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We study networks of diffusively time-delay coupled oscillatory units and we show that networks

with certain symmetries can exhibit a form of incomplete synchronization called partial

synchronization. We present conditions for the existence and stability of partial synchronization

modes in networks of oscillatory units that satisfy a semipassivity property and have convergent

internal dynamics.VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4771665]

In the study of synchronization in oscillator networks
where coupling is diffusive and allows for time-delays, the
focus is on deriving conditions that guarantee synchroni-
zation of all units in the network. We considered the ques-
tion what happens if full synchronization cannot be
achieved. Will there be no collective behavior at all or
might it be possible that partial synchronization occurs,
i.e., that some, but not all, units synchronize? We show
that if a network contains certain symmetries, then these
symmetries identify modes of partial synchronization. We
present conditions for the existence and stability of partial
synchronization modes in networks of diffusive time-delay
coupled oscillatory units. The results are supported by
numerical simulations in several networks of diffusively
time-delay coupled neural Hindmarsh-Rose oscillators.

I. INTRODUCTION

The study of synchronization in oscillator networks has

received considerable attention over the last decades. One rea-

son for this is the existence of many applications in physics,

neuroscience, and biology. Examples include the simultane-

ous flashing of thousands of fireflies that gather in trees along

the tidal rivers in Malaysia1,2 (see, Ref. 3 for a nice color pic-

ture), clusters of synchronized pacemaker neurons, which reg-

ulate our heartbeat,4 synchronized neurons in the olfactory

bulb that allow to detect and distinguish between odors,5

and our circadian rhythm, which is synchronized to (more

precisely, entrained to) the 24-h day-night cycle.6,7 Synchroni-

zation has also found applications in diverse fields of engi-

neering, such as platooning of vehicles,8 cooperation of

robotic systems,9,10 and secure communication.11–13

In this study, we focus on networks where the coupling

is diffusive. Diffusive coupling is a linear coupling that is

proportional to the difference of the output signals of the

interacting units, cf. Refs. 14 and 15. This type of coupling

arises in various areas of science arranging from physiol-

ogy16,17 and neuroscience18–22 to electrical systems23,24 and

mechanical engineering.25–28 In addition, we allow the cou-

pling to contain time-delays, which can arise due to finite

propagation speed of information and/or the time it takes to

make decisions, cf. Ref. 29.

Synchronization in networks of diffusively time-delay

coupled units, where synchronization is understood as the as-

ymptotic matching of the states of all units in the network, has

been investigated in, for instance, Refs. 27 and 30–39. The gen-

eral conclusion is that in order to achieve synchronization, the

coupling strength has at least to exceed a certain threshold value.

On the other hand, there is evidence that full synchronization

will generally not occur when time-delays are large.40,41 An im-

portant question is what happens if synchronization of all units

in the network cannot be achieved, e.g., when the coupling is

not strong enough and/or the time-delays are too large. One pos-

sible outcome, at least in principle, is that there is no coherent

behavior at all. However, there is evidence that although full

synchronization is not achieved, it is possible that some units of

the network synchronize. For instance, in Ref. 42, it is shown

that time-delay can induce the emergence of synchronized clus-

ters in networks. In this paper, we will show that certain net-

works allow partial synchronization, the phenomenon where

some but not all units in the network synchronize.

Partial synchronization in networks of non-delayed diffu-

sively coupled oscillatory units has been investigated in, for

instance, Refs. 43–46. This study extends the ideas presented in

Refs. 44 and 45 to the case of general time-delayed diffusive

coupling. The systematic approach of Refs. 44 and 45 identifies

linear invariant manifolds defined by local and global symme-

tries in network the coupled dynamical units. (A linear manifold

is called a linear invariant manifold if it is invariant with regards

to the flow of the dynamical system.) Local symmetries are those

symmetries that can be present in the units itself, cf. Refs. 44,

47, and 48. For example, the Lorenz system49 is a system with a

local symmetry.44 Indeed, the Lorenz equations
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_x1 ¼ rðx2 � x1Þ; (1a)

_x2 ¼ rx1 � x2 � x1x3; (1b)

_x3 ¼ �bx3 þ x1x2; (1c)

are invariant under the change of coordinates x 7! y with

y1 ¼ �x1; y2 ¼ �x2 and y3 ¼ x3. Global symmetries are

symmetries that are present in the network, hence it is possi-

ble to have global symmetries in networks of systems of any

type. Because our main interest is in how partial synchroni-

zation emerges as function of coupling strength and/or time-

delay, which are parameters of the network, we consider

only global symmetries. We would like to add that the

results presented in this paper can easily be extended to

include local symmetries too.50 It is important to realize that

local symmetries might influence the (synchronous) behav-

ior of a network. See, Ref. 44 for an example.

In case of a global symmetry, i.e., if the network con-

tains a certain symmetry, the symmetry must be present in

the adjacency matrix A of the network (and thus also in the

Laplacian matrix L). Then, a rearrangement of (some of) the

entries of A will leave the network unchanged. Mathemati-

cally, the rearrangement of the entries of A is described by

the (pre)multiplication of A with a permutation matrix.

Recall that a permutation matrix is a matrix with exactly one

entry equal to one in each row and each column and zeros

everywhere else. Permutation matrices are orthogonal and

form a group (with identity element I) under multiplication.

It is shown in Ref. 44 that if there is a permutation matrix P

that commutes with the Laplacian matrix L, i.e., PL ¼ LP,

then the set kerðIkn �P� InÞ defines a linear invariant

manifold for the network. Sufficient conditions were pre-

sented for this manifold to be asymptotically stable, which,

in absence of full synchronization, obviously implies partial

synchronization. In Ref. 45, the assumption that P and L

commute is relaxed; it is proven that the result of Ref. 44

remains true if P and L not commute but there exists a solu-

tion X to the matrix equation ðI �PÞL ¼ XðI �PÞ. (Obvi-
ously, if P and L commute, L¼X.) We show that the ideas

presented in Refs. 44 and 45 are also useful to investigate

partial synchronization in networks where the units interact

via general time-delay diffusive coupling. By general diffu-

sive coupling, we mean that we do not assume the coupling

to be symmetric. (Symmetry of the coupling means that if

unit i couples to unit j with a certain strength aij, then unit j

couples to unit i with strength aji ¼ aij.) To the best of our

knowledge, there are only a few theoretical results on partial

synchronization in network of time-delay diffusively coupled

oscillatory units available in literature, see Refs. 42 and 51.

The results presented in Refs. 42 and 51 are based on the

master stability function,52 which is essentially a local analy-

sis. The results that are presented in this paper hold, on the

contrary, globally. In addition, our approach does not require

a priori knowledge of the partially synchronized solutions,

i.e., the solutions of the systems on a partial synchronization

manifold, whereas knowing the partially synchronized solu-

tions is essential for successful application of techniques

based on the master stability function. Determining the par-

tially synchronized solutions is, however, far from obvious

since the dynamics on the partial synchronization manifold

will not be autonomous (since the coupling functions do not

vanish on the partial synchronization manifold). Of course,

there is also a price to pay; our approach provides a qualita-

tive description but no quantitative description of the par-

tially synchronized dynamics, hence our approach does

maybe not offer the best estimates of threshold values of

coupling strength and/or time-delay that will give (partial)

synchronization.

The remaining part of this paper is organized as follows.

In Sec. II, we introduce the notation that will be used

throughout the paper. In addition, we introduce the concepts

of semipassivity and convergent systems, which will be used

to guarantee boundedness of solutions of the whole network

and convergence to the partially synchronized state. In Sec.

III, we present our problem setting. Section IV presents con-

ditions for the existence of linear invariant manifolds that

correspond to certain modes of partial synchronization. It

will be shown that such linear invariant manifolds can be

identified by symmetries in the network. A network will

show partial synchronization if a linear invariant manifold is

attracting (for certain values of the coupling strength and

time-delay). Conditions for the partial synchronization mani-

fold to be attracting (in fact, to be asymptotically stable) are

presented in Sec. V. To have partial synchronization, the

conditions for the partial synchronization manifold to be

attracting should not coincide with the conditions for the full

synchronization manifold to be attracting. Sufficient condi-

tions for full synchronization, hence necessary conditions for

partial synchronization are given in Sec. VI. Section VII

presents some examples of networks that show partial syn-

chronization. Numerical simulations with Hindmarsh-Rose

neurons support the results. Section VIII concludes the paper

with a discussion of the results and possible extensions.

II. PRELIMINARIES

A. Notation

The symbol R stands for the real numbers

ð�1;1Þ; R>0 ðR�0Þ denotes the set of positive (nonnega-

tive) real numbers andRn denotes the n-fold Cartesian prod-

uct R� � � � �R. The Euclidean norm in Rn is denoted by

j � j; jxj2 ¼
def

x>x, where x> denotes the transpose of x. The

induced norm of a matrix A 2 Rn�n, denoted by jjAjj, is
defined as jjAjj ¼

def
maxx2Rn;jxj¼1jAxj. The n� n identity ma-

trix is denoted by In. If no confusion will arise, we write I.

The notation colðx1;…; xnÞ denotes the column vector with

entries x1;…; xn. Here, xi may be scalars or column vectors.

The notation spf g stands for spanf g. The symbol � denotes

the Kronecker product of two matrices, i.e., let A 2 Rn�m

and B 2 Rp�l, then the matrix A� B 2 Rnp�ml is given as

A� B ¼

a11B a12B … a1mB

a21B a22B … a2mB

� � . .
.

�

an1B an2B … anmB

0

B

B

B

@

1

C

C

C

A

;

where aij denotes the ijth entry of the matrix A.
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Let X � Rn and Y � Rm. The space of continuous

functions from X to Y that are (at least) r � 0 times continu-

ously differentiable is denoted by CrðX ;YÞ. For notational
convenience, we will sometimes write Cr instead of

CrðX ;YÞ; and if r¼ 0, we write CðX ;YÞ instead of C0ðX ;YÞ.
A function V : D ! R�0; D � Rn contains 0, is called posi-

tive (semi) definite, denoted by Vð�Þ > 0 ðVð�Þ � 0Þ, if

V(0)¼ 0 and VðxÞ > 0 ðVðxÞ � 0Þ for all x 2 D n f0g. It is
radially unbounded if D ¼ Rn and jxj ! 1 imply

VðxÞ ! 1. If the quadratic form x>Px with a symmetric ma-

trix P ¼ P> is positive (semi) definite, then the matrix P is

positive (semi) definite, denoted by P > 0 ðP � 0Þ.
Let xt2Cð½�s; 0�;RnÞ be defined as xðtþ hÞ; h 2 ½�s; 0�.

The norm of an element xt 2 Cð½�s; 0�;RnÞ is denoted as

jxtj¼
def

suph2½�s;0� jxðtþ hÞj. Note the abuse of notation, how-

ever, no confusion may arise.

Let G ¼ GðV; EÞ be a graph with set of nodes V and set

of arcs E. Given two nodes i; j 2 V, if there is a path of

length 1 from i to j, then ði; jÞ 2 E and i and j are called adja-

cent. It will be assumed that the graph is

• simple, i.e., there are no self-loops, that is, for every

i 2 V; ði; iÞ 62 E;
• strongly connected, i.e., for every two nodes i; j 2 V, there
is a path between i and j.

Note that we do not assume that ði; jÞ 2 E ) ðj; iÞ 2 E, that is,
we allow the graph to be directed. Let N i be the set of neigh-

bors of node i defined asN i¼N iðGÞ¼fj2 Vjðj; iÞ2Eg.

B. Semipassive systems and convergent systems

Consider a system

_xðtÞ ¼ f ðxðtÞ; uðtÞÞ; (2a)

yðtÞ ¼ hðxðtÞÞ; (2b)

with xðtÞ 2 Rn, input uðtÞ 2 Rm, output yðtÞ 2 Rm, and suf-

ficiently smooth functions f :Rn�Rm! R
n; h : R

n ! R
m.

Definition 1 (Semipassive systems53). System (2) is

called Cr- semipassive if there is a nonnegative function stor-

age V 2 CrðRn;R�0Þ and a function H : R
n ! R such that

VðxðtÞÞ � Vðxðt0ÞÞ 	

ðt

t0

y>ðsÞuðsÞ � HðxðsÞÞds; (3)

with H defined and nonnegative for all x outside some ball

B ¼ Bð0;RÞ � Rn, i.e., for each jxj > R; HðxÞ � qðjxjÞ with
some continuous function q : R�0 ! R�0. System (2) is

called strictly Cr-semipassive if it is Cr-semipassive with H

defined and positive for all x outside B.
Remark 1. System (2) is Cr-passive (strictly Cr-passive)

if it is Cr-semipassive (strictly Cr-semipassive) with H being

positive semidefinite (positive definite). (See Ref. 54 for the

definition of a passive system.)

Remark 2. If r � 1, one can replace Eq. (3) by

_VðxðtÞÞ 	 y>ðtÞuðtÞ � HðxðtÞÞ: (4)

Definition 2 (Convergent systems55,56). Consider the

system

_xðtÞ ¼ f ðxðtÞ; uðtÞÞ; (5)

and suppose that f is Lipschitz in x and u(t) is piecewise con-

tinuous in t and takes values from a compact set U � Rm.

The system is a convergent system if

(1) for each input u(t) and every x0 ¼ xðt0Þ 2 R
n, all solu-

tions xðt; t0; uðtÞÞ are defined and bounded on t 2 ½t0;1Þ;
(2) for each input u(t), there is an unique solution xuðtÞ that

is defined and bounded on t 2 ð�1;1Þ and is globally

asymptotically stable.

The system is a uniformly convergent system (exponentially

convergent system) if it is a convergent system and the

unique limit solution xuðtÞ is uniformly globally asymptoti-

cally stable (globally exponentially stable).

Lemma 1 (Refs. 55 and 56). Consider the system (5) and

suppose there is a positive definite matrix P 2 Rn�n such

that the eigenvalues of the symmetric matrix

@f

@x
ðx; uÞ

� �>

Pþ P
@f

@x
ðx; uÞ

� �

(6)

are all negative and separated away from zero for all x 2
R

n and u 2 U. Then, the system is globally exponentially

convergent.

III. PROBLEM SETTING

Consider k systems

_xiðtÞ ¼ f ðxiðtÞÞ þ BuiðtÞ; (7a)

yiðtÞ ¼ CxiðtÞ; i ¼ 1; 2;…; k; (7b)

with xiðtÞ 2 R
n, output yiðtÞ 2 R

m, input uiðtÞ 2 R
m, suffi-

ciently smooth functions f : Rn ! R
n, and matrices B, C of

appropriate dimensions.

Let G be a simple and strongly connected graph and sup-

pose that the systems (7) interact via diffusive time-delay

coupling of the form

uiðtÞ ¼ r
X

j2N iðGÞ
aij½yjðt� sÞ � yiðtÞ� (8)

or

uiðtÞ ¼ r
X

j2N iðGÞ
aij½yjðt� sÞ � yiðt� sÞ�; (9)

where constant r > 0 denotes the coupling strength, con-

stant s � 0 is the time-delay and constant interconnection

weights aij > 0. Without loss of generality, we assume

maxi
P

j2N iðGÞ
aij ¼ 1. We will refer to the former coupling

as coupling I while the latter coupling will be denoted as

coupling II.

Consider the linear manifold

M¼
def
fx 2 Rknjxi ¼ xj for all i; j 2 f1; 2;…; kgg: (10)

Manifold M is called the full synchronization manifold, or

simply synchronization manifold, for Eqs. (7) and (8) (or (7)
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and (9)) if it is invariant under the dynamics (7) and (8) (or

(7) and (9)). Note that M is the synchronization manifold

for the coupled systems (7) and (9) since the systems (7) are

identical and the coupling functions (9) vanish on M. To

ensure that M is invariant under the dynamics (7) and (8), it

will be assumed that
P

j2N iðGÞ
aij ¼ 1 for all i¼ 1, 2,…, k.

Definition 3. The systems (7) and (8) (or (7) and (9)) are

said to fully synchronize, or simply synchronize, if the linear

invariant synchronization manifold M contains an asymp-

totically stable subset.

Consider the linear manifold

P¼
def
fx 2 Rknjxi ¼ xj for some i; j 2 f1; 2;…; kgg; (11)

n 	 dimP 	 ðk � 2Þn. The manifold P is called a partial

synchronization manifold for Eqs. (7) and (8) (or Eqs. (7)

and (9)) if it is invariant under the dynamics (7) and (8)

(or (7) and (9)). Note that multiple partial synchroniza-

tion manifolds may exist and that the full synchroniza-

tion manifold is the intersection of all partial

synchronization manifolds.

Definition 4. The systems (7) and (8) (or (7) and (9)) are

said to partially synchronize if the linear invariant partial

synchronization manifold P contains an asymptotically sta-

ble subset.

This definition states, roughly speaking, that a network

exhibits partial synchronization if the states of at least two

but not all systems asymptotically match. The remainder of

this paper is devoted to identifying partial synchronization

manifolds and give conditions for these manifolds to con-

tain an asymptotically stable subset. But before doing so,

we first introduce some matrices that define the coupling

structure and we present a result from Ref. 39 regarding

boundedness of solutions of the coupled systems (7) and

(8) (or (7) and (9)).

Let the ijth entry of the matrix A be aij if j 2 N iðGÞ and
0 otherwise. Hence, the matrix A is a weighted adjacency

matrix. It follows from the assumption that G is strongly

connected that A is irreducible. Let D 2 Rk�k be a diagonal

matrix with di ¼
P

j2N iðGÞ
aij as ith entry. Note that for cou-

pling I, we have D¼ I by assumption. (Although not strictly

necessary, it will still be assumed that, for each i,
P

j2N iðGÞ
aij ¼ 1.) Let L¼D – A be the weighted Laplacian

matrix. In the remainder of this paper, we simply write adja-

cency matrix and Laplacian matrix instead of weighted adja-

cency matrix and weighted Lapacian matrix, respectively.

Lemma 2. Let G be a simple strongly connected graph.

Suppose that

• each system (7) is strictly C1-semipassive with a radially

unbounded storage function and there is a constant � > 0

such that HðxÞ � �jxj2 > 0 for sufficiently large jxj. Then,
the solutions of the coupled systems (7) and (8) are ulti-

mately bounded;
• each system (7) is strictly C1-semipassive with a radially

unbounded storage function and there is a constant � > 0

such that HðxÞ � �jxj2 � 2rjhðxÞj2 > 0 for sufficiently large

jxj and all r 2 ½0; rmax�; rmax > 0. Then, the solutions of

the coupled systems (7) and (9) are ultimately bounded.

The proof of Lemma 2 is based on the construction of a

Lyapunov functional of the form

�1Vðx1ðtÞÞ þ � � � þ �kVðxkðtÞÞ

þ
r

2

X

k

i¼1

X

j2N iðGÞ

�iaij

ð0

�s

jyjðtþ sÞj2ds;

where V are the storage functions from the semipassivity

assumption and �i are the entries of the left eigenvector cor-

responding to the simple zero eigenvalue of the Laplacian

matrix L. Note that L is singular by construction and the

assumption that G is strongly connected implies that the zero

eigenvalue is simple. Using the Perron-Frobenius theorem,

one can show that all �i > 0. One can show that the deriva-

tive of this functional along solutions is negative for suffi-

ciently large jxj ¼ jcolðx1;…; xkÞj. Then, a straightforward

application of Ref. 57, Theorem 4.2.10, pp. 272, implies the

result. See, Ref. 39 for further details.

It has to be remarked that for systems that interact via

coupling type II there is a limit on the coupling strength for

which boundedness can be guaranteed.

IV. SYMMETRIES AND INVARIANT MANIFOLDS

As mentioned in the introduction, we extend the ideas

presented in Refs. 44 and 45 for identification of partial

synchronization modes to the case of general time-delay

diffusive coupling. The idea is simply to search for rear-

rangements of the nodes that leave the network essentially

unchanged. That is, the structure of the network is pre-

served after simultaneous swapping of (some of) the nodes

of the network. Such a rearrangement can be conveniently

expressed using permutation matrices. Let P 2 Rk�k be a

permutation matrix, then it is easy to see that the network is

invariant under rearrangement induced by P if PAP> ¼ A,

i.e., A and P commute. Moreover, in that case, the set

kerðIkn �P� InÞ will define a linear invariant manifold of

the form (11) for the coupled systems. A formal and more

general statement for systems interacting via coupling I is

presented in the following lemma.

Lemma 3. Consider a network with k systems (7) that

interact via coupling I (8). Let P 2 Rk�k be permutation

matrix and A 2 Rk�k be the adjacency matrix. If there is a

solution X 2 Rk�k to the matrix equation

ðI �PÞA ¼ XðI �PÞ;

then the set kerðIkn �P� InÞ defines a linear invariant

manifold for the coupled systems (7) and (8).

Proof. Let xðtÞ ¼ colðx1ðtÞ;…; xkðtÞÞ and introduce new

coordinates wðtÞ ¼ ðIkn �P� InÞxðtÞ. Then,

_wðtÞ ¼ ðIkn �P� InÞ½FðxðtÞÞ � rðI � BCÞxðtÞ

þ rðA� BCÞxðt� sÞ�; (12)

with FðxðtÞÞ¼
def
colð f ðx1ðtÞÞ;…; f ðxkðtÞÞÞ. Assume that the

initial history /¼
def
xt0 2 Cð½�s; 0�;RknÞ is such that
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ðIkn �P� InÞ/ 
 0. It follows that the set kerðIkn �P� InÞ
is invariant under the dynamics if the assumption that / con-

strained to this set implies _wðtÞ 
 0. Consider the right hand

side of Eq. (12) and observe that, for every xðt�Þ 2 ker

ðIkn �P� InÞ () wðt�Þ ¼ 0, t� 2 ½�s;1Þ,

• ðIkn�P� InÞFðxðt
�ÞÞ¼Fðxðt�ÞÞ�FððP� InÞxðt

�ÞÞ¼ 0;

• ðIkn �P� InÞðI � BCÞxðt�Þ ¼ ðI � BCÞwðt�Þ ¼ 0;

• ðIkn �P� InÞðA� BCÞxðt�Þ ¼ ðX � BCÞwðt�Þ ¼ 0:

In the latter equality, we used ðI �PÞA ¼ XðI �PÞ. Hence,
_wðtÞ ¼ 0, which proves that kerðIkn �P� InÞ is invariant

under the dynamics. �

A similar result can be obtained for systems that interact

via coupling II.

Lemma 4. Consider a network with k systems (7) that

interact via coupling II (9). Let P 2 Rk�k be permutation

matrix and L 2 Rk�k be the Laplacian matrix. If there is a

solution X 2 Rk�k to the matrix equation

ðI �PÞL ¼ XðI �PÞ;

then the set kerðIkn �P� InÞ defines a linear invariant

manifold for the coupled systems (7) and (9).

The proof follows with minor modifications from the

proof of Lemma 3 and will, therefore, be omitted.

Remark 3. Obviously, if A and P commute (Lemma 3)

or L and P commute (Lemma 4), then X¼A or X¼L,

respectively.

The example below shows how the results of Lemma 3

(and Lemma 4) can be applied.

Example 1. Consider the network shown in Figure 1(a).

The adjacency matrix for this network is

A ¼
1

3

0 1 0 2

1 0 2 0

0 2 0 1

2 0 1 0

0

B

B

B

@

1

C

C

C

A

:

The matrix A commutes with the following permutation

matrices

P1 ¼

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

0

B

B

B

@

1

C

C

C

A

; P2 ¼

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0

B

B

B

@

1

C

C

C

A

;

P3 ¼

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0

B

B

B

@

1

C

C

C

A

:

Then, each set kerðI4n �P1 � InÞ; kerðI4n �P2 � InÞ, and
kerðI4n �P3 � InÞ defines a linear invariant manifold for

the coupled systems (7) and (8) or (7) and (9). Observe that,

for instance, kerðI4n �P1 � InÞ \ kerðI4n �P2 � InÞ defines
the full synchronization manifold.

Example 2. (See also Ref. 45.) Consider the network

shown in Figure 1(b). The adjacency matrix of this network is

A ¼

0 �a1 0 �a1 �a2 �a4 0 0

�a1 0 �a1 0 �a4 �a2 0 0

0 �a1 0 �a1 0 0 �a2 �a4
�a1 0 �a1 0 0 0 �a4 �a2
�a2 �a4 0 0 0 �a3 0 �a3
�a4 �a2 0 0 �a3 0 �a3 0

0 0 �a2 �a4 0 �a3 0 �a3
0 0 �a4 �a2 �a3 0 �a3 0

0

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

A

:

Let a1 ¼ a3 ¼
4
11

and a2 ¼
1
11

a4 ¼
2
11
, then the permutation

matrix

P ¼

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

A

does not commute with L¼D – A but there exists a X

that solves the matrix equation ðI �PÞL ¼ XðI �PÞ. See,
Sec. VII B for details. Thus, the set kerðI8n �P� InÞ defines
a linear invariant manifold for the coupled systems (7) and

(8) or (7) and (9).

V. PARTIAL SYNCHRONIZATION

In Sec. V, conditions are presented for the existence of

linear invariant manifolds. For partial synchronization, we

require these manifolds to contain an asymptotically stable

subset. In this section, sufficient conditions will be presented

for the linear invariant manifolds to contain an asymptoti-

cally stable subset.

Assume that the matrix CB is similar to a positive defi-

nite matrix. Then, there is a smooth change of coordinates

xi 7!ðzi; yiÞ that transforms the systems (7) into the following

form:

_ziðtÞ ¼ qðziðtÞ; yiðtÞÞ; (13a)
FIG. 1. The networks of (a): example 1 and (b): example 2. (Dashed lines

have weight a4.)
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_yiðtÞ ¼ aðyiðtÞ; ziðtÞÞ þ CBuiðtÞ; (13b)

with ziðtÞ 2 R
p, p¼ n – m, yiðtÞ 2 R

m and sufficiently

smooth functions q : R
p �Rm ! R

p; a : R
m �Rp ! R

m.

See, for instance, Ref. 44 for details. For notational conven-

ience and we assume CB¼ I and xiðtÞ ¼ colðziðtÞ; yiðtÞÞ.
(Results for the general case with CB being positive definite

can easily be derived.)

We would like to add some remarks on the structure of

systems (13). The inputs uiðtÞ appear only in the output dy-

namics, i.e., yi-dynamics. This type of systems is known in

the control systems community as relative degree one sys-

tems. If we assume that the systems in original coordinates,

i.e., systems (7), are strictly semipassive, then it is likely that

the systems have relative degree one (and hence, after a suit-

able change of coordinates, take the structure (13)). This fol-

lows from classical results that strictly passive systems

(recall that a system is strictly passive if it satisfies the defini-

tion of a semipassive system with the function H being posi-

tive definite, see, Remark 1) with a positive definite C2

storage function should be relative degree one systems, cf.

(Ref. 58), and the fact that a strictly semipassive systems

behaves as a strictly passive system for sufficiently large jxj.
Since there is no direct influence of the inputs uiðtÞ on

the “internal” zi-dynamics, we have to impose some condi-

tions on these internal dynamics that guarantee limt!1ðziðtÞ
�zjðtÞÞ ¼ 0 provided that limt!1ðyiðtÞ � yjðtÞÞ ¼ 0 for some

(all) pairs (i, j), i; j 2 f1; 2;…; kg. Obviously, this is true if

the internal dynamics are convergent (see, Sec. II). In Ref.

39, it is shown that assuming that the systems (13) (or sys-

tems (7) before the change of coordinates) satisfy the condi-

tions of Lemma 2 and have convergent internal dynamics

guarantees the existence of positive constants �r and �c such

that if r > �r and rs < �c, then the synchronization manifold

M contains a globally asymptotically stable subset. In other

words, strictly semipassive systems with convergent internal

dynamics on a simple strongly connected graph are guaran-

teed to synchronize provided that the coupling is sufficiently

strong and the product of the coupling strength and time-

delay is sufficiently small. See, Figure 2. It has to be

remarked that the values of �r and �c depend on the type of

coupling (coupling I or coupling II), the type of systems and

the topology of the network. We will show that the assump-

tions that the systems are semipassive and have internal con-

vergent dynamics are also sufficient to guarantee the

existence of an asymptotically stable subset of the partial

synchronization manifolds P. For systems that interact via

coupling I, we have the following result.

Theorem 5. Consider k coupled systems (13) and (8)

with G being simple and strongly connected. Suppose that

the conditions of Lemma 2 and Lemma 3 are satisfied for

some matrix X and permutation matrix P. Assume in addi-

tion that

• there is a constant c� > 0 such that

#>ðI �PÞ> Ik �
1

2
ðX> þ XÞ

� �

ðI �PÞ# � c�jðI �PÞ#j2

for every # 2 Rk;
• there is a symmetric matrix P 2 Rk�k such that the eigen-

values of the symmetric matrix

@q

@zi
ðzi; yiÞ

� �>

Pþ P
@q

@zi
ðzi; yiÞ

� �

are negative and bounded away from zero for all zi 2 R
p

and yi 2 R
m.

Then, there exist positive constants r� and c� such that if

r > r� and rs < c�, then the set kerðIkn �P� InÞ contains
a globally asymptotically stable subset.

For systems which interact via coupling II, we have a

similar result.

Theorem 6. Consider k coupled systems (13) and (9)

with G being simple and strongly connected. Suppose that the

conditions of Lemma 2 and Lemma 4 are satisfied for some

matrix X and permutation matrixP. Assume in addition that

• there is a constant c0 > 0 such that

1

2
#>ðI �PÞ>ðX> þ XÞðI �PÞ# � c0jðI �PÞ#j2

for every # 2 Rk;
• there is a symmetric matrix P 2 Rk�k such that the eigen-

values of the symmetric matrix

@q

@zi
ðzi; yiÞ

� �>

Pþ P
@q

@zi
ðzi; yiÞ

� �

are negative and bounded away from zero for all zi 2 R
p

and yi 2 R
m.

Then, there exist positive constants r0 and c0 such that if r0 <

r 	 rmax (with rmax being the maximal coupling strength for

which boundedness of solutions is guaranteed) and rs < c0,

then the set kerðIkn �P� InÞ contains a globally asymptoti-

cally stable subset.

Remark 4. Theorem 5 and Theorem 6 remain valid with-

out the assumptions of Lemma 2 (systems are not strictly

semipassive) if the solutions of the whole network are ulti-

mately bounded.

FIG. 2. Guaranteed asymptotic stability of a subset of the set kerðIkn�P�
InÞ (light shaded areas) and the full synchronization manifoldM (dark shaded

area) for systems that interact with coupling I under the assumption that

0 < r� < �r and c� > �c > 0.
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The proof of both Theorem 5 and Theorem 6 can be

found in the Appendix in which also the estimates of the

constants r� and c�; r0 and c0 respectively, are provided.

It has to be remarked that the values of the constants r�

and c� (or r0 and c0) depend on the type of systems in the net-

work and the coupling structure and, in particular, on the

matrices P and X. (See, the proofs of the theorems.)

VI. FULL SYNCHRONIZATION AND NECESSARY
CONDITIONS FOR PARTIAL SYNCHRONIZATION

As mentioned before, multiple partial synchronization

manifolds might coexist and also the conditions for such

manifolds to be stable might coincide. The case for which all

partial synchronization manifolds are stable coincides the

fully synchronized state. It follows that to observe partial

synchronization, it is necessary that the values of the cou-

pling strength and time-delay for which the partial manifold

is stable do not coincide with those for which the full syn-

chronization manifold is stable. However, we already know

that full synchronization will happen in networks of systems

that satisfy the assumptions of Theorems 5 and 6.

Theorem 7. (Ref. 39). Consider k coupled systems (13)

and (8) or (13) and (9) with G being simple and strongly con-

nected. Suppose that the conditions of Lemma 2 are satisfied.

Assume in addition that there is a symmetric matrix P 2
R

k�k such that the eigenvalues of the symmetric matrix

@q

@zi
ðzi; yiÞ

� �>

Pþ P
@q

@zi
ðzi; yiÞ

� �

are negative and bounded away from zero for all zi 2 R
p and

yi 2 R
m. Then, there exist positive constants �r and �c such

that if r > �r and rs < �c then the synchronization manifold

M contains a globally asymptotically stable subset.

It follows that to have partial synchronization, it is nec-

essary that r� < �r and/or c� > �c for coupled systems (8) and

(13), or r0 < �r and/or c0 > �c for coupled systems (9) and

(13). An example where partial synchronization can be

observed is schematically depicted in Figure 2.

For some network structures, it is possible to derive nec-

essary conditions for not having asymptotic stability of a

subset of the partial synchronization manifold and a subset

of the full synchronization for the same values of r and s.

For systems that interact via coupling I, we have the follow-

ing result.

Corollary 8. Consider the coupled systems (13) and (8)

and let the conditions of Theorem 5 be satisfied. Assume in

addition that P and A commute and that the eigenvalues of

A are real with right eigenvectors that are linearly independ-

ent. Then, the eigenvalues of A can be ordered as

�1 	 k1ðAÞ 	 k2ðAÞ 	 … 	 kk�1ðAÞ < kkðAÞ ¼ 1:

Let lðkiðAÞÞ be a right eigenvector corresponding to eigen-

value kiðAÞ and let

• kðAÞ the eigenvalue of A with largest absolute value with

the restriction that lðkðAÞÞ 2 range ðI �PÞ;
• �kðAÞ the largest eigenvalue of A with the restriction that

lð�kðAÞÞ 2 range ðI �PÞ.

Suppose that the eigenvectors in rangeðI �PÞ are mutually

orthogonal. Then,

• r� < �r only if �kðAÞ < kk�1ðAÞ;
• c� > �c only if kðAÞ < maxfjk1ðAÞj; jkk�1ðAÞjg.

Proof. All eigenvalues of A are real by assumption.

Moreover, we always assume that all rows of A sum up to 1

and A is irreducible since G is strongly connected. Then, the

Perron-Frobenius theorem together with Gerschgorin’s theo-

rem imply that kk ¼ 1 and all other eigenvalues are smaller

than kk, and jkjj 	 1 for every j ¼ 1; 2;…; k. Let AU ¼ UK

with K being a diagonal matrix with the eigenvalues of A as

entries and the columns of U are corresponding eigenvalues.

Let d be the number of eigenvectors in rangeðI �PÞ. Then,
without loss of generality, we assume that the first d columns

of U are eigenvectors in range ðI �PÞ and, obviously,

the first d diagonal entries of K will be the corresponding

eigenvalues. Because A and P commute, we have ðI �PÞA
¼XðI �PÞ with X¼A. We will now show that X ¼ ~UKU�1

with ~U ¼ ð u1 … ud 0…0 Þ also solves ðI �PÞA ¼ X

ðI �PÞ. Note that ~U ¼ UD1 with D1 a diagonal matrix

where the first d entries equal 1 and all other entries are 0.

Because the first d columns of U are eigenvectors in

range ðI �PÞ, we can write ðI �PÞ ¼ ~UD2 for some

D2 2 R
k�k. Then,

ðI �PÞA ¼ AðI �PÞ ¼ A ~UD2 ¼ AUD1D2 ¼ UKD1D2:

This also gives

XðI �PÞ ¼ ~UKU�1ðI �PÞ ¼ ~UU�1AðI �PÞ ¼ ~UKD1D2:

Thus, X ¼ ~UKU�1 solves ðI �PÞA ¼ XðI �PÞ if ðU � ~UÞ
KD1D2 ¼ 0. This is clearly true (for every D2) since

U � ~U ¼ ð 0k�d U� Þ, with matrix U� 2 Rk�ðk�dÞ whose

columns consist of eigenvectors udþ1;…; uk, and KD1

¼ diagð½1d 0ðk�dÞ�1�Þ. Here, 1d the d-dimensional vector with

all entries equal 1, and 0d1�d2 denotes the d1 � d2-dimen-

sional zero matrix. It follows that, under the assumptions of

the corollary,

#>ðI �PÞ> I �
1

2
ðX> þ XÞ

� �

ðI �PÞ# � c�jðI �PÞ#j2

for every # 2 Rk with c� ¼ ð1� �kðAÞÞ. In addition,

jjXjj 	 kðAÞ. Recall that we will have full synchronization if

all partial synchronization modes are stable at the same time.

We conclude that picking kðAÞ ¼ maxfjk1ðAÞj; jkk�1ðAÞjg
and �kðAÞ ¼ kk�1ðAÞ are sufficient to have full synchroniza-

tion. Hence to have partial synchronization, it is necessary

that �kðAÞ < kk�1ðAÞ and/or kðAÞ < maxfjk1ðAÞj; jkk�1ðAÞjg.
The remaining part of the proof follows now directly from

the proof of Theorem 5. w
For systems that interact via coupling II, we have the

following result.

Corollary 9. Consider the coupled systems (13) and (9)

and let the conditions of Theorem 6 be satisfied. Assume

in addition that P and L commute and that the eigenvalues

of L are real with right eigenvectors that are linearly

independent. Then, the eigenvalues of L are
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0 ¼ k1ðLÞ < k2ðLÞ 	 … 	 kk�1ðLÞ 	 kkðLÞ:

Let lðkiðLÞÞ be a right eigenvector corresponding to eigen-

value kiðLÞ and let

• kðLÞ the smallest nonzero eigenvalue of L with the restric-

tion that lðkðLÞÞ 2 rangeðI �PÞ;
• �kðLÞ the largest eigenvalue of L with the restriction that

lð�kðLÞÞ 2 rangeðI �PÞ.

Suppose that the eigenvectors in rangeðI �PÞ are mutually

orthogonal. Then,

• r0 < �r only if kðLÞ > k2ðLÞ;
• c0 > �c only if �kðLÞ < kkðLÞ.

The proof of the latter corollary can easily be deducted

from the proof of Theorem 6 and Corollary 8 and will be

omitted.

Example 3. Consider the network shown in Figure 3.

The Laplacian matrix is

L ¼
1

3

3 �1 �1 �1

�1 2 �1 0

�1 �1 2 0

�1 0 0 1

0

B

B

B

@

1

C

C

C

A

;

which has eigenvalues

k1 ¼ 0; k2 ¼
1

3
; k3 ¼ 1; k4 ¼

4

3
;

with eigenvectors li ¼ lðkiÞ

l1 2 sp

1

1

1

1

0

B

B

B

B

B

@

1

C

C

C

C

C

A

8

>

>

>

>

>

<

>

>

>

>

>

:

9

>

>

>

>

>

=

>

>

>

>

>

;

; l2 2 sp

1

�1

�1

2

0

B

B

B

B

B

@

1

C

C

C

C

C

A

8

>

>

>

>

>

<

>

>

>

>

>

:

9

>

>

>

>

>

=

>

>

>

>

>

;

;

l3 2 sp

0

1

�1

0

0

B

B

B

B

B

@

1

C

C

C

C

C

A

8

>

>

>

>

>

<

>

>

>

>

>

:

9

>

>

>

>

>

=

>

>

>

>

>

;

; l4 2 sp

3

�1

�1

�1

0

B

B

B

B

B

@

1

C

C

C

C

C

A

8

>

>

>

>

>

<

>

>

>

>

>

:

9

>

>

>

>

>

=

>

>

>

>

>

;

:

It is easy to see that L commutes with the permutation matrix

P ¼

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

0

B

B

@

1

C

C

A

and the only eigenvector in rangeðI �PÞ is l3. Using Corol-

lary 9, we conclude that partial synchronization of systems 2

and 3 is guaranteed for values of the coupling strength and

time-delay other than those for which full synchronization is

guaranteed, i.e., the conditions for full synchronization and

partial synchronization do not necessarily coincide. The

expected (partial) synchronization diagram is as the one

shown in Figure 2.

VII. EXAMPLES

In this section, we present examples of partial synchro-

nization in networks of Hindmarsh-Rose neurons. Consider k

Hindmarsh-Rose neurons59

_z1;iðtÞ ¼ 0:005ð4ðyiðtÞ þ 1:618Þ � z1;iðtÞÞ; (14a)

_z2;iðtÞ ¼ 1� 5y2i ðtÞ � z2;iðtÞÞ; (14b)

_yiðtÞ ¼ �y3i ðtÞ þ 3y2i ðtÞ þ 3:25þ z2;iðtÞ � z1;iðtÞ þ uiðtÞ:

(14c)

Here, yiðtÞ denotes the membrane potential of the ith neu-

ron, which is also its output. The internal variables z1;i; z2;i
are related to ionic currents. It is shown in Ref. 60 that the

Hindmarsh-Rose neuron satisfies the conditions in Lemma 2,

i.e., the model has the strict semipassivity property. More-

over, its internal dynamics are convergent. The latter can be

easily verified using Lemma 1 with P¼ I. Thus, a network

with these neurons, which interact either via coupling I or

coupling II will synchronize provided that the coupling is

sufficiently strong, and the product of the coupling and time-

delay is sufficiently small. Moreover, our theory suggests

that certain networks might exhibit partial synchronization.

A. Network of example 1

Consider the network of example 1 and recall that the

permutation matrices

P1 ¼

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

0

B

B

B

@

1

C

C

C

A

; P2 ¼

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0

B

B

B

@

1

C

C

C

A

;

P3 ¼

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0

B

B

B

@

1

C

C

C

A

;

commute with the adjacency matrix

FIG. 3. The network of example 3.
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A ¼
1

3

0 1 0 2

1 0 2 0

0 2 0 1

2 0 1 0

0

B

B

@

1

C

C

A

:

Let, ki be an eigenvalue of A with eigenvector li. A

straightforward computation shows that A has eigenvalues

k1 ¼ �1; k2 ¼ �
1

3
; k3 ¼

1

3
; k4 ¼ 1;

with eigenvectors

l1 2 sp

1

�1

1

�1

0

B

B

B

@

1

C

C

C

A

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

; l2 2 sp

1

1

�1

�1

0

B

B

B

@

1

C

C

C

A

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

;

l3 2 sp
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�1

�1

1

0

B

B

B

@

1

C

C

C

A

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

; l4 2 sp

1

1

1

1

0

B

B

B

@

1

C

C

C

A

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

:

The eigenvalues of I – A are obviously 1� ki with right eigen-

vectors li. Theorems 5 and 6 imply that each set

kerðI4n �Pj � InÞ, j¼ 1, 2, 3 contains a globally asymptoti-

cally stable subset. With the use of Corollary 8 (or Corollary

9), we can show that the conditions for stability of these partial

synchronization manifolds do not completely coincide with the

conditions for which we can guarantee full synchronization.

First, to have r� < �r (or r0 < �r) requires the eigenvec-

tors l1 and l2 to be in range ðI �PjÞ while eigenvector l3 is
not in range ðI �PjÞ. (Note that 1� k3 is indeed the smallest

nonzero eigenvalue of L¼ I – A.) This only holds true for P3.

Thus, we can find values for the coupling strength for which

systems 1 and 4 and systems 2 and 3 definitely synchronize,

and these values for the coupling strength are smaller than the

value of the coupling strength that guarantees full synchroni-

zation. In other words, for values of the coupling strength r

such that r� < r 	 �r (or r0 < r 	 �r), we guarantee that sys-

tems 1 and 4 and systems 2 and 3 synchronize but it is not

necessarily true that this also implies full synchronization.

Hence, this partial synchronization mode may be observed.

Second, to have c� > �c (or c0 > �c), we need the eigenvec-

tors l2 and l3 to be in range ðI �PjÞ while eigenvector l1 is

not in range ðI �PjÞ. This only holds true for P2. This implies

that synchronization of systems 1 and 3 and systems 2 and 4 can

be guaranteed for values of the product of the coupling strength

and time-delay larger than the one which guarantees full syn-

chronization, i.e., given a fixed r being sufficiently large, syn-

chronization of systems 1 and 3 and systems 2 and 4 is

guaranteed for time-delays larger than those for which full syn-

chronization is guaranteed. Thus, the conditions for stability of

this partial synchronization mode do not necessarily coincide

with the conditions for full synchronization, which implies that

this partial synchronization mode may indeed be observed.

Figure 4 shows the results of numerical simulations of

the network with Hindmarsh-Rose neurons (14) that interact

via coupling I (8) for different values of r and s. The left

panels show the output trajectories for the last 500 time

units. Note that yiðtÞ ¼ yjðtÞ implies ziðtÞ ¼ zjðtÞ since the in-

ternal dynamics are convergent. Thus, it is sufficient to show

only the output trajectories. The other figures show these out-

put trajectories for the last 500 time units in the yi; yj-plane.

We have yiðtÞ ¼ yjðtÞ only if the graph is (a subset of) the di-

agonal. Figure 4(a) shows results for r ¼ 1 and s ¼ 0:5. It

can be seen that neuron 1 synchronizes with neuron 4 and at

the same time will neuron 2 synchronize with neuron 3. Fig-

ure 4(b) shows that all neurons are synchronized if the cou-

pling strength is increased to r ¼ 3 while s remains the same

(s ¼ 0:5). For r ¼ 3 and s ¼ 2, neurons 1 and 3 synchronize

and neurons 2 and 4 synchronize. See, Figure 4(c). These nu-

merical results are explained by analysis presented above.

B. Network of example 2

In this example, we assume that the neurons interact via

nondelayed coupling, i.e., coupling (8) or (9) with s ¼ 0.

FIG. 4. Partial and full synchronization in a network with four Hindmarsh-

Rose neurons. (a) Partial synchronization of neurons 1 and 4 and neurons 2

and 3 for r ¼ 1; s ¼ 0:5. (b) Full synchronization for r ¼ 3; s ¼ 0:5. (c) Par-

tial synchronization of neurons 1 and 3 and neurons 2 and 4 for r ¼ 3; s ¼ 2.
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Consider the network of example 2 with a1 ¼ a3 ¼
4
11

and

a2 ¼
1
11

a4 ¼
2
11
. The Laplacian matrix is

L ¼
1

11

11 �4 0 �4 �1 �2 0 0

�4 11 �4 0 �2 �1 0 0

0 �4 11 �4 0 0 �1 �2

�4 0 �4 11 0 0 �2 �1

�1 �2 0 0 11 �4 0 �4

�2 �1 0 0 �4 11 �4 0

0 0 �1 �2 0 �4 11 �4

0 0 �2 �1 �4 0 �4 11

0

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

A

:

The permutation matrix

P ¼

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

A

:

does not commute with L¼D – A but there exists a solution

X of the matrix equation ðI �PÞL ¼ XðI �PÞ. Thus, the set
kerðI8n �P� InÞ defines a linear invariant manifold for the

coupled systems (7) and (9). Using a pseudo inverse of

I �P, we compute

X¼
1

44

41 �19 �3 �19 3 �1 �1 �1

�19 41 �19 �3 �1 �5 �1 7

�3 �19 41 �19 �1 �1 3 �1

�19 �3 �19 41 �1 7 �1 �5

3 �1 �1 �1 41 �19 �3 �19

�1 �5 �1 7 �19 41 �19 �3

�1 �1 3 �1 �3 �19 41 �19

�1 7 �10 �5 �19 �3 �19 41

0

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

A

:

Consider the singular value decomposition of I �P, cf. Ref.

61, I �P ¼ URV> with unitary matrices U and V, and R is

a diagonal matrix with the singular vales of I �P as entries.

Note that dim ker ðI �PÞ ¼ 2. Assume that R has the form

R ¼
R1 0

0 0

� �

;

with R1 2 R
6�6 diagonal matrix with the nonzero singular

values of I �P as entries. Let,

U>XU ¼
X1 X>

2

X2 X3

� �

;

then, for every # 2 Rk,

#>ðI �PÞ>XðI �PÞ# � cjðI �PÞ#j2;

with c ¼ 32
44

being the smallest eigenvalue of the matrix X1.

Since the smallest nonzero eigenvalue of L equals 24
44
, we know

that our condition for stability of the partial synchronization

manifold does not coincide with stability of the full synchroniza-

tion manifold. The results of numerical simulations, which are

explained by our analysis, are shown in Figure 5.

C. A hierarchical network

The last example is a network in which a hierarchical

structure is present. Consider the network shown in Figure 6.

FIG. 5. Partial and full synchronization of Hindmarsh-Rose neurons in the

network of example 2. (a) Partial synchronization of neurons 1, 2, 3, and 4

and neurons 5, 6, 7, and 8 for r ¼ 1:5 (and s ¼ 0). (b) Full synchronization

for r ¼ 2 (and s ¼ 0).

FIG. 6. A hierarchical network. Each node in the top layer couples (nodes 1,

2, 3, and 4) to every other node in the top layer with weight 1
20

and to each

node in the bottom layer (nodes 5, 6, 7, and 8) with weight 1
4
. Each node in

the bottom layer only couples to each node in the top layer with weight 1
20
.

This asymmetric coupling between nodes in the top layer and bottom layer

is indicated by !$. There is no difference between the solid and dotted

lines; the latter are used merely for clarity of presentation.
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The four neurons in the top layer, neurons 1, 2, 3 and 4, connect to every other node in the top layer with interconnection

weight 1
20
. These neurons also connect to every neuron in the bottom layer, i.e., neurons 5, 6, 7, and 8, with interconnection

weight 1
4
. The neurons in the bottom layer only connect to the neurons in the top layer. The weights of these connections are all

1
20
. The corresponding Laplacian matrix is

L ¼
1

20

7 �1 �1 �1 �1 �1 �1 �1

�1 7 �1 �1 �1 �1 �1 �1

�1 �1 7 �1 �1 �1 �1 �1

�1 �1 �1 7 �1 �1 �1 �1

�5 �5 �5 �5 20 0 0 0

�5 �5 �5 �5 0 20 0 0

�5 �5 �5 �5 0 0 20 0

�5 �5 �5 �5 0 0 0 20

0
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B

B

B

B

B

B

B

B

@

1

C
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C

C

C

C

C

C

C

C

A

:

We can only give statements for systems that interact via coupling II since the diagonal entries of L are not all identical.

Let ki be an eigenvalue of L with eigenvector li. A straightforward computation shows that L has eigenvalues

k1 ¼ 0; k2 ¼
2

5
; k3 ¼

2

5
; k4 ¼

2

5
; k5 ¼ 1; k6 ¼ 1; k7 ¼ 1; k8 ¼

6

5
;

with eigenvectors
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:

The network contains many symmetries but the only relevant

symmetries for partial synchronization are given by the per-

mutation matrices

P1 ¼
I 0
0 R

� �

and P2¼
R 0
0 R

� �

;

with

0 ¼

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0

B

B

@

1

C

C

A

and R¼

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0

B

B

@

1

C

C

A

:

Other permutation matrices will either define the same linear

invariant manifolds and/or the conditions for attractivity of

these manifolds will coincide with the conditions for other
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manifolds to be attracting. It is easy to see that l2; l3; l4 2
rangeðI �P2Þ and l5; l6; l7 2 rangeðI �P1Þ. Since k2 ¼
k3 ¼ k4 ¼

2
5
and k5 ¼ k6 ¼ k7 are all larger than k2 but

smaller than k8, we can have partial synchronization. The

numerical simulations with the Hindmarsh-Rose neurons

shown in Figure 7 support our analysis.

VIII. CONCLUSIONS AND DISCUSSION

We have presented a framework for analyzing the emer-

gence of partial synchronization in oscillator networks of

which the units interact via time-delay diffusive coupling. It is

shown that symmetries present in the network define linear

invariant manifold which, when being attracting, define

modes of partial synchronization. For both types of diffusive

time-delay coupling, i.e., coupling I and coupling II, condi-

tions are presented that guarantee such linear invariant mani-

folds to be globally stable. Global synchronization of the

whole network can be defined as the union of all partial syn-

chronization modes, hence all units of the network synchron-

ize if all partial synchronization modes are stable. For a

particular class of networks, we have presented necessary con-

ditions for the linear invariant manifold to be stable without

having stability of the full synchronization manifold. Numeri-

cal simulations with networks of diffusively time-delay

coupled Hindmarsh-Rose neurons demonstrate our results.

In this paper, we have considered diffusive coupling subject

to a single time-delay. The most straightforward extension of

our results would be to include multiple time-delays. It is not

hard to imagine that symmetries with respect to time-delays

can, in combination with symmetries in interaction weights,

contribute to the emergence of partial synchronization modes.

The following theorem presents a simple result in this direction.

Theorem 10. Let Pk be the set of commuting symmetric

k� k dimensional permutation matrices with zero trace.

(Note that the zero trace assumption implies k is an even in-

teger.) Consider k coupled systems (7), which interact via

coupling functions

uðtÞ ¼ �ryðtÞ þ r
X

‘

g‘P‘yðt� s‘Þ

with P‘ 2 Pk; g‘ > 0 and
P

‘ g‘ ¼ 1. Assume that

A ¼
P

‘ g‘P‘ is irreducible. Then for each P‘, the set

kerðIkn �P‘ � InÞ defines a linear invariant manifold for the

coupled systems. Suppose in addition that

• the systems (7) are strictly semipassive with a radially

unbounded storage function;
• the systems have the normal form (13) and there is a sym-

metric matrix P 2 Rk�k, such that the eigenvalues of the

symmetric matrix

@q

@zi
ðzi; yiÞ

� �>

Pþ P
@q

@zi
ðzi; yiÞ

� �

are negative and bounded away from zero for all zi 2 R
p

and yi 2 R
m.

Then, the solutions of the coupled systems are ultimately

bounded and there exist positive constants r�‘ and c�‘ , such

that if r > r�‘ and rs‘ < c�‘ , then the set kerðIkn �P‘ � InÞ
contains a globally attractive subset.

The proof is presented in the Appendix.

Example 4. Consider k¼ 4, coupled systems in a ring

with coupling functions

uðtÞ ¼ �ryðtÞ þ
r

2
ðP1 � InÞyðt� s1Þ þ

r

2
ðP2 � InÞyðt� s2Þ

with

P1 ¼

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

0

B

B

@

1

C

C

A

and P2¼

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0

B

B

@

1

C

C

A

:

Applying Theorem 10, we conclude that if the systems are

strictly semipassive and have convergent internal dynamics,

FIG. 7. Partial and full synchronization in the network shown in Figure 6. (a) Par-

tial synchronization of neurons 5, 6, 7, and 8 for r ¼ 2; s ¼ 0:1. There is no syn-

chronization of any other neurons. (b) Full synchronization for r ¼ 8; s ¼ 0:1.

(c) Partial synchronization of neurons 1, 2, 3, and 4 and neurons 5, 6, 7, and 8 for

r ¼ 8; s ¼ 0:5.
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then systems 1 and 2 synchronize and systems 3 and 4 syn-

chronize for sufficiently large r and rs1 sufficiently small.

This result is independent of the value of s2. Due to the sym-

metry, we also have that systems 1 and 4 synchronize and

systems 2 and 3 synchronize for sufficiently large r and rs2
sufficiently small for every s1 � 0. If r is sufficiently large

and both rs1 and rs2 are sufficiently small, full synchroniza-

tion is guaranteed. Figure 8 summarizes these results for

fixed sufficiently large r.

Another possible extension is to allow for time-varying

interaction weights and/or time-varying delays. From a prac-

tical point of view, it might be interesting to introduce

weaker notions of partial synchronization than the one used

in this paper. In practice, it is often sufficient that the units in

a cluster behave similarly enough, e.g.,

lim sup
t!1

jxiðtÞ � xjðtÞj < e;

for at least one pair (i, j) for some sufficiently small constant

e > 0. (How small e should be depends of course on the applica-

tion.) Using a weaker notion of (partial) synchronization enables

the development of similar theories for heterogeneous popula-

tions, which should be of great practical interest. Using a weaker

notion of partial synchronization would also allow for less re-

strictive assumptions on the network, e.g., weak partial synchro-

nization might emerge in networks without perfect symmetries.

Recent developments on the identification of clustering in net-

works, cf. Refs. 62 and 63, might then be used to establish new

results for practical partial synchronization.
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APPENDIX A: PROOFS OF THEOREM 5, THEOREM 6,
AND THEOREM 10

Proof of Theorem 5. Note that zðtÞ 2 kerðIkp �P� IpÞ
and yðtÞ 2 kerðIkm �P� ImÞ define equations

ziðtÞ � zjðtÞ ¼ 0; (A1a)

yiðtÞ � yjðtÞ ¼ 0; (A1b)

for pairs (i, j) with i; j 2 f1; 2;…; kg. Let IP be such that Eq.

(A1) holds for every ði; jÞ 2 IP. Let nðtÞ be the vector with as

entries the constraint Eq. (A1a) and, similarly, the constraint Eq.

(A1b) are stored in the vector gðtÞ. We want to show that n 
 0

and g 
 0 are globally asymptotically stable under the condi-

tions supplied in the theorem. We will do so by constructing a

positive definite Lyapunov-Razumikhin function of the form

VðnðtÞ; gðtÞÞ ¼ V1ðnðtÞÞ þ V2ðgðtÞÞ (A2)

and showing that our assumptions imply that

_VðnðtÞ; gðtÞÞ ¼ lim sup
h!0þ

1

h
½Vðnðtþ hÞ; gðtþ hÞÞ

� VðnðtÞ; gðtÞÞ� < 0; (A3)

whenever

wðVðnðtÞ;gðtÞÞÞ> Vðnðtþ hÞ;gðtþ hÞÞ; h 2 ½�s;0�; (A4)

with w : R�0 ! R�0; wðsÞ > s and w(0)¼ 0. See, for

instance, Ref. 64 for details about Lyapunov-Razumikhin

functions. Let

V1ðnðtÞÞ ¼ n>ðtÞðI � PÞnðtÞ

¼
X

ði;jÞ2IP

ðziðtÞ � zjðtÞÞ
>
PðziðtÞ � zjðtÞÞ: (A5)

Then,

_V1ðnðtÞÞ ¼
X

ði;jÞ2IP

ðziðtÞ � zjðtÞÞ
>
P½qðziðtÞ; yiðtÞÞ

� qðzjðtÞ; yjðtÞÞ� þ ½qðziðtÞ; yiðtÞÞ

�qðzjðtÞ; yjðtÞÞ�
>
PðziðtÞ � zjðtÞÞ: (A6)

We can write

ðziðtÞ � zjðtÞÞ
>
PðqðziðtÞ; yiðtÞÞ � qðzjðtÞ; yjðtÞÞÞ

¼ ðziðtÞ � zjðtÞÞ
>
PðqðziðtÞ;yiðtÞÞ � qðzjðtÞ;yiðtÞÞÞ

þðziðtÞ � zjðtÞÞ
>
PðqðzjðtÞ;yiðtÞÞ � qðzjðtÞ;yjðtÞÞÞ: (A7)

Denote

U1ðf1Þ ¼ ðziðtÞ � zjðtÞÞ
>
PqðzjðtÞ þ f1ðziðtÞ � zjðtÞÞ; yiðtÞÞ;

(A8)

U2ðf2Þ ¼ ðziðtÞ � zjðtÞÞ
>
PqðzjðtÞ; yjðtÞ þ f2ðyiðtÞ � yjðtÞÞÞ;

(A9)

with f1 2 ½0; 1�; f2 2 ½0; 1� and note that Eq. (A7) can also

be written as U1ð1Þ � U1ð0Þ þ U2ð1Þ � U2ð0Þ. Invoking the

mean value theorem and using the fact that q is sufficiently

smooth, we have

U1ð1Þ � U1ð0Þ ¼
@U1

@f1
ðf�1Þ; f�1 2 ½0; 1�; (A10)

U2ð1Þ � U2ð0Þ ¼
@U2

@f2
ðf�2Þ; f�2 2 ½0; 1�; (A11)

with

FIG. 8. Partial synchronization in a network with different time-delays for

some sufficiently large r. Systems 1 and 2 and systems 3 and 4 synchronize

for any s2 � 0 if s1 is sufficiently small. Obviously, systems 1 and 4 and sys-

tems 2 and 3 synchronize for any s1 � 0 if s2 is sufficiently small. Full syn-

chronization is achieved if both s1 and s2 are sufficiently small.
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@U1

@f1
ðf�1Þ ¼ ðziðtÞ � zjðtÞÞ

>
P

�
@q

@z
ðzjðtÞ þ f�1ðziðtÞ � zjðtÞÞ; yiðtÞÞ

� �

� ðziðtÞ � zjðtÞÞ;
@U2

@f2
ðf�2Þ ¼ ðziðtÞ � zjðtÞÞ

>
P

�
@q

@y
ðzjðtÞ; yjðtÞ þ f�2ðyiðtÞ � yjðtÞÞÞ

� �

� ðyiðtÞ � yjðtÞÞ:

Invoking boundedness of all solutions (by Lemma 2), hence

the matrix @q
@y
ð�; �Þ is bounded, and using the assumption that

@q

@z

>

ð�; �ÞPþ P
@q

@z
ð�; �Þ (A12)

is uniformly negative definite, there will exist positive con-

stants c1; c2 such that

_V1ðnðtÞÞ 	 �c1jnðtÞj
2 þ c2jnðtÞj jgðtÞj: (A13)

Let

V2ðgðtÞÞ ¼
1

2
g>ðtÞgðtÞ

¼
1

2

X

ði;jÞ2IP

ðyiðtÞ � yjðtÞÞ
>ðyiðtÞ � yjðtÞÞ

¼
1

2
½ðIkm �P� ImÞyðtÞ�

>½ðIkm �P� ImÞyðtÞ�:

(A14)

Hence

_V2ðgðtÞÞ¼g>ðtÞ _gðtÞ¼½ðIkm�P�ImÞyðtÞ�
>½ðIkm�P�ImÞ _yðtÞ�:

(A15)

Using the assumption that there is a X such that ðIk �PÞA
¼ XðIk �PÞ (by Lemma 3), we can write

ðIkm �P� ImÞ _yðtÞ ¼ ðIkm �P� ImÞ½aðyðtÞ; zðtÞÞ � ryðtÞ�

þrðIkm �P� ImÞðA� ImÞyðt� sÞ

¼ ðIkm �P� ImÞaðyðtÞ; zðtÞÞ

� rðIkm �P� ImÞyðtÞ

þrðX � ImÞðIkm �P� ImÞyðt� sÞ;

(A16)

with aðyðtÞ; zðtÞÞ ¼ colðaðy1ðtÞ; z1ðtÞÞ;…; aðykðtÞ; zkðtÞÞÞ.
(Note the abuse of notation, however, no confusion should

arise.) Using Leibniz’s rule, we can write

yðt� sÞ ¼ yðtÞ �

ð0

�s

_yðtþ sÞds; (A17)

and substitution of Eq. (A17) in the right hand side of

Eq. (A16) yields

ðIkm�P� ImÞaðyðtÞ;zðtÞÞ�rðIkm�X� ImÞðIkm�P� ImÞyðtÞ

�rðX� ImÞðIkm�P� ImÞ

ð0

�s

_yðtþ sÞds: (A18)

It follows that the right hand side of Eq. (A15) is the sum of

the three terms

½ðIkm �P� ImÞyðtÞ�
>½ðIkm �P� ImÞaðyðtÞ; zðtÞÞ�; (A19)

�r½ðIkm �P� ImÞyðtÞ�
>ðIkm � X � ImÞ½ðIkm �P� ImÞyðtÞ�;

(A20)

�r

ð0

�s

½ðIkm �P� ImÞyðtÞ�
>ðX � ImÞ

� ½ðIkm �P� ImÞ _yðtþ sÞds�: (A21)

First, using the boundedness of solutions (Lemma 2)

and the function a being sufficiently smooth, one concludes

that there exist positive constants c3; c4 such that

½ðIkm �P� ImÞyðtÞ�
>½ðIkm �P� ImÞaðyðtÞ; zðtÞÞ�

	 c3jgðtÞj
2 þ c4jgðtÞj jnðtÞj: (A22)

(See the machinery preceding Eq. (A13).) Second, by

assumption there is a constant c� > 0 such that

�r½ðIkm �P� ImÞyðtÞ�
>ðIkm � X � ImÞ½ðIkm �P� ImÞyðtÞ�

	 �rc�jgðtÞj2: (A23)

Third, letting wðsÞ ¼ j2s2 with constant j > 1, we have

�r

ð0

�s

½ðIkm �P� ImÞyðtÞ�
>ðX� ImÞ½ðIkm �P� ImÞ _yðtþ sÞds��r

ð0

�s

½ðIkm �P� ImÞyðtÞ�
>ðX� ImÞ½ðIkm �P� ImÞ

� ½aðyðtþ sÞ; zðtþ sÞÞ � ryðtþ sÞ þ rðA� IÞyðtþ s� sÞ�ds�

	 jrsjjXjj c3jgðtÞj
2 þ c4jgðtÞj jnðtÞj þ rjgðtÞj2 þ r

jjX2jj

jjXjj
jgðtÞj2

� �

: (A24)
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To get the latter inequality, we have used ðIk �PÞA ¼ X

ðIk �PÞ and

wðVðnðtÞ; gðtÞÞÞ > Vðnðtþ hÞ; gðtþ hÞÞ

) jjgðtÞj � jgðtþ hÞj: (A25)

Denote c ¼ rs such that, combining Eqs. (A22), (A23), and

(A24),

_V2ðgÞ 	 ðc3ð1þ jcjjXjjÞ þ rjcðjjXjj þ jjX2jjÞ � rc�ÞjgðtÞj2

þc4ð1þ jcjjXjjÞjgðtÞj jnðtÞj (A26)

if j2VðnðtÞ;gðtÞÞ>VðnðtþhÞ;gðtþhÞÞ; h2 ½�2s;0�. From

Eqs. (A13) and (A26), we conclude that, if j2VðnðtÞ; gðtÞÞ
>VðnðtþhÞ;gðtþhÞÞ, then _VðnðtÞ;gðtÞÞ< 0 if the matrix

rc� � ðc3ð1þ jcjjXjjÞ þ rjcðjjXjj þ jjX2jjÞÞ �
c2 þ c4ð1þ jcjjXjjÞ

2

�
c2 þ c4ð1þ jcjjXjjÞ

2
c1

0

B

@

1

C

A
> 0: (A27)

Inequality, Eq. (A27) holds if and only if

rc� � ðc3ð1þ jcjjXjjÞ þ rjcðjjXjj þ jjX2jjÞÞ

>
ðc2 þ c4ð1þ jcjjXjjÞÞ2

4c1
: (A28)

If r is sufficiently large and c sufficiently small, then it is

possible to find j > 1 such that Eq. (A28) holds. Hence, we

conclude that there are positive constants r� and c� such that

if r > r� and rs < c� then the set kerðIkn �P� InÞ contains
a globally asymptotically stable subset. w

Proof of Theorem 6. The proof can easily be deducted

from the proof of Theorem 5 taking into account that

ðIkm�P� ImÞ _yðtÞ¼ðIkm�P� ImÞ½aðyðtÞ;zðtÞÞ

�rðL� ImÞyðt� sÞ�

¼ðIkm�P� ImÞaðyðtÞ;zðtÞÞ

�rðX� ImÞðIkm�P� ImÞyðt� sÞ

¼ðIkm�P� ImÞaðyðtÞ;zðtÞÞ

�rðX� ImÞðIkm�P� ImÞyðtÞ

þrðX� ImÞðIkm�P� ImÞ

ð0

�s

_yðtþ sÞds:

(A29)

Let again

VðnðtÞ; gðtÞÞ ¼ V1ðnðtÞÞ þ V2ðgðtÞÞ (A30)

with functions V1 and V2 as in the proof of Theorem 5.

Observe that _V1 is the same as in the proof of Theorem 5

and, using the assumptions in the theorem,

_V2ðgÞ 	 c3jgðtÞj
2 þ c4jgðtÞj jnðtÞj � rc0jgðtÞj2

þrsjjjXjj c3jgðtÞj
2 þ c4jgðtÞj jnðtÞj þ r

jjX2jj

jjXjj
jgðtÞj2

� �

;

(A31)

c3; c4; c
0 > 0, given that j2VðnðtÞ; gðtÞÞ > Vðnðtþ hÞ;

gðtþ hÞÞ; h 2 ½�2s; 0�, with j > 1. Denote c ¼ rs and let

j2VðnðtÞ; gðtÞÞ > Vðnðtþ hÞ; gðtþ hÞÞ; h 2 ½�2s; 0�. Then,

_VðnðtÞ; gðtÞÞ < 0 (A32)

if the matrix

rc0�ðc3ð1þjcjjXjjÞþrjcjjX2jjÞ �
c2þc4ð1þjcjjXjjÞ

2

�
c2þ c4ð1þjcjjXjjÞ

2
c1

0

B

B

@

1

C

C

A

> 0:

(A33)

Clearly if r is sufficiently large and c sufficiently small, then

it is possible to find j > 1 such that Eq. (A33) holds. Hence,

we conclude that there are positive constants r0 and c0 such

that if r > r0 and rs < c0, then the set kerðIkn �P� InÞ
contains a globally asymptotically stable subset. w

Proof of Theorem 10. The assumption that A ¼
P

‘ g‘P‘ is irreducible implies that A is the adjacency matrix

of a strongly connected graph. Since the systems are

assumed to be strictly semipassive, we can apply Corollary 2

from Ref. 39, which implies that the solutions are ultimately

bounded. The claim that kerðIkn �P‘ � InÞ defines a linear

invariant manifold for the coupled systems follows from a

slightly modified version of (the proof of) Lemma 3. (Note

that all matrices in Pk commute hence all P‘ commute.)

We will prove the theorem by showing that there are

constants r� and c� such that if r > r� and rs1 < c�, the

set kerðIkn �P1 � InÞ contains a globally asymptotically

subset. We will construct a Lyapunov-Razumikhin function

of the form Eq. (A2) with

V1ðzðtÞÞ ¼ z>ðtÞðIkp �P1 � IpÞ
>ðIk � PÞðIkp �P1 � IpÞzðtÞ

(A34)

and

V2ðyðtÞÞ¼ y>ðtÞðIkm�P1� ImÞ
>ðIkm�P1� ImÞyðtÞ: (A35)

Following the first part of the proof of Theorem 5, we con-

clude that there are positive constants c1; c2 such that
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_V1ðzðtÞÞ 	 �c1jðIkp �P1 � IpÞzðtÞj
2

þ c2jðIkp �P1 � IpÞzðtÞj jðIkm �P1 � ImÞyðtÞj: (A36)

Note that

ðIkm �P1 � ImÞ _yðtÞ

¼ ðIkm �P1 � ImÞ½aðyðtÞ; zðtÞÞ � ryðtÞ�

þrg1ðIkm �P1 � ImÞP1yðt� s1Þ

þ r
X

‘nf1g

g‘ðIkm �P1 � ImÞP‘yðt� s‘Þ

¼ ðIkm �P1 � ImÞ½aðyðtÞ; zðtÞÞ � ryðtÞ�

� rg1ðIkm �P1 � ImÞyðt� s1Þ

þr
X

‘nf1g

g‘P‘ðIkm �P1 � ImÞyðt� s‘Þ: (A37)

In the latter step, we have used the assumption that all matri-

ces in Pk commute and are symmetric. (Recall that for a

symmetric permutation matrix, P2 ¼ I.) Use Leibniz’ rule to

write

yðt� s1Þ ¼ yðtÞ �

ðt

t�s1

_yðsÞds (A38)

and choose wðsÞ ¼ j2s, w(s) as presented in Eq. (A4), with

some constant j > 1. Denote �s ¼ max‘fs‘g. Then, using

similar arguments as used in the proof of Theorem 5, we

conclude that there are constants c3; c4 such that

_V2ðyðtÞÞ 	 ðc3 � rð1þ g1 � jð1� g1ÞÞ

þ c1g1jðc3 þ 2rÞÞjðIkm �P1 � ImÞyðtÞj
2

þc4ð1þ jg1c1ÞjðIkp �P1 � IpÞzðtÞj jðIkm �P1 � ImÞyðtÞj;

(A39)

with c1 ¼ rs1, whenever j2V2ðyðtÞÞ > V2ðyðtþ hÞ;
h 2 ½�2maxfs1;�sg; 0�. Since

1þ g1
1� g1

> 1 (A40)

because g1 2 ð0; 1Þ, we know that there are constants j >

1; r�1 > 0 and c�1 > 0, such that if r > r�1 and c < c�1 , then
_V < 0 whenever j2VðzðtÞ; yðtÞÞ > Vðzðtþ hÞ; yðtþ hÞÞ;
h 2 ½�2maxfs1;�sg; 0�. w
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