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PARTIAL SPREADS AND REPLACEABLE NETS 

A. BRUEN 

1. Introduction. A blocking set S in a projective plane II is a subset of 
the points of II such that every line of II contains at least one point of S and 
at least one point not in S. In previous papers [5; 6], we have shown that 
if II is finite of order n> then n + \/n + 1 ^ l^l ^ n2 — Vn (see [6, Theorem 
3.9]), where \S\ stands for the number of points of 5. This work is concerned 
with some applications of the above result to nets and partial spreads, and 
with some examples of partial spreads which give rise to unimbeddable nets 
of small deficiency. 

In the next section we re-prove a well known result of Bruck which states 
that if N is a replaceable net of order n and degree k> then k ^ -\/n + 1, and 
show how this bound can be improved if n — 7, 8, or 11. We also reprove a 
result of Ostrom, concerning the imbeddability of a net N of order n and 
deficiency \/n + 1, which states that N is imbeddable in at most 2 planes 
III and n2 , and that if IIi and n 2 exist they are related to each other by 
derivation. 

In § 3, we show that if W is a maximal strictly partial spread of PG(3, g), 
then q + V<Z + 1 = 1^1 = Q2 ~~ V<Z- This answers a question posed in 
Mesner [13]. Here, \W\ denotes the number of lines in W, and q is a prime 
power. 

We improve this by showing that if q = 3, \W\ must be 7, and we give an 
example of this case. Maximal strictly partial (msp) spreads W are exhibited 
such that either (1) \W\ = q2 - q + 1 or (2) \W\ = q2 - q + 2. We prove 
that if q > 2 the first case always occurs and we construct examples for the 
second case whenever q is odd and greater than 3. For both cases it can be 
shown that the partial spread W gives rise to a net which is not imbeddable 
in a plane, provided that g is a prime greater than two. The proof of the 
existence of case (1) (see Theorem 3.5) can be extended to show the existence 
of msp spreads in PG(3, R) , for example, where R denotes the field of real 
numbers. The existence of msp spreads in PG(3, F), with F countably infinite, 
has already been shown in [7]. 

§ 4 contains some miscellaneous remarks and sketches of some related 
results. 

2. Blocking Sets and Replaceable Nets. One of the best known examples 
of a non-Desarguesian plane is the classical Moulton plane. Starting with the 
Euclidean plane we "bend" the lines with positive slopes, leaving the other 
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lines as they are, and in this fashion we obtain an affine plane, namely the 
Moulton plane, whose projective completion is a non-Desarguesian plane. In 
modern language, we replace the net consisting of all lines with positive slopes. 
In fact most of the known planes can be interpreted as having been obtained 
from a Desarguesian plane by means of net replacement. For basic definitions 
as well as an excellent account of the above idea we refer the reader to [17]. 
Here we show a connection between replaceable nets N and blocking sets and 
obtain some well known results on nets as corollaries of Theorem 3.9 in [6]. 
In the sequel lN is replaceable' means that the net N admits a non trivial 
replacement (see [16] or [17]). Let N be a net of order n and degree k which 
is embedded in an affine plane IIA of order n, where we assume that n > 2 
and that k < n + 1. In other words the points of N are the points of UA and 
the lines of N are the lines belonging to some k parallel classes of IIA. Suppose N 
is replaceable by the net N1. We list the slopes associated with NÇN1) as 
(nti)j (m2), . . . , (mk), where each w^ is a point on lœ, the line at infinity 
of HA corresponding to the projective completion II of TLA. Since the replacing 
net N1 is non-trivial, some line I1 of N1 is not a line of N. I1 is a set of n points 
of II and, by definition, any line of II connecting 2 distinct points of ll meets lœ 

in an (m*), i = 1, . . . , &. Hence any line in TIA which does not have a slope 
« i (1 ^ i ^ k) must intersect I1 (in exactly one point), and a line which 
does have a slope mt contains points not in ll. Thus the points of ll together 
with the (nti) form a blocking set in II (in fact a special sort of blocking set S 
with \S\ = n + k, and with some line lm of II containing precisely k points of 5 ) . 
We have therefore established: 

THEOREM 2.1. Let N be a replaceable net of degree k embedded in an affine 
plane ILA of order n. Then there exists a blocking set S in II, the projective extension 
of 11^, with \S\ = n + k. 

Now a blocking set S in II contains at least n + \/n + 1 points ([6, 
Theorem 3.9]). Thus we obtain 

COROLLARY 2.2. (See [1, Theorem 3.1]). If N is a replaceable net of order n 
then N contains at least \/n + 1 parallel classes. 

Using Theorems (4.1), (4.2), and (4.4) of [6], we can improve this slightly 
in certain cases, namely: 

COROLLARY 2.3. If N is a replaceable net which is embedded in a plane of 
order 7, 8, 11, respectively, then N contains at least 5, 5, 6 parallel classes, 
respectively. 

Next, we briefly return to the case of n = t2. In [5] we showed that if S is 
a blocking set in a projective plane II of order t2 with |5 | = t2 + t + 1, then 
the points of S must form the points of a subplane of II of order t. We now 
make use of this. Suppose N is a replaceable net of degree t + 1 in an affine 
plane UA of order t2. Let N1 be a replacing net. As before we list the slopes 
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corresponding to N as (m<), i = 1, 2 , . . . t + 1. Then an argument similar 
to that used in 2.1 will show that each line of N1 is either a line of iV or the 
set of points of an affine subplane of 11^. This subplane is obtained by deleting 
the points (mt) from a projective subplane of II where, as usual, II denotes 
the projective extension of UA. In fact one can show that every line of N1 is 
an affine subplane in UA of the above type. We then obtain 

THEOREM 2.4 (see Ostrom [15, p. 1382]). Suppose N is a net of order t2 and 
critical deficiency d = t + 1. Then N can be embedded in at most two planes 
III and ÏI2. If IIi and n 2 exist, they are related to each other by derivation. 

3. Blocking Sets and Partial Spreads. In this section we are mainly 
concerned with partial spreads of 2 = PG(3, F), the 3 dimensional projective 
space over the field F. For general definitions we refer the reader to [3; 4; 17]. 
For our purposes, a partial spread of 2 is a collection W of pairwise skew lines 
in 2 . W is said to be maximal if it is not properly contained in any other 
partial spread; in particular, if every point of 2 is contained in some line of W, 
then W is called a spread. If F happens to be GF(g), where a is a prime power, 
and if W is a spread of PG(3, q)y then \W\ = q2 + 1. (We write \W\ as usual 
for the number of lines in W). If W is a partial spread of PG(3, q), then the 
number d = q2 + 1 — \W\ is called the deficiency of W. If W is a maximal 
partial spread of 2 which is not a spread, we say that W is a maximal strictly 
partial spread (msp spread) of 2 . Clearly, in the finite case, \W\ will have 
to be reasonably large in order that W be an msp spread. For example, if 
\W\ = 1, then W can always be extended to a larger partial spread. Also, it 
seems reasonable to suppose that if \W\ is large, then W can always be com
pleted to a spread of 2. This last statement has in fact been proved by 
Mesner [13] who finds an upper bound on the number of lines of an msp spread. 
In the same paper, he poses the question: Find a lower bound on the number 
of lines of an msp spread of 2 = PG(3, q). Here we obtain his Theorem 1 
and Corollary 1, as well as obtaining such a lower bound, by making use of 
[6, (3.9)] (see section 1), namely 

THEOREM 3.1. Let W be an msp spread of 2 = PG(3, q). Then q + Vq + 
1 ^ \W\ S q2 - Vg. 

Proof. Let W be an msp spread of 2 . Let II be a plane of 2 which contains 
no line of W (see Remark below). Let 5 be the set of points in which W 
intersects II. Here |5 | = | W|, and S is called the section of W by II. Since W is 
maximal, every line of II contains at least one point of S. Suppose / is a line 
of II, all of whose points are in S. Then the q + 1 lines of W meeting /, along 
with /, form q + 1 distinct planes of 2 containing /. But then II itself, being 
one of these q + 1 planes, would contain a line of W, which gives a contra
diction. Thus 5 is a blocking set in II as also is the complement of 5 in II. 
Thus, |5 | = \W\, and applying [6, (3.9)], we obtain the result. 
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Remark. Such a plane II always exists since 2 is finite (see [7, Theorem 1]). 
However, if 2 = PG(3, F) and F is countably infinite, for example, we may 
have a case where W is an msp spread of 2 and such that every plane II of 2 
contains exactly one line of W. If S is a spread of 2 which is not a dual spread 
of 2 then the image W of S under any correlation p of S will yield such an 
example of an msp spread (see Bruen and Fisher [7]). We can say something 
also concerning the case of equality in the above Theorem 3.1 (see Mesner [13, 
Theorem 3]). 

THEOREM 3.2. Let W be an msp spread of 2 = PG(3, q). Let II be any plane 
of 2 which contains no line of W and let S be the section of W by II. Then 

(i) if \W\ = q + \/q + 1, then S forms a subplane of II, 
(ii) if \W\ = q2 — y/q, then the complement of S forms a subplane of II. 

Proof. Use [6, Theorem 3.9]. 

We next examine in detail the case of q = 3. 

Partial Spreads in 2 = PG(3, 3). From (3.1), if W is an msp spread of 2, 
then 6 ^ \W\ S 7. Although blocking sets S with |5 | = 6 can occur in planes 
of order 3, (see [6]) we show that \W\ = 6 cannot occur, but that \W\ = 7 
does occur (see the introductory remarks in Mesner [13]). 

THEOREM 3.3. Let Wbe an msp spread of 2 = PG(3, 3). Then \W\ must be 7; 
moreover this case occurs. 

Proof. First we establish: 

LEMMA. If lu h, h, h, h be any 5 pairwise skew lines of 2 = PG(3, 3) and II 
a plane of 2 not incident with any of them {see the remark above) then there is 
at least one line, and at most two lines, incident with II and skew to each of the 
5 lines. 

To see this we note that the U (i = 1, . . . , 5) meet II in 5 distinct points. 
As in the proof of (3.1), no line of II contains more than 3 of these points. 
Now II is a plane of order 3 and by [6, (3.9)], a blocking set in II contains 
at least 6 points. Thus, there is at least one line of II which does not meet 
any of the lines lt. All told, II has 13 points, and so the rest of the Lemma is 
clear. 

If the space dual of the Lemma were not true we could obtain a contra
diction by using a correlation of 2. Thus the space dual of the Lemma is 
also true. 

Now suppose that W is an msp spread of 2 with \W\ — 6. Let 
li (i = 1, . . . , 5) be any 5 distinct lines of W and let / be the 6th line of W. 
Using the space-dual of the lemma above, and examining the points on /, we 
obtain two possibilities: 
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(a) For some point X on I there is one and only one line of 2 (namely I) 
incident with X and skew to each line li} 1 ^ i ^ 5. 

(b) There are precisely two lines of 2, both of which are skew to the 
5 lines lu and incident with each point of I. 

We suppose case (a). The 5 lines U form, with X, 5 distinct planes through X. 
There are exactly 4 planes incident with /. Thus, there are precisely 4 planes 
which are incident with X and which do not contain any line of W. Let II be 
any one of these 4 planes. By the Lemma above, there is at least one line m 
of II which is skew to the lit i = 1, . . . , 5. This line m cannot be /. Thus, by 
the assumed property of X, m cannot contain X. It follows that m does not 
meet any line of W. But then, W can be extended to a larger partial spread 
containing m, and this contradicts the assumed maximality of W. 

Next, we suppose case (b). Now, by hypothesis, I is skew to each of the lt. 
We draw the other line through each point of I which is skew to each of the lt. 
Call the 4 lines so obtained: a, &, c and d. Now the 5 lines U account for 
exactly 20 points. The 5 lines Z, a, b, c, d account for precisely 16 points. The 
total number of points in 2 is 40. Thus there is a point X' of 2 which is not 
on any of the above 10 lines. By the dual of the Lemma, there is at least 
one line m through X' which is skew to each of the lt. Since m contains X'', 
m is different from Z, a, b, c, d. Thus, by the second half of the dual of the 
Lemma, m cannot meet /. But this yields that W can be extended to a larger 
partial spread (containing m)f again contradicting the assumed maximality 
of W. Thus in all cases, the assumption that W is an msp spread of 2 with 
\W\ = 6 is contradictory. Thus \W\ can only be 7, and that \W\ = 7 actually 
occurs will follow from Theorem 3.5. 

In Theorem 3.1, we have obtained bounds on \W\, with W an msp spread 
of S = PG(3, q). We proceed to show that the upper bound, at least, is 
reasonably good for any q. First, however, we mention briefly a few results 
on spreads. If UA is AG(2, g2), the affine plane over GF(g2), then the lines 
through 0 = (0, 0) of II will give rise to a spread 5 of S = PG(3, q) (see [17]). 
Moreover, it can be shown that 5 is a regular spread: that is, if a, b, and c 
are 3 distinct lines of 5, then a, b and c determine a unique regulus R(a,b, c), 
and S contains all lines of R(a, b, c). Equivalently, if / is any line of Z which 
is not in 5, then the lines of 5 meeting / form a regulus. Not all spreads of 2 
are regular: for example, if »S is regular and if R is any regulus of 5, then the 
spread S' obtained from S on replacing the regulus R by its opposite regulus Rr 

is not regular. In fact, examples of non-regular spreads of 2 are furnished by 
any non-Desarguesian translation plane of order q2 whose kernel is isomorphic 
to GF(q). Some of these ideas are discussed in [1; 2]. We now prove: 

THEOREM 3.4. Suppose q > 2. Then there exist msp spreads W in S = 
PG(3, q) with q2 - q + 1 è \W\ S q2 - q + 2. 

Proof. Let 5 be any spread of S such that S is not regular. This means that 
there is some line I of 2, with I not in 5, such that the lines of 5 meeting / do 

https://doi.org/10.4153/CJM-1971-039-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-039-x


386 A. BRUEN 

not form a regulus. Let A denote the set of these lines. Let W be the partial 
spread W = (S — A) U I. If u is any line of 2 which extends W (i.e. is 
skew to all of the lines in W) then the points of u are all contained on the 
lines of A, and u meets any line of A in at most one point. In other words, 
u must be a transversal to A. Now \A\ = g + 1 ^ 4 and A is not a regulus. 
Thus there are at most 2 transversals to A, and / is one of them. Thus, there 
is at most one line u which extends W. Hence W is an msp spread of 2 and 
either \W\ = q2 — q + 1 or \W\ = q2 — q + 2. Theorem 3.3 is also now 
completed. 

We proceed to show that the case \W\ = q2 — q + 1 occurs. For this we 
need another result on spreads. In [2], Bruck exhibits an isomorphism between 
a regular spread S of PG(3, q) and the inversive plane / = IP(g). In this 
isomorphism, lines of 5 correspond to points of J, and reguli of 5 correspond 
to circles of / . This makes it easy to see that in a regular spread 5, there 
are many pairs of reguli which have exactly one line or exactly two lines in 
common (see [18] for the case of infinite fields). We now show: 

THEOREM 3.5. If q > 2, there exist msp spreads W of 2 = PG(3, q) with 
\W\ = q2-q+l. 

Proof. The idea is to produce some spread S and some line I not in S such 
that the lines A of 5 meeting / have exactly one transversal (see 3.4). For 
this purpose, let So be a regular spread of 2 and let Ri and R2 be two reguli 
of 5o which have exactly one line c in common. Let Ri (R2) denote the opposite 
regulus of Ri (R2). Let nti (w2') be any line of R± (R2) and suppose m / 
meets w2 ' ; let m / C\ m2' = X. Through X there passes a line u of Ri and a 
line v of i£2. Now 5o ~D Ri and So D R2. Also there is a unique line x of 5 0 

through X. Hence u = v = x and x £ Ri r\ R2, that is, x = c. Thus a line 
of Ri can meet a line of R% only in points of c. 

Now let Y be any point of c, and let / / (l2') be the unique line of Ri (R2) 
through Y (see Figure 3.5). 

Denote the set of all lines in S0 — (Ri VJ R2) by B. Now the set 

B \J (Ri - c) U R2' 

is a spread Si of 2. / / is a line of 2 which is not a line of Si. Let A denote the 
set of lines of Si meeting W. As in the proof of Theorem 3.4, let W be the 
partial spread given by W = (Si — A) \J / / . Any line u extending W will 
have to be a transversal of A. Since q ^ 3, R\ — c contains at least 3 lines. 
Thus u meets at least 3 lines of RÛ thus u G Ri. By our opening remarks, 
u can meet Z2' only in a point of c. But then, u passes through F and meets / / , 
and so there is no line extending W. It follows that W is maximal and W has 
deficiency q, that is, \W\ = q2 — q + 1. 

Remarks. Substituting q = 5 in the above, we obtain an example of an 
msp spread in 2 = PG(3, 5) with deficiency 5. David Foulser [11] has kindly 
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FIGURE 3.5 

shown me an example of an msp spread in PG(3, 5) with deficiency 4, using 
subnets of the exceptional nearfield plane of order 25. Stimulated by this 
result we proceed to show the existence of msp spreads with deficiency q — 1 
in PG(3, q) for any odd q with q > 3. However, some more results from 
spread theory are necessary. In accordance with Bruck and Bose [3; 4], we 
have defined a regular spread S of 2 = PG(3, q) as a spread of 2 such that 
if the distinct lines ay b and c are in 5 then the lines of R(ay by c)y the unique 
regulus determined by ay b and cy are also contained in S. We say 'unique 
regulus' because GF(q) is commutative. (The notion of reguli in a projective 
space over an arbitrary skew field is more difficult, as in this case, 3 pairwise 
skew lines may not determine a unique regulus.) However, the notion of a 
regular spread is quite a classical one. In fact Veblen and Young [18] define a 
linear congruence in a 3-dimensional projective space 2 to be the set of all 
lines which are linearly dependent on four linearly independent lines. It is 
assumed only that 2 is defined over some commutative field which is not of 
characteristic 2 (see [18, bottom of p. 298]), and it is shown that any 4 pairwise 
skew lines a, b, c and dy such that d is skew to all lines of the regulus R (a, b, c)y 

determine one and only one elliptic linear congruence, which is in fact what 
we have called a regular spread (see [18, Theorem 18 and the Corollary, 
p. 318]). The assumption concerning the characteristic of the field is not needed 
for the above result. Thus any regulus R and any line skew to R determine 
one and only one regular spread. (This fact may be used to construct msp 
spreads of PG(3, R), for example, using the method of Theorem 3.5.) The 
above theorem is also proved for the finite case in Bruck [2, Theorem 4.3]. 
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The notion of a linear congruence is also discussed in Coxeter [8]. We are 
now in a position to prove: 

THEOREM 3.6. If q > 3 is odd, then there exist msp spreads W in 2 = 
PG(3, q), of deficiency q - 1, that is, such that \W\ = q2 — q + 2. 

Proof. Here the idea is to produce some spread S and some line I not in 5, 
such that the lines of 5 meeting I have exactly 2 transversals. 

Thus, let P be a regulus of 2 determining the quadric H(R). Let the line / be 
a secant to H(R), that is, / meets H{R) in precisely two distinct points A and P . 
Let u and z; be the lines of R through A and P , and list the remaining lines 
of R as r3, r4, . . . , rtf+i. Denote the lines of P ' through A and P by w' and v\ 
where Rf is the opposite regulus of P . Let v C\ uf = P, v' C\ u = Q, and let 
PC be the line m (see Figure 3.6). 

Clearly, I and m must be skew. We wish to show the existence of a line 
which meets both I and m and is skew to all lines of R. 

For this purpose, let X be any point of / different from A and B. Thus X is 
not on H(R), nor is X on m. m is skew to each of the lines rt, 3 ^ i ^ q + l . 
For otherwise, m would meet at least 3 lines of R and thus would be a line 
of R'. From X we draw the unique transversal tt to m and ru for each 
ru 3 ^ £ ^ q + 1. Now XP(resp. X<2) is a line in the tangent plane to H(R) 
dit P(resp. Q) which passes through P(resp. Q). Thus XP(resp. XQ) meets 
H(R) only in P(resp. Q). Hence each tt is different from XP and from XQ. 
It follows that no line tt meets u or v for this would force / and m to intersect. 
We claim that some two of the lines tt coincide. For suppose this is not the 
case. Then each line tt is a tangent to H(R), that is, each line tt intersects 
H(R) in exactly one point which is on rt. 

Let II denote the plane formed by X and m. Then II C\ H(R) is either 
(a) 2 lines, one line being a line of P , the other a line of R', or 
(b) a conic (see Veblen and Young [18, p. 300] or Coxeter [9, p. 260]). 
Suppose case (a). Let g be the line of R in II Pi H(R). Then every line of 

II = n (X , m) must meet g. XP is a line of II. XP meets v and no other line 
of P . Thus g = v. Similarly, using XQ, we get g = u. But v is different from u, 
and we obtain a contradiction. 

Suppose case (b), that is, II Pi H(P) is a non-degenerate conic C. In 
particular C is an oval. Since each line tt is assumed to be tangent to H(R) 
then each line ^ is a tangent to C passing through X. Thus there are q + 1 
tangents to C in the plane II all passing through X (XP and XQ are also 
tangents to C). But since q is odd, there are at most 2 tangents from any 
point of II to C [12, p. 381]. Now q + 1 > 2, since q > 3, and again we have 
a contradiction. 

Thus, some 2 of the lines tt coincide. Now besides XP and XQ, there are 
exactly q — 1 distinct lines meeting X and intersecting w. Each of these 
q — 1 lines is either a line tt or a line skew to all lines of P . There are exactly 
q — 1 lines r* since 3 ^ i ^ g + 1. Since some two of the lines tt coincide, 
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we deduce that there is at least one line x through X intersecting m and such 
that x is skew to all lines of the regulus R. Thus R and x will determine a 
regular spread 5 of 2. 5 contains u, v and x and thus also G(u, v, x), the 
regulus determined by u, v and x. I and m meet u, v and x and thus all lines 
of G meet / and m (see Figure 3.6). 

Denote the set of lines in S — (RVJ G) by B. Let G* denote those lines 
of G different from u and v. Next, the set Si = B U G* VJ Rf is a spread of 2. 

FIGURE 3.6 

/ is not in Si. As in (3.4), let A denote those lines of Si which meet /. Now 
A 3 G*. If the lines of A formed a regulus, such a regulus would have to 
contain G*. Now |G*| > 3, since q ^ 5. Thus there is only one regulus con
taining the lines of G*, namely G. But u and v are in G and neither u nor v is 
in A. It follows that the lines of A do not form a regulus. Thus, there are at 
most 2 transversals to A ; in this case A has exactly 2 transversals, / and m. 

Finally, let W denote the partial spread W = (5i — A) U {/, w}. Then PT 
is an msp spread of 2 = PG(3, q) with \W\ = g2 — g + 2. 

Remarks. We have assumed g > 3; this is necessary because of (3.3). 
(In the proof above we used |G*| > 3.) We have also assumed that q is odd. 
This assumption may not be necessary. However, in the discussion of case (b) 
above, we used the fact that in a plane II of odd order there are at most 
2 tangents to an oval C which pass through a point X of II. This is not the 
case for planes of even order since the tangents to an oval are concurrent 
[12, p. 381], and so our proof does not generalize to the case of even q. On the 
other hand, Mesner [13] does show the existence of an msp spread W in 
PG(3, 4) which has deficiency 3, i.e. \W\ = 42 - 4 + 2 = 14. 
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4. Concluding Remarks. In what follows, W denotes an msp spread. 
In Theorem 3.1 we showed that q + y/q + 1 ^ \W\ ^ q2 — y/q. Theorem 3.6 
showed that there exists W with \W\ = q2 — q + 2. Thus our upper bound 
is best possible for small q and is reasonably good for large q. However we 
do not have much information on the lower bound. Since both inequalities 
of Theorem 3.1 were a consequence of [6, Theorem 3.9], we feel that it should 
be possible to construct W with \W\ reasonably small, but we have not been 
successful to date. I t seems possible, for reasonably large q at any rate, to 
duplicate the construction of the proof of Theorem 3.5 to get a W with 
deficiency 2q. The idea is that we examine 2 pairs of reguli (Ri, R2) and (R3, RA) 
which are all contained in a regular spread S and such that 

(1) Ri and R2 have a line in common, 
(2) R3 and R± have a line in common, 
(3) Every line of Ri U R2 is skew to every line of Rz U RA. 
Then, proceeding as in Theorem 3.5, assuming q is sufficiently large, we can 

obtain a W in PG(3, q) of deficiency 2q. A more detailed knowledge of lines 
and reguli in a regular spread S seems required for a generalization of this 
sort of technique and, in this connection, the isomorphism (pointed out in 
Bruck [2]) between the lines and reguli of S and between the points and circles 
of the inverse plane IP(q) over GF(g), may be helpful. It is possible to obtain 
a net (in fact a translation net) from any partial spread (see Ostrom [17]). 

In the cases of Theorems 3.5 and 3.6, each W gives rise to a translation net N 
of order q2 whose deficiency as a net is the same as that of W, regarded as a 
partial spread of 2. Thus part of Theorem 3.1 might be phrased as follows: 
If N is a translation net of order q2 whose deficiency is less than V<Z + 1» ^en 

N can be completed to (extended to, embedded in) a translation plane of order q2 

that is representable as a spread of PG(3, q). Using special cases of Theorems 
4.3 and 3.1 of Bruck [1] we obtain the result that if N is any net of order n2 

whose deficiency is less than \/n + 1, then N is uniquely embeddable in some 
affine plane of order n2. However, it is clear that this does not imply the above 
result of (3.1). 

In connection with (3.1), David Foulser [11] has mentioned to me the 
possibility of obtaining an analagous result for msp spreads in PG(2/ — 1, q), 
perhaps by suitably generalizing the idea of blocking sets. 

In (3.5) and (3.6) we constructed W with \W\ = q2 — q + 1 and q2 — q + 2 
respectively. By definition, the net N obtained from W has no transversals 
[16] which are 2-dimensional subspaces of the associated 4-dimensional vector 
space over GF(q). Thus N can certainly not be embedded in a translation 
plane of order q2 which is representable as a spread of PG(3, q) containing W. 
In fact, it is possible to show that if g is a prime, then the net N cannot be 
embedded in any plane II whatsoever. This result will be discussed elsewhere. 
However it might be of interest to see if the net N can be embedded in any 
larger net. Here we are also thinking of the connection between nets and 
orthogonal latin squares [1]. It may be added that the example of a If in 
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PG(3, 5) with deficiency 4, when interpreted as a net, shows that the em-
beddability equation (B) of [1, p. 422] is best possible for nets of order 25. 
Finally we wish to pose the following: 

Problem. If q is sufficiently large, do there exist msp spreads W of 
2 = PG(3, q) with q2 - q + 2 < \W\ S q2 - Vq? 
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