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ABSTRACT

Distributed Transactional Memory (DTM) can play a funda-
mental role in the coordination of participants in edge clouds
as a support for mobile distributed applications. DTM emerges
as a concurrency mechanism aimed at simplifying distributed
programming by allowing groups of operations to execute
atomically, mirroring the well-known transaction model of
relational databases.

In spite of recent studies showing that partial replication
approaches can present gains in the scalability of DTMs
by reducing the amount of data stored at each node, most
DTM solutions follow a full replication scheme. The few
partial replicated DTM frameworks either follow a random
or round-robin algorithm for distributing data onto partial
replication groups. In order to overcome the poor perfor-
mance of these schemes, this paper investigates policies to
extend the DTM to efficiently and dynamically map re-
sources on partial replication groups. The goal is to un-
derstand if a dynamic service that constantly evaluates the
data mapped into partial replicated groups can contribute
to improve DTM based systems performance.
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1. INTRODUCTION
Edge clouds are a decentralized and heavily distributed

cloud infrastructure that encourages applications to be ex-
ecuted in close proximity to the input data. An increasing
number of of services are being deployed on edge clouds in
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order to reduce latency and network traffic. However, ser-
vices relying on edge clouds need to mediate the interaction
between a variety of different actors and to coordinate the
concurrent access to the same data by multiple applications,
possibly executing on distinct sites.

Transactional Memory [6] is a concurrency mechanism
aimed at simplifying the development of applications by al-
lowing operations to execute in an atomic way. Analogous
to database transactions, transactional memory defines a
specific sequence of tasks that are considered a transaction,
that either commits (and all changes produced by the tasks
become visible) or aborts (and no change is visible). Orig-
inally proposed as a hardware architecture [6] for shared
memory access, Transactional Memory was later extended
to address parallelism in multiprocessor systems, under the
term Software Transactional Memory (STM) [4, 5].
Distributed Transactional Memory (DTM) [1, 7, 10, 11,

15, 17, 18, 19] extends STM to distributed systems, address-
ing new issues such as data replication and node failures.
It provides an additional abstraction level to the program-
mer, where traditional distributed programming details (e.g.
socket management or data serialization) become transpar-
ent and integrated with concurrency in a unique and consis-
tent approach.

In spite of recent studies showing that partial replication
approaches can present gains in scalability by reducing the
amount of data stored at each node [17], most DTM so-
lutions follow a full replication scheme where all nodes in
the system keep a replica of every object. However, intu-
ition suggests that, as participants are more geographically
dispersed, the latency and message concurrency to validate
and commit transactions in a group of nodes increases, ham-
pering system performance. This is the scenario expected to
occur in large scale networks, where processes running on ge-
ographically dispersed edge clouds support some distributed
application.

Motivated by recent commercial applications, in partic-
ular, large scale, augmented reality games (i.e Ingress and
Pokemon Go), this paper assumes distributed applications
running over multiple edge clouds share data. In such a sce-
nario, the overall system performance depends of a policy
capable of deploying the replicas of the data in proximity, in
order to reduce the latency associated to each transaction.
The paper proposes and evaluates a set of policies to ex-
tend the DTM to efficiently and dynamically map resources
on partial replication groups. The goal is to understand
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if a dynamic service that continuously evaluates how data
is mapped into partial replicated groups can contribute to
improve the system’s efficiency.

2. REPLICATION IN DTM
Replication of objects in DTMs can serve two purposes:

to improve availability in the presence of faults and to im-
prove performance by making the data locally available at
the interested nodes.

2.1 Full Replication
The majority of DTM approaches adopt a full certification-

based replication scheme: all nodes in the system keep a
replica of every object, and transactions are locally exe-
cuted, synchronizing objects state with the other replicas at
commit time. This synchronization can be achieved either
through a voting or non-voting certification. As observed in
the DMV system [11], in the voting certification approach,
a committing transaction needs to broadcast its updates to
the other nodes and will only commit if they vote favorably.

In the non-voting approach, a communication round is
saved as the decision can be taken locally and therefore,
replicas do not need to reply to the transaction’s issuer.
The need to vote is replaced in a trade-off by the need
to exchange more data during the update broadcast from
the committing transaction [9]. In particular, the transac-
tion owner must provide both the transaction’s write and
read sets. D2STM [1] follows a variant of this non-voting
certification-based replication, where bloom filters are used
to reduce the size of broadcasted messages.

Since the non-voting certification approach allows replicas
to independently validate transactions and every data item
is replicated among all nodes, the crash of nodes in the sys-
tem does not harm consistency. However, coordination of
all nodes imposes a considerable communication overhead.
Namely, broadcasting transactional read/write sets is inher-
ently non-scalable, as the number of messages grow quadrat-
ically with the number of nodes present in the system [10].

2.2 Partial Replication
In partial replication, the full application’s dataset is sub-

divided into n partitions and each partition is replicated in
a group of m nodes. Partial replication is more scalable be-
cause committing transactions only need to reach the groups
storing the data items accessed in the transaction.

To the best of our knowledge, SCORe [14] is the only par-
tial replication protocol developed for DTM systems. SCORe
combines the Two Phase Commit (2PC) algorithm [3] with
Skeen’s total order multicast [2] to form a commit protocol
that ensures that only the replicas that maintain data ac-
cessed by a transaction participate in its outcome. SCORe
relies on logical clocks that allow each node to keep two
scalar timestamps: the commitId which is the timestamp
of the last update transaction committed on that node, and
the nextId which indicates the next timestamp the node will
propose for a remote commit request.

At commit time, the transaction issuer multicasts a totally
ordered validation message to all involved replicas. Every
replica that receives this message validates the transaction
If the validation is confirmed, the nextId is piggybacked on
the reliably unicasted vote message and the transaction is
stored by the voter in a local pending buffer. The trans-
action issuer then collects all vote messages (aborting the

transaction in case one of the contacted node does not re-
spond within a predefined timeout), sets the transaction’s
final commit timestamp as the maximum of the proposed
nextId and multicasts back the decide message with the
transaction’s outcome and the commitId. If the outcome
is positive, the receiving replicas buffer the transaction in
a queue of stable transactions. A transaction T is finally
committed only if there are no other transactions in both
pending and stable buffer with a timestamp less that T’s
commitId.

In order to distribute data items among replication groups,
SCORe uses a pseudo-random algorithm and therefore does
not exploit data and node partitioning to its full extent.
For example, as participants are more geographically dis-
perse within a group, the increased latency and message
concurrency induced to validate and commit transactions
may hamper the system’s performance.

This issue has been addressed with more judicious data
distribution policies such as geographical distribution in dis-
tributed transactional SQL databases like CockroachDB 1,
which allows the user to define replica locations. Cock-
roachDB builds its SQL database on top of a transactional
and strongly consistent sorted monolithic key-value store.

Replica location in CockroachDB is based on the types of
failures a user wants to tolerate, e.g. replication in different
servers within a datacenter to tolerate power failures, or dif-
ferent servers in different datacenters to tolerate large scale
network or power outages. By contrast, because we target
edge clouds, we aim at using replica location and data distri-
bution to reduce latency and maintain system performance,
by providing a dynamic service that constantly evaluates the
data mapped into partial replicated groups.

This solution is also being studied in state machine repli-
cation [8], to achieve a dynamic scalable state machine repli-
cation designed to exploit workload locality. Data mapping
onto partitions is managed by an oracle and state recon-
figuration follows a simple rule: whenever a command re-
quires data from different partitions, the client first mul-
ticasts move commands to the oracle and to the involved
partitions so that all data is moved to a single partition and
then the command is executed on that partition. Follow-
ing this approach, the usage patterns will shape the data
mapping and reduce multi-partition commands in a reac-
tive manner. Differently from this work, we propose to ex-
plore policies that anticipate user requests and apply group
changes proactively.

The geo-replicated storage system presented in [16] pro-
poses to reduce latency and increase transaction throughput
by reordering transactions so that those enclosed in a sin-
gle partition are not delayed by global transactions involving
multiple partitions. However, data placement into partitions
is not addressed while we investigate data mapping policies
in order to maximize the number of local transactions.

3. GEOGRAPHICAL-AWARE REPLICATION
In large scale networks, where servers and edge clouds are

geographically dispersed among different regions, an erro-
neous data mapping may contribute to increase the latency
and message concurrency to validate and commit transac-
tions. In this paper, we assume that a dynamic resource
mapping service (DRMS) is running in background and is

1https://www.cockroachlabs.com/



constantly evaluating and adapting the mapping of data on
partial replication groups (PRG). The goal is to understand
if there are policies that can contribute to maintain the sys-
tem’s efficiency, by determining at run-time the most suit-
able set of replicas for each object.

DRMS must thus trade-off between maximizing the num-
ber of transactions enclosed in a single PRG, while mini-
mizing the amount of group changes and the geographical
distance between the issuer of the transaction and the repli-
cas of the data. Group changes should be avoided as they
are known to be a time and resource consuming operations,
due to the mandatory definition of synchronization points.

Anticipating the future utilization of data items is chal-
lenging and can only be efficiently determined if the applica-
tion follows some usage pattern. Still, a number of distinct
policies can be found. As a preliminary experiment, this
paper evaluates the following partial replication policies for
DRMS:

Static once an object is assigned to a PRG, it never changes.
Transactions must access all the PRGs hosting each
object;

Move to the Latest Transactions begin by transferring all
participating objects to their PRG. Objects remain
hosted on that PRG until they are requested by an-
other transaction on another PRG;

Conservative Group Polling The DRMS keeps a usage
counter associated to each object. After each trans-
action, the DRMS changes the objects if its usage on
transactions issued by a different group is 1.5 times
greater than the average usage of every object on every
group. Transactions must access all the PRG hosting
each object;

Aggressive Group Polling The DRMS keeps a usage counter
associated to each object on each PRG. After each
transaction, objects are moved to the PRG where they
are more frequently used. Transactions must access all
the PRG hosting each object.

The Static and the Move to the Latest represent the two
extremes of the range of possible policies. In particular,
Static completely avoids the movement of objects, forcing
transactions to access all the PRGs involved. This would be
the most convenient solution if the cost of moving objects
was considerably higher than the cost of having transactions
to access multiple PRGs. Move to the Latest mirrors the ap-
proach of [8] by assuming a negligible cost in moving objects
from one PRG to another. In this scenario all transactions
are guaranteed to be executed on a single partial replica-
tion group since the objects are previously moved, but is
expected to be heavily penalized by an excessive number of
group changes.

The Conservative and Aggressive Group Polling policies
are more balanced approaches that avoid the permanent
change of PRG by trying to identify object usage patterns in
the system. Both keep information about where an object
was used and how many times and only decide for group
changes whenever a deviation from the average usage pat-
tern is found.

It should be noted that all these policies seek to identify
the most suitable (popular) location for each individual ob-
ject, but that they ignore any potential correlation between
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Figure 1: 10 more popular hash tags found

objects manipulated by the same transaction. Exploiting
such correlations is outside the scope of this paper and left
as future work.

4. EVALUATION
To understand the impact of dynamic partial replication

policies on system performance, we prepared a simple eval-
uation scenario based on Twitter, modeling each tweet as a
transaction and each hash tag as one object accessed within
the transaction. Twitter was preferred over traditional DTM
benchmarks, such as Vacation from the STAMP suite [12] or
TPC-W,2 as a way to reinforce the location dependency and
correlation between objects participating in a transaction.
This is in contrast with the randomness of both STAMP
and TPC-W in the selection of the objects participating in
each transaction.

Data was collected between August the 17th and August
the 29th 2016, using Twitter’s Streaming API,3 configured
to collect the hash tags used in tweets performed within a
25km radius of four of the Portuguese biggest cities (Lisbon,
Porto, Braga and Faro). In our experiment, each city repre-
sents the location of one Partial Replication Groups (PRG).
Although the Twitter’s Streaming API returns at most 1%
of all tweets produced, the study performed in [13] claims
that the distribution of geo-tagged tweets returned using the
API is statistically representative of the hash tag diversity
found in the complete set of tweets.

Overall, 5897 tweets containing one or more hash tags
were collected. Lisbon was the most popular location, count-
ing 62% of the tweets, followed by Porto (25%), Braga (8%)
and Faro (5%). Most (66%) of the tweets had 1 hash tag.
Tweets with 2 to 4 hash tags represented respectively 13%,
7% and 4% of the total. The largest number of hash tags
observed in a tweet was 13. Figure 1 depicts an histogram
of the 10 more popular hash tags among the total 6932 hash
tags found. Of those, there are 5117 hash tags that only
appear once.

4.1 Evaluation Setup
Evaluation was performed executing the implemented 4

policies, which is publicly available on-line4 over the dataset.

2http://www.tpc.org/tpcw
3https://dev.twitter.com/streaming/overview
4https://github.com/dmslima/PRG policies

https://github.com/dmslima/PRG_policies
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the dynamic partial replication policies.

Additionally, both the Random and Round-Robin location
insensitive algorithms were also included in the evaluation as
control experiments. Transactions are processed in chrono-
logical order and consist in the list of objects accessed (i.e.
the hash tags), with no distinction between read and write
operations, and the ID of the Partial Replication Group (i.e.
the city) where the transaction was performed.

Initially, each hash tag is affected to the partial replication
group of the location where it was first tweeted, excluding
the Random and Round-Robin simulations.

4.2 Experimental Results
The performance of each policy was evaluated using 3

distinct metrics, that reflect the trade-offs discussed above.
Namely, the number of changes of objects between groups
and the number of groups participating in a single transac-
tion are expected to be as small as possible in order to reduce
additional overhead to the DTM. The proportion of trans-
actions enclosed in a single group complements the metrics
above by showing the cases with the lowest overhead to the
DTM.

To illustrate the adaptation capability of each policy, plots
represent the metrics refreshed at every 10% of the transac-
tions (∼590 transactions), counting exclusively the transac-
tions performed in that period.

4.2.1 Group Changes

Group changes are time and resource consuming opera-
tions, so an efficient and dynamic partial replication data
mapping policy should keep this value as low as possible.
The amount of group changes performed in the system is
depicted in Figure 2, omitting the Static, Round-robin and
Random policies, not applicable to this case as objects per-
manently remain in the PRG where the first transaction
using them occurred.

As expected, the Move to the Latest is heavily penal-
ized by the volume of group changes performed, averaging
around 140 group changes at each 10% of the workload read.
Both Polling approaches show much lower volumes of group
changes, with the Aggressive Polling making, on average,
∼10 times less groups changes than the Move to the Latest
policy, and the Aggressive Polling making ∼4.5 times less
changes. However, the Conservative Polling policy present-
ing a higher volume of group changes than the Aggressive

Polling in almost every 10% slice of the evaluation is sur-
prising since applying group changes based on an average of
object usage should present less group changes than mov-
ing whenever a new PRG becomes the most frequent user of
that object. One explanation to the this phenomenon may
reside in the characteristics of the data collected with the
presence of a considerable amount of single shot hash tags,
i.e. hash tags that only appear once. If many of those are
present in the workload, the global average usage of every
object on every group tends to the decrease. This means
that a larger set of objects start having its usage 1.5 times
above the global average, which means that they are now
considered to move groups.

4.2.2 Groups by Transaction

The goal of the average number of groups involved in a
transaction metric is to assess if data is being efficiently cor-
related. A value of 1 represents an ideal situation in which
the hash tags of a tweet are all located in the same par-
tial replication group in which the transaction is executed.
Conversely, the higher this average is, the more overhead
will occur on each transaction, showing that the data map-
ping service is not correctly identifying data correlation and
efficiently applying group changes.

Figure 3 depicts the average number of groups involved
in a transaction with error bars showing the distance of the
average to the standard deviation. We observe that, for the
Static policy, this average remains around 1.2 during the
entire set of transactions, while both Random and Round-
Robin algorithms consistently remain above 2. This means
that, even if objects changes are not allowed along the exper-
iment, just by providing an initial location aware knowledge
to object assignment into PRGs, there is already a signifi-
cant reduction in the number of groups involved per trans-
action. Moreover, from the Polling policies, we can see that
the Aggressive Polling policy is still able to reduce this aver-
age throughout the workload, while the Conservative Polling
does reduce this average for the first 10% of the workload
read, but then remains consistently above the Static policy
for the rest of the evaluation. This indicates that the Ag-
gressive Polling policy not only makes fewer group changes,
but they are also more effective in comparison with the Con-
servative Polling policy. In addition, the latter is producing
group changes that are becoming counter-productive when
combined with the increase of the average number of groups
involved in a transaction shows.

4.2.3 Single Group Transactions

To have a better understanding of this previous metric,
we now focus on the proportion of transaction enclosed in
a single group. i.e., those that have all the objects in the
same PRG where the transaction was requested, in order to
to better assess the policies’ ability to improve the system’s
data mapping. Expectations are that the partial replication
policies will increase this value close to 100%, which repre-
sents the best partial replication data mapping scenario.

The results, depicted in Figure 4, show that both location
insensitive Random and Round-Robin algorithms are signif-
icantly outperformed by the remaining policies. Among the
location-aware policies, the Aggressive Polling policy has a
consistent gain over the Static policy, with approximately
5% more transactions enclosed in a single PRG on every slice
of 10% of the workload. This figure also confirms the inef-
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Figure 3: Average number of groups involved in a

transaction.

fectiveness of the Conservative Polling policy, which is only
able to marginally improve the percentage of transactions
enclosed on a single PRG over the control test experiment
(i.e. Static) at the first 20% of the workload.

One particular aspect observable in this figure is the sud-
den and equal decrease in the average number of transac-
tions enclosed on a single PRG by all policies in the last
10% of the workload. This phenomenon is being caused by
the VMAs hash tag. As observed in Figure 1, this is the
fourth most popular hash tag with a total number of 186
occurrences. However, the first time it appears is at tweet
4791 out of 5897, issued in Lisbon, and all of the remaining
185 repetitions appear within the last 10% of the workload.
More precisely, after being generated in Lisbon, this hash
tag is used once in Porto and another in Braga before being
repeated 12 times in a row in Lisbon. After these first 15 oc-
currences, the hash tag is evenly used by the PRGs of Lisbon
and Porto and very sporadically in Braga and Faro. Which
means that, for the Static policy, approximately half of the
170 remaining tweets using the hash tag VMAs are not en-
closed on a single PRG. Considering that these all occur in
the final 10% of the workload, the VMAs hash tag is singly
contributing for half of the 30% of tweets not enclosed in a
single PRG for that policy. Moreover, the same behavior is
repeated for both of the Polling policies since those 12 initial
repetitions pulling the hash tag to be kept in Lisbon is never
reverted by the Porto RPG that does not generate enough
tweets to become the most frequent group in object usage,
but uses it as much as Lisbon. Thus, the object is never
decided to move and the amount of transactions enclosed
on a single PRG starts decreasing.

However, such behavior is expected in Twitter. TheVMAs
hash tag suggests a seasonal interest with global visibility
that became popular, likely to be reproduced by other hash
tags in the future, and represent a particular specificity of
the workload chosen.

4.3 Discussion
A preliminary conclusion of the evaluation is that the

adoption of a very conservative policy that maintains the
objects on the PRG where they were first created can al-
ready present interesting results. Considering the Twitter’s
case, objects are mostly used in the location where they
are created. This explains why the Static policy is able to
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Figure 4: Average number of transactions enclosed

on a single partial replication group.

present percentages of transactions enclosed on a single PRG
already above 70%.

However, the results of theAggressive Polling policy proves
that there is still some room for improvements. On the other
hand, the presence of single shot hash tags has lead to a sig-
nificant decrease of the global object usage average, leading
the Conservative Polling policy to increase group changes,
where it was firstly expected to have less group changes
than the Aggressive Polling. In fact, the latter not only
produces less group changes, but also more effective ones as
it is the only one able to improve the system’s performance
when compared to the Static configuration. Nevertheless, it
should be noted that these results are susceptible to change
with other datasets.

5. FUTURE WORK
The evaluation showed that more needs to be investigated

in the field of dynamic partial replication policies with ad-
ditional research challenges to be answered. For example,
by further investigating possible correlation among distinct
objects created by transactions. Moreover, the fact that a
policy under-performed for this specific workload, does not
mean it will not be more suitable than others for other work-
loads with different characteristics. We intend to gather
larger and more diversified datasets to validate our results
and provide a set of policies able to adapt to a variety of
different workload characteristics. In addition, a uniform
dataset, with meaningful correlation between objects and
locations, possibly leveraging the logs of some popular ap-
plication, would greatly contribute to support and compare
the evaluation of such policies.

6. CONCLUSION
This paper discusses policies to extend the DTM to ef-

ficiently and dynamically map resources onto partial repli-
cation groups, in order to understand if a dynamic service
that constantly evaluates the data mapped can contribute
to maintaining a system’s efficiency. The paper evaluated
four partial replication policies on the data collected from
the Twitter social network. We observed that the proposed
policies can positively impact the performance of our case
study, in comparison with off-the-shelf approaches that ei-
ther always or never migrate objects from one partial repli-



cation group to another.
Results suggest that where the objects were first gener-

ated is often where they will be most frequently used. Fur-
ther research must be performed to investigate deterministic
workload characteristics and provide policies to adapt to the
latter as well as a uniform test bed to evaluates such policies.
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[2] X. Défago, A. Schiper, and P. Urbán. Total order
broadcast and multicast algorithms: Taxonomy and
survey. ACM Comput. Surv., 36(4):372–421, Dec.
2004.

[3] J. Gray. Notes on data base operating systems. In
Operating Systems, An Advanced Course, pages
393–481, 1978.

[4] M. Herlihy, V. Luchangco, and M. Moir. A flexible
framework for implementing software transactional
memory. SIGPLAN, 41(10):253–262, Oct. 2006.

[5] M. Herlihy, V. Luchangco, M. Moir, and W. N.
Scherer, III. Software transactional memory for
dynamic-sized data structures. In Proc. of the 22nd
Annual Symposium on Principles of Distributed
Computing (PODC’03), pages 92–101, 2003.

[6] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures.
SIGARCH Comput. Archit. News, 21(2):289–300, May
1993.

[7] M. Herlihy and Y. Sun. Distributed transactional
memory for metric-space networks. In Proc. of the
19th Int’l Conference on Distributed Computing
(DISC’05), pages 324–338, 2005.

[8] L. L. Hoang, C. E. Bezerra, and F. Pedone. Dynamic
scalable state machine replication. In 46th IEEE/IFIP
International Conference on Dependable Systems and
Networks (DSN), June 2016.

[9] B. Kemme and G. Alonso. A suite of database
replication protocols based on group communication
primitives. In Proc. of the 18th Int’l Conference on
Distributed Computing Systems, pages 156–163, May
1998.

[10] J. Kim and B. Ravindran. Scheduling transactions in
replicated distributed software transactional memory.
In Proc. of the 13th IEEE/ACM Int’l Symposium on
Cluster, Cloud and Grid Computing (CCGrid), pages
227–234, May 2013.

[11] K. Manassiev, M. Mihailescu, and C. Amza.
Exploiting distributed version concurrency in a
transactional memory cluster. In Proc. of the 11th
ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP’06), pages
198–208, 2006.

[12] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun.
STAMP: Stanford Transactional Applications for
MultiProcessing. In IEEE International Symposium
on Workload Characterization, pages 35–46, 2008.

[13] F. Morstatter, J. Pfeffer, H. Liu, and K. M. Carley. Is
the sample good enough? comparing data from
twitter’s streaming API with twitter’s firehose. CoRR,
abs/1306.5204, 2013.

[14] S. Peluso, P. Romano, and F. Quaglia. Score: A
scalable one-copy serializable partial replication
protocol. In Proc. of the 13th Int’l Middleware
Conference (Middleware’12), pages 456–475, 2012.

[15] M. M. Saad and B. Ravindran. Hyflow: A high
performance distributed software transactional
memory framework. In Proc. of the 20th Int’l
Symposium on High Performance Distributed
Computing (HPDC’11), pages 265–266, 2011.

[16] D. Sciascia and F. Pedone. Geo-replicated storage
with scalable deferred update replication. In
Proceedings of the 2014 IEEE 33rd International
Symposium on Reliable Distributed Systems
Workshops, SRDSW ’14, pages 26–29, Washington,
DC, USA, 2014. IEEE Computer Society.

[17] J. a. A. Silva, T. M. Vale, R. J. Dias, H. Paulino, and
J. a. M. Lourenço. Supporting multiple data
replication models in distributed transactional
memory. In Proc. of the 2015 Int’l Conf. on
Distributed Computing and Networking (ICDCN’15),
pages 11:1–11:10, 2015.

[18] A. Turcu, B. Ravindran, and R. Palmieri. Hyflow2: A
high performance distributed transactional memory
framework in scala. In Proc. of the 2013 Int’l
Conference on Principles and Practices of
Programming on the Java Platform: Virtual Machines,
Languages, and Tools (PPPJ’13), pages 79–88, 2013.

[19] B. Zhang and B. Ravindran. Relay: A cache-coherence
protocol for distributed transactional memory.
Principles of Distributed Systems, pages 48–53, 2009.




