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Partial Regularity of Minimizers 
of Quasiconvex Integrals with Subquadratic Growth(*). 

MENITA CAROZZA - NICOLA FUSCO - GIUSEPPE MINGIONE 

Abstract. - We prove partial regularity for minimizers of quasiconvex integrals of the form 

~ F(Du(x) ) dx where the integrand F(~) has subquaclratic growth~ i.e. <. L( 1 + ), I F(~) I ] 

with 1 < p < 2 .  

1. - Introduction. 

In this paper we study the partial regulari ty of minimizers of the functional 

I ( u ) =  ~F(Du(x))dx, 

where ~ is a bounded open subset of R ~, u is a W 1' P(t2; R N) function,  with p > 1, and 
F(~): RnN"'>R is a C 2 uniformly strict quasiconvex function i.e. 

(1.1) fF(~ +D~(x))dx >I f [F(~) + v(1 + + IDa(x)12)(p-2)/2 IDa(x)12]dx, 

for any ~ e R ~N and q~ e C 1 (~2; R N). 
This condition was introduced in case p I> 2 in a paper by Evans (see [7]). He proved 

that  if F satisfies (1.1) and 

(1.2) [D2F(~)I << . L(1 + 1~12) (p- 2>/2 
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then a minimizer of I(u) is C l 'a on an open subset t90c~9 such that meas(tg-tg0) =0. 
This result was later generalized in [3] where condition (1.2) is dropped (see also 

[12]). At the time these papers were written no examples of genuine quasiconvex func- 
tions with subquadratic growth at infinity were known. However recently V. ~verak 
(see [16]) gave an example of a quasiconvex ( and not convex neither polyconvex) func- 
tion depending on 2 • 2 matrices and having polynomial growth with exponent 
1 < p < 2 .  

In this paper we extend Evans' result to the case where F satisfies (1.1) and p is any 
exponent between 1 and 2. 

We notice that a first regularity result in this direction was obtained in [5] under 
the more restrictive assumption 2n/(n + 2) < p  < 2. 

The proof of the regularity of u is based, as usual, on a blow-up argument aimed to 
establish a decay estimate for the excess function 

E(xo, R) = - ~ I V ( D u ( x ) ) -  V((Du)~o,R)I 2 dx, 
BR(xo) 

where 

Comparing to the case p 1> 2 and the case studied in [5], we have to face a few technical 
difficulties. 

A point where one needs the assumption p > 2n/(n + 2) is in proving the following 
Sobolev-Poincar~ type inequality 

(1.3) 

2)/2n 

<~ c ( ~ l V(Du)12 dx) 

provided u e W 1' P(tg; RN). 
It is not clear to us if (1.3) holds when p e (1, 2). Indeed we can prove that an in- 

equality of this kind is still true if one adds a constant c = c(n, p) on the right hand side 
of (1.3), but unfortunately this extra term would give serious troubles when one blows 
up the solution. 

However, we have been able ( see Theorem 2.4) to prove that if p e (1, 2) an in- 
equality of the type (1.3) holds if one increases the radius of the ball on the right hand 
side. 

Another technical point to overcome is to prove that if u e W 1' 1(~9; R N) is a weak 
solution of a linear elliptic system with constant coefficients, satisfying the strong Leg- 
endre-Hadamard condition, then u is locally W 1' 2 hence C ~ : a fact that does not seem 
to be known in the literature. 
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2. - Prel iminary results.  

In the following ~2 will denote a bounded open set of R ~, BR(xo) the ball { x e  
R~: I x - Xo I < R }7 and ff h is an integrable function we define 

hxo, R : :  ~ h(x) d x :  (29 1Dn f h(x) dx 
BR(XO) n 11' BR(Xo) 

where ~ n is the Lebesgue measure of the n-dimensional unit ball. When no confusion 
may arise we write simply ha in place of h~o, R or BR in place of BR(xo). Throughout the 
paper p will be a number  between 1 and 2 and for ~ e R k we shall denote 

(2.1) V(~) = (1 + ]~[2)(p-2)/4~. 

The following s ta tement  contains some useful properties of the function V. 

LEMMA 2 .1 . -  Let 1 < p < 2, and V: R k-~, R k the function defined by (2.1), then for 
any ~, 7 e R  k, t > 0  

(i) 2 (p-2)/4 rain{ I~l, I~l '/~} ~ [v(~)[ ~<min{ I~l, [~Ws}, 

(ii) [V(t~) [ <<. max {t, t p/2} [V(~) I, 

(iii) [V(~ + 7) [ <<- c(p)[[V(~) [ + IV(7) [], 

p I V(~) - u(7) l 
(iv) ~ [ ~ -  7[ ~< (1 + i~1 ~ + 171~)(,-~)/4 <<. c(k, p) I~ - 71, 

(v) [V(~) - V(7) I ~< c(k, p) [ V ( ~ -  7) I, 

(vi) IV(~-~?)[ <~c(p,M)[V(~)-  V(7)[ i f  17[--<M and ~ e R  k. 

PROOF. - Properties (i)-(ii) are easy to check. 
To prove (iii) let us assume 171~ < I~1. I f  I~1 ~< 1 by (i) we get  

IV(~+ 7)[ ~< I~ + 71 ~<2[~[ ~<c(p)[V(~) I , 

and if I~[ ~> 1 by (i) again we get  

IV(~ + 7) [ <<- I~ + 7[ p/2 <~ c(p) I~lp/2 <- c(p) I v(~) I 

Inequality (iv) is proved in Lemma 2.2 in [4], while (v) can be immediately derived 
from (iv). 

To prove (vi) notice that  ff 17[< M 

3 3 
I ~ -  7[ 2 t> I~l 2 + 171 ~ -  2 [~[ [71 /> ~ [~ [2_  3 [71 ~ t> ~ [~[2 _ 3M 2 " 
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From th~s inequality and from the inequality on the left in (iv) we then get 

[V(~- ~])[ = (1+ [~ -  ~][2)(p-2)/4 [~_ V[ ~< 

(1 + 4M2)(2-P)/4(1 + 4 M 2 +  [ ~ -  ~] [2)(p-2)/4 [~_ ~][ 

( ~ )(p-2)/4 
~< ( 1 +  4M2)(2-P)/4 1 + M 2 + - [ ~ [  2 ] ~ -  ~/[ ~< 

4 

<~c(p,M)( l+[~[~+[~][2)(p-2) /a[~-~[<~c(p,M)]V(~)-VOl)[ .  .. 

Let h: R~---)R k be a locally integrable function. The Hardy-Littlewood maximal 
function M(h) is defined for any x �9 R ~ as 

sup ~ [ h ( y ) [ d y .  M(h)(x) 
r ~ 0  * 

BR(X) 

It is well known that M is a continuous operator from L q to L q, if q > 1. The follow- 
ing result, which is a slightly modified version of Proposition 1.2 in [10], shows that the 
continuity properties of the maximal operator M hold in more general situations. 

PROPOSITION 2.2. - Let A:[0 ,  + ~[ - - ) [0 ,  + ~ [  be a continuous function such 
that 

(i) A(2t) ~< KA(t) for any t > O, 

(ii) there exists r >  1 such that t - - )A( t ) / t  r is increasing. 

Then there exists a constant c = c(n, K, r) such that i f  f is a nonnegative, measur- 
able function in R ~, then 

f A ( M ( f ) ) d x  <<.c ~ A ( f )  dx .  
R n . R n 

We now apply this proposition to a particular ease, which will be useful in the 
sequel. 

PROPOSITION 2.3. - L e t  1 < p < 2 and a > 2 /p,  then there exists c = c(a, p, n) such 
that i f  h: R ~-~ R k is measurable, then 

[ [V(M(h))[ a dx<~c f IV(h)[ ~ dx .  
Rn R~ 

PROOF. - Set for t > 0 

A(t) = [(1 + t2)(P-2)/4t] a 
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and notice that, by (ii) of Lemma 2.1, we have for any t > 0 

A(2t)  < 2"A(t) 

and that, ff r = ap/2 > 1, the function 

A(t) _ [ t ](a(2 - p))/2 

t~ [ (1 + t2) 1/2 ] 
is increasing in [0, + ~[ .  The result  then follows from Proposition 2.2. 

We are now in position to prove the following Sobolev-Poincar~ type inequality. 

THEOREM 2.4. - I f  1 < p < 2, there exist 2/19 < a < 2 and ~ > 0 such that i f  u 
e WI'P(BsR(Xo), RN), then 

(2.2) (BR(~Xo) ] v(U-;x{}'R) [2(I+O) dx)I/(2(I+o))~C(B3~R(Xo) ]V(Du) [ a dx) 1/a , 

where c -- c(n, p, N) is independent on R and u. 

PROOF. - Setting ~(y) = (1/R)[u(xo + Ry) - u~o ' R], we may always assume x0 = 0, 
R = 1 and Uo, 1 = 0. Then for any x e B1 we have 

I Du(y~ I lu(x)l~-c(n,N) ~ i ; - ~ =  1 dy= 
Bx 

B1 f'l B~(x) 
IDu(y) I IDu(y) I dy],  

ix_yln_l dy + f ]x-Yl n-1 B1 \Be(x) 
with 0 < e ~< 1 to be chosen. Denoting by Du the zero extension of Du outside Ba, we 
have 

1 1 ] 
{s2-i- 1 ~< ix _ y] < s 2 - i }  B2(x) 

~:o ~ ;[ IDu(y) ldy + ~n-----7 f ,Du(y) ldy Be/2i(x) B 2 (x) 
[ 1 ] 

<~ c E(M(D--u))(x) + ~ ~ IDu(y) l dy . 
B2(x) 

Noticing that  the function t--* (1 + t2)(P-z)/2t 2 is increasing in [0, + :r and using 
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(ii) and (iii) of Lemma 2.1, from the inequality above we deduce, since 0 < e ~< 1, 

(2.3) I V(u(x)) 12 <~ c(n, p, N)[ t V(sM(Du)(x))I 2 + 

[ I( )l s p 1 V ~ IDu(y) l dy <~ c - -  I V(M(Du)(x)) 12 + 2(n - 1 ) ~ 2(~ - 1) 
P B2(x) 

The quantity in square brackets attains its minimum when 

C 
V(B!~) IDu(y) I dY) I ] 2/(2(n-1)+pi V(M(Du)(x) ) I 

Since 

f ~ IDu(y) l dy <~ (M(D~))(x), 
B~(x) 

the value of ~ given above is less than or equal to 1. Inserting this value in (2.3) we ob- 
tain easily 

(2.4) IV(u(x))l 2 <<. cIV(M(Du)(x))l (4(~-1))/(2(~-1)+p) 

Let us choose now a such that 

n 

2 4 ( n -  1) } 
max , < a < 2 .  

p 2 ( n -  1) + p  

Raising both sides of (2.4) to a ( ( 2 ( n -  1 )+  p)/4(n- 1)), integrating on B1, and 
using (ii) of Lemma 2.1 and Proposition 2.3 we have 

f I V(u(x)) [ ~[2(,~- 1) +,]/z(n- 1) dx <~ 
B1 

) ap/2(n- 1) 

<~c V ~lDu(y)]dy f]V(M(Du)(x))]adx~ 
B8 B1 

a]p/2(n-1) I V(Du(x))I ~ dx. 
j B~ 
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Finally, notice that from (i) of Lemma 2.1 it is clear that there exists ca such 
that 

where 

for any ~, 

t i '  i f 0 < t ~ < l '  
ga(t) := 2 

t ~p/2 + 1 - -- , if t ~ 1.  
P 

Since a > 2 / p ,  ga is convex, hence we have, using Jensen's inequality 

f I V (u (x ) ) la [2 (n  - 1)+p]/2(n - 1) dx <~ 

B1 

, 

Setting 1 + a = a[2(n - 1) + p]14(n - 1) and noticing that from the definition of a 
it is clear that a > 0, from the inequality above we then get 

I V(u(x)  ) l 2(l +~ dx  <<- c I V(Du(y) ) l" dy , 
B1 B 

which proves the result. �9 

REMARK 2.5. - The Sobolev-Poincar~ inequality we have just  proved uses some ideas 
from [14]. This inequality is an essential tool in order to get the regularity result Theo- 
rem 3.2. It is also one point where our case most differs from the case p/> 2, when 
IV(~) I is equivalent to I~] 2 + I~1 p. Under the extra assumption p > 2 n / ( n  + 2) one can 
show that the inequality proved in Theorem 2.4 holds with the same ball (see [5]). It is 
not clear to us if one can still get in our situation the same sort of estimate without hav- 
ing to pass from the ball BR to B~R. 

The following simple lemma is proved in [11] (see Lemma 3.1, Chap. 5). 

LEMMA 2.6. -- Let  f :  [r/2, r] --~ [0, + ~ [  be a bounded func t ion  such that f o r  all 
r /2  < t  < s <  r 

A 
f ( t )  <~ Of(s) + - - ,  

( s  - t )  a 

where A ,  a,  0 are nonnegative constants such that 0 < 1. Then there exists c - c(O) 
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such that 

f - <~c(O)--. 
r a 

This result can be easily extended, using condition (ii) in place of homogenity. 

LEI~IMA 2.7. - Let f :  [r/2, r] --~ [0, + ~ [  be a bounded function such that for all 
r/2 <t  < s < r  

f(t) <<. Of(s) + A I 
Br 

VI  h(x) I 2 
\7:7-t] dx, 

where heLP(Br), A > 0, and 0 < 0 < 1. Then there exists c - c(O) such that 

We are now in position to prove the following higher integrability result (see [3], for 
the case p >I 2). 

LEMMA 2.8. - Let g: R~N---~ R be a continuous function such that 

Ig(~) [ ~ LI V(A~)]2, 

g(D~(x)) dx >I v ~ I V(2Dr 12 dx 

for any ~�9 R N) and suitable constants L, v, 4 > 0 .  Let u �9  R N) 
satisfy 

f g(Du(x)) dx <~ f g(Du(x) + D~(x)) dx 
Q t~ 

for all ~ �9 Co~ (~9, RN), where 1 < p < 2. Then there exist c, (~, depending only on p, n, 
N, L, u but not on ~ and u such that for any BR(Xo)r Q 

(2.5) ~IV(ADu) [2(1+6)dx<c( ~ [V()~Du)12 dx) 1+~ . 
BR/2 

PROOF. - Fix B~ such that B3~r r/2 < t <  s < r ,  and take a cut-off function 
~eCol(B~) such that 0 ~< ~<  1, ~ - 1  o n  B t and ID~t <.2~(s-t) .  If we set 

~1---- [U--Ur] ~, (~2---- [U--Ur](I--~), 
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then D~I +D@2 = D u ,  and we have, by the minimality of u 

, f  Iv(~n~l)l~d~ fg(n~l)dX= fg(nu-n~)d~= 
Bs Bs Bs 

= fg(Du) dx + f[g(Du - Dr  - g(Du)] dx <~ 
Bs Bs 

f g(Dr f [g(Du-Dcp2)-g(Du)]dx < . 
Bs \Bt Bs \Bt 

~<L f [IV(AD~2)12+ ] V ( A ( D u - D ~ 2 ) ) I 2 +  IV(ADu)IZ]dx.  
Bs \l~t 

From this inequality, using (iii) of Lemma 2.1 we then get 
\ 

f lV(XDu)l~d~ f lV(~DC~)l~d~5 f IV(~Du)l ~d~§ f 
Bt Bs Bs \Bt Bs \Bt 

/ 
V~,~ u - Ur 

s - - t  
2 d x .  

Adding to both sides of the previous inequality the quantity 

5 f I V(ADu) 12 d x ,  
Bt 

we obtain that for any r/2 < t < s < r: 

] IV(;~Du) 12 d x  <<. - -  

Bt 

5 ~ I V(2Du) 12 dx + - -  
1 ~ - 5  B 

5 

1 + CB! 
Now, Lemma 2.7 implies that 

Br/2 Br 'F 

and so, by (2.2) we get 

I V(2Du) 12 <. c 
Br/2 

U - -  U r 

?, 

2(1+o))1/(1+ o) 
B3v 

with 2/1o < a < 2. From this inequality the result follows immediately just applying 
the Gehring's Lemma version due to Giaquinta and Modica (see [11] Theorem 1.1, 
Chap. 5). �9 

The following lemma is a slightly modified version of the approximation result 
proved in [2]. 
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LEMMA 2.9. - Let u �9 W ~' q(R ~, RN), wi th  q >I 1. For  every K > 0, i f  we set 

HK = {x  �9 R~: M ( D u )  <. K } ,  

then there exists a lipschitz func t ion  w: R ~--~ R N such that 

IIDwll~ <~ cK ,  w =  v on HK , 

meas (R ~ \HK) <~ - -  
cllDull  

K q 

where c depends only on n, N, q. 

Next  resul t  is a simple consequence of the a priori estimates for solutions of linear 
elliptic systems with constant coefficients. 

PROPOSITION 2.10. - Let u �9 W 1' 1(~,-~, ~N) such that 

(2.6) IAj~Daur  d x =  O 

for  any  ~ �9 C~($2, RN), where (A~J~ ) is a constant matr ix  satisfying the strong Legen- 
dre-Hadamard  condition: 

for any 2 � 9  N, , u e R  ~. 

Then u is C ~ and for  any  BR(Xo) c t~ and 0 < ~ < R 

(2.7) s u p l D u l  <<" c I 

where c depends only on n, N, p, v and max lA~J ~ I" 

PROOF. - Step 1. Le t  v �9 W1~o~2(~9, R N) be a weak solution of (2.6). I t  is well known 
that  v is C ~ in ~9. We want  to show that  if BR(XO) C C  ~ then 

c I IDvl dx (2.8) sup I Dvl <~ ~-~ . 
BR/2 BR 

By a rescaling argument  it is clear that  to prove this inequality we may assume 
Xo = 0 and R = 1. F rom Caccioppoli inequality for solutions of linear elliptic systems we 
get  that  for  any 1 /2  < t < s < 1 

I IDvl2dx<~ (s [v l2dx"  
Bt 

Since also higher  order  derivatives of v are solutions of (2.6), i terating the inequality 
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above on suitably nested balls we get  that  for any h = 1, 2, ... 

e(h) f 
IDhvl2 dx<<. (sr 2h Ivl 2 dx. 

Bt 

Therefore, since 1/2 < t < 1, we may estimate 

sup Iv]dx<~c(n)lMlwn.2(B~) <. (s t) ~ ]vl2dx <~ - -  
Bt 

Using Young inequality we obtain 

sup Iv] < 1 c I sup Iv] + Ivl dx .  

Finally, from Lemma 2.6 we conclude that  

]vl -< c ~ ]vl d~. sup 
B1/2 B1 

Applying this estimate to the derivatives Di v of v we then get (2.8). 

Step 2. Le t  u ~ W 1' 1(~,  R N) be a solution of (2.6). I f  Q(x) is a simmetric mollifier 
we set for any x ~ , =  { x ~ :  d(x, 8 f2 )<e}  

u~(x) = I ~(z) u(x + ez) dz . 
N<I 

Then u~ is smooth and one readily checks that  for any q~ ~C~(~2~, R N) 

ij i j . I A~zDau~Dzd p dx = 0 
9~ 

From (2.8) it follows that  if BR c t2~ 

c ~ IDu~Idx  " sup IDu~ I ~  ~ 
BR/2 BR 

Since Du~---~Du locally in L ~ it follows that  u satisfies (2.7), and so it is 
smooth. " 

We conclude this section recalling a selection lemma due to Eisen (see [6]). 

LEMMA 2.11. - Let G be a measurable subset of R k, with meas(G) < + ~ .  Assume 
(Mh) is a sequence of  measurable subets of G such that, for  some s > 0, the following 

C( t,n )1J2 '1J2 Ivldx [suplv[~ . 
(s - -  B k Bs 
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estimate holds: 

meas (Mh) >t ~ for all h �9 N .  

Then a subsequence (Mhk) can be selected such that N k M~k ~ O. 

3. - P r o o f  o f  the main result.  

In this section we will prove the partial regularity of minimizers of the functional 

I(v) := f F(Dv(x))dx , 

where v e WI 'P(f2,  RN), 1 < p  < 2, and F :  RnN"->R is a C 2 function satisfying the fol- 
lowing assumptions 

(H~) I r (~ )  I ~< L(1 + I ~l p ) ,  

(H2) f r ( ~  + DO(x))dx >t f [ r (~)  + v(1 + [~]2 + iD4J(x ) ]2)(p-2)/2 ]D~(x) ]2 ]dx  
Q 

for any ~ �9 R nN and any ~b �9 C~(~2, RN), with v > 0. 

REMARK 3.1. - Condition (H2), introduced in [7] in the case p I> 2, is called uniform 
strict quasiconvexity and implies that  for any ~ e R nN, ~ e R N, ,u e R ~ 

32F 
�9 (~))~i~J# jxZ  ~> cr(1 + 1~12)(p-2)/2 l;tl 2 I/z] 2, 

with c independent on ~, ;t, it. 
Notice that  we do not assume any control on second derivatives. However,  if a func- 

tion F is quasiconvex, i.e. verifies (H2) with r = 0, and has the growth control (H1), then 
it is well known (see [15]) that  

(3.1) ]Dr(~) ] <~ c(n, N, p) L(1 + [ ~ ] p - t ) .  

We also recall that  a function u � 9  R N) is a minimizer of I(v) if for any 
function r �9 W01' P(~9, R N) 

I(u) <. I(u + ~). 

We can now state the main result  of this section. 

THEOREM 3.2. - Let F be a C 2 function satisfying (H1) and (H2) and u � 9  
�9 W 1' P(Q, R N) be a minimizer of functional I(v). Then there exists an open subset tgo 
of t~ such that meas (~9 \ t~o )=  0 and u is C~'r(f20, R N) for any y < 1. 

A standard technique in order to prove such kind of results is to look at the decay in 
small balls around a point Xo of the so called excess of the gradient of the solution u.  
Roughly speaking the excess E(xo, R) measures  how far is the gradient from being 
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constant in the ball BR (x0). In our case it is convenient to define 

E(xo, R) = ~ IY (Du(x ) ) -  V((DU)~o,R)I 2 dx ,  
BR(xO) 

where V is the function given by (2.1). Notice that if p t> 2 this quantity is equivalent to 

iDu(x)_  (DU)~o,R [2 + ~ [Du(x ) -  (Du)~o,R ]P dx ,  
BR (Xo) BR (Xo) 

but it is not so in our case. 
We shall prove our decay estimate, Proposition 3.4 below, by a more or less stan- 

dard argument consisting in blowing up the solution in small balls and reducing the 
problem to the study of convergence in the unit ball of solutions of suitably rescaled 
functionals. To this aim we need the following simple technical result which is a modi- 
fied version of Lemma 2.4 in [4] and is proved exactly in the same way. 

LEMMA 3.3. - Let f: Rk-->R be a function of class C 2 satisfying for any ~e R k 

I Df(~) [ <. L(1 + ]~]2)(p- 1)/2, 

with 1 < p < 2. Then for any M > 0 there exists a constant c depending only on M,  p, 
L,  such that i f  we set for any ;~ > 0 and A ~ R k with ]A ] <. M 

fA, ~ (~) = ~ -2 [ f (A + ~ )  - f ( A )  - ~Df(A)~], 

then 

IfA,~(~)l <~ c(p, L,  M)(1 + 12~12) (p-2)/2 I~12 . 

We can now establish the decay estimate of E(xo, R). The proof we give is based on 
an idea contained in [8], later modified in [4] in order to deal with functionals with no 
control on the second derivatives (see also [5]). We will follow closely the various steps 
of the proof as presented in [4]. 

PROPOSITION 3.4 [Decay estimate]. - Fix M > 0; there exists a constant CM such 
that for every 0 < v < 1/4 there is an s - e(v, M) such that i f  

I(DU)xo, R I <~ M and E(xo, R) < s 

then 

E(xo, vR) <~ CMV2E(xo, R) .  

PROOF. - Fix M and v. We shall determine CM at the end of the proof. 

Step 1: blow-up. We argue by contradiction, assuming that there is a sequence 
BRh(X h) of balls contained in ~9 such that 

I(Du)xh. R~ I <~ M lim E(xh, Rh) = 0 
' h 
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and 

(8.2) E(xh,  vRh) > CMV2E(xa, Rh ) .  

We introduce the following notations: 

ah = u~h, ah , Ah = (Du)~h, Rh , ~ ~ = E(Xh, Rh)  ; 

and rescale the function u in each ball BRh(Xh) to obtain a sequence of functions on 
BI(0): 

1 
vh(y)  - 

,~ hRh 

Clearly, we have 

-- - -  [U(Xh + R h y )  -- ah -- R h A h y ] .  

1 
Dvh(y )  = --:-- [Du(xh + R h y )  - Ah], (Vh)o, 1 = 0, 

It h 

Moreover from (ii) and (vi) of Lemma 2.1 we have 

IV(.vh(y))l 2 d y :  v 
B 1 (0) BRh(Xh ) ~ h 

5(M)  

BRh (Xh) 

( Dvh )o, 1 = O . 

I V ( D u ( x ) )  - V((Du)xh, nh ) [2 dx  = 5 .  

and, since IAh] < M, 

Vh"-'-~ V 

Step  2: v solves a l inear  system.  

weakly in WI'p(B1, ~N) 

Ah---) A . 

From the Euler system for u, rescaled in each 
BRh(Xh), we deduce for every q~ e Col(B1, R N) 

, f ~ (Ah + ~ h D v h )  D a ~  i d y = O  

B1 

and assume, without loss of generality, that 

(3.3) ]]Dvhl[p ~ c ,  for any h ,  

Hence from (i) of Lemma 2.1 we may conclude that the sequence (Dvh) is bounded in 
LP(B1,  RnN): 
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and also 

B ~ ( A h + 2 h D v ~ ) -  ~ ( A h )  D~dp~dy=O. 

If  we split B1 as 

Eh + U E [  = { y e B l :  ~h IDvh(Y) l >>" 1} t2 { y e B l :  ~h IDvh(Y) l < 1}, 

we get by (3.3) 

(3.4) meas (Eh + ) ~< f ~  IDvh I p dy <~ c ~ .  
B1 

Therefore, using (3.1) and (3.3), we deduce that 

1 ~ I[DF(Ah + ~hDvh) - DF(Ah)] Ddp I dy <<. 

c if (1+3"~-11DvhlP-1)dY< ~<~- 

which implies 

( )(p-,Jp 1 + C~Ph-e ]Dvh ]P dy ]E~- 11/p <~ c~ p- , 
\E; 

(3.5) limb ~-~h E 1  ~! I[DF(A h + ~hDvh) - DF(Ah)] D~ I dy = O . 

Now we observe that (3.4) implies that  • E~- --~ 1 in L q (Bi) for all q < ~ and that by 
(3.3) we have ~.hDvh(y)-->O a.e. in B1. Then on Eh- we may write 

1 

f [DF(Ah + ~hDVh)  - DF(Ah)] D4)dy= f dy f D2F(Ah + 8~hDV h) DvhDOds= 
EtV E ~  0 

1 

= f dy ~[D2r(Ah + s~hDvh)- D2r(Ah)]DvhD~ds + f D~r(Ah)DvhDdpdy. 
Et /  0 E ~  

letting h--> ~ and using the uniform continuity of D2F on bounded sets we 
obtain 

I lim [DF(Ah + 2 hDvh) - DF(Ah)] Dd~ dy = D 2F(A) DvD 0 dy , 
h 

/~ h E _ B 1 
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which together with (3.5) implies 

92F 
f ~a- - - - -~(A)DaviD~ j dy=O.  

B1 

By Remark 3.1 the coefficients of this linear system satisfy the inequality 

$2F 
c(u, M)I~] ~ Ittl 2 <~ ~ (A) ~i~Jttatt~ <<. c(M) I)~12 tttl 2 , 

hence from Lemma 2.10 we deduce that v is C ~ in B~. Moreover from the theory of lin- 
ear systems (see [11], Theorem 2.1, Chap. 3) and by (2.7) and (3.3) we get that if 
0 < v < 1 / 2  

(3.6) ~ IDv - (Dv),  I dy <~ c (M)  v 2 ~ IDv - (Dvh/212 dy <~ 

B~ B1/2 

<~ c(M) v2 sup [Dv[2 <<" c(M) v2 ( ~ IDvlP) \B1 

Step 3: higher integrability of vh. If we set 

Fh(~) := )~ ;2[F(Ah + ~ ~ ~) - F(Ah) - ,~ ~DF(Ah)~], 
by (3.1) we may apply Lemma 3.3 and deduce 

c(M) IV(2 h ~) 12 (3.7) [Fh(~) [ ~< 2---~--h 

On the other hand (H2) implies that 

<~ C*(M)v 2 . 

for any dpECI(B1, RN). Set for any 0 < r ~ < l  

I~(w) := [ Fh (Dw(y) )dy 

it is then easily verified that vh is a minimizer of I~. Therefore, applying Lemma 2.8 to 
the functions gh(~) = )~Fh(~), we get by (2.5) and (vi) of Lemma 2.1 

(3.9) IV(;~hDvh) 12(1+~ dy <~ c IV(ZhDvh) 12 dy = 
B1/2 

, Rh 
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and this gives immediately by (i) of Lemma 2.1 that the sequence (Dvh) is bounded in 
L p(1 + a)(Bl#, RnN). 

Step 4: upper bound. 
may always assume that 

exists. We claim that 

Fix r < 1/3. Passing to a (not relabelled) subsequence, we 

tim [I~(vh) - /~(v)]  
h 

l~n [l~(vh) - X~(v)] < 0 .  
h 

Choose s < r  and take ~eC~(Br)  such that 0~<~<1 ,  ~ = 1  on B~ and IDOl ~< 
< 2/(r  - s). If we set q~ h = (v - vh) ~ by (iii) and (ii) of Lemma 2.1, (3.7) and the minimali- 
ty of vh it follows 

I~(vh) - I~(v) <<. I~(vh + ~ h) - I~(v) = ~ [F~(Dvh + D~ 4) - F~(Dv)] dy <~ 
B~. \B8 

I 12 ]V(2h(v -vh)D~+2h~Dv+~h(1  ~)Dvh)]2]dy<~ <~ []V(2hDv) + 
Br \B8 

[ 1 ] 
<<" ~ s r ~ ,  IV(2hDv)]2+IV(~aDvh)[2+ (r--s)--------21V(2h(V--Vh))12 dy.  

Now from (3.9) we have 

IV(~hDvh) 12 dy <<. 
Br \Bs 

< IVO.hDvh) 12(1+~) dy IBr\B~ ~) <. c2~(r - , 
Br s 

and by (2.2), taking 0 such that 1/2 = 0 + (1 - 0)/(2(1 + a)),  we obtain, using (iii) and 
(ii) of Lemma 2.1, 

B~,\Bs B~. 8 

�9 ( ! ] V ( 2 h ( V - - V h ) - - ~ h ( V - - X B 1  Vh )0, l/31' I 2(1+o)1 dy "~- ]V(~h(V -- Vh)o,l/3)]2(l+a)) (1-O)/(l+a) 

;[(! )1o ] 
<<. c2~ ~ ] v - vh ] dy ] V(2 hDvh) ]2 dy ~(1 - o) 

B B 
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where we used the estimate (see (3.9)) 

(3.10) ~ IV(,~hDvh)12 dy <, c ~ .  
B1 

Finally from the estimates above we conclude that 

[ /8~ ! 

Since v~---~v in L~(B1, RN), letting first h---) ~ 
claim. 

Step 5: lower bound. We claim that if t < r < 1/4 

1 Iv - Vh I d y  . 
( r -  s) 2 

and then s---->r we prove the 

limasup -~hl B! IV('~ h(Dv - DVh) )12 dy <- c lim [I~(vh) - I~(v)].  

L e t  q) eCl(B1/3) such that 0<~o~<l ,  ~ = 1  o n  B1/4 and ID~]<~c. Set 

vh = v/~ q~, ~) = vq~.  

We may always assume that the exponent 5 given by the higher integrability esti- 
mate (3.9) is less than or equal to the exponent a provided by the Sobolev-Poincar~ in- 
equality (2.2). Therefore we get by (3.9) and (3.10) 

R ~ B1/~ B1/a 

<~ c ~ IV()~hDVh)12(1 +~) dy + c ~ IV()~hvh-- )Lh(Vh)0,1/a)l 2(1 +~) dy" 
B1/~ BUs 

.clV()~h(Vh)o, 1/3)12(~ + ~) <. c,~ (1+~) + c IV(2hDvh) 12 dy <~ 
B 

From this estimate and Proposition 2.3 it then follows that 

(3.11) 2 ; ~ [I]V(2 hn~h)lli2(~ +~)(a~) + IIV(~. h M(DVh) )I]L2(~ +a)(R.) ] <~ c 

for all h. Fix e > 0, from the estimate above it is clear that there exists ~] > 0 such that if 
G c R ~ is a measurable set, with meas (G) < ~/ 

(3.12) ~t~ o 

Notice that (3.11) implies al~o that 0)h) is bounded in W 1' p(1 + a)(R~ ' R N ) ,  therefore 
by the continuity of the maximal function in L q spaces we deduce that there exists 
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K > 1 such that, setting Sh = {Y �9 Rn: M(D~h)(y) > K}, 

(3.13) meas(Sh) < t/ for all h .  

Having chosen K, we now apply Lemma 2.9 to find a sequence of functions wh �9 
�9 W 1' ~ ( R  n, R N) such that 

(3.14) wh = ~Sh on R ~ \Sh ,  IIDwh II ~ <~ c g .  

Therefore, passing to a (not relabelled) subsequence we may also suppose that  

wh--~w weakly* in W 1' ~ (R ~, RN). 

Notice that  by  (3.12), (3.13) and the definition of S~ we have the estimate 

1 ~ ] V(~ h M(D~h)) ]2 dy <<. e meas (Sh)(1 + 2 ~ K2)(P- 2)/2 K 2 <. ~ ~":-z s 

which gives 

(1 + ;c~K2) (2-p)/2 2e 
(3.15) m e a s  (Sh) ~< e < - -  

K 2 K 2 

for h large  enough.  W e  turn n o w  to e s t i m a t e  the  di f ference  

(3.16) I~(vh) - I~(v) = 

= [I~(~)h) - Irh(Wh)] + [I~(wh) -- I~(W)] + [I~(w) -- I~(V)] = R1 h + R~ + R ~ .  

By (3.7), (3.12), (3.13) and (3.14) we get  

(3.17) ]F~(D~)h) - Fh(DWh)]dy <~ 
Sh n B~ 

< ~ I[V(~hD~Sh) 12 + V ( ~ h M ( D ~ D ) 1 2 ] d y < c e .  
;th sh 

Now choose t < s < r and take a cut-off function ~ as in Step 4. Setting ~0~ = 
( w h -  w ) ~  we split R~ as follows: 

(3.18) R ~ =  [I~(wh) - I rh (W+ ~0h)] + 

+ [Ih( w + ~P h) -- Irh(w) -- IrhOp h)] + / h O P  h) = R4 h + Ra h + R6 h. 
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Again by (3.7), (3.14) and (iii), (ii) of Lemma 2.1 we have 

IR~ ~ I <~ I I F h ( D W h )  -- Fh(Dw + D~h) ldy <~ 
Br \Bs 

~ ~2 h ~ ['V(]LhD~Oh) I2+IV(~hDW)' 2 T -  
B~ \B~ 

IV(2h(Wh--W))l 2] (r S) 

< c(K)(r- s) + - -  

Since wh ~ w uniformly we conclude that 

(3.19) lira sup I R~ I <<- c(K)(r - s). 
h 

To bound R~ we observe that for any A, B ~ R nN 

and therefore 

dy <~ 

c ~ livh_WlZdy " 
(r - s) 2 By 

1 1 
Fh(A + B) - Fh(A) - Fh(B) = ~ f DZF~(sA + tB) dsdt 

o o 

1 1 

dx f f D2F(Ah + s2hDwh + t2hDFh) DwD~h dsdt.  
o o 

(3.21) lim R~ i> lim sup v [ I V(2  h (Dwh - D w ) )  12 d y  - c ( K ) ( r  - s ) .  
h h ~hB 

exists too. Therefore by (3.18), (3.19), (3.20) we deduce 

Passing possibly to a subsequence we may suppose that 

lim R~ 
h 

R~ =~r ] Fh(D~h) dy >~ --~h ! lV(2~D?h) lZ dy >~ _~2h B! iV(2a(Dwh_ Dw))12 dy " 

Moreover (3.8) implies that 

I 
Br 

Since D2F(Ah + s2hDwh + t2hDyJh) converges to DZF(A) uniformly, and wh-~w 
weakly* in W 1' ~ we easily get 

(3.20) lim R :  = 0.  
h 
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To deal with R~ we use a technique introduced in [1]. Firs t  we prove that  

3e 
(3.22) meas {y eBr: v(y) ~ w(y)} ~< K--- ~ 

Set S = {yeB~: v(y) ~ w ( y ) }  and 

= S M {y eBb: v(y) = lim vh(y)}. 

Then meas (S) = meas (S). We argue by contradiction. I f  

3e 
meas (S) > - -  

K s , 

then by (3.15) 

c 
meas (S\Sh) > - -  

K 2 ' 

for h large enough and by Lemma 2.11 there exists ~ ~Br such that  

e S\Sh for infinitely many h .  

Passing to this subsequence, we have 

v(~) = lira vh(Y) = lihm wh(~) = w(~); 

hence ~ S ,  which is a contradiction. This proves (3.22). Now, since Dv =Dw a.e. in 
Br\S, by (3.7) and (3.22) we get  

(3.23) IR~ ]<<" S IFh(Dw) - F~(nv) I dy <. 
BrNS 

c ~s[iV(;~hDv) i2+iV(2hDw)[2]dy<c(l+KS)meas(S)<.. K s 
~h B~ 

since K > 1. By this inequality, (3.16),(3.17) and (3.21) we conclude that  

c ( l + K  2) e 
~Ce~ 

(3.24) lim [I~(vh) - Ih(v)] I> 

By (iii) of Lemma 2.1 we then have 

~hB~ ~ IV(2h(nw-nwh))ISdY+ 

CE. 

~n s C 
c ]V(~h(Dwh_Dvh))i2dY + -~  iV(]~h(Dv_Dw))i2dY " 

--~h B. h ~ h Bs N Sh 
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With the same argument used to prove (3.23) we get also 

c ]VO~a(Dv_Dw))[Zdy<.  -~hB~ (8.26) 

and as in (3.17) we get 

c f e 12 I V(;t h (Dvh - DWh) ) ] 2 dy <~ --~ ~ [ I V(~ h Dgh) + I V(~ h M(D~I~) ) [ 2 ] gy <~ cs .  
~h S~ Bs 

Therefore, from this estimate, (3.24), (3.25), (3.26) we finally conclude that 

lim~sup ~B1 ! [V(2h(Dv - Dvh)) ] 2 dy <~ c lihm [I~(v h) - /~ (v ) ]  + cs + c (g ) ( r  - s).  

The proof of the claim then follows by letting first s--) r  and then s--~ 0 + . 

Step 6: conclusion o f  the proof. From the two previous steps we have that for any 
O < v < l / 4  

limb ~-~B1 ! l V(2 ~ ( Dv _ Dvh ) )12 dy = O " 

Now from this inequality, (v), (iii) of Lemma 2.1 and (3.6) we get 

E(Xh, vR h) 1 
lira sup - lim sup - -  ~ IV(Du) - V((Du)xh, ~R~ ) 12 dx <<. 

~< lim sup c h ~-~h [V(Du - (Du)xh, ~Rh) ]2 dx = 
B~Rh (xh) 

= - , lim sup c iV(;~a(Dva (Dv~)~)) dy <~ 

~< lim sup c ~[]V(Ah(nv h-  nv))] 2 + 

+ ]V(~ h (Dr - (Dv)~)) ]e + ]V(~ h ((Dv)~ - (Dva)~))l e ] dy  <~ 

~< [C*(M)T 2 + lim I(Dv)~ - (Dvh)~ ]e], 
h 
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and since Dvh--~Dv weakly in LP(B1, R nN) w e  deduce that 

lira E(xh, rRh) <~ C . ( M ) r 2 ,  

which contradicts (3.2) if we choose CM = 2C* (M). �9 

PROOF OF THE THEOREM 3.2 .  - Following the argument used in section 6 of [9], from 
the Decay estimate just proved, one can easily obtain that for any M > 0 there exist 0 < 
< r < 1/4 and ~] > 0 such that if 

(3.27) I(Du)xo, R ] <- M and E(xo, R) < ~] 

then for any k = 1, 2, ... 

E(xo, rkR)  <~ c(M)r2kE(xo,  R ) ,  I(DU)~o, ~kR I <~ 2 M .  

From this estimate one then gets that if (3.27)holds for any 0 < Q < R we 
have 

I(DU)xo, Q ] ~< c(M) and 

Therefore from Lemma 2.1 we get that 

(3.28) ~ 

B e (Xo) 

E(xo, Q) ~< c(M) E(xo, R).  

I Du  - (DU)~o, ~ ] dy <~ ~ I Du  - (DU)xo ' ~ ] dy + 
Be(x o) N {x: [Du-  (Du)xo ,~ [ <~ 1} 

I Du  - (Du)~o, ~ I dy <<. 
B e(xo) n {x: I D u -  (Du)~o, e l >  1 } 

<~ c ~ I V(Du - (Du)xo, ~ ) ] dy + c ]V(Du - (Du)~o ' ~ )] 2 dy <~ 
Be(xo) Be o) 

L Bo(xo) , Be ~ I V(Du) - V((DU)xo, ~) ]2 dy 1/p 

<~ c(M)[E1/2(Xo, ~) + E1/p(Xo, Q)] ~< c(M, R)  Q. 

From this estimate it is then clear that if we set 

~o  = {x~ tg: SUPr>0 I(Du)x~ I< ~ and ~-~olim E(xo, r ) =  0} 

t~o is an open set such that meas ( t 9 -  ~9o)= 0 and by (3.28) u e C l , ~ ( t g o )  for any 
0 < a < l .  �9 
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