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PARTIAL SMOOTHNESS, TILT STABILITY, AND

GENERALIZED HESSIANS∗

A. S. LEWIS†AND S. ZHANG‡

Abstract

We compare two recent variational-analytic approaches to second-order conditions and sensitivity analysis for nons-

mooth optimization. We describe a broad setting where computing the generalized Hessian of Mordukhovich is easy.

In this setting, the idea of tilt stability introduced by Poliquin and Rockafellar is equivalent to a classical smooth

second-order condition.

Key words: variational analysis, nonsmooth optimization, second-order, sensitivity analysis, prox-regular, subdiffer-

ential continuity, partial smoothness, generalized Hessian, tilt stability

1 Introduction

The distinction between active and inactive constraints is fundamental throughout optimization, underlying op-

timality conditions, sensitivity analysis, and algorithm design. The notion of “partial smoothness” [8] (along with

analogues such as “identifiable surfaces” [21] and “UV decompositions” [9]) captures the essential geometry asso-

ciated with activity, and in a fashion suitable for generalization beyond classical nonlinear programming into such

domains as semidefinite programming. Partial smoothness illustrates well the power of modern variational analysis

as a unifying language for concrete optimization. It is, furthermore, a generic property in concrete settings such as

semi-algebraic convex optimization [2].

The partly smooth setting allows intuitive and appealing statements of second-order optimality conditions and

associated sensitivity analysis around a “nondegenerate” critical point (where the subdifferential contains zero in its

relative interior) [8, 5]. In this case the second-order conditions boil down to the classical smooth case, resulting in

the idea of a “strong critical point”. Much more general second-order variational analysis is available: see for the

example the monographs [20, 3, 11]. A particularly attractive approach is via Mordukhovich’s generalized Hessian

[11]. That particular theoretical development is natural and compelling, relying simply on two sequential applications

of the normal cone construction basic to variational analysis, but computing the generalized Hessian in general can be

hard.

Despite computational challenges, the generalized Hessian is clearly a fundamental tool. In particular, [18] consid-

ers one of the most basic questions of sensitivity analysis: under what conditions does a local minimizer of a function

depend in a Lipschitz fashion on linear perturbations to the function? Assuming the function is both “prox-regular”

and “subdifferentially continuous” (as holds, for example, for a composition of a continuous convex function with

a C2-smooth map), this “tilt stability” property turns out to be equivalent to positive-definiteness of the generalized

Hessian [18].

We prove two main results. We first show that, for partly smooth, prox-regular, subdifferentially continuous

functions, the generalized Hessian is easy to compute at a nondegenerate critical point. Then, as a simple consequence

using the characterization of [18], we show that, in this setting, strong criticality is actually equivalent to tilt stability.

∗This research was supported in part by National Science Foundation Grant DMS-0806057.
†ORIE, Cornell University, Ithaca, NY 14853, U.S.A. (aslewis@orie.cornell.edu, people.orie.cornell.edu/˜aslewis).
‡ORIE, Cornell University, Ithaca, NY 14853, U.S.A. (sz254@cornell.edu).
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2 Generalized Hessian mappings of simple nonsmooth Functions

Unless otherwise stated, we follow the notation and terminology of [20]. In particular, R denotes the extended

reals, ∂ f (x) denotes the set of subgradients of a function f : Rn → R at a point x ∈ Rn, and NS (x) denotes the normal

cone to set S ⊂ Rn at a point x ∈ Rn. We denote the graph of a set-valued mapping F by gph F.

The concept of tilt stability, introduced in [18], characterizes the case where the minimizing point of a function by

adding a small linear term shifts in a Lipschitzian manner and is locally unique.

Definition 2.1. A point x̄ will be said to give a tilt stable local minimum of the function f : Rn → R if f (x̄) is

finite and there exists a δ > 0 such that the mapping

M : v 7→ argmin|x−x̄|≤δ{ f (x) − f (x̄) − 〈v, x − x̄〉 },

is single-valued and Lipschitzian on some neighborhood of v = 0, with M(0) = x̄.

For a C2-smooth function f with ∇ f (x̄) = 0, the point x̄ gives a tilt stable local minimum of f if and only if ∇2 f (x̄)

is positive definite, according to [18, Prop. 1.2 ]. This fact has been extended to nonsmooth functions in terms of the

positivity of a certain generalized Hessian mapping [18].

Definition 2.2. For any point x̄ and any subgradient v̄ ∈ ∂ f (x̄), define the generalized Hessian mapping ∂2 f (x̄|v̄) :

Rn ⇒ Rn by

∂2 f (x̄|v̄) : w 7→ { z | (z,−w) ∈ Ngph ∂ f (x̄, v̄) }.

For a function f : Rn → R having 0 ∈ ∂ f (x̄), [18, Thm. 1.3] shows that under certain assumptions, the point x̄

gives a tilt stable local minimum of f if and only if the mapping ∂2 f (x̄|0) is positive definite in the sense that

〈z,w〉 > 0 whenever z ∈ ∂2 f (x̄|0)(w), w , 0.

To compute the generalized Hessian mapping, it is sufficient to know Ngph ∂ f . Let’s introduce the definition of a

manifold first.

Definition 2.3. We say that a setM ⊂ Rn is a C2-smooth manifold of codimension m around a point x̄ ∈ Rn if

x̄ ∈ M and there is an open set V ⊂ Rn such that

M∩ V = { x ∈ V | Φi(x) = 0, i = 1, · · · ,m }

where Φi are C2-smooth functions with ∇Φi(x̄) linearly independent.

In this case, it is well known that the tangent space toM at x̄ is given by

TM(x̄) = {∇Φi(x̄)}⊥

and the normal space toM at x̄ is

NM(x̄) =
{
∑

i

λi∇Φi(x̄) | λ ∈ Rm
}

.

We call Φi(x) = 0 local equations forM.

Our immediate aim is to compute the normal cone to the graph of the normal cone mapping NM. An explicit

formula follows from [6, Thm. 3.1], [16, Thm. 7], and [14, Thm. 3.1]- see also [13, Thm. 3.4] and [12, Thm. 1.127].

Here, for completeness and to fix our later notation, we give a self-contained classical approach.

Definition 2.4. When F : U → Rm is a C1-smooth mapping of an open set U ⊂ Rn, the rank of F at a point x ∈ U

is defined as the dimension of range of the gradient ∇F(x).

The next result shows that functions of constant rank have simple structure.

Theorem 2.5 (constant rank). Suppose U ⊂ Rm and V ⊂ Rn are open sets and F : U → V is a smooth map

with constant rank k. For any point p ∈ U, there exist open sets U0 ⊂ U containing p, V0 ⊂ V containing F(p) and

diffeomorphisms ϕ : U0 → ϕ(U0), ψ : V0 → ψ(V0), with F(U0) ⊂ V0, such that

ψ ◦ F ◦ ϕ−1(x1, · · · , xk, xk+1, · · · , xm) = (x1, · · · , xk, 0, · · · , 0).
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Proof. See [7, Thm. 7.8]. �

Note that the above theorem is also true for Ck-smooth functions (k ≥ 1), in which case ϕ and ψ are Ck diffeomor-

phisms. The following is standard, but we include a proof for convenience.

Proposition 2.6 (Immersion). IfM is a C2-smooth manifold of codimension m around a point x̄, then there exist

an open set U ⊂ Rn−m and an injective C2-smooth mapping G : U → Rn with G(U) =M locally around x̄.

Proof. SinceM is a C2-manifold of codimension m around x̄, then there exists an open set V ⊂ Rn such that

M∩ V = { x ∈ V | Φi(x) = 0, i = 1, · · · ,m },

where Φi are C2-smooth with ∇Φi(x̄) linearly independent. Shrinking V if necessary, we can assume that ∇Φi(x) are

linearly independent for all x ∈ V . The Implicit Function Theorem is stated as follows: Let F : Rn+m → Rm be a

continuously differentiable function, and let Rn+m have coordinates (x, y). Fix a point (a1, · · · , an, b1, · · · , bm) = (a, b)

with F(a, b) = c, where c ∈ Rm. If the matrix [(∂Fi/∂y j)(a, b)] is invertible, then there exists an open set U containing

a, an open set V containing b, and a unique continuously differentiable function g : U → V such that

{ (x, g(x)) | x ∈ U } = { (x, y) ∈ U × V | F(x, y) = c }.

According to the Implicit Function Theorem, without loss of generality there exist open sets U ⊂ Rn−m, W ⊂ Rm and

a C2-smooth function g : U → W with x̄ ∈ U ×W ⊂ V such that

{ (u, g(u)) ∈ U ×W } = { (u,w) ∈ U ×W | Φi(u,w) = 0 , i = 1, · · · ,m }.

Then define an injective function G : U → Rn by

G(u) = (u, g(u)).

It is easy to check that G(U) =M locally around x̄. �

Proposition 2.7 (Tangents to immersions). Let U ⊂ Rm be an open set with a point ū ∈ U and G : U → Rn be

Ck-smooth with ∇G(ū) full rank. Then there exists an open set U0 ⊂ U containing ū such that G(U0) is a Ck-manifold

around G(ū) and TG(U0)(G(u)) = R(∇G(u)) for all u ∈ U0.

Proof. Since G : U → Rn is Ck-smooth with ∇G(ū) full rank, then G is of constant rank m around ū. According to

Theorem 2.5, there exist open sets U0 ⊂ Rm containing ū, V0 ⊂ Rn containing G(ū) and diffeomorphisms ϕ : U0 →
ϕ(U0), ψ : V0 → ψ(V0), with U0 ⊂ U and G(U0) ⊂ V0, such that

ψ ◦G ◦ ϕ−1(x1, · · · , xm) = (x1, · · · , xm, 0, · · · , 0).

Hence,

G(U0) ∩ V0 = {x ∈ V0 : ψi(x) = 0, i = m + 1, · · · , n}

where ∇ψi(x) are linearly independent on V0. Therefore G(U0) is a manifold around G(ū). Hence

TG(U0)(G(u)) = Ker(∇Φ(G(u)))

where Φ(x) = (ψm+1, · · · , ψn). Since Φ ◦G(u) = 0 for any u ∈ U0, then by chain rule we get

∇Φ(G(u))∇G(u) = 0.

Therefore R(∇G(u)) ⊂ Ker(∇Φ(G(u))). Since dim(∇G(u))=dim(Ker(∇Φ(G(u))))=m, then

TG(U0)(G(u)) = Ker(∇Φ(G(u))) = R(∇G(u)).

�
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Theorem 2.8 (Normals to the normal bundle). Suppose a point x̄ ∈ V ⊂ Rn where V is an open set and Φi : V →
R (i = 1, · · · ,m) are C2-smooth functions with ∇Φi(x̄) linearly independent. Then there exists an open set V ′ ⊂ V

containing x̄ such that

M = { x ∈ V ′ | Φi(x) = 0, i = 1, · · · ,m }

is a C2-smooth manifold around x with

TM(x) = {∇Φi(x)}⊥ and NM(x) =
{
∑

i

λi∇Φi(x) | λ ∈ Rm
}

(1)

for any x ∈ M. Furthermore, the normal bundle gph NM is a C1-smooth manifold around (x,
∑

λi∇Φi(x)) and

Ngph NM

(

x,
∑

i

λi∇Φi(x)
)

=
{

(z,w) | w ∈ TM(x), z +
∑

i

λi∇2Φi(x)w ∈ NM(x)
}

for any x ∈ M and λ ∈ Rm.

Proof. Since M is a Ck-smooth manifold of codimension m, we can choose G : U → Rn with G(ū) = x̄ as in

Proposition 2.6. According to the proof of Proposition 2.6, it is easy to deduce that ∇G(u) is full rank for any u ∈ U.

Moreover, (1) holds. Define the following C1-smooth function F : U ×Rm → Rn ×Rn by

F(u, λ) =
(

G(u),
∑

λi∇Φi(G(u))
)

where u ∈ U, λ ∈ Rm.

Let’s compute Tgph NM (x,
∑

i λi∇Φi(x)) first. Since

∇F(u, λ) =

(

∇G(u) 0 · · · 0
∑

λi∇2Φi(G(u))∇G(u) ∇Φ1(G(u)) · · · ∇Φm(G(u))

)

has full rank for any (u, λ) ∈ U × Rm, then there exists an open set U0 × W0 ⊂ U × Rm such that locally around

(x,
∑

i λi∇Φi(x)), the set F(U0 ×W0) = gph NM is a C1-smooth manifold by Proposition 2.7. Moreover, we have that

Tgph NM

(

x,
∑

i

λi∇Φi(x)
)

= R(∇F(u, λ))

=
{(

∇G(u)w,
∑

λi∇2Φi(G(u))∇G(u)w +
∑

i

zi∇Φi(G(u))
)

| w ∈ Rn−m, z ∈ Rm
}

=
{

(z,w) | z ∈ TM(x),w −
∑

i

λi∇2Φi(x)z ∈ NM(x)
}

.

Since gph NM is aC1-smooth manifold around (x,
∑

i λi∇Φi(x)), then Ngph NM (x,
∑

i λi∇Φi(x)) = Tgph NM (x,
∑

i λi∇Φi(x))⊥.

We can calculate this set from the fact that for any linear map A and a linear subspace S

{ x | Ax ∈ S }⊥ = A∗S ⊥.

In this case,

A =

(

I 0

−∑

i λi∇2Φi(x) I

)

and S = { (u, v) | u ∈ TM(x), v ∈ NM(x) }.

Therefore

Ngph NM

(

x,
∑

i

λi∇Φi(x)
)

=
{

(z,w) | w ∈ TM(x), z +
∑

i

λi∇2Φi(x)w ∈ NM(x)
}

.

�

Note the classic definition of a manifold is via “coordinate charts.” Then the manifoldM ⊂ Rn defined by Defini-

tion 2.3 can be identified as an embedded submanifold of Rn according to [7, Prop. 8.12]. In this setting, Proposition

2.6 and 2.7 are standard results in smooth manifold theory.

4



Corollary 2.9 (Generalized Hessians: smooth case). Suppose a point x̄ ∈ V ⊂ Rn where V is an open set and

Φi : V → R (i = 1, · · · ,m) are C2-smooth with ∇Φi(x̄) linearly independent. Then there exists an open set V ′ ⊂ V

containing x̄ such that

M = { x ∈ V ′ | Φi(x) = 0, i = 1, · · · ,m }

is a C2-smooth manifold around x̄ with the following property. Suppose h : Rn → R is a C2-smooth function around x̄

with 0 ∈ ∂(h+δM)(x̄). Then there exists a unique λ̄ ∈ Rm such that the Lagrangian L = h+
∑

i λ̄iΦi satisfies ∇L(x̄) = 0

and

∂2(h + δM)(x̄|0)(w) =

{

∇2L(x̄)w + NM(x̄) w ∈ TM(x̄)

∅ w < TM(x̄).

Proof. Since 0 ∈ (h + δM)(x̄) and ∇Φi(x̄) are linearly independent, then there exists a unique λ̄ ∈ Rm such that

−∇h(x̄) =
∑

i λ̄i∇Φi(x̄). According to [18, Prop. 4.1], we have that for any x̄ ∈ M and w ∈ Rn

∂2(h + δM)(x̄|0)(w) = ∇2h(x̄)w + ∂2δM(x̄| − ∇h(x̄))(w).

Since

∂2δM(x̄| − ∇h(x̄)) : w 7→ { z | (z,−w) ∈ Ngph NM (x̄,−∇h(x̄)) },

then this problem boils down to computing the normal cone of gph NM at (x̄,−∇h(x̄)). According to Proposition 2.8,

we have that for any w ∈ TM(x̄)

∂2δM(x̄| − ∇h(x̄))(w) = ∂2δM

(

x̄|
∑

i

λ̄i∇Φi(x̄)
)

(w) =
∑

i

λ̄i∇2Φi(x̄)w + NM(x̄).

Hence

∂2(h + δM)(x̄|0)(w) = ∇2h(x̄)w + ∂2δM(x̄| − ∇h(x̄))(w) =

{

∇2L(x̄)w + NM(x̄) w ∈ TM(x̄)

∅ w < TM(x̄).

�

Since Ngph NM is only determined by the geometry ofM, we can use intrinsic geometric objects to formulate it.

Next, we will introduce the concept of covariant derivative and Hessian.

Definition 2.10. Let a C2-smooth manifold M ⊂ Rn contain a point x̄. We say a function f : M → R is C2-

smooth around x̄ if there exists a representative function h : Rn → R which is C2-smooth around x̄ with h|M = f |M
locally around x̄.

Let M be a C2-smooth manifold around x̄. Then the projection mapping u 7→ PM(x̄ + u) is well-defined and

C2-smooth around 0 on TM(x̄) as proved in [10].

Definition 2.11. Suppose M ⊂ Rn is a C2-smooth manifold around a point x̄ and a function f : M → R is

C2-smooth around x̄. Then the covariant derivative ∇ fM(x̄) ∈ TM(x̄) is defined by

〈∇M f (x̄), u〉 = d

dt
f (PM(x̄ + tu))|t=0 for all u ∈ TM(x̄),

and the covariant Hessian ∇2
M f (x̄) : TM(x̄) × TM(x̄)→ R is the unique self-adjoint and bilinear map satisfying

〈∇2
M f (x̄)u, u〉 = d2

dt2
f (PM(x̄ + tu))|t=0 for all u ∈ TM(x̄).

This definition agrees with the classic definition of covariant derivative and Hessian using geodesics as proved in

[10]. Suppose the function f : M → R is C2-smooth around x̄. Let h be any C2-smooth representative of f around

x̄ and C2-smooth functions Φi define local equations forM. If ∇h(x̄) ∈ NM(x̄), then using the notation of Corollary

2.9, there exists a unique λ̄ such that ∇h(x̄)+
∑

λ̄i∇Φi(x̄) = 0. Furthermore, the following results have been showed in

[10]:

∇M f (x̄) = PTM(x̄)∇h(x̄) and ∇2
M f (x̄) = PTM(x̄)∇2L(x̄)PTM(x̄).

5



Theorem 2.12 (Generalized and covariant Hessians). SupposeM ⊂ Rn is a C2-smooth manifold around a point

x̄ and the function f :M→ R is C2-smooth around x̄. Define the function f̃ : Rn → R by

f̃ (x) =

{

f (x) x ∈ M
+∞ x <M.

Then

0 ∈ ∂ f̃ (x̄)⇔ ∇ fM(x̄) = 0

and in that case

∂2 f̃ (x̄|0)(w) =

{

∇2
M f (x̄)w + NM(x̄) w ∈ TM(x̄)

∅ w < TM(x̄).

Proof. Let h be a C2-smooth representative of f around x̄. Then we have

∇M f (x̄) = 0⇔ ∇h(x̄) ∈ NM(x̄)⇔ 0 ∈ ∂ f̃ (x̄).

Let λ̄ be the unique multiplier satisfying ∇h(x̄)+
∑

i λ̄i∇Φi(x̄) = 0. Since f̃ (x) = h(x)+ δM(x), then for any w ∈ TM(x̄)

we have, by Corollary 2.9

∂2 f̃ (x̄|0)(w) = ∂2(h + δM)(x̄|0)(w)

= ∇2h(x̄)w +
∑

i

λ̄i∇2Φi(x̄)w + NM(x̄)

= PTM(x̄)

(

∇2h(x̄) +
∑

i

λ̄i∇2Φi(x̄)
)

PTM(x̄)w + NM(x̄)

= ∇2
M f (x̄)w + NM(x̄).

The result follows. �

We refer to functions of the form f̃ as extended-C2-smooth at x̄. The above theorem gives us some indication

of how to calculate a generalized Hessian mapping. The smooth manifold M simplifies the calculation. “Partial

smoothness”, which was introduced in [8], gives some underlying smooth structure for a non-smooth function. In this

paper, we are going to show that for a partly smooth function relative to manifoldM, the local geometry of gph ∂ f (x)

is determined by the restriction of f to M, under certain assumptions. In this way, we can extend Theorem 2.9 to

partly smooth functions.

3 Definitions and results

Definition 3.1. Suppose C ⊂ Rn is a nonempty convex set. The subspace parallel to the set C, denoted by par C,

is defined by

par C = aff C − x for any x ∈ C,

where aff C is the affine span of C.

Definition 3.2. Suppose that the setM ⊂ Rn contains the point x̄. The function f : Rn → R is C2-partly smooth

at x̄ relative toM ifM is a C2-smooth manifold around x̄ and the following four properties hold:

1. (restricted smoothness) f |M is C2-smooth around x̄;

2. (regularity) at every point close to x̄ inM, the function f is subdifferentially regular and has a subgradient;

3. (normal sharpness) NM(x̄) = par ∂ f (x̄);

4. (subgradient continuity) the subdifferential map ∂ f is continuous at x̄ relative toM.

6



Definition 3.3. Let f be a C2-partly smooth function at a point x̄ relative to a C2-smooth manifoldM. Then we

call x̄ is a strong critical point of f relative toM if

0 ∈ ri ∂ f (x̄)

and there exists ǫ > 0 such that

f (x) ≥ f (x̄) + ǫ |x − x̄|2

for all points x ∈ M near x̄.

Given certain assumptions, critical points of parametric partly smooth functions are stable.

Theorem 3.4 (Strong critical points with parameters). Suppose the set Q ⊂ Rm × Rn is a C2-smooth manifold

containing the point (ȳ, x̄) and satisfies the condition

(w, 0) ∈ NQ(ȳ, x̄)⇒ w = 0.

For each y ∈ Rm we define the set

Qy = {x ∈ Rn : (y, x) ∈ Q}.

Given any function p : Rm ×Rn → R, define a function py : Rn → R by

py(x) = p(y, x) for y ∈ Rm and x ∈ Rn.

Suppose the function p is C2-partly smooth relative to Q. If x̄ is a strong critical point of the function pȳ relative to

the set Qȳ, then there are open neighborhoods U ⊂ Rn of x̄ and V ⊂ Rm of ȳ and a C1-smooth function Ψ : V → U

satisfying Ψ(ȳ) = x̄, and with the following properties, for all vectors y ∈ V:

1. for all vectors y ∈ V the set Qy ∩ U is a C2-smooth manifold;

2. for all vectors y ∈ V the function py is C2-partly smooth relative to Qy ∩ U;

3. the function py|Qy∩U has a unique critical point Ψ(y);

4. Ψ(y) is a strong critical point of the function py relative to Qy ∩ U.

Proof. See [8, Thm. 5.2, 5.3, 5.7] . �

The concept of prox-regularity extends properties of convexity to a broader class of functions. It is essential for

partly smooth functions to locally identify their manifolds uniquely.

Definition 3.5. A function f : Rn → R is prox-regular at a point x̄ for a subgradient v̄ ∈ ∂ f (x̄) if f is finite at x̄,

locally lower semi-continuous at x̄, and there exist r > 0 and ǫ > 0 such that

f (x′) > f (x) + 〈v, x′ − x〉 − r

2
|x′ − x|2 for x′ , x when

|x′ − x̄| < ǫ, |x − x̄| < ǫ, | f (x) − f (x̄)| < ǫ, |v − v̄| < ǫ, v ∈ ∂ f (x).

More precisely, we say f is prox-regular at x̄ for v̄ with respect to ǫ and r. Further, f is prox-regular at x̄ if it is prox-

regular at x̄ for every v̄ ∈ ∂ f (x̄). A set S is prox-regular at x̄ for v̄ ∈ NS (x̄) if its indicator function δS is prox-regular

at x̄ for v̄ ∈ ∂δS (x̄).

Proposition 3.6. Suppose the set S ⊂ Rn is closed. Then S is prox-regular at the point x̄ ∈ S if and only if the

projection mapping PS is single-valued near x̄.

Proof. See [19, Thm. 1.3]. �

Definition 3.7. For a proper, lower semi-continuous function f : Rn → R and parameter value λ > 0, the proximal

mapping Pλ f is defined by

Pλ f (x) := argminw

{

f (w) +
1

2λ
|w − x|2

}

.
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Definition 3.8. For ǫ > 0, the f -attentive ǫ-localization of ∂ f around (x̄, v̄) is a (generally set-valued) mapping

T : Rn ⇒ Rn defined by

T (x) =

{

{ v ∈ ∂ f (x) | |v − v̄| < ǫ } if |x − x̄| < ǫ and | f (x) − f (x̄)| < ǫ,
∅ otherwise.

Definition 3.9. For a function f : Rn → R, a set V ⊂ Rn is called an f -attentive neighborhood of x̄ if there exists

a δ > 0 such that

{ x ∈ Rn | |x − x̄| < δ, | f (x) − f (x̄)| < δ } ⊂ V.

Definition 3.10. A function f : Rn → R is subdifferentially continuous at a point x̄ for v̄, where v̄ ∈ ∂ f (x̄), if for

every δ > 0 there exists ǫ > 0 such that | f (x) − f (x̄)| < δ whenever |x − x̄| < ǫ and |v − v̄| < ǫ with v ∈ ∂ f (x).

Proposition 3.11 (Prox-regularity and proximal mapping). Suppose that the function f : Rn → R is prox-regular

at x̄ = 0 for v̄ = 0 with respect to ǫ and r. In particular suppose f satisfies the following assumption:

{

f is locally lower-semicontinuous at 0 with f (0) = 0, and

r > 0 is such that f (x) > − r
2
|x|2 for all x , 0.

(

which implies that Pλ f (0) = {0} when λ ∈ (0, 1
r
)
)

. Let T be the f -attentive ǫ-localization T of ∂ f around (0, 0).

Then for each λ ∈ (0, 1
r
) there is a neighborhood X of x̄ = 0 such that, on X, the mapping Pλ f is single-valued and

continuous and

Pλ f (x) = (I + λT )−1(x).

Proof. See [17, Thm. 4.4]. �

Lemma 3.12. Suppose the function f is extended-C2-smooth at x̄. Then f is subdifferentially regular, prox-regular

and subdifferentially continuous at x̄.

Proof. See [17, Ex. 2.8]. �

Note that function f being prox-regular at x̄ doesn’t imply that f is subdifferentially regular at x̄. Here is an

example. Let f (x, y) = (x − |y|) 1
3 . Since there is no subgradient at (0, 0), then f is prox-regular there. However, epi f

is not Clarke regular at (0, 0, 0) which implies f is not subdifferentially regular at (0, 0).

4 Identification for functions

A partly smooth function has a smooth structure on its corresponding manifold. [5, Thm. 5.3] gives a nice

“identification” property for partly smooth, prox-regular functions. Though this theorem is true, its proof is flawed

because it depends on the assumption that the prox-regularity of a function implies the prox-regularity of its epigraph.

We will prove this theorem by using proximal mappings in this section. First, let’s see an example which shows that

the prox-regularity of a function isn’t equivalent to the prox-regularity of its epigraph.

Example 4.1 (Prox-regularity of functions versus epigraphs). Consider the function f : R → R defined by

f (2n) =
√

2n for any n ∈ Z, f affine on [2n, 2n+1], f (0) = 0 and f (x) = f (−x) for any x. First note that

∂ f (±2n) =
{

± 1
√

2n−1 +
√

2n
,± 1
√

2n +
√

2n+1

}

,

∂ f (±x) = ± 1
√

2n +
√

2n+1
, x ∈ (2n, 2n+1),

∂ f (0) = (−∞,+∞).

Next, we are going to prove that f is prox-regular at 0 for any v ∈ ∂ f (0). It is equivalent to show that there exist ǫ > 0

and r > 0 such that

f (x′) > f (x) + 〈u, x′ − x〉 − r

2
|x′ − x|2 for x , x′ when

|x′| < ǫ, |x| < ǫ, | f (x)| < ǫ, |v − u| < ǫ, u ∈ ∂ f (x).
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For any x → 0 and u ∈ ∂ f (x) we have that |u| → +∞. Since |v − u| < ǫ and |x| < ǫ, then x has to be 0 when ǫ is

small. Hence we just have to prove

f (x′) > 〈u, x′〉 − r

2
|x′|2.

By the definition of f , we know that f (x′) > |〈 1√
2n−1+

√
2n
, x′〉|. Thus f is prox-regular at 0. However, epi f is not

prox-regular at (0, 0). If so, there should be a neighborhood V of (0, 0) such that the projection mapping Pepi f is

single-valued on V by Proposition 3.6. However, Pepi f is not single-valued around (±2n,
√

2n) for any n ∈ Z. Thus

epi f is not prox-regular at (0, 0).

Lemma 4.2. Suppose the function f : Rn → R is C2-partly smooth at a point x̄ relative to a C2-smooth manifold

M. Then f + δM is prox-regular at x̄ and ∂ f (x̄) ⊂ ∂( f + δM)(x̄).

Proof. Let h be any C2-smooth representative of f around x̄. Since f ≤ f + δM = h + δM and f + δM is extended-C2-

smooth at x̄, so f + δM is prox-regular at x̄, and ∂̂ f (x̄) ⊂ ∂̂( f + δM)(x̄). The result follows since f and h + δM are both

regular at x̄. �

Proposition 4.3 (Subdifferential smoothness). Suppose that the function f : Rn → R is C2-partly smooth at a

point x̄ relative to a C2-smooth manifoldM with ȳ ∈ ri ∂ f (x̄). Let h be any C2-smooth representative of f around x̄.

Then

gph ∂ f ∩ (M×Rn) = gph (∇h + NM) ∩ (M×Rn) locally around (x̄, ȳ).

Proof. According to [8, Prop. 2.4], we know

∂ f (x) ⊂ aff ∂ f (x) = ∇h(x) + NM(x)

for any x close to x̄ inM. Thus

gph ∂ f ∩ (M×Rn) ⊂ gph (∇h + NM) ∩ (M×Rn) locally around (x̄, ȳ).

Next, we claim the reverse inclusion: given (x, y) is close to (x̄, ȳ), then y ∈ ∇h(x) + NM(x) implies y ∈ ∂ f (x). If this

is not true, then there exist sequences xn → x̄ inM and yn ∈ aff ∂ f (xn) → ȳ with yn < ∂ f (xn). Since f is regular at x

when x is close to x̄ inM, then ∂ f (x) is closed and convex. According to the Separation Theorem, for all large n there

exists a unit vector zn ∈ par ∂ f (xn) = NM(xn) such that

〈zn, u〉 ≥ 〈zn, yn〉

for all u ∈ ∂ f (xn). Passing to a subsequence if necessary, we can assume zn approaches a unit vector z. Since ∂ f is

continuous at x̄ relative toM, then ∂ f (xn) converges to ∂ f (x̄). Also, NM(xn) converges to NM(x̄). As a result, we have

z ∈ NM(x̄) and 〈z, u〉 ≥ 〈z, ȳ〉

for any u ∈ ∂ f (x̄). To see this, choose un → u satisfying un ∈ ∂ f (xn), note 〈zn, un〉 ≥ 〈zn, yn〉, and take limits. This

shows that ȳ is separated from the convex set ∂ f (x̄) in its affine span. But this contradicts the fact that ȳ ∈ ri ∂ f (x̄).

The result follows. �

Corollary 4.4 (Set version of subdifferential smoothness). Suppose a set S ⊂ Rn is partly smooth at a point x̄

relative to a C2-smooth manifoldM with ȳ ∈ ri NS (x̄). Then

gph NS ∩ (M×Rn) = gph NM ∩ (M×Rn) locally around (x̄, ȳ).

Proposition 4.5 (Extended-smooth reduction). Suppose that the function f : Rn → R is C2-partly smooth at a

point x̄ relative to a C2-smooth manifold M with 0 ∈ ri ∂ f (x̄), and f is prox-regular at x̄ for 0. Then if λ > 0 is

sufficiently small, there exists a neighborhood V of x̄ on which the proximal mappings Pλ f and Pλ( f + δM) agree.
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Proof. Without loss of generality, let x̄ = 0. According to Lemma 4.2, we know f + δM is also prox-regular at 0.

We can choose ǫ and r such that f and f + δM are both prox-regular at 0 for 0 with respect to r and ǫ, in particular

with the assumption in Proposition 3.11 holding. Let T be the f -attentive ǫ-localization of ∂ f around (x̄, 0). For

any λ ∈ (0, 1/r) there exists a neighborhood X of x̄ = 0 such that both Pλ f and Pλ( f + δM) are single-valued and

continuous, by Proposition 3.11. In order to prove this proposition, it is sufficient to prove for any xn → x̄ we have

Pλ f (xn) = Pλ( f + δM)(xn) for large n. Let h be any C2-smooth representative of f onM and define

wn = Pλ( f + δM)(xn) = argminx

{

h(x) + δM(x) +
1

2λ
|x − xn|2

}

∈ M.

Since the assumption in Proposition 3.11 holds for f + δM, we have Pλ( f + δM)(x̄) = x̄. Moreover, the continuity of

Pλ( f + δM) implies wn → x̄. Consequently, xn − wn → 0. Since wn minimizes h(x) + δM(x) + 1
2λ
|x − xn|2, then

0 ∈ ∂(h(wn) + δM(wn) +
1

2λ
|wn − xn|2) = ∇h(wn) + NM(wn) +

1

λ
(wn − xn)

or equivalently
1

λ
(xn − wn) ∈ ∇h(wn) + NM(wn).

Since 0 ∈ ri ∂ f (x̄) and 1
λ
(xn − wn)→ 0, then by Proposition 4.3 we know

1

λ
(xn − wn) ∈ ∂ f (wn) for large n,

which also implies
1

λ
(xn − wn) ∈ T (wn) for large n,

since wn → x̄ inM, so f (wn)→ f (x̄). Thus

xn ∈ (I + λT )(wn) for all large n,

from which we get

wn ∈ (I + λT )−1(xn) = Pλ f (xn) for all large n

by Proposition 3.11. Hence Pλ f (xn) = Pλ( f + δM)(xn) for all large n. �

If 0 ∈ ri ∂ f (x̄) doesn’t hold, the above result can fail. Here is an example.

Example 4.6. Define the function f as follows:

f (x) =

{

+∞ x ∈ (−∞, 0)

0 x ∈ [0,∞).

It is easy to see that f is prox-regular at x for all x ∈ [0,∞), and partly smooth at 0 relative to M = {0}. Since

∂ f (0) = (−∞, 0], then 0 doesn’t lie in the interior of ∂ f (0). For any small λ > 0,

Pλ f (x) = argminw{ f (w) +
1

2λ
|x − w|2 } = x for alll x > 0.

Corollary 4.7 (Set version of extended-smooth reduction). Let M be a C2-smooth manifold around a point x̄.

Suppose a set S is partly smooth at x̄ relative to M, and S is prox-regular at x̄ for v̄ ∈ ri NS(x̄). Suppose λ > 0 is

sufficiently small. Then for x sufficiently close to x̄, the projections PS (x + λv̄) lies inM.

Proof. Applying Proposition 4.5 to f = δS − 〈v̄, ·〉. �

Corollary 4.8 (Active manifold as proximal range). Under the same assumption as Proposition 4.5, the set Pλ f (V)

is a neighborhood of x̄ inM for any sufficiently small neighborhood V of x̄.

Proof. By Proposition 4.5, it is sufficient to prove that for any xn → x̄ inM, there exists wn → x̄ with Pλ f (wn) = xn

for large n. Since f is partly smooth at x̄ relative to M, then there exists yn ∈ ∂ f (xn) → 0. For large n, we have

yn ∈ T (xn). So xn + λyn ∈ (I + λT )(xn), which implies xn = Pλ f (xn + λyn). Let wn = xn + λyn. The result follows. �
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Corollary 4.9 (Set version of active manifold as proximal range). Under the same assumption as Corollary 4.7,

for any sufficiently small neighborhood V of x̄, the projection PS (V + λv̄) is a neighborhood of x̄ inM.

Proof. Apply Corollary 4.8. �

Theorem 4.10 (Identification). Let the function f : Rn → R be C2-partly smooth at a point x̄ relative to a

C2-smooth manifoldM and prox-regular at x̄ for ȳ ∈ ri ∂ f (x̄). Suppose xk → x̄ and f (xk)→ f (x̄). Then

xk ∈ M for all large k

if and only if

dist(ȳ, ∂ f (xk))→ 0.

Proof. By subtracting an affine function from f , we can assume x̄ = 0, ȳ = 0 and f (x̄) = 0 without loss of generality.

Since f is prox-regular at 0 for 0, then there exist ǫ > 0 and r > 0 such that

f (x′) > f (x) + 〈v, x′ − x〉 − r

2
|x − x′|2 for x′ , x

whenever |x| < ǫ, | f (x)| < ǫ, |x′| < ǫ, |v| < ǫ and v ∈ ∂ f (x). Letting x = 0, v = 0, we have

f (x′) > − r

2
|x′|2

for any |x′| < ǫ and x′ , x. Since we are only interested in the local geometry of epi f around (0, 0), then we can add

to f the indicator of a compact neighborhood B ǫ
2
(0), which is a closed ball centered at 0 with radius ǫ

2
, to make the

assumption in Proposition 3.11 hold for f : if this proposition is true for f + δB ǫ
2

(0), it is also true for f . To sum up,

we can assume f satisfies the assumption in Proposition 3.11 without loss of generality. Fix λ such that Proposition

4.5 holds for f . Let T be the f -attentive ǫ-localization of ∂ f . If dist(0, ∂ f (xk)) → 0, then there exists a sequence of

yk → 0 with yk ∈ ∂ f (xk). Then we have
1

λ
((xk + λyk) − xk) ∈ ∂ f (xk),

which implies
1

λ
((xk + λyk) − xk) ∈ T (xk) for large k.

Thus

xk + λyk ∈ (I + λT )(xk) for large k.

Consequently

xk = (I + λT )−1(xk + λyk) = Pλ f (xk + λyk) ∈ M for large k

by Proposition 4.5. Thus the result follows since the converse is immediate by partial smoothness. �

Corollary 4.11 (Identification for sets). Let the set S be C2-partly smooth at the point x̄ relative to the C2-smooth

manifoldM and prox-regular there for n̄ ∈ ri NS (x̄). If the sequence {xk} ∈ S satisfies xk → x̄, then

dist(n̄,NS (xk))→ 0⇔ xk ∈ M for all large k.

Proof. The result follows by applying Theorem 4.10 to the indicator function δS . �

Corollary 4.12 (Uniqueness of active manifold). Consider a set S that is prox-regular at a point x̄ for n̄ ∈ ri NS (x̄)

and C2-partly smooth there relative to each of the two C2-smooth manifolds M1 and M2. Then near x̄ we have

M1 ≡ M2.

Proof. If this is not true, then there exists a sequence of points xk converging to x̄ such that xk ∈ M1 \ M2. Since

S is partly smooth relative to M1, then the normal cone NS (xk) → NS (x̄). Hence dist(n̄,NS (xk)) → 0. Applying

Corollary 4.11 to δS withM ≡M2 implies xk ∈ M2 for all large k, which is contradictory to xk <M2. Thus the result

follows. �
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The definition of strong critical points demands quadratic growth along the manifold. Under the assumption of

prox-regularity, strong critical points of such functions are actually locally quadratic minimizers. [5, Thm. 6.2] gives

a proof, requiring such functions to be prox-regular at the local minimizer. In this paper, we use another approach

to prove this with a more natural, slightly weaker assumption, only requiring such functions to be prox-regular at the

minimizer for the subgradient 0.

Proposition 4.13 (Sufficient optimality conditions). Suppose the function f : Rn → R is C2-partly smooth at the

point x̄ relative to the C2-smooth manifoldM and prox-regular there for 0 ∈ ri ∂ f (x̄).

1. x̄ is a strict local minimizer of the restricted function f |M ⇔ x̄ is in fact an unconstrained strict local minimizer

of f .

2. x̄ is a strong critical point of f relative toM⇔ f grows at least quadratically near x̄.

Proof. One direction of both cases is obvious. Let’s prove the other direction. First we are going to prove that x̄ being

a strict local minimizer of the restricted function f |M is equivalent to x̄ being an unconstrained strict local minimizer

of f . Without loss of generality, let x̄ = 0, f (x̄) = 0 and f satisfy the assumption in Proposition 3.11. We are going to

prove this proposition by contradiction. Suppose there exists a sequence xk <M→ x̄ with

f (xk) ≤ f (x̄) for all k.

For large k, we know that xk lies in the f -attentive neighborhood of x̄ in Proposition 4.5. Hence xk , yk = Pλ f (xk) ∈ M
and yk → Pλ f (x̄) = x̄. Then we have

f (x̄) ≥ f (xk)

≥ minw

{

f (w) +
1

2λ
|xk − w|2

}

= f (yk) +
1

2λ
|yk − xk |2

> f (x̄) +
1

2λ
|yk − xk |2.

Consequently, we get a contradiction

0 >
1

2λ
|yk − xk |2.

Next we are going to prove case (2). Since f grows quadratically at x̄ relative toM, then there exists a δ > 0 such

that f (x) > δ|x − x̄|2 around x̄ relative toM. Define h by h(x) = f (x) − δ|x − x̄|2. Since δ|x − x̄|2 is C2-smooth, then

h is also prox-regular at x̄ for 0 ∈ ri ∂h(x̄) and partly smooth at x̄ relative toM. Moreover, we know that h(x) > h(x̄)

locally around x̄ restricted toM. According to case (1), we know that h(x) > h(x̄) locally around x̄. Then the second

case follows. �

5 Calculation of generalized Hessian mappings

In general it may be hard to compute the generalized Hessian mapping. Our goal is to analyze the generalized

Hessian mapping in the easier special case of partly smooth and prox-regular functions. Given these assumptions

plus subdiffential continuity property, Theorem 4.10 guarantees that the local geometry of gph ∂ f is determined by

f |M. This smooth structure simplifies the computation of the generalized Hessian mapping and also gives a geometry

explanation of the second condition in Theorem 6.1.

Proposition 5.1 (Subdifferential localization and active manifolds). Suppose the function f : Rn → R is C2-partly

smooth at the point x̄ relative to the C2-smooth manifoldM, and both prox-regular and subdifferentially continuous at

x̄ for ȳ ∈ ri ∂ f (x̄). Then

gph ∂ f ⊂ M×Rn

locally around (x̄, ȳ).

Proof. Since f is subdifferentially continuous at x̄ for ȳ ∈ ∂ f (x̄), then (xn, yn) → (x̄, ȳ) with yn ∈ ∂ f (xn) implies

f (xn)→ f (x̄). According to Theorem 4.10, we know xn ∈ M for all large n, so the result follows. �
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Corollary 5.2 (Smooth reduction for subdifferential localization). Suppose the function f : Rn → R is C2-partly

smooth at the point x̄ relative to the C2-smooth manifoldM, and both prox-regular and subdifferentially continuous at

x̄ for ȳ ∈ ri ∂ f (x̄). Let h be any C2-smooth representative of f around x̄. Then

gph ∂ f = gph (∇h + NM) ∩ (M×Rn) = gph ∂( f + δM)

locally around (x̄, ȳ).

Proof. This result is easily derived from Proposition 4.3 and 5.1. �

The following result gives a formula for the generalized Hessian mapping for partly smooth and prox-regular

functions.

Theorem 5.3 (Generalized and covariant Hessians). Suppose that the function f : Rn → R is C2-partly smooth

at the point x̄ relative to the C2-smooth manifoldM and both prox-regular and subdifferentially continuous at x̄ for

0 ∈ ri ∂ f (x̄). Then

∂2 f (x̄|0)(w) =

{

∇2
M f (x̄)w + NM(x̄) for w ∈ TM(x̄)

∅ for w < TM(x̄).

Proof. According to Corollary 5.2, we have that ∂2 f (x̄|0) = ∂2( f + δM)(x̄|0). Then by Theorem 2.12, the result

follows. �

Corollary 5.4. Suppose that the function f : Rn → R is C2-partly smooth at the point x̄ relative to the C2-smooth

manifold M and both prox-regular and subdifferentially continuous at x̄ for v̄ ∈ ri ∂ f (x̄). Let f̃ (x) = f (x) − 〈v̄, x〉.
Then

∂2 f (x̄|v̄)(w) =

{

∇2
M f̃ (x̄)w + NM(x̄) for w ∈ TM(x̄)

∅ for w < TM(x̄).

Proof. First note that

∂2 f̃ (x̄|0)(w) = ∂2( f − 〈v̄, ·〉)(x̄|0)(w) = ∂2 f (x̄|v̄)(w) for all w.

Furthermore, we know f̃ is partly smooth at x̄ relative toM and both prox-regular and subdifferentially continuous at

x̄ for 0 ∈ ri ∂ f̃ (x̄). According to Theorem 5.3, we have

∂2 f (x̄|v̄)(w) = ∂2 f̃ (x̄|0)(w) =

{

∇2
M f̃ (x̄)w + NM(x̄) for w ∈ TM(x̄)

∅ for w < TM(x̄).

�

Without subdifferential continuity, the above result will fail in general.

Example 5.5. Define the function f : R→ R as follows:

f (x) =

{

1 x ∈ (−∞, 0)

x x ∈ [0,∞)

It is easy to check that f is prox-regular at 0 with 0 ∈ ri ∂ f (0), and partly smooth relative to the manifoldM = {0}.
However, the function f is not subdifferentially continuous at 0 for 0 ∈ ∂ f (0). Then gph ∂ f , gph ∂( f + δM) locally

around (0, 0).

Note Corollary 2.9 gives a more concrete description of the generalized Hessian in terms of a smooth representative

of f and smooth equations forM. Next, we will use Theorem 5.3 to calculate the generalized Hessian mapping for

the maximum eigenvalue function. We will useU-Lagrangian in this example. Let’s introduce the definition first. (cf.

[10]).

Definition 5.6. Suppose a convex function f : Rn → R is C2-partly smooth at a point x̄ relative to a C2-smooth

manifoldM. Let U(x̄) = TM(x̄) and V(x̄) = NM(x̄). Given ḡ ∈ ∂ f (x̄), then the U-Lagrangian of f is the function

L
f

U(x̄; ḡ; ·) : U(x̄)→ R defined by

L
f

U(x̄; ḡ; u) = infv∈V(x̄){ f (x̄ + u + v) − ḡT v }.
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Let gU(x̄) = ∇M f (x̄). According to [10], we have gU(x̄) = ∇uL
f

U(x̄; gU(x̄); 0) and ∇2
M f (x̄) = ∇2

uuL
f

U(x̄; gU(x̄); 0).

Example 5.7. Let Sn be the space consisting of the n-by-n real symmetric matrices. Suppose the function λ1(X) :

Sn → R maps every real symmetric matrix to its maximum eigenvalue. According to [8, Exp. 3.6], we have the

following results:

1. λ1 is partly smooth relative to the manifold

Mm = { X ∈ Sn : λ1(X) has multiplicity m } (1 ≤ m ≤ n).

2. λ1 is a finite-valued convex function. Hence λ1 is prox-regular and subdifferentially continuous everywhere.

3. There is an n×m matrix Q(X), depending continuously on X ∈ Mm, whose columns are a basis for the eigenspace

of X corresponding to λ1(X), and then we have

NMm
(X) = Q(X){W ∈ Sm : trace W = 0}Q(X)T ,

∂λ1(X) = Q(X){W ∈ Sm
+ : trace W = 1}Q(X)T ,

where Sm
+ denotes the positive semidefinite matrices.

Now suppose X̄ ∈ Mm and Ḡ ∈ ri ∂λ1(X̄). Let µ(X) = λ1(X) − 〈Ḡ, X〉. According to Theorem 5.3, we have

∂2λ1(X̄|Ḡ)(W) = ∂2µ(X̄|0)(W) =

{

∇2
Mm
µ(X̄)W + NMm

(X̄) for W ∈ TMm
(X̄)

∅ for W < TMm
(X̄).

By definition

L
λ1

U(X̄; Ḡ; U) = infV∈V(X̄){ λ1(X̄ + U + V) − 〈Ḡ,V〉 } for U ∈ TMm
(X̄),V(X̄) = NMm

(X̄).

Since 0 ∈ ∂µ(X̄), we have ∇Mm
µ(X̄) = 0 and

L
µ

U(X̄; 0; U) = infV∈V(X̄){ λ1(X̄ + U + V) − 〈Ḡ, X̄ + U + V〉} for U ∈ TMm
(X̄),V(X̄) = NMm

(X̄).

Note that L
µ

U(X̄; 0; U) = L
λ1

U(X̄; Ḡ; U) − 〈Ḡ, X̄ + U〉. Then we have ∇2
Mm
µ(X̄) = ∇2

UU
L
µ

U(X̄; 0; 0) = ∇2
UU

L
λ1

U(X̄; Ḡ; 0).

According to [15, Thm. 4.12], we have

∇2
UU L

λ1

U(X̄; Ḡ; 0) = projTMm (X̄) ◦ H(X̄, Ḡ) ◦ proj∗
TMm (X̄)

,

where H(X̄, Ḡ) is the symmetric linear operator on Sn defined by

H(X̄, Ḡ) · Y = ḠY[λ1(X̄)In − X̄]† + [λ1(X̄)In − X̄]†YḠ for all Y ∈ Sn.

([λ1(X̄)In − X̄]† is the corresponding generalized inverse.)

For all W ∈ TMm
(X̄), we therefore have

H(X̄, Ḡ) ·W = ḠW[λ1(X̄)In − X̄]† + [λ1(X̄)In − X̄]†WḠ.

Hence we have

∂2λ1(X̄|Ḡ)(W) =

{

ḠW[λ1(X̄)In − X̄]† + [λ1(X̄)In − X̄]†WḠ + NMm
(X̄) for W ∈ TMm

(X̄)

∅ for W < TMm
(X̄).

6 Stability and partial smoothness

The following theorem in [18] gives a generalized Hessian characterization for tilt stability.
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Theorem 6.1. For a function f : Rn → R having 0 ∈ ∂ f (x̄) and such that f is both prox-regular and subdiffer-

entially continuous at x̄ for 0, the point x̄ gives a tilt stable local minimum of f if and only if the mapping ∂2 f (x̄|0) is

positive definite in the sense that

〈z,w〉 > 0 whenever z ∈ ∂2 f (x̄|0)(w),w , 0.

In this case, the mapping M from Definition 2.1 and (∂ f )−1 have locally identical graphs around the point (0, x̄).

Proof. See [18, Thm. 1.3]. �

With the assumption of Theorem 6.1, suppose in addition that f is C2-partly smooth at x̄ relative to the C2-smooth

manifold M. Then, by combining the result above with our Hessian calculations in the previous section, we easily

deduce the equivalence of the following properties.

(a) The point x̄ is a tilt stable local minimum of the function f .

(b) The point x̄ is a tilt stable local minimum of the function f + δM.

(c) The point x̄ is a strong critical point of f relative toM.

To see this note that ∂2 f (x̄|0) = ∂2( f + δM)(x̄|0) by Corollary 5.2, so (a) and (b) are equivalent by Theorem 6.1. We

also know that (b) is equivalent to ∂2( f + δM)(x̄|0) being positive definite, which is also equivalent to

〈∇2L(x̄)w,w〉 > 0 for any 0 , w ∈ TM(x̄)

with L the Lagrangian of Corollary 2.9. This in turn is equivalent to x̄ being a strong critical point of f relative toM,

according to [8, p. 25]. Therefore the result follows.

With a little extra care, we can dispense with the assumption of subdifferential continuity. We use the following

easy tool.

Proposition 6.2 (Local minimizers and perturbation). Suppose the point x̄ gives a tilt stable local minimum of the

function f : Rn → R. If a sequence of points vk ∈ Rn → 0, the mapping M in Definition 2.1 satisfies

M(vk)→ x̄ and f (M(vk))→ f (x̄).

Proof. Since M is Lipschitz at 0, then xk := M(vk) → x̄. Note f (x) > f (x̄) for any x̄ , x ∈ Bδ(x̄). Suppose

f (xk)→ f (x̄) is not true. Without loss of generality, we can assume that there exists an ǫ > 0 such that | f (xk)− f (x̄)| > ǫ
for all large k. Since x̄ is a strict local minimizer, then

f (xk) > f (x̄) + ǫ.

Take limits on both sides. We get

liminfk→∞ f (xk) ≥ f (x̄) + ǫ,

which is contradictory to the fact that f (x) is locally l.s.c at x̄. Therefore f (xk)→ f (x̄). �

We now have our main result.

Theorem 6.3 (Strong criticality point and tilt stability). Suppose the function f : Rn → R is C2-partly smooth

at the point x̄ relative to the C2-smooth manifoldM, and prox-regular at x̄ for 0 ∈ ri ∂ f (x̄). Then the following are

equivalent

(a) The point x̄ is a tilt stable local minimum of the function f ;

(b) the point x̄ is a tilt stable local minimum of the function f + δM;

(c) the point x̄ is a strong critical point of f relative toM;

(d) the function f grows quadratically near x̄.
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Proof. By Proposition 4.13, we know (c)⇔(d). Since f + δM is both prox-regular and subdifferentially continuous at

x̄ for 0, then we know that

〈∇2L(x̄)w,w〉 > 0 for any w ∈ TM(x̄)

by Theorem 6.1. This is also equivalent to x̄ being a strong critical point of f relative to M by previous argument.

Therefore (b)⇔(c). Since f is partly smooth at x̄ relative toM and prox-regular at x̄ for 0 ∈ ri ∂ f (x̄), then for any

(xk, vk) → (x̄, 0) with vk ∈ ∂ f (xk), we have xk = M(vk) and f (xk) → f (x̄) for large k by Proposition 6.2. Hence

xk = M(vk) ∈ M for all large k, according to Theorem 4.10. Therefore for all large k, we have

M(vk) = argmin |x−xk |≤δ { f (x) − f (x̄) − 〈vk, x − x̄〉 }
= argmin |x−xk |≤δ { f (x) + δM(x) − f (x̄) − δM(x̄) − 〈vk, x − x̄〉 }.

Hence the point x̄ gives a tilt stable local minimum of f if and only if x̄ gives a tilt stable local minimum of f + δM. In

other words, we have (a)⇔(b). Then the theorem follows. �

Note that it is possible to give a direct proof of the above theorem without using generalized Hessian mappings.

7 Strong metric regularity and tilt stability

In this section, we first note that tilt stability is equivalent to “strong metric regularity” of the subdifferential.1

Definition 7.1. A set-valued mapping S : Rn ⇒ Rn is strongly metrically regular at x̄ for v̄ if S −1 has a Lipschitz

continuous single-valued localization around v̄ for x̄. (cf. [4])

Proposition 7.2 (Strong metric regularity). Suppose the function f : Rn → R is locally lower semicontinuous at

x̄. Then the following are equivalent:

1. The point x̄ gives a tilt stable local minimum for the function f .

2. The point x̄ is a strict local minimizer of the function f and the subgradient mapping ∂ f is strongly metrically

regular at x̄ for 0.

Proof. (1)⇒ (2) Suppose the point x̄ gives a tilt stable local minimum to the function f . Then we know

M(v) : v 7→ argmin|x−x̄|≤δ{ f (x) − f (x̄) − 〈v, x − x̄〉 }

is single-valued and Lipschitz continuous on around 0 with M(0) = x̄. Note that M(v) = (∂ f )−1(v) ∩ Bδ(x̄), where

Bδ(x̄) = { x | |x − x̄| ≤ δ }, for any v close to 0. Hence ∂ f is strongly metrically regular at x̄ for 0.

(2)⇒ (1) Since x̄ is a strict local minimum , then there exists a δ > 0 such that f (x) > f (x̄) for any x̄ , x ∈ Bδ(x̄).

We claim that if vk → 0 and xk minimizes f (x) − 〈vk, x〉 over Bδ(x̄), then xk → x̄. Suppose the claim is not true. Then,

there exists an ǫ > 0 such that there are sequences vk → 0 and xk minimizing f (x)−〈vk, x〉 over Bδ(x̄) with |xk − x̄| > ǫ.
So

f (xk) − 〈vk, xk〉 ≤ f (x̄) − 〈vk, x̄〉.

Without loss of generality, choose a subsequence of xr which converges to x̂. Since f is locally lower semicontinuous

at x̄, we have

f (x̂) ≤ f (x̄)

by taking limits on both sides. We get a contradiction. Next we define the following mapping

M(v) : v 7→ argmin|x−x̄|≤δ{ f (x) − f (x̄) − 〈v, x − x̄〉 } with M(0) = x̄.

According to the claim, we know that M(v) should lie in the interior of Bδ(x̄) for small v. Therefore M(v) are also

critical points of f (x) − 〈v, x〉 for all small v . Since ∂ f is strongly metrically regular at x̄ for 0, then M(v) is single-

valued and Lipschitz continuous around 0. Therefore x̄ gives a tilt stable local minimum of the function f . �

1After completing an initial version of this work, the authors became aware of recent work analogous to Proposition 7.2 below-see [14, Cor.

5.3].
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[1] showed that for a proper lower semicontinuous convex function in a Hilbert space, the strong metric regularity

property of its subdifferential is equivalent to a quadratic growth condition involving the function.

Theorem 7.3. Suppose f : Rn → R is a proper lower semicontinuous convex function. Then ∂ f is strongly

metrically regular at x̄ for v̄ if and only if there exist neighborhoods X of x̄ and V of v̄ and a positive constant c such

that, for any v ∈ V there is x̃ ∈ Rn such that ∂−1 f (v) = {x̃} and

f (x) ≥ f (x̃) − 〈v, x̃ − x〉 + c|x − x̃|2 whenever x ∈ X.

Proof. See [1, Cor. 3.9]. �

Theorem 6.3 shows that tilt stability is equivalent to a quadratic growth condition for prox-regular and partly

smooth functions, which is also equivalent to the strong metric regularity of the subdifferential by Proposition 7.2.

On the other hand, Theorem 7.3 implies that strong metric regularity of the subdifferential is equivalent to a quadratic

growth condition, for convex functions. In this sense, Proposition 7.2 is an analogue of Theorem 7.3 for a broader

class of functions.
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