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Partial Scanning Transmission 
Electron Microscopy with Deep 
Learning
Jeffrey M. Ede✉ & Richard Beanland

Compressed sensing algorithms are used to decrease electron microscope scan time and electron 

beam exposure with minimal information loss. Following successful applications of deep learning 
to compressed sensing, we have developed a two-stage multiscale generative adversarial neural 

network to complete realistic 512 × 512 scanning transmission electron micrographs from spiral, 
jittered gridlike, and other partial scans. For spiral scans and mean squared error based pre-training, 
this enables electron beam coverage to be decreased by 17.9× with a 3.8% test set root mean squared 
intensity error, and by 87.0× with a 6.2% error. Our generator networks are trained on partial scans 
created from a new dataset of 16227 scanning transmission electron micrographs. High performance is 
achieved with adaptive learning rate clipping of loss spikes and an auxiliary trainer network. Our source 
code, new dataset, and pre-trained models are publicly available.

Aberration corrected scanning transmission electron microscopy (STEM) can achieve imaging resolutions below 
0.1 nm, and locate atom columns with pm precision1,2. Nonetheless, the high current density of electron probes 
produces radiation damage in many materials, limiting the range and type of investigations that can be per-
formed3,4. A number of strategies to minimize beam damage have been proposed, including dose fractionation5 
and a variety of sparse data collection methods6. Perhaps the most intensively investigated approach to the latter 
is sampling a random subset of pixels, followed by reconstruction using an inpainting algorithm3,6–10. Poisson 
random sampling of pixels is optimal for reconstruction by compressed sensing algorithms11. However, random 
sampling exceeds the design parameters of standard electron beam de�ection systems, and can only be performed 
by collecting data slowly12,13, or with the addition of a fast de�ection or blanking system3,14.

Sparse data collection methods that are more compatible with conventional beam de�ection systems have 
also been investigated. For example, maintaining a linear fast scan de�ection whilst using a widely-spaced slow 
scan axis with some small random ‘jitter’9,12. However, even small jumps in electron beam position can lead to a 
signi�cant di�erence between nominal and actual beam positions in a fast scan. Such jumps can be avoided by 
driving functions with continuous derivatives, such as those for spiral and Lissajous scan paths3,13,15,16. Sang13,16 
considered a variety of scans including Archimedes and Fermat spirals, and scans with constant angular or linear 
displacements, by driving electron beam de�ectors with a �eld-programmable gate array (FPGA) based system. 
Spirals with constant angular velocity place the least demand on electron beam de�ectors. However, dwell times, 
and therefore electron dose, decreases with radius. Conversely, spirals created with constant spatial speeds are 
prone to systematic image distortions due to lags in de�ector responses. In practice, �xed doses are preferable as 
they simplify visual inspection and limit the dose dependence of STEM noise17.

Deep learning has a history of successful applications to image infilling, including image completion18, 
irregular gap in�lling19 and supersampling20. �is has motivated applications of deep learning to the comple-
tion of sparse, or ‘partial’, scans, including supersampling of scanning electron microscopy21 (SEM) and STEM 
images22,23. Where pre-trained models are unavailable for transfer learning24, arti�cial neural networks (ANNs) 
are typically trained, validated and tested with large, carefully partitioned machine learning datasets25,26 so that 
they are robust to general use. In practice, this o�en requires at least a few thousand examples. Indeed, standard 
machine learning datasets such as CIFAR-1027,28, MNIST29, and ImageNet30 contain tens of thousands or mil-
lions of examples. To train an ANN to complete STEM images from partial scans, an ideal dataset might consist 
of a large number of pairs of partial scans and corresponding high-quality, low noise images, taken with an 
aberration-corrected STEM. To our knowledge, such a dataset does not exist. As a result, we have collated a new 
dataset of STEM raster scans from which partial scans can be selected. Selecting partial scans from full scans is 
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less expensive than collecting image pairs, and individual pixels selected from experimental images have realistic 
noise characteristics.

Examples of spiral and jittered gridlike partial scans investigated in this paper are shown in Fig. 1. Continuous 
spiral scan paths that extend to image corners cannot be created by conventional scan systems without going over 
image edges. However, such a spiral can be cropped from a spiral with radius at least 2−1/2 times the minimum 
image side, at the cost of increased scan time and electron beam damage to the surrounding material. We use 
Archimedes spirals, where θ∝r , and r and θ are polar radius and angle coordinates, as these spirals have the most 
uniform spatial coverage. Jittered gridlike scans would also be di�cult to produce with a conventional system, 
which would su�er variations in dose and distortions due to limited beam de�ector response. Nevertheless, these 
idealized scan paths serve as useful inputs to demonstrate the capabilities of our approach. We expect that other 
scan paths could be used with similar results.

We �ne-tune our ANNs as part of generative adversarial networks31 (GANs) to complete realistic images from 
partial scans. A GAN consists of sets of generators and discriminators that play an adversarial game. Generators 
learn to produce outputs that look realistic to discriminators, while discriminators learn to distinguish between 
real and generated examples. Limitedly, discriminators only assess whether outputs look realistic; not if they are 
correct. �is can result in a neural network only generating a subset of outputs, referred to as mode collapse32. To 
counter this issue, generator learning can be conditioned on an additional distance between generated and true 
images33. Meaningful distances can be hand-cra�ed or learned automatically by considering di�erences between 
features imagined by discriminators for real and generated images34,35.

Training
In this section we introduce a new STEM images dataset for machine learning, describe how partial scans were 
selected from images in our data pipeline, and outline ANN architecture and learning policy. Detailed ANN 
architecture, learning policy, and experiments are provided as Supplementary Information, and source code is 
available36.

Data pipeline.  To create partial scan examples, we collated a new dataset containing 16227 32-bit �oating 
point STEM images collected with a JEOL ARM200F atomic resolution electron microscope. Individual micro-
graphs were saved to University of Warwick data servers by dozens of scientists working on hundreds of projects 
as Gatan Microscopy Suite37 generated dm3 or dm4 �les. As a result, our dataset has a diverse constitution. Atom 
columns are visible in two-thirds of STEM images, with most signals imaged at several times their Nyquist rates38, 
and similar proportions of images are bright and dark �eld. �e other third of images are at magni�cations 
too low for atomic resolution, or are of amorphous materials. Importantly, our dataset contains noisy images, 
incomplete scans and other low-quality images that would not normally be published. �is ensures that ANNs 
trained on our dataset are robust to general use. �e Digital Micrograph image format is rarely used outside the 
microscopy community. As a result, data has been transferred to the widely supported TIFF39 �le format in our 
publicly available dataset40,41.

Micrographs were split into 12170 training, 1622 validation, and 2435 test set examples. Each subset was col-
lected by a di�erent subset of scientists and has di�erent characteristics. As a result, unseen validation and test sets 
can be used to quantify the ability of a trained network to generalize. To reduce data read times, each micrograph 
was split into non-overlapping 512 × 512 sub-images, referred to as ‘crops’, producing 110933 training, 21259 
validation and 28877 test set crops. For convenience, our crops dataset is also available40,41. Each crop, I , was pro-
cessed in our data pipeline by replacing non-�nite electron counts, i.e. NaN and ±∞, with zeros. Crops were then 
l inearly transformed to have intensit ies  ∈ −I [ 1, 1]N ,  except for uniform crops sat isfying 

Figure 1. Examples of Archimedes spiral (top) and jittered gridlike (bottom) 512 × 512 partial scan paths for 
1/10, 1/20, 1/40, and 1/100 px coverage.
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− <
−I Imax( ) min( ) 10 6 where we set =I 0N  everywhere. Finally, each crop was subject to a random combina-

tion of �ips and 90° rotations to augment the dataset by a factor of eight.
Partial scans, Iscan, were selected from raster scan crops, IN, by multiplication with a binary mask Φpath,

= ΦI I , (1)scan path N

where Φ = 1path  on a scan path, and Φ = 0path  otherwise. Raster scans are sampled at a rectangular lattice of dis-
crete locations, so a subset of raster scan pixels are experimental measurements. In addition, although electron 
probe position error characteristics may di�er for partial and raster scans, typical position errors are small42,43. As 
a result, we expect that partial scans selected from raster scans with binary masks are realistic.

We also selected partial scans with blurred masks to simulate varying dwell times and noise characteristics. 
�ese di�culties are encountered in incoherent STEM44,45, where STEM illumination is detected by a transmis-
sion electron microscopy (TEM) camera. For simplicity, we created non-physical noise by multiplying Iscan with 

U( ) (1 )path path pathη Φ = Φ + − Φ , where U is a uniform random variate distributed in [0, 2). ANNs are able to 

generalize46,47, so we expect similar results for other noise characteristics. A binary mask, with values in {0, 1}, is 
a special case where no noise is applied i.e. η =(1) 1, and Φ = 0path  is not traversed. Performance is reported for 
both binary and blurred masks.

�e noise characteristics in our new STEM images dataset vary. �is is problematic for mean squared error 
(MSE) based ANN training losses, as di�erences are higher for crops with higher noise. In e�ect, this would 
increase the importance of noisy images in the dataset, even if they are not more representative. Although adap-
tive ANN optimizers that divide parameter learning rates by gradient sizes48 can partially mitigate weighting by 
varying noise levels, this restricts training to a batch size of 1 and limits momentum. Consequently, we low-passed 
�ltered ground truth images, IN , to Iblur by a 5 × 5 symmetric Gaussian kernel with a 2.5 px standard deviation, to 
calculate MSEs for ANN outputs.

Network architecture.  To generate realistic images, we developed a multiscale conditional GAN with 
TensorFlow49. Our network can be partitioned into the six convolutional50,51 subnetworks shown in Fig. 2: an 
inner generator, Ginner, outer generator, Gouter, inner generator trainer, T , and small, medium and large scale dis-
criminators, D1, D2 and D3. We refer to the compound network =G I G G I I( ) ( ( ), )scan outer inner scan scan  as the genera-
tor, and to D = {D1, D2, D3} as the multiscale discriminator. The generator is the only network needed for 
inference.

Following recent work on high-resolution conditional GANs34, we use two generator subnetworks. �e inner 
generator produces large scale features from partial scans bilinearly downsampled from 512 × 512 to 256 × 256. 
�ese features are then combined with inputs embedded by the outer generator to output full-size completions. 
Following Inception52,53, we introduce an auxiliary trainer network that cooperates with the inner generator to 
output 256 × 256 completions. �is acts as a regularization mechanism, and provides a more direct path for 

Figure 2. Simpli�ed multiscale generative adversarial network. An inner generator produces large-scale 
features from inputs. �ese are mapped to half-size completions by a trainer network and recombined with the 
input to generate full-size completions by an outer generator. Multiple discriminators assess multiscale crops 
from input images and full-size completions. �is �gure was created with Inkscape83.
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gradients to backpropagate to the inner generator. To more e�ciently utilize initial generator convolutions, partial 
scans selected with a binary mask are nearest neighbour in�lled before being input to the generator.

Multiscale discriminators examine real and generated STEM images to predict whether they are real or gen-
erated, adapting to the generator as it learns. Each discriminator assesses di�erent-sized crops selected from 
512 × 512 images, with sizes 70 × 70, 140 × 140 or 280 × 280. A�er selection, crops are bilinearly downsampled 
to 70 × 70 before discriminator convolutions. Typically, discriminators are applied at fractions of the full image 
size34 e.g. 512/22, 512/21 and 512/20. However, we found that discriminators that downsample large �elds of view 
to 70 × 70 are less sensitive to high-frequency STEM noise characteristics. Processing �xed size image regions 
with multiple discriminators has been proposed54 to decrease computation for large images, and extended to 
multiple region sizes34. However, applying discriminators to arrays of non-overlapping image patches55 results 
in periodic artefacts34 that are o�en corrected by larger-scale discriminators. To avoid these artefacts and reduce 
computation, we apply discriminators to randomly selected regions at each spatial scale.

Learning policy.  Training has two halves. In the non-adversarial �rst half, the generator and auxiliary trainer 
cooperate to minimize mean squared errors (MSEs). �is is followed by an optional second half of training, where 
the generator is �ne-tuned as part of a GAN to produce realistic images. Our ANNs are trained by ADAM56 opti-
mized stochastic gradient descent48,57 for up to 2 × 106 iterations, which takes a few days with an Nvidia GTX 1080 
Ti GPU and an i7-6700 CPU. �e objectives of each ANN are codi�ed by their loss functions.

In the non-adversarial �rst half of training, the generator, G, learns to minimize the MSE based loss

λ=L G I IALRC( MSE( ( ), )), (2)MSE cond scan blur

where λ = 200cond , and adaptive learning rate clipping58 (ALRC) is important to prevent high loss spikes from 
destabilizing learning. Experiments with and without ALRC are in Supplementary Information. To compensate 
for varying noise levels, ground truth images were blurred by a 5 × 5 symmetric Gaussian kernel with a 2.5 px 
standard deviation. In addition, the inner generator, Ginner, cooperates with the auxiliary trainer, T , to minimize

λ=L T G I IALRC( MSE( ( ( ))), ), (3)aux trainer inner scan
half

blur
half

where λ = 200trainer , and Iscan
half  and Iblur

half  are 256 × 256 inputs bilinearly downsampled from Iscan and Iblur, 
respectively.

In the optional adversarial second half of training, we use =N 3 discriminator scales with numbers, N1, N2 
and N3, of discriminators, D1, D2 and D3, respectively. �ere many popular GAN loss functions and regularization 
mechanisms59,60. In this paper, we use spectral normalization61 with squared difference losses62 for the 
discriminators,
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where discriminators try to predict 1 for real images and 0 for generated images. We found that = = =N N N 11 2 3  
is su�cient to train the generator to produce realistic images. However, higher performance might be achieved 
with more discriminators e.g. 2 large, 8 medium and 32 small discriminators. �e generator learns to minimize 
the adversarial squared di�erence loss,
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by outputting completions that look realistic to discriminators.
Discriminators only assess the realism of generated images; not if they are correct. To the li� degeneracy and 

prevent mode collapse, we condition adversarial training on non-adversarial losses. �e total generator loss is

λ λ= + +L L L L , (6)G adv adv MSE aux aux

where we found that λ = 1aux  and λ = 5adv  is e�ective. We also tried conditioning the second half of training on 
di�erences between discriminator imagination34,35. However, we found that MSE guidance converges to slightly 
lower MSEs and similar structural similarity indexes63 for STEM images.

Performance
To showcase ANN performance, example applications of adversarial and non-adversarial generators to 
1/20 px coverage partial STEM completion are shown in Fig. 3. Adversarial completions have more realis-
tic high-frequency spatial information and structure, and are less blurry than non-adversarial completions. 
Systematic spatial variation is also less noticeable for adversarial completions. For example, higher detail along 
spiral paths, where errors are lower, can be seen in the bottom two rows of Fig. 3 for non-adversarial completions. 
Inference only requires a generator, so inference times are the same for adversarial and non-adversarial com-
pletions. Single image inference time during training is 45 ms with an Nvidia GTX 1080 Ti GPU, which is fast 
enough for live partial scan completion.

In practice, 1/20 px scan coverage is su�cient to complete most spiral scans. However, generators cannot 
reliably complete micrographs with unpredictable structure in regions where there is no coverage. �is is demon-
strated by example applications of non-adversarial generators to 1/20 px coverage spiral and gridlike partial scans 
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in Fig. 4. Most noticeably, a generator invents a missing atom at a gap in gridlike scan coverage. Spiral scans have 
lower errors than gridlike scans as spirals have smaller gaps between coverage. Additional sheets of examples 
for spiral scans selected with binary masks are provided for scan coverages between 1/17.9 px and 1/87.0 px as 
Supplementary Information.

To characterize generator performance, MSEs for output pixels are shown in Fig. 5. Errors were calculated 
for 20000 test set 1/20 px coverage spiral scans selected with blurred masks. Errors systematically increase with 
increasing distance from paths for non-adversarial training, and are less structured for adversarial training. 
Similar to other generators23,64, errors are also higher near the edges of non-adversarial outputs where there is 
less information. We tried various approaches to decrease non-adversarial systematic error variation by mod-
ifying loss functions. For examples: by ALRC; multiplying pixel losses by their running means; by ALRC and 

Figure 3. Adversarial and non-adversarial completions for 512 × 512 test set 1/20 px coverage blurred spiral 
scan inputs. Adversarial completions have realistic noise characteristics and structure whereas non-adversarial 
completions are blurry. �e bottom row shows a failure case where detail is too �ne for the generator to resolve. 
Enlarged 64 × 64 regions from the top le� of each image are inset to ease comparison, and the bottom two rows 
show non-adversarial generators outputting more detailed features nearer scan paths.
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multiplying pixel losses by their running means; and by ALRC and multiplying pixel losses by �nal mean losses 
of a trained network. However, we found that systematic errors are similar for all variants. �is is a limitation of 
partial STEM as information decreases with increasing distance from scan paths. Adversarial completions also 
exhibit systematic errors that vary with distance from spiral paths. However, spiral variation is dominated by 
other, less structured, spatial error variation. Errors are higher for adversarial training than for non-adversarial 
training as GANs complete images with realistic noise characteristics.

Spiral path test set intensity errors are shown in Fig. 6a, and decrease with increasing coverage for binary 
masks. Test set errors are also presented for deep learning supersampling23 (DLSS) as they are the only results 
that are directly comparable. DLSS is an alternative approach to compressed sensing where STEM images are 
completed from a sublattice of probing locations. Both DLSS and partial STEM results are for the same neural 
network architecture, learning policy and training dataset. Results depend on datasets, so using the same dataset 
is essential for quantitative comparison. We �nd that DLSS errors are lower than spiral errors at all coverages. In 
addition, spiral errors exponentially increase above DLSS errors at low coverages where minimum distances from 
spiral paths increase. Although this comparison may appear unfavourable for partial STEM, we expect that this is 
a limitation of training signals being imaged at several times their Nyquist rates.

Distributions of 20000 spiral path test set root mean squared (RMS) intensity errors for spiral data in Fig. 6a 
are shown in Fig. 6b. �e coverages listed in Fig. 6 are for in�nite spiral paths with 1/16, 1/25, 1/36, 1/49, 1/64, 
1/81, and 1/100 px coverage a�er paths are cut by image boundaries; changing coverage. All distributions have a 
similar peak near an RMS error of 0.04, suggesting that generator performance remains similar for a portion of 
images as coverage is varied. As coverage decreases, the portion of errors above the peak increases as generators 
have di�culty with more images. In addition, there is a small peak close to zero for blank or otherwise trivial 
completions.

Discussion
Partial STEM can decrease scan coverage and total electron electron dose by 10–100× with 3–6% test set RMS 
errors. �ese errors are small compared to typical STEM noise. Decreased electron dose will enable new STEM 
applications to beam-sensitive materials, including organic crystals65, metal-organic frameworks66, nanotubes67, 
and nanoparticle dispersions68. Partial STEM can also decrease scan times in proportion to decreased coverage. 
�is will enable increased temporal resolution of dynamic materials, including polar nanoregions in relaxor fer-
roelectrics69,70, atom motion71, nanoparticle nucleation72, and material interface dynamics73. In addition, faster 
scans can reduce delay for experimenters, decreasing microscope time. Partial STEM can also be a starting point 
for algorithms that process STEM images e.g. to �nd and interpret atomic positions74.

Figure 4. Non-adversarial generator outputs for 512 × 512 1/20 px coverage blurred spiral and gridlike 
scan inputs. Images with predictable patterns or structure are accurately completed. Circles accentuate that 
generators cannot reliably complete unpredictable images where there is no information. �is �gure was created 
with Inkscape83.
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Our generators are trained for �xed coverages and 512 × 512 inputs. However, recent research has introduced 
loss function modi�cations that can be used to train a single generator for multiple coverages with minimal 
performance loss23. Using a single GAN improves portability as each of our GANs requires 1.3 GB of storage 
space with 32 bit model parameters, and limits technical debt that may accompany a large number of models. 
Although our generator input sizes are �xed, they can be tiled across larger images; potentially processing tiles in 
a single batch for computational e�ciency. To reduce higher errors at the edge of generator outputs, tiles can be 
overlapped so that edges may be discarded64. Smaller images could be padded. Alternatively, dedicated generators 
can be trained for other output sizes.

�ere is an e�ectively in�nite number of possible partial scan paths for 512 × 512 STEM images. In this paper, 
we focus on spiral and gridlike partial scans. For a �xed coverage, we �nd that the most e�ective method to 
decrease errors is to minimize maximum distances from input information. �e less information there is about an 
output region, the more information that needs to be extrapolated, and the higher the error. For example, we �nd 
that errors are lower for spiral scans than gridlike scans as maximum distances from input information are lower. 
Really, the optimal scan shape is not static: It is speci�c to a given image and generator architecture. As a result, we 
are actively developing an intelligent partial scan system that adapts to inputs as they are scanned.

Partial STEM has a number of limitations relative to DLSS. For a start, partial STEM may require a custom 
scan system. Even if a scan system supports or can be reprogrammed to support custom scan paths, it may 
be insu�ciently responsive. In contrast, DLSS can be applied as a postprocessing step without hardware mod-
i�cation. Another limitation of partial STEM is that errors increase with increasing distance from scan paths. 
Distances from continuous scan paths cannot be decreased without increasing coverage. Finally, most features 
in our new STEM crops dataset are sampled at several times their Nyquist rates. Electron microscopists o�en 
record images above minimum su�cient resolutions and intensities to ease visual inspection and limit the e�ects 
of dri�75, shot17, and other noise. �is means that a DLSS lattice can still access most high frequency information 
in our dataset.

Test set DLSS errors are lower than partial STEM errors for the same architecture and learning policy. 
However, this is not conclusive as generators were trained for a few days; rather than until validation errors 
diverged from training errors. For example, we expect that spirals need more training iterations than DLSS as 

Figure 5. Generator mean squared errors (MSEs) at each output pixel for 20000 512 × 512 1/20 px coverage 
test set images. Systematic errors are lower near spiral paths for variants of MSE training, and are less structured 
for adversarial training. Means, µ, and standard deviations, σ, of all pixels in each image are much higher for 
adversarial outputs. Enlarged 64 × 64 regions from the top le� of each image are inset to ease comparison, and 
to show that systematic errors for MSE training are higher near output edges.

Figure 6. Test set root mean squared (RMS) intensity errors for spiral scans in [0, 1] selected with binary masks. 
(a) RMS errors decrease with increasing electron probe coverage, and are higher than deep learning 
supersampling23 (DLSS) errors. (b) Frequency distributions of 20000 test set RMS errors for 100 bins in 
.[0, 0 224] and scan coverages in the legend.
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nearest neighbour in�lled spiral regions have varying shapes, whereas in�lled regions of DLSS grids are square. In 
addition, limited high frequency information in training data limits one of the key strengths of partial STEM that 
DLSS lacks: access to high-frequency information from neighbouring pixels. As a result, we expect that partial 
STEM performance would be higher for signals imaged closer to their Nyquist rates.

To generate realistic images, we �ne-tuned partial STEM generators as part of GANs. GANs generate images 
with more realistic high-frequency spatial components and structure than MSE training. However, GANs focus 
on semantics; rather than intensity di�erences. �is means that although adversarial completions have realistic 
characteristics, such as high-frequency noise, individual pixel values di�er from true values. GANs can also be 
di�cult to train76,77, and training requires additional computation. Nevertheless, inference time is the same for 
adversarial and non-adversarial generators a�er training.

Encouragingly, ANNs are universal approximators78 that can represent79 the optimal mapping from partial 
scans with arbitrary accuracy. �is overcomes the limitations of traditional algorithms where performance is 
�xed. If ANN performance is insu�cient or surpassed by another method, training or development can be con-
tinued to achieve higher performance. Indeed, validation errors did not diverge from training errors during our 
experiments, so we are presenting lower bounds for performance. In this paper, we compare spiral STEM perfor-
mance against DLSS. It is the only method that we can rigorously and quantitatively compare against as it used the 
same test set data. �is yielded a new insight into how signals being imaged above their Nyquist rates may a�ect 
performance discussed two paragraphs earlier, and highlights the importance of standardized datasets like our 
new STEM images dataset. As machine learning becomes more established in the electron microscopy commu-
nity, we hope that standardized datasets will also become established to standardize performance benchmarks.

Detailed neural network architecture, learning policy, experiments, and additional sheets of examples are pro-
vided as Supplementary Information. Further improvements might be made with AdaNet80, Ludwig81, or other 
automatic machine learning82 algorithms, and we encourage further development. In this spirit, we have made 
our source code36, a new dataset containing 16227 STEM images40,41, and pre-trained models publicly available. 
For convenience, new datasets containing 161069 non-overlapping 512 × 512 crops from STEM images used for 
training, and 19769 antialiased 96 × 96 area downsampled STEM images created for faster ANN development, 
are also available.

Conclusions
Partial STEM with deep learning can decrease electron dose and scan time by over an order of magnitude with 
minimal information loss. In addition, realistic STEM images can be completed by �ne-tuning generators as part 
of a GAN. Detailed MSE characteristics are provided for multiple coverages, including MSEs per output pixel for 
1/20 px coverage spiral scans. Partial STEM will enable new beam sensitive applications, so we have made our 
source code, new STEM dataset, pre-trained models, and details of experiments available to encourage further 
investigation. High performance is achieved by the introduction of an auxiliary trainer network, and adaptive 
learning rate clipping of high losses. We expect our results to be generalizable to SEM and other scan systems.

Data availability
New STEM datasets are available on our publicly accessible dataserver40,41. Source code for ANNs and to create 
images is in a GitHub repository with links to pre-trained models36. For additional information contact the 
corresponding author (J.M.E.).
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