdt+ef t2ot)dt, if O<e<d<l.
[4

For example, if o(g) =&%, 0<b<1, we get 6(¢c)=2¢-+(c”—¢)/(1 —b) when ¢<1, hence 6~vo
in this case. If o(e)=¢ we get &(¢)=2¢+¢log (1/¢), which shows that K(c) is sometimes
a proper subset of K(6).

The term gg(1) in formula (1.2) is needed to make &(¢) increasing, and the term &
is needed to make ¢(¢) positive in case o{e) is identically zero. The following theorem gives
a complete solution to our problem in the case when the regularity is described by the

modulus of continuity.

THEOREM 1. Let 0, 7€X and A< E,x F,. Assume that at least one of the following

two conditions holds

o<t and A satisfies (A), (1.3)
o<1 and A satisfies (4). (1.4)

Assume moreover that
{n, > EK(E, o) for each (&, ) EA. (1.5)

Then f€ K (7). Conversely, if (1.5) implies that | € K(7), then at least one of the conditions (1.3)
and (1.4) holds.

The theorem is trivial if p or ¢ is equal to one. In this case (1.4) implies (1.3), and
hence (1.4) drops out.

A few corollaries of this result are given in Section 4. Let us here consider only one
very simple but nevertheless quite illuminating example. Let E,=F,=R? and let o(e) =e.
Then &(g)ave log (1/¢). The theorem implies the following. In order to prove that a func-
tion f:R2—R2 belongs to K(c) we need at least four conditions of the type (3, f> €K(&, o).
To prove that f is continuous we need three conditions. Assume that A consists of the

following three elements: £=%=(1,0), £=#=(0, 1), £=x=(1, 1). Then it is easy to see
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that (4) holds, so that the modulus of continuity of f must be O(c log (1/¢)). Conversely,
since (4) does not hold, Theorem 1 implies that no stronger assertion about the modulus

of continuity of f follows from the assumptions. This fact can be seen directly as follows.

Take
fl@) = (x5 log |z|, —=,log |z|), where |z|=(af+25)t, f(0,0)=(0,0).

Then {y, f>€K(¢, o) for each (& ) €A (in fact for every (£, n) such that £=7). For reasons
of symmetry it is enough to verify this when £=#=(1,0). And this follows from the
fact that |(d/dx,); log |z|| = |,2,]/|2|2<1 when || =0. But it is clear that the state-
ment f€ K(G) can not be strengthened.

Several of our statements can be generalized if one considers, instead of the conditions
(4) and (A4), certain hull operations P and P defined on subsets of E,x F,, which we
now define. PA is the set of all (£0, #°) € £, x F, such that every bilinear form ®:(E&,, F,)—~R
which vanishes on A also vanishes on (£, 79). PA is the set of all (£, 7°) € B, x F, such
that every bilinear form @ of rank one which vanishes on A also vanishes on (&9, 9).
Then PA=E,x F, if and only if (4) holds, and PA=E, x F, if and only if (4) holds.
The following statement is proved in the same way as Theorem 1. The conditions (1.6)

and (1.7) below are equivalent:

f is continuous and {n, {> EK(£, o) for each (&, n)EA} (1.6)
implies G, > € K(£°, ) '
oc<vand (£n°)EPA or } 1)
o< and (£, 7% € PA. '

2. Consequences of the stronger algebraic condition (A)

The most important consequences of (4) are deduced from the theorem on decom-
position of vector valued measures (Theorem 3). In order to illustrate the condition (A4)
we give first a few simple consequences of (4).

The condition (4) is equivalent to the following: the set of tensor products £®%,
where (&, %)€A, spans the linear space E,® F,. Or equivalently, using a pair of bases,
the set of p x g-matrices (£,%,), where (&, ) €A, spans the linear space of all p x g-matrices.
To see that these conditions are equivalent to (4) we need of course only represent bilinear
forms by ®(&, n) =2Za &1,

Definition. Let 0=-£€ E, and k>1. We denote by C¥(&) the class of continuous func-
tions defined in K, such that the derivatives D}f(x)= [(d/dt)f(x +t£)];—0 exist and are
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continuous when §j<k. C* is the class of k times continuously differentiable functions.
O(£) denotes M- C¥(&) and C* denotes N 5—o C*.
Using a standard approximation technique we can prove the following theorem.

THEOREM 2. Assume that A< E, x F, satisfies (A) and that |:E,~>F, satisfies
<y, [ ECYE) for each (&, 9)EA. 2.1)

Then f€CY. Moreover, there exists a constant B which depends only on A, such that

| Df=)|| < B S, | Deln, f@)>|  for every z€ B,

Here || Df(x)|| denotes the norm of the differential of f at x considered as an operator from
E,to F, Conversely, if (2.1) implies that fEC", then (A) holds.

COROLLARY. Assume that A satisfies (A), that f is continuous and that <n, f> is con-
stant on all lines parallel with & for each (£,7)€A. Then f is constant.

In section 3 we will be able to prove the same assertion without assuming that f is

continuous.

Proof of Theorem 2. We have to prbve that an arbitrary first partial derivative of f
exists and is continuous. Choose bases in E, and F, such that this derivative is D, f,. (We
use the notation D, =9/ox,.) Since A satisfies (4), there exist b, and (&%, ) €A such that

1 when (i,5)=(1,1),

2 b”ﬂ’ﬁ:{o when (5, )+ (1, 1). (2:2)

Take g of class C! with compact support such that [y dz=1 and for any £>0 set

@)= f Ha+ ey) (o) dy.

Then for each (&, %) €A, DL, f.> converges uniformly on compact sets to D (n, f> when
&—>0. Denoting the first component of f, by (f.); we have by (2.2)

Dilfh= 3 0.De G 1. 23)

Thus D,(f,); is continuous and converges uniformly on compact sets to some continuous
function ¢ when ¢—0. Also, since f, is continuous, (f,), converges uniformly on compact
sets to f,. Using a suitable result from elementary calculus we conclude that f; is differ-

entiable with respect to z; and that D, f, =g.
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We also obtain formula (2.3) with f,—f. Since the constants b, depend only on A,
this proves the estimate of || Df(x)||.

We now prove the necessity of the condition (4). If (4) does not hold there exists
a non-trivial bilinear form @ such that ®(&, ) =0 for each (£, ) EA. We can represent ®
by ®(&, n) =<{BE, n>, where B is a linear operator from E, to F,. Take a function §:R—R
of class O such that 0<0<1, 6(¢)=1 when £<} and 0(f) =0 when t>1, take § and o
such that 0<d<1, 0<a<1 and set

fs.a(x) = 0(|2/a|®) Bx, for x€E,.

Then fs,, €C. If (BE,n)> =0 we have

d
Deln, fs.alx)) = [gt 0(] +1£|%a°) { Be, 17>J

=( Bz, n)-(x, &-a~0|x|0=20"(|/a|?)
<|IBll ¢ [n]|é]|=|?a~? max |6"|.

t=0

Hence | De(n, 15, 0(2)> | < Cba,

where C is independent of z, 6 and a. On the other hand, the differential of f5 , at x =0 is
equal to the operator B. Finally we note that |fs o(x)| <|B|-a for every x. Now choose
a, and §,, v=1, 2, ... such that Ja, < co and X§,/a, < co, and set

@)= 5 fs, o (2).

Then (y, f>€C' (&) for each (&, n) such that {(BE,#> =0, but f is not differentiable at the
origin.(*) This completes the proof of Theorem 2.

If we replace 01 (&) by C¥(&), k>1, the assertion of Theorem 2 becomes false, even
in the trivial case g=1 and p=2. To see this it is sufficient to observe that there exists
a function f:R2—R such that D}f and Djf exist and are continuous and D, D,f does not
exist everywhere. (Such a function is f(z) ==, x, log |log|z ||, 0<|z|<1/2, f(0)=0.)

Let M(E,) be the space of all complex-valued measures in #, with compact support.
The elements of M(E,) can be considered as linear functionals from the space C%Z,, C)
of complex-valued continuous functions on E, to the complex numbers C. Denote by
M (E,) the subset of M(E,) consisting of those u€M(E,) which satisfy u(p)=0 if ¢ is
constant on all lines parallel with &, that is if @(x +#£) is independent of ¢ for every a.
M(B,) is clearly a linear subspace of M(E,). The total mass of u is denoted |u|. We

(1) A simpler example is f(z) = (Bx) log |log |||, 0<]z|< 1/2, {(0)=0.
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have |[u||=sup {|u(¢)|; sup || <1}. The support of u is denoted supp u. Finally we
form the tensor product F,® M(E,) of the spaces F, and M(E,) considered as vector
spaces over the field of real numbers. Let C°(E,, F,) denote the real linear space of con-
tinuous functions from E, to F, To any element nQu€F,® M(E,) is associated in a
canonical way a linear functional from C%E,, F ) to C as follows: n®@u(f) =u({n, ).

We can now state the main result of this section.

THEOREM 3. Assume that A< E,x F, and that (&% n°)EPA. Then there exists a con-
stant C, which depends only on A, with the following properties. For each pg€M po(E,) such
that supp = B, = {z; |x| <r}, there exist (£, n*)EA and u,€Mp(E,), v=1, ..., n, such
that supp p,< Bg, for each v, Z)_1]|u, || <C|\uol| |7°] and

@ pg = gln”ww (2.4)

Conversely, if for each u,€Mg(E,) there exist (£, n*)€EA and p,€ M p(E,) such that (2.4)
holds, then (&9, n%) EPA.
By introducing some additional notation we can give Theorem 3 a condensed for-

mulation. To any subset I’ of F,® E, we associate a subset M of F,® M(E,) as follows:
Mr=U @M JE,); nRLET} = (nou; pEM(B,), n®&EET}.

Let the letter L denote linear hull. Then the main part of Theorem 3 reads: M. <L(Mr).

A measure p€M(E,) is called real, if u(¢) is real for every real-valued function ¢.
It is obvious that we can take all the u, in (2.4) real, if y, is real.

In the applications of Theorem 3 the measure u, will be a difference measure p,:
@@z +1£°% —@(x). It is essential to note that even if y, is a discrete measure, there may
not exist discrete measures y, such that (2.4) holds. This fact can be proved as follows.
Let f:R?2—R?, set £1=(1,0), £2=(0,1), £&=(1, 1) and set A={(&”, &);v=1,2,3}. Then
PA={(0,10); 0ER?, teR}. Define u, by wuo(p)=¢(£%) —¢(0). Assume that there exist
discrete measures u, € M (E,) such that

3
E @y =glé"®y,. (2.5)

Let % be an arbitrary (possibly non-measurable) solution of the functional equation
h{s+&)=h(s)+h(t) and set f=(fy, fo)=(h{xs), —h(x,)). If u is discrete, any function is
p-measurable. The functions (&Y, f>=h(x,), (&%, f>= —h(x,) and (&8, f>=h(x,)—h(x,) =
h(x,—x,) are constant on lines parallel with &1, £2 and &3 respectively. Thus the right-hand
side of (2.5) is equal to zero. Using the fact that %(0)=0, we see that the left-hand side
of (2.5) is equal to
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(E°@po) () = polELh(x5) — E2h(21)) = ETM(ED) — E2B(ED).

Howevef, if the last expression were equal to zero for every (&}, £3), the function A would
necessarily be linear. But this gives a contradiction, since we know that the equation
h(s+1t)=h(s)+h(t) has non-measurable solutions. Thus for some &° there does not exist
discrete measures u, satisfying (2.5).

The applications of Theorem 3 depend on the following simple lemma.

LemMA 2. Assume that @: E,— R is continuous, that yu€ M (E,) and that supp u< B, =
{z; |x| <r}. Then
lulp)| <||p| max {|p(z)—@(z+t&)|; x€B,, x+1£€B,, tER}.

Proof. Let x,, ..., z, be the components of x with respect to an orthogonal basis such
that £=(1, 0, ..., 0). Define ¢,: E,—~R by

PolZ1s -os Z5) = @(0, Ty, ..., 2,). Since u € M (E,), we have u(g,) = 0.

Thus l#@)| = |ule~po)| < |lull max {|p() ~go@)|; 2€ B,}.
But @y{x) can of course be written p(z+t£) for each x. This proves the statement.

CoROLLARY 1. dssume that (£°, n°) EPA, let f be a continuous function defined in
B, ={x; € E,, |x| <r} with values in F,, and assume that

[<n, flx+t&) ~fx)>| <Cy, of (§,M)€EA, 2€B,, 2 +IEEB,, tER.
Then there exist constants >0 and C, which depend only on A, such that
[<n®, flx+tE%) —f(x)>] < O C,|n°|, if € By, x+1£°€ By, tER.

Proof. Fix x€By, and z-+#£°€ B;, and define u, by uolp)=¢(r+1£% —@(x). Then
supp u,< B;, and ||uy[|=2. By Theorem 3 we can find C depending only on A and
(67, ") €A and u,€Mp(E,) such that supp u,< Bes,, Z,]u]| <2C|n°| and (2.4) holds.
Using Lemma 2 we obtain, if § <C-?

[<n®, H(z + &%) — f(z))]
= o0 ) =200 (<", )]

<2 |l || sup {|<n, fx+18) — f@)>]; (£, 9)€EA, z€B,, x +tE€B,}
<20 |n°| C;-

If we use Theorem 5 we can now prove part of Theorem 1.
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COROLLARY 2. Let €X, let f: E,~F, and let A be a subset of E, x F, satisfying (A4).
Assume that {n, f €K(&, o) for each (£, ) EA. Then fEK(0).

Proof. Since (A4) implies (4) Corollary 3 of Theorem 5 shows that f is continuous.
Corollary 1 then shows that on compact sets

|H(z+y)—fx)| <Cale), if [y] <de,

where § is the constant in Corollary 1. Since ¢ is subadditive, this implies that f€K(o).
The remainder of this section is devoted to a proof of Theorem 3.

Denote by j the Fourier transform of u:
Az) =pu(e < ?), z€E,.

If u€My(E,), we clearly have fi(z) =0 for each z such that (z, £ =0. Of course the con-
verse also holds, i.e. if 4(z) =0 on the hyperplane (z, £) =0, then u€ M (E,). To see this
we need only observe that a continuous function ¢: E,—R such that ¢(z - t£) is independ-
ent of ¢ for every « can be approximated uniformly on compact sets by linear combinations
of exponential functions €' <**> guch that (z, £y =0. The Fourier transform of an arbitrary
element of F,® M(E,) is defined by %?=n ® & and linear extension to all of ¥,® M(E,).
The result is an element of F,® 4, where 4 denotes the set of complex-valued real analytic
functions on E,. The set of Fourier transforms of elements in M(E,) is denoted M (E,).

We can now prove the necessity of the condition (£°, #°) EPA in Theorem 3 as follows.
Take a measure g, € M . E,) such that i(z) =<{£° 2>+ o(z) (e.g. u(p) =4(p(£°) —¢(0))). Assume
that the equality (2.4) holds, take the Fourier transform of both members, and finally
single out the linear part of each term. Since g,(2)=0 when (z, §*>=0, the linear part
of 1, must also vanish in the plane {z, £”> =0, i.e. the linear part can be written b,{2, £*)
with some complex constant b,. Thus we obtain the relation

PO £ =3 17 @byz, £, 2€E, 26)

It is obvious that the existence of such constants b, is equivalent to (&% #°) €PA.
A natural attempt to prove Theorem 3 would be to take b, such that (2.6) holds
and set

u,(z) = b,(z, £7)(o(2)/<2, £)). (2.7)

This expression defines an analytic function, since u,€ M. (E,). Moreover,

S 'Qu,=n’® and
2.M 1°®to 2.8)

u,(z)=0, when <(z,&>=0.
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However, the trouble is that u, need not be the Fourier transform of a measure (it is
always the Fourier transform of a distribution of order one). The idea of our proof is to
modify the functions u, so that they become Fourier transforms of measures with compact

support without losing the properties (2.8).
Assume that 7°®&= 3 bin'ef. 2.9)
i=1
The assertion of Theorem 3 is that there exist g€ M (E,) such that

n
0 r = y) d
7" ® o j;n ®g; an 2.10)

gi(z) =0, when <z, &>=0,j=1,...,n.

Let the dimension of the linear hull of 1, ..., " be r. Then we can determine r of the g;,
S8Y Jn_ri1s -» o from (2.10) in terms of gy, ..., g,_r. Set n —r=m. Then the first equation
in (2.10) becomes

gi= D ayg;+anpy t=m+1, .., n (2.11)
i1
Thus (2.10) is equivalent to
D ayg;= —agity, When (z,E)=0,i=m+1,...,n,
it

(2.12)
9:(z) =0, when (z,&5=0,i=1,...,m.

In constructing solutions g, to (2.12) we of course have to use an assumption on a,, cor-
responding to (2.9). This assumption can be expressed in a convenient form as follows:
there exist analytic functions %, such that (2.12) holds with g, replaced by «;. In fact, since
the functions u; defined by (2.7) satisfy (2.8), these functions must also satisfy (2.12).

Thus our problem is to find g,€ M (E,) such that

Z ;9= z AUy, when <Z’ §z> =07 1= 1’ ceey Ty (213)
j=1 j=1

where a;;=04; when ¢ and §<m, and a,; are the same as in (2.12) when m <i<n.

For the existence of g,€ M (E,) satisfying (2.13) it is obviously necessary that the
restriction of U,=>1L, a,,u; to the plane {(z, £'> =0 be the Fourier transform of a measure.
The functions U, have in fact a stronger property which we will now formulate. Take
a pon-negative function ¢ of class C* on the real line, vanishing when || >1 and satisfying
Jyp dt =1, and set ,(t) =r “p(t/r), if r >0. Let w be the Fourier transform of y,, and set w;(z) =
w({z, £). Then the function (z, &Hw(z)€ M (B,) (it is actually the Fourier transform of
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the measure which takes ¢ into (1/3) | @(t€)w,(t)dt). We assert that w, U¢€M(Ep), 1=1,...,n.
When i <m, we have U;=u, and hence

w; Uy = wyu, = by(<z, EDw) ((2)/<2, £D), i< m, (2.14)

which belongs to M (E,), since each of the expressions within brackets belongs to )4 (E,).
When i>m, we have YJL; a;u;= —a;,f, +u;, since w, satisfy (2.8) and therefore must
satisfy (2.11). Hence

w, U, = —ayfiow; +w,u, € M(E,), m<i<n. (2.15)

If h=p, u€ M(E,), we define || as ||u|. If g, hGM(Ep), we have of course |jgh <
llgll - |2|]. We shall need an estimate of ||w,U,||. It is immediately seen that |Jw,||=1 and
that ||<z, EDw,|| =(1/r) |9/ @)|dt=Cy/r. 1t is an elementary fact that if supp u,< B,, then

2@/ <z, E5]| < 2r] €] o]l
Thus, if supp p,< B,, then

“wzuzu <|bi ]](z, ESwi “.’20/<Z: | < |bi|200|§°|_1"l‘o"-
Using (2.14) and (2.15) we obtain
lleo: Uil <(18:]2C0|&°| 7 + [ @0 ) |4l

The constants b; depend on £° and 7° as well as on A. However, there exists a constant C
which depends only on A, such that for each (£°, #°) €EPA there exist b, and (£%, 5 )€EA
such that (2.9) holds and |b;| <C|&°| |#°|. Perhaps the simplest way to see this is tore-
place A by a finite subset A, such that PA =PA,, which is always possible. Similarly we
may take C such that |a,)| <C|#n°|. Thus we obtain

iUl <Cln°] ||, (2.16)

with a constant C which depends only on A.
We shall need the following lemma.

LemmaA 3. Let a;; be real numbers, 1 <i<n, 1<j<m. Then there exist polynomials
Pup=Puley, ..., %), 1L<j<m, 1 <Ek<n, of degree at most n, such that

Pu(x) =0, if 2, =0,1<j<m, 1<k<n (2.17)

> Za Pu@)ay,=a, i 2,=11<i<n,1<I<m. (2.18)

i=1k

.-

Using this lemma it is simple to complete the proof of Theorem 3. Define functions
p}ke M (Ep) by
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p]k(z) =ij(w1(z): ey wn(z))9 ZGEI,,,
and define g, by

06)= 3 pale) )= 3 5 pale) awuite), €8

Then py UkEM (B,) for every j and k, since P, is divisible by z, and w, UkEM (E,). More-

over,

i @y 9,(z) = Z Z Z @iy P (2) Gy Uy (2) = % @y (2),
=1 TET =1

when {z, £ =0 by virtue of (2.18), since w,(2) =1 when (z, £">=0. This proves (2.13)
which has been shown to imply (2.4).

It remains to prove the estimates of ||g,| and supp u,;. Writing ¢, =pu/wy, we have
P Ue=23w, Uy and |94 Ugll <llgall [[oox Ul = [2] 10 Uill, since fw,}]] =1. An estimate
of ||w, Uy has been given in (2.16). The norm ||p || depends formally only on the numbers
ay;, 1.e. on the vectors 7, ..., ", but these may depend on £° and 7°. However, since we
may assume that A is finite, it is clear that ||py|| can be estimated by a constant which
depends only on A (actually only on {; (£, 7)€A}). Using (2.16) and the definition of g,
we then get

2 llesll = Z lgsll < mnCl®| o]l < Cul®] [l

where C; depends only on A. To prove the estimate of supp x; we use the well-known
fact that supp ¢, < B, and supp g,< B, implies supp (o, %0s)< Br+;. We use the symbol
F1 to denote the inverse Fourier transform. It suffices to find C depending only on A
such that supp F~1p,< Bg,. It is seen from the definition of w, that supp F-1w,<= B,a,.
Since the degree of each of the polynomials P, is at most », we must then have

SuPP g —lpilcc Bnrcs
where ¢=sup {|& |; (¢, 7)€A}, and A is again assumed to be finite. The proof of Theorem 3

is complete.

Proof of Lemma 3. Let T =(t,;) be a non-singular m X m matrix with inverse §=(s,;).
If the matrix P=(P;) of polynomials and the matrix 4 =(a,,) of real numbers satisfy
{2.17) and (2.18), it is easily seen that the matrices

P =8P= ggls”P,k) and A'=AT = S:zl @yt y)

satisfy the same relations. We may choose 7' so that the last row in the matrix 4’ becomes
(0, ..., 0,1). We assume that such a transformation has already been made, so that
(anl’ ovey a’nm) =(O, seey O, 1)
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We will prove the lemma by induction on the number ». When n =1 the statement
is trivial. We assume that the statement is proved for # —1. Then there exist polynomials
Qi =Qu(®y, ..., 2, 4), j<m, k<n—1, of degree at most » —1, such that @, =0 if x, =0, and

m n-1
> D yQuay=ay i z=1i<n—-1I<m.
i=1 k=1

Setting @,,=0 when j=1, ..., m we note that the @, satisfy (2.17) and (2.18) for i<n—1.
By the induction hypothesis we can also find polynomials R, =Ry, ..., Z,1),

j<m—1, k<n—1, of degree at most n—1, such that B, =0 when z,=0, and

m-1 n-1
> > ay;RBpau=ay i z=li<n—-1,l<m-1. (2.19)
j=1 k=1

Take R, =...=R,,_,=0, R,,~1, and

. n—1
R,n=—k2lR}kam, when j<m-—1.

Then, since a,,, =1, we have
n n-1
2 Rytm =2, Rptym+Rpn'1 =0, if j<m—1. (2.20)
k=1 k=1

We claim that (2.18) holds with P, =R,. (Note that R, does not satisfy (2.17), since
R, =1.) First let I<m. Then Rja,;=0 if k=n or j=m, and hence the assertion follows
from (2.19) in this case. When [ =m we use (2.20) and obtain

m 7 m—1 n
2 2 Ryt =2 0+ aiy D> Ryt =d;,
=1 k=1 i-1 k=1

for every x and i<n.

Define the polynomials P, =P(x,, ..., z,) of degree at most n by
Pp=01-z,)Qu+x, Ry, j<m, k<n.

Then it is easily seen that P, satisfy (2.17) and (2.18). This completes the proof of the
lemma,

3. Consequences of the weaker algebraic condition (K)

We begin by proving a statement concerning infinite differentiability. Using the
Fourier transform we reduce this statement to a very simple statement concerning the
rate of decrease of a function E,—F, at infinity. The proof of the corresponding result
for continuity (Corollary 3 of Theorem 5) is more difficult. This result, including the
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sharp estimate for the modulus of continuity, will be deduced from a theorem on decom-

position of measures analogous to Theorem 3.
THEOREM 4. Assume that A< E, x F, satisfies (A) and that f: E,~ F, satisfies

<n, > €C=(&) for each (£, m)€A. (3.1)
Then f€C®. Conversely, if (3.1) implies that {€C®, then (A) holds.

LeEMMA 4. Assume that A is a finite subset of E, x F, satisfying (A) and that s is a
natural number. Then there exists a constant C which is independent of « och v such that

ol |u*<C, 2 1< 0| |<& wy|*, w€E, veF, (3.2)

Proof. The function on the right-hand side is positively homogeneous with respect
to v of degree 1 and with respect to « of degree s, and so is the left-hand side. Thus it is
sufficient to prove (3.2) when |v| = |u| =1. But if || = |v| =1 the bilinear form ®(£, 5) =
{u, £3{v, > can not vanish on all of A in view of the condition (4). Hence the continuous
function on the right-hand side of (3.2) must have a positive lower bound on the compact

set |u| =|v| =1. This completes the proof.

Proof of Theorem 4. Take y:F,~R, p€C® such that y=1 on some open set and
=0 outside some compact set. It will be enough to prove that g—yf€C®. It is clear
that {5, g> €C(&) for each (&, 7) € A. Since g has compact support we can form the Fourier
transform § of g. We may assume that A is finite. By partial integration we obtain in a

well-known way for any natural number s a constant (; such that

|<77: ﬁ(z)>| l<§’ 2> Is <,
for every (£,7)€A and z€ E,. Applying Lemma 4 we then obtain
|§@)] [2|]°<CCs, 2€E,,s=1,2,....

It is well known that this implies that g € C®. To prove the converse statement we assume
that there exist #=0 and v <0 such that (u, £){v,n)> =0 for each (& n)€EA. Then, if A
is an arbitrary continuous function R—R, the function f: #,~ F, defined by f(z) =vh({u, 2>)
satisfies Dy(z, f{>=0 for every (£, #)€A, and hence (, f> €C®(§) for every (£, n)EA. But
of course f does not in general belong to .

We now turn to the decomposition theorem for measures, which is analogous to
Theorem 3 but valid under the weaker assumption (&, %) €PA. The symbol P is defined
at the end of section 1.
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We will denote the convolution of u and v€M(E,) by uxv». The convolution can be
defined e.g. by
ux¥(@) = (v:p(x+9))),

where the subscripts have an obvious meaning. If k is a natural number we write y**

to denote the convolution pxux...%u (k factors). We will frequently use the fact that
~
wxvy=ps. This shows that M (%)) is an ideal in the ring M(E,).

THEOREM 5. Assume that A< E, x F, and that (£9, 7°)€PA. Then there exists a con-
stant C, which depends only on A, with the following properties. For each py€ M p(E,) such
that supp uo< B, = {z; || <r} there exists (£*,n*)€A and u,€M(E,), v=1, .., n, such
that supp p, < Bey, 2401 ||l <O|\pol|?|n° |, and

7°® g’ =v§1 7”@ fhy- (3.3)

If py is discrete, we can take all the measures p, discrete. Conversely, if for each pu,€ M p(E,)
there exist (&7, n*)EA and p,€ M (E,) such that (3.3) holds, then (&% 1°) €PA.

For the proof we need the following lemma, which is precisely the assertion of Theo-
rem 5 in the case where the dimension ¢ is equal to 1. Denote by L{£, ..., £"} the linear
hull of {&, ..., &"}.

LeMMA 5. Assume that E2€L{E, ..., &), E7€ B, and that py€ M (E,), and supp p,<
B,={z; || <r}. Then there exist a constant C, which depends only on &', ..., &, and measures
w, €M (E,) such that

]l <2l|soll and supp p, < Bey for each v, and po = 3 - (3.4)
If py ts discrete, we may choose u, discrete.

It I'c B, set Mr=U {M(E,); £€T'}. Denoting again the linear hull by L we can
formulate one part of Lemma 5 as follows: M ;< L(M7y).

Proof of Lemma 5. Note that Theorem 3 implies all the assertions of the lemma except
the fact that u, can be taken discrete if u, is discrete. We will nevertheless give a direct
proof here of all the assertions of the lemma. We may assume that &, ..., &* are linearly
independent. If n<p we take &1, ..., £° such that £1, ..., & form a basis for E,. Let P,
m=1, ..., p, be the linear operator E,— K, which takes >7_; ¢,&¥ into 27, ¢, £, and let
P, be the 0-operator. Define u, by

@) = po(@o P, —goPyy), v=1,..,m.
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If p(x+1£™) is independent of ¢ for every z, the function o P,, —¢@ o P,,,, is identically zero.
This shows that u, € M;,(E,). Similarly the function g o P,,; is constant in the direction
&9, since £°€ L{£Y, ..., £&"}. This shows that yy(p o P,,,)=0. Hence

Pol@) = po(@) —o(@ 0 Pria) = 2, ().
It is obvious that u, satisfies the estimates (3.4) and that u, is discrete if y, is discrete.

Proof of Theorem 5. Let B be a subspace of F, such that #°¢ B. Denote by A the
linear hull of {&; (£, 7)€A, n¢B}. We claim that

E0€ A, if (£, 70) EPA. ©(3.5)

In fact, if £9¢ 4, one could choose w€E, and v€ F, such that % annihilates 4 and v anni-
hilates B, but {(u, £%)<v, ®> +0. By the definition of 4 one would then have {, £){¥, 7> =0
for every (&, n) €A. This, however, contradicts the assumption (£°, %°) €PA.

Let N=N(n° A) be the set of all x € M(Z,) such that

n'Ou=2 10
for some u,€M»#(E,), and (§7,7*)EA. Then N is a linear subset of M(E,) (N is in fact

an ideal in the ring M(E,)). Our assertion is that ug? €N, if o€ M p(E,). Let Noy=Ny(n°, A)

be the linear hull of the set of all measures g of the form

Q@ =01 % .. K0, (3.6)
where o, €M #(E,), (67, n*)EA, v=1, ..., k, and n°€L{n", ..., 7/*}. Since each M (E,) is an
ideal, N, is an ideal. We assert that N < N. Since N is a linear set, it is enough to verify
that each g of the form (3.6) belongs to N. But this is obvious, since 5°=>,_, b, 5* for

some b,, and hence

17°®9=2177"®by9,

where ¢ belongs to each M »(E,), since M #(E,) is an ideal.

We now assert that M z.(E,)**< N,. This will prove (3.3), since of course W EM p(E,)*
To shorten the formulas we write M instead of M (E,). We will in fact prove the following
stronger statement. If (&%, ) €A forv=1, ..., k and %', ..., 7/* are linearly independent, then

ME* % Mpx...% Mp< N,.. (8.7)
We will prove (3.7) by induction on k for decreasing k. If k=g, then (3.7) is obvious.
Next, let k<q. If n°€L{n!, ..., *}, then (3.7) is again obvious, since in this case we have

even
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.Mgl*...*.Mgcho.

¢ L{n., ..., "}, we apply (3.5) with B=L{n, ..., #*}. Thus we find (¢/, {)€EA, j=1, ..., 5,
such that {/¢ B for each § and & €L{0", ..., 6°}. Then for each j the k+1 vectors n, ..., 7%,

{7 are linearly independent, and hence the induction assumption gives:
ME T e Max..%xMax My <N, j=1,..,s. (3.8)

However, since E°€L{0?, ..., 0°}, we have M ;< My + ...+ Mg by Lemma 5, which shows
that (3.8) implies (3.7). This completes the proof that Mz'c Ny<= N.

The proof shows that u5? is the sum of at most p? terms of the type (3.6), where each
o; arises from a decomposition of u, of the type considered in Lemma 5. Thus each g,
can be chosen so that ||g;|| <2||u,|| and supp ¢,< B, if supp u,< B,, where C' depends
only on {&; (£, n)€A}. Then ‘

SUpp @ = Supp 01 % ... ¥ 0 < By, < Byey,
and llell <2{|eoll* <27(1 + || 0| )-

Our proof shows that 7°®u3? is the sum of at most p? sums of the form >{ b, 7’ ®p,
where o is a measure of the form (3.6). To estimate lzt»]] it therefore only remains to
estimate b,. However, it is obvious that we can take b, so that |b,| <C|%°|, where C

depends only on the set {#; (£, ) €A}. Thus we obtain the estimate

llaeol] <O+ [lxol[ ) |°1
with a new constant C. For homogenjeity reasons we must in fact have ||u,|| <O|luoll?|7°|-
Finally, if pu, is discrete, we can take all the measures g; discrete by Lemma 5, and this
of course makes all the measures u, discrete as well.

We now prove the necessity of the condition (&%, %) €PA. I (£9, 7 ¢PA, we can
choose % and v such that {u, £){v, 5> =0 for every (&, ) €A, and (u, §%{v,%°> £0. Choose
bases so that u=(1, 0, ..., 0), v=(1, 0, ..., 0). Then &,%, =0 for every (£, ) EA and £ ) +0.
If the formula (3.3) holds, then in particular

s = 2. b
Choose for u, the measure pg(p) =@(£%) —@(0), and take ¢ depending only on z,, i.e. ()=
h(z,). Then nip,(p)=0 for each v, since either 7] =0 or u,(p)=0. But if A(x,)=={, for
instance, we have
mus(e)=niq! (£)?=+0,

which gives a contradiction. The proof of Theorem 5 is complete.
2 — 672908 Acta mathematica. 119, Imprimé le 15 novembre 1967.
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Set Agp(x) =@(x+E&) —@(x) and define Afgp(x) recursively by Alp(x)=A AL @(=).
Applying Theorem 5 with u,(@) = A ¢(x), t real, we immediately obtain (in the same way
as Corollary 1 of Theorem 3 was deduced from Theorem 3):

COROLLARY 1. Assume that (£9,7°) EPA and let f be an arbitrary function

B, = {;2€E,, |z| <r}-F,
such thot
[ Ao, fl@)>| <Oy, when (&m)EA, 2€B,, x+tEEB,.

Then there exist constants 6 >0 and C, which depend only on A such that
lAtq£°<n0’ f(x)> l < 01 02|77°| ’ when x eBBn t§0 € Bc)‘r' (39)

Note that we obtain the estimate (3.9) for quite arbitrary functions, since we can
choose the measures u, in Theorem 5 discrete.

COROLLARY 2. If Ac E, x F, satisfies (4) and if f: B, F is a locally bounded func-
tion such that <, > is constant on lines parallel with & for each (&, ) EA, then f is a (vector
valued) polynomial of degree at most qg—1.

Proof. Applying Corollary 1 with u, equal to the difference measure py(p) =@(£%) ~¢(0) =
Agpg, we find that AL, f> =0 for arbitrary &° and #°. It is well known that a locally
bounded function y(t) of one variable such that Afy(f) =0 for all s and ¢ must be a poly-
nomial of degree at most ¢ —1. Hence t—<#°, f(x +1£%)) is a polynomial of degree at most
g —1 for each £° and #°. It is easy to see that this implies that f is a polynomial of degree
at most ¢ —1.

Using Corollary 2 we can replace the condition that f is continuous in the corollary
of Theorem 2 by the weaker condition that f is bounded.

If A does not satisfy (A), of course no regularity property for f follows from the
assumptions. In fact, relative to suitable bases in E, and F, we then have &5, =0 for
each (£,7)€EA, and thus any function f of the form f(z)=(f,(%;), 0, ..., 0) satisfies the
assumptions.

Let us say that the function f is continuous in the direction &, if f(x+1£) tends to
f(x) uniformly on compact sets when ¢ tends to zero.

COROLLARY 3. Assume that A< E, x F, satisfies (4), that f: E,~ F is locally bounded,
and that {n, [> is continuous in the direction & for each (&, m)€EA. Then f is continuous.

To prove Corollary 3 it remains only to estimate the first difference of a function
of one variable in terms of bounds for the gth difference and for the function itself. A
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very sharp estimate of this kind is given in Theorem 6. However, if we only want to prove
that f is continuous without caring about the modulus of continuity, we can manage
with a much weaker estimate, such as the following. Let k be a natural number and let

p be a real-valued function on a finite interval I<R. Set
w(y, &) =sup {|Afp(@)|; z€1, z+HEI, |t] <e}.

LeMmA 6. There exist constants C and g,, which depend only on the length of the interval
1, and a constant Cy depending only on 8, such that

o,(p, &) < O(Csan(y, &) +0 max |p|), if 0<e<g and O>e. (3.10)

This inequality shows that lim,_ o w,(y, &) =0, if lim,_,¢ w(yp, &) =0. Corollary 1 and
Lemma 6 together imply Corollary 3. We do not prove Lemma 6 here. By simple consi-
derations one can prove (3.10) with C3=06=%, a>0. Theorem 6 implies (3.10) with Cy=
log (1/6).

If we use Theorem 6 we can obtain exact information about the modulus of con-
tinuity of f.

CoROLLARY 4. If A satisfies (4) and (n, f> €K(&, 0) for every (£, 1) €A, then fEK(5).

Proof. We may assume that A contains only a finite number of elements. Then for

each compact set K< E, we can choose C (independent of ¢) such that
| Aieln, f(2)>| < Oo(e), when (£,9)€EA, €K, z+t£€K, |t£| <e.

Applying Corollary 1 with B, equal to an arbitrary ball with radius ¢ contained in K we
see that for any compact set K< E, there exist C and >0 (independent of &) such that

| Afeln®, f()>| < Co(e), when z€K, z+#£2€K, |t8°] <de.

Let K, be another compact set, and assume that K is so large that K+ {z; |z| <1}< K.

If  is fixed in K, we then have an estimate of the gth difference of the function
b 8>’ flz+8E0))
on an interval I of length at least 2/|£9]. Thus we have with a new constant C
|AZE(t)| < Cole), tEL.

(We frequently use the fact that o(ae)<(e+1)o(e) in view of the subadditivity.) By
Theorem 6 with k=1 this implies that %€ K(5). Here it is essential that & is definied so
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that ¢ <Co(e) even if o(e) =0. Applying this result for £° and #° in a pair of bases for E,
and F, we obtain f€ K(5).

The assumption that f is locally bounded, whieh is included in the definition of K (¢, ),
can not be omitted. This is seen from the example considered after Theorem 3. With the
same notation, {£?, f> is constant on lines parallel with &¥ for y=1, 2, 3, and A satisfies
(4), it A={(&, n*);v=1,2, 3}. But f is not continuous if A is a non-measurable solution
of h(s+1)=h(s)+h().

Finally we make a comment on the number ¢ in the term u7¢ in Theorem 5. Assume
that fge(2) =<&° 2> +o(z) and that formula (3.3) holds. Taking the Taylor expansion of
degree m of the Fourier transform of both sides we obtain

PO, "= 2 O (&2, (3.11)
for some homogeneous real-valued polynomials r,(z) of degree m —1. If
A={& np)sv=12,..,n}

is fixed and m is fixed, the dimension of the linear space of expressions on the right-hand

side of (3.11) is at most » (mm f 1_2), since the number of terms in each r,(z) is at most
(m; f ;2) The dimension of the linear space spanned by all the functions 27°® (&9, z>™
for E°€E,, n°€F, is ¢ (m +71:_ 1). Thus, if for each £2€E, and #°€ F, there exist 7,(2)
such that (3.11) holds, we must have n (m;fi2) =q (m * :: _1) or equivalently
nzq(m+p—1)/m. However, f m<g and p>1, then g(m+p—1)/m>q+p—1, which
implies that n>¢g+p—1. On the other hand, for any p» and ¢ there exist A consisting
of precisely p+g—1 elements such that PA=E,x F, (Lemma 7). These observations
prove that the number ¢ in the term ug? in Theorem 5 cannot be replaced by any smaller
number depending only on p and q.

We have seen that if (£°, 5% €EPA, then there exist polynomials r,(z) of degree ¢—1
and (&7, #*) €A such that

n

7’ @<L, 2= 2 7’ @r(z) &, ). (3.12)

y=1

{The converse statement is of course also true.) An examination of our proof of Theorem 5
shows that its algebraic content is very close to a proof of this fact. To make this point
clear we need to reformulate (3.12). Let E;?=E, V ... V E, (¢ factors) denote the symmetric
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tensor product of ¢ copies of E, (see [2] for a definition). The elements of £,? can be iden-
tified with homogeneous polynomials of degree ¢ in p variables. Set G=F,® E;?. Let G4
denote the set consisting of all elements of G of the form n®&v &'V ...V %L, where
(£, m)EA and &, ..., £%1 are arbitrary elements of E,. Let L denote linear hull. Then
7°®@(£%)V9EL(G)) means precisely the same as (3.12). It is easy to see that our proof of
Theorem 5 shows that (£°, #%) EPA implies 7°® (£°)V? €L(G,). However, we wish to empha-
size that one cannot deduce Theorem 5 from this fact. Theorem 5 depends also on the
fact that—in somewhat vague terms—one can generate L(G,) from G, by varying one
of the £ at a time.

4. Conclusion of proof of Theorem 1

Corollary 2 of Theorem 3 and Corollary 4 of Theorem 5 together prove the first part
of Theorem 1. It remains to prove the necessity of (1.3) or (1.4).

To prove that (1.3) or (1.4) holds means to prove that each of the following three
statements hold

(a1) <7
(ag) A satisfies (4)
(as) <17 or A satisfies (4).

If (1.5) implies that f€K(7), it is obvious that (a,) holds. That (a,) must hold follows
from the remark following Corollary 2 of Theorem 5. It remains to prove (a;). Let us
assume that (4) does not hold; we then have to prove that §<7. We shall do this by
constructing a function f: B,—> F, such that

(b,) <n, EK(&, o) for each (&, 77)€EA, and
(bs) f€K(7) implies 6<7.
Since (A4) does not hold there exists a non-trivial bilinear form ®: (E,, F;)—>R which

vanishes on A. We can represent @ in the form ®(£, 5)={4é, n), where A4 is a linear

operator E,~F,. Set
flx) = (dx]| Az |)o(| Ax|), =z€E,.

Then (b,) is obviously true. We claim that <z, f) € K(§, 0) whenever {A&, ) =0; this will
prove (b,). We may assume | Ax| <|A(x+£)|. Then

&(IA(x+ts>|)_&(|Axl))‘
| Az +8&)| |Az|

|<n, fz+ t&) — f(@)>] = l {n, Az (

[+t
<| <y, Az | J‘IAII s 2 o(s)ds.
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Using first the fact that o is increasing and then that o(sf) <(1 +s)o(t) we obtain, if a <b,

fb s 20{s)ds < o(b) J‘b s™2%ds = g(b) (b — a)/{ab)

a

b \b—
<o(b-a) (1 +b_a)—a—b“<(2/a)a(b—a).

With a = |Az|, b=|A(x+4£)|, we have b—a < |A4t£| and hence

|, flw+16) ~f(o)>] <2|m|o(| AtE])<2]n| L+ [ 4&Do([¢]).
This completes the proof of Theorem 1.

We will now state a few consequences of Theorem 1.

There is a simple sufficient condition on A in order that PA = E, x F,. To formulate
this condition we need the following definition. A finite or infinite set H of elements of
a linear space is said to be r-wise linearly independent, if each subset of H consisting of
at most r elements forms a linearly independent set. It is obvious that if p>2 there are

infinite subsets of E, which are p-wise linearly independent.

LeMMA 7. Assume that A= {(&”, p*); v=1, ..., p+q—1}< E, x F,, where {£"} is p-wise
and {5} is g-wise linearly independent. Then A satisfies (A), i.e. PA=E,x F,.

Proof. Assume that (u, £){w, §*> =0 for every ». Then either {u, £*>=0 for a set of
p indices, or (v, 5*> =0 for a set of ¢ indices v. This shows that u or v must be equal to zero.

The above argument shows that PA + E, x F,if A contains less than p +¢—1 elements.
If, in addition, {£*} is p-wise and {5’} is g-wise linearly independent, we can in fact prove
that PA is as small as it can be, namely PA =A. This statement together with Lemma 7
shows that in the case where {£7} is p-wise and {5} is g-wise linearly independent we
must have either PA =, x F, or PA=A, depending on whether or not A contains at

least p +¢—1 elements. We will not prove this statement here.

COROLLARY 1. Let ¢ €X and assume that £YER?, y=1, ..., m =p, form a p-wise linearly
independent set of vectors. Let g, be functions from R? to R such that g,€ K(£7, o) for each v.

Assume moreover that

S ewg, =0, i=1,....,p—1,
v=1

and that the m+p—1 vectors in B™ (1,0, ..., 0), ..., (0, ...; 0, 1), (€1 15 s €1, ) ooy (Cpn1s oo
Cp1.m) form an m-wise linearly independent set. Then each g,€ K(5).

Proof. Define f: R°—R™ by f=(gy, -, §m) and take 7¥ =0 parallel to the yth coordinate

axis in R™ when y <m and 5” = (C,_p 1 +-s Cy—m,m)» When m <v <m +p —1. Then for arbitrary
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EmL L, E™P-1 we have (n?, [>EK(&v,0) for v=1, ..., m +p —1. Hence f€K(6) by Theorem
1 and Lemma 7.

In the case p =2 we obtain the following.

COROLLARY 2. Let 0€Z and let £7€R2, y=1, ..., m, be pairwise linearly independent.
Let g, be functions from R? to R and assume that g,€ K(&”, a) for each v and that >.".1g,=0.
Then g,€ K(6) for each v.

Note that the last condition of Corollary 1 is trivially satisfied in this case, since all
the coefficients ¢,, are equal to 1. Note also that the assertion of Corollary 2 is trivial if
m <2. The example considered after Theorem 1 corresponds to the case m =3 in Corollary 2.

In a recent paper [1] we applied a result very close to Corollary 2 (Lemma 7 in [1]).
Here it was known of a continuous function f: R?->R? that (&, > €K(&, ¢) for every non-
zero §ER?, and we wanted to estimate the modulus of continuity of f. The estimate that
we gave in [1] was not the best possible. However, this situation is easily analysed by
means of Theorem 1. Setting A = {(&, £); 0+&€R?} we have of course PA=E, x F,, but
PA +E, x F,. This shows that f€ K(5) and that no stronger conclusion is possible.

5. The inequality for the moduli of smoothness

In the proof of Theorem 1 we used an inequality between the so-called moduli of
smoothness of various orders, which was first proved by Marchaud [3]. This inequality
will now be described. In order to make the paper self-contained we have included a
proof here. A proof can also be found in Timan’s book on approximation theory [4].

Let g be a real-valued function on a finite subinterval I of R and % a natural number.
The kth order difference

k k‘ .
Afg(x)= >, ( ) (—1)**g(x+jt)
=0\
and the modulus of smoothness of order %

w9, &) =sup {|Afg(x)|; z€1, z + k€, |t]| <&}

have already been considered. When k=1, (g, ) is of course the modulus of continuity
of g. It is obvious that w,lg, &) =2 "m,(g, &) if k<n. The result of Marchaud is an estimate

in the opposite direction.

THEOREM 6. There exists a constant C which depends only on q and on the length of
the interval I, such that if 1 <k<gq,
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1

(g, &) < Ce* (f

€

1w, (g, t)dt +sup ]g|), £>0. (6.1)

Special cases of Theorem 6 have frequently been considered in the literature. For
example, Zygmund considers so-called smooth functions in connection with trigonometric
series [5]. A function is called uniformly smooth in an interval, if (f(z+1) + f(x —t) — 2f(x))/t
tends to zero uniformly when ¢ tends to zero. It is well known that such a function must
have modulus of continuity O(e log (1/¢)). This simple assertion is of course implied by
Theorem 6 (k=1, ¢=2, w,(g, &) <C¢).

The inequality (5.1) is closely related to the theory of best approximation. Note for
example that the expression &(g) occurs in the converse of Jackson’s theorem (see Timan
[4], section 6.2.1).

Proof of Theorem 6. Let T, be the translation operator defined by T,g(t)=g(¢t-+k)
and J the identity operator. Using the fact that 7% =17, we obtain (multiplication of

operators defined as usual)
(Top— IV — 2Ty, — T = (T — T V(T + I Vo~ 24))
= (T, =YY (T + ) 4+ (T +J) 22+ .+ 2571,
Since (T, —J)’g=Afg, this shows that for each ¢ and & such that t€ I and ¢ 4-2kh € I we have
| A g(t) ~ 2°A%g)| <k 2" winlg, [A]).
By the triangle inequality we then obtain
[A%g(®)] <2 Fwy (g, |22])+ (k/2)wrialg, |B]), €T, t+2hkEL. (5.2)

Let d(I) denote the length of I. Assume that €1, t+hk€JI and that |kk| <d(I)/3. Then
either t —hk €I or ¢t +2hk € I. Using this observation and the fact that | Ak g(t)| =|A%,g(t +A)|
we obtain (5.2) for all ¢ and % such that t€1, t+hk€I and |hk| <d(I)/3. Hence

w!c(g: 8) < 2-kwk(gr 28) + (IC/Q)CO;H_I(Q, 8)’ lf 0<e <d(I)/3k (53)

Repeated use of (5.3) will now prove the theorem when g=%+1. Let us show this by an

induction argument. Set

1
H(e)=¢" (f s wra(g, 8) ds -+ sup Igl)

€&

If C>k? and ¢<} we have, since w, (g, £) is increasing,
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2

(k/2) 0k 11(9, &) < wr41(g, €) C’s"f s~ s

2e
< Cs"f ST¥ Y wii1(g, 8) ds < O(H,(e) — 27 FH(28)). (5.4)
Adding (5.3) and (5.4) gives
wi(g, &) — CH,(e) < 27" (wylg, 26) —CH,(2¢)), if 0<e<e,, (6.5)

where £,=min (§, d(I)/3k). Since wy(g, &) <2*sup |g], it is clear that w,(g, &) —CH(e) <0
when g, <e<1, if ('>(2/gy)*. This together with (5.5) proves the theorem in the special
case where ¢=Fk+1.

Using this special case of the inequality we obtain, if n =k +1,

1 1 1
f s 1w, (g, s) ds<f sk1ost (f " Y, 4a(g, w) du+sup |g|) ds

& s

1 u
< Of w " L wn (g, u) f §" ¥ 1dsdu+C sup |g|

&

1
<C’f w " wyi1(g, w) ut " Fdu + C sup |g]

&

1
= Of Y wn41(g, w) du+ C sup |g|.

€

Combining this inequality with the special case already proved we obtain the general
case inductively.
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