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Abstract

Partial updating of LMS filter coefficients is an effective method for reducing computational load and power
consumption in adaptive filter implementations. This paper presents an analysis of convergence of the class of
Sequential Partial Update LMS algorithms (S-LMS) under various assumptions and shows that divergence can be
prevented by scheduling coefficient updates at random, which we call the Stochastic Partial Update LMS algorithm
(SPULMS). Specifically, under the standard independence assumptions, for wide sense stationary signals the S-LMS
algorithm converges in the mean if the step size parameter µ is in the convergent range of ordinary LMS. Relaxing
the independence assumption it is shown that S-LMS and LMS algorithms have the same sufficient conditions for
exponential stability. However, there exist non-stationary signals for which the existing algorithms, S-LMS included,
are unstable and do not converge for any value of µ. On the other hand, under broad conditions the SPU-LMS
algorithm remains stable for non-stationary signals. Expressions for convergence rate and steady state mean-square
error of SPU-LMS are derived. The theoretical results of this paper are validated and compared by simulation
through numerical examples.

Index Terms

partial update LMS algorithms, random updates, sequential algorithm, periodic algorithm, exponential stability.

I. INTRODUCTION

THE least mean-squares (LMS) algorithm is a popular algorithm for adaptation of weights in adaptive beam-
formers using antenna arrays and for channel equalization to combat intersymbol interference. Many other

application areas of LMS include interference cancellation, echo cancellation, space time modulation and coding,
signal copy in surveillance and wireless communications. Although there exist algorithms with faster convergence
rates like RLS, LMS is popular because of its ease of implementation and low computational costs [17], [19], [24].

Partial updating of the LMS adaptive filter has been proposed to reduce computational costs and power consump-
tion [12], [13], [21] which is quite attractive in the area of mobile computing and communications. Many mobile
communication devices have applications like channel equalization and echo cancellation that require the adaptive
filter to have a very large number of coefficients. Updating the entire coefficient vector is costly in terms of power,
memory, and computation and is sometimes impractical for mobile units.

Two types of partial update LMS algorithms are prevalent in the literature and have been described in [10].
They are referred to as the “Periodic LMS algorithm” and the “Sequential LMS algorithm”. To reduce computation
needed during the update part of the adaptive filter by a factor of P , the Periodic LMS algorithm (P-LMS) updates
all the filter coefficients every P th iteration instead of every iteration. The Sequential LMS (S-LMS) algorithm
updates only a fraction of coefficients every iteration. Another variant referred to as “Max Partial Update LMS
algorithm” (Max PU-LMS) has been proposed in [1], [8], [9]. Yet another variant known as the “set-membership
partial-update NLMS algorithm” (SMPU-NLMS) based on data-selective updating appears in [25]. The algorithm
combines the ideas of set-membership normalized algorithms with the ideas of partial update algorithms. These
variants have data dependent updating schedules and therefore can have faster convergence than P-LMS and S-LMS
algorithms that have data independent updating schedules. The algorithm proposed in this paper is similar to P-LMS
and S-LMS algorithms in the sense that it also uses data independent updating schedules. Thus, while comparison to
Max PU-LMS and SMPU-NLMS algorithms would be interesting, comparisons are limited to S-LMS and P-LMS.
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In [10], for stationary signals, convergence conditions were derived for the convergence of S-LMS under the
assumption of small step-size parameter (µ) which turned out to be the same as those for the standard LMS
algorithm. Here, bounds on µ are obtained that hold for stationary signals and arbitrary fixed sequence of partial
updates. First, under the standard independence assumptions, it is shown that for stationary signals first order stability
of LMS implies first order stability of S-LMS. However, the important characteristic of S-LMS, which is shared
by P-LMS as well, is that the coefficients to be updated at an iteration are pre-determined. It is this characteristic
which renders P-LMS and S-LMS unstable for certain signals and which makes an alternative random coefficient
updating approach attractive.

In this paper, we propose a new partial update algorithm in which the subset of the filter coefficients that are
updated each iteration is selected at random. The algorithm, referred to as the Stochastic Partial Update LMS
algorithm (SPU-LMS), involves selection of a subset of size N

P coefficients out of P possible subsets from a fixed
partition of the N coefficients in the weight vector. For example, filter coefficients can be partitioned into even and
odd subsets and either even or odd coefficients are randomly selected to be updated in each iteration. Conditions on
the step-size parameter are derived that ensure convergence in the mean and the mean square sense for stationary
signals, for deterministic signals, and for the general case of mixing signals.

Partial update algorithms can be contrasted against another variant of LMS known as the Fast Exact LMS (FE-
LMS) [4]. Here also the updates are done every P th instead of every iteration (P has to be much smaller than N ,
the filter length, to realize any computational savings [4]). However, the updates after every P th iteration result
in exactly the same filter as obtained from LMS with P updates done every iteration. Therefore, the algorithm
suffers no degradation with respect to convergence when compared to the regular LMS. A generalized version of
Fast Exact LMS appears in [5] where the Newton transversal filter is used instead of LMS.

When convergence properties are considered the FE-LMS algorithm is more attractive than the PU-LMS al-
gorithm. However, PU-LMS algorithms become more attractive when the available program and data memory is
limited. The computational savings in FE-LMS come at the cost of increased program memory, whereas PU-LMS
algorithms require negligible increase in program size and in some implementations might reduce the data memory
required. Moreover, in FE-LMS the reduction in number of execution cycles is offset by the additional cycles
needed for storing the data in intermediate steps. Finally, the computational savings for the FE-LMS algorithm are
realized for a time-series signal. If the signal happens to be the output of an array, that is the output of an individual
antenna is the input to a filter tap, then the method employed in [4] to reduce computations no longer holds.

The main contributions of this paper can be summarized as follows:
• For stationary signals and arbitrary sequence of updates it is shown without the independence assumption, that

S-LMS has the same stability and mean-square convergence properties as LMS.
• Signal scenarios are demonstrated for which the prevalent partial update algorithms do not converge.
• A new algorithm is proposed, called the Stochastic Partial Update LMS Algorithm (SPU-LMS), that is based

on randomizing the updating schedule of filter coefficients that ensures convergence.
• Stability conditions for SPU-LMS are derived for stationary signal scenarios and it is demonstrated that the

steady state performance of the new algorithm is as good as that of the regular LMS algorithm.
• A persistence of excitation condition for the convergence of SPU-LMS is derived for the case of deterministic

signals and it is shown that this condition is the same as for the regular LMS algorithm.
• For the general case of mixing signals it is shown that the stability conditions for SPU-LMS are the same as

that of LMS. The method of successive approximation is extended to SPU-LMS and the results used to show
that SPU-LMS does not suffer a degradation in steady state performance.

• It is demonstrated through different examples that for non-stationary signal scenarios, as might arise in echo
cancellation in telephone networks or digital communication systems, partial updating using P-LMS and S-
LMS might be undesirable as these are not guaranteed to converge. SPU-LMS is a better choice because of
its guaranteed convergence properties.

The organization of the paper is as follows. First in Section II, a brief description of the sequential partial update
algorithm is given. The algorithm is analyzed for the case of stationary signals under independence assumptions
in Section II-A. The rest of the paper deals with the new algorithm. A brief description of the algorithm is given
in Section III and its analysis in Sections III-A (uncorrelated input and coefficient vectors), III-B (deteriministic
signals) and III-C (correlated input and coefficient vectors). It is shown that the performance of SPU-LMS is
very close to that of LMS in terms of stability conditions and final mean squared error. Section IV discusses the
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performance of the new algorithm through analytical comparisons with the existing partial udpate algorithms and
also through numerical examples (Section IV-A). In particular Section IV demonstrates, without the independence
assumption, the exponential stability and the mean-square convergence analysis of S-LMS for stationary signals and
of P-LMS for the general case of mixing signals. Finally, conclusions and directions for future work are indicated
in Section V.

II. SEQUENTIAL PU-LMS ALGORITHM

Let {xi,k} be the input sequence and let {wi,k} denote the coefficients of an adaptive filter of odd length, N .
Define

Wk = [w1,k w2,k . . . wN,k]T

Xk = [x1,k x2,k x3,k . . . xN,k]T

where the terms defined above are for the instant k and T denotes the transpose operator. In addition, Let dk denote
the desired response. In typical applications dk is a known training signal which is transmitted over a noisy channel
with unknown FIR transfer function.

In the stationary signal setting the offline problem is to choose an optimal W such that

ξ(W ) = E [(dk − yk)(dk − yk)∗]

= E
[
(dk − WHXk)(dk − WHXk)∗

]
is minimized, where a∗ denotes the complex conjugate of a. The solution to this problem is given by

Wopt = R−1r (1)

where R = E[XkX
H
k ] and r = E[d∗kXk]. The minimum attainable mean square error ξ(W ) is given by

ξmin = E[dkd
∗
k] − rHR−1r.

For the following analysis, we assume that the desired signal, dk satisfies the following relation1 [10]

dk = WH
optXk + nk (2)

where Xk is a zero mean complex circular Gaussian2 random vector and nk is a zero mean circular complex
Gaussian (not necessarily white) noise, with variance ξmin, uncorrelated with Xk.

Assume that the filter length N is a multiple of P . For convenience, define the index set S = {1, 2, . . . , N}.
Partition S into P mutually exclusive subsets of equal size, S1, S2, . . . , SP . Define Ii by zeroing out the jth row
of the identity matrix I if j /∈ Si. In that case, IiXk will have precisely N

P non-zero entries. Let the sentence
“choosing Si at iteration k” stand to mean “choosing the weights with their indices in Si for update at iteration k”.

The S-LMS algorithm is described as follows. At a given iteration, k, one of the sets Si, i = 1, . . . , P , is chosen
in a pre-determined fashion and the update is performed. Without loss of generality, it can be assumed that at
iteration k, the set Sk%P+1 is chosen for update, where k%P denotes the operation “k modulo P ”.

wk+1,j =

{
wk,j + µe∗kxk,j if j ∈ Sk%P+1

wk,j otherwise

where ek = dk − WH
k Xk. The above update equation can be written in a more compact form

Wk+1 = Wk + µe∗kIk%P+1Xk. (3)

In the special case of odd and even updates, P = 2, S1 consists of all odd indices and S2 of all even indices.

1Note: the model assumed for dk is same as assuming dk and Xk are jointly Gaussian sequences. Under this assumption dk can be written
as dk = W H

optXk + mk, where Wopt is as in (1) and mk = dk − W H
optXk. Since E[mkXk] = E[Xkdk] − E[XkXH

k ]Wopt = 0 and mk

and Xk are jointly Gaussian we conclude that mk and Xk are independent of each other which is same as model (2).
2A complex circular Gaussian random vector consists of Gaussian random variables whose marginal densities depend only on their

magnitudes. For more information see [23, p. 198] or [20]
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Define the coefficient error vector as

Vk = Wk − Wopt

which leads to the following coefficient error vector update for S-LMS when k is even

Vk+1 = (I − µI1XkX
H
k )Vk + µnkI1Xk,

and the following when k is odd

Vk+1 = (I − µI2XkX
H
k )Vk + µnkI2Xk.

A. Analysis: Stationary Signals, Independent Input and Coefficient Vectors

Assuming that dk and Xk are jointly WSS random sequences, we analyze the convergence of the mean coefficient
error vector E [Vk]. We make the standard assumptions that Vk and Xk are independent of each other [3]. For regular
full update LMS algorithm the recursion for E [Vk] is given by

E [Vk+1] = (I − µR)E [Vk] (4)

where I is the N -dimensional identity matrix and R = E
[
XkX

H
k

]
is the input signal correlation matrix. The well

known necessary and sufficient condition for E[Vk] to converge in (4) is given by [17]

ρ(I − µR) < 1

where ρ(B) denotes the spectral radius of B (ρ(B) = max |λi(B)|). This leads to

0 < µ < 2/λmax(R) (5)

where λmax(R) is the maximum eigen-value of the input signal correlation matrix R. Note that this need not
translate to be the necessary and sufficient condition for the convergence of E[Vk] in actuality as (4) has been
obtained under the independence assumption which is not true in general.

Taking expectations under the same assumptions as above, using the independence assumption on the sequences
Xk, nk, the independence assumption on Xk and Vk, we obtain when k is even

E [Vk+1] = (I − µI1R)E [Vk]

E [Vk+2] = (I − µI2R)E [Vk+1]

and when k is odd

E [Vk+1] = (I − µI2R)E [Vk]

E [Vk+2] = (I − µI1R)E [Vk+1]

Simplifying the above two sets of equations we obtain for even-odd S-LMS when k is even

E [Vk+2] = (I − µI2R)(I − µI1R)E[Vk] (6)

and when k is odd

E [Vk+2] = (I − µI1R)(I − µI2R)E[Vk]. (7)

It can be shown that under the above assumptions on Xk, Vk and dk, the convergence conditions for even (ρ((I −
µI2R)(I − µI1R)) < 1) and odd update equations (ρ((I − µI1R)(I − µI2R)) < 1) are identical. We therefore
focus on (6). It will be shown that if ρ(I − µR) < 1 then ρ((I − µI2R)(I − µI1R)) < 1.

Now, if instead of just two partitions of odd and even coefficients (P = 2) there are any number of arbitrary
partitions (P ≥ 2) then the update equations can be similarly written as above with P > 2. Namely,

E[Vk+P ] =
P∏

i=1

(I − µI(i+k)%P+1R)E[Vk]. (8)
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Ii, i = 1, . . . , P is obtained from I , the identity matrix of dimension N ×N , by zeroing out some rows in I such
that

∑P
i=1 Ii = I .

We will show that for any arbitrary partition of any size (P ≥ 2); S-LMS converges in the mean if LMS
converges in the mean. The case P = 2 follows as a special case. The intuitive reason behind this fact is that
both the mean update equation for LMS, E[Vk+1] = (I − µR)E[Vk] and the mean update equation for S-LMS,
E[Vk+1] = (I −µIk%P+1R)E[Vk], i = 1, . . . , P try to minimize the mean squared error E[V H

k ]RE[Vk]. This error
term is a quadratic bowl in the E[Vk] co-ordinate system. Note that LMS moves in the direction of the negative
gradient −RE[Vk] by retaining all the components of this gradient in the E[Vk] co-ordinate system whereas S-LMS
discards some of the components at every iteration. The resulting direction, in which S-LMS updates its weights,
obtained from the remaining components can be broken into two components, one in the direction of −RE[Vk]
and one perpendicular to it. Hence, if LMS reduces the mean squared error then so does S-LMS.

The result is stated formally in Theorem 2 and the following theorem is used in proving the result.
Theorem 1: [18, Prob. 16, page 410] Let B be an arbitrary N × N matrix. Then ρ(B) < 1 if and only if there

exists some positive definite N × N matrix A such that A − BHAB is positive definite. Here ρ(B) denotes the
spectral radius of B (ρ(B) = max1,...,N |λi(B)|).

Theorem 2: Let R be a positive definite matrix of dimension N×N with ρ(R) = λmax(R) < 2 then ρ(
∏P

i=1(I−
IiR)) < 1 where Ii, i = 1, . . . , P are obtained by zeroing out some rows in the identity matrix I such that∑P

i=1 Ii = I . Thus if Xk and dk are jointly wide sense stationary then S-LMS converges in the mean if LMS
converges in the mean.
Proof: Let x0 ∈ Cl N be an arbitrary non-zero vector of length N . Let xi = (I − IiR)xi−1. Also, let P =∏P

i=1(I − IiR).
First we will show that xH

i Rxi ≤ xH
i−1Rxi−1 − αxH

i−1RIiRxi−1, where α = 1
2(2 − λmax(R)) > 0.

xH
i Rxi = xH

i−1(I − RIi)R(I − IiR)xi−1

= xH
i−1Rxi−1 − αxH

i−1RIiRxi−1 −
βxH

i−1RIiRxi−1 + xH
i−1RIiRIiRxi−1

where β = 2 − α. If we can show βRIiR − RIiRIiR is positive semi-definite then we are done. Now

βRIiR − RIiRIiR = βRIi(I − 1
β

R)IiR.

Since β = (1 + λmax(R)/2) > λmax(R) it is easy to see that I − 1
β R is positive definite. Therefore, βRIiR −

RIiRIiR is positive semi-definite and

xH
i Rxi ≤ xH

i−1Rxi−1 − αxH
i−1RIiRxi−1.

Combining the above inequality for i = 1, . . . , P , we note that xH
P RxP < xH

0 Rx0 if xH
i−1RIiRxi−1 > 0 for at

least one i, i = 1, . . . , P . We will show by contradiction that is indeed the case.
Suppose not, then xH

i−1RIiRxi−1 = 0 for all i, i = 1, . . . , P . Since, xH
0 RI1Rx0 = 0 this implies I1Rx0 =

0. Therefore, x1 = (I − I1R)x0 = x0. Similarly, xi = x0 for all i, i = 1, . . . , P . This in turn implies that
xH

0 RIiRx0 = 0 for all i, i = 1, . . . , P which is a contradiction since R(
∑P

i=1 Ii)R is a positive-definite matrix
and 0 =

∑P
i=1 xH

0 RIiRx0 = xH
0 R(

∑P
i=1 Ii)Rx0 �= 0.

Finally, we conclude that

xH
0 PHRPx0 = xH

P RxP < xH
0 Rx0.

Since x0 is arbitrary we have R − PHRP to be positive definite so that applying Theorem 1 we conclude that
ρ(P) < 1.

Finally, if LMS converges in the mean we have ρ(I − µR) < 1 or λmax(µR) < 2. Which from the above proof
is sufficient for concluding that ρ(

∏P
i=1(I − µIiR)) < 1. Therefore, S-LMS also converges in the mean.

Remark 1: Note that it is sufficient for Ii to be such that
∑P

i=1 Ii is positive definite. That means that the subsets
updated at each iteration need not be mutually exclusive.

Remark 2: It is interesting to note that in the proof above if:

1) we choose α = 1
2(2 − λmax(IiRIi)) > 0 and β = 2 − α for each i
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2) we write βRIiR − RIiRIiR as βRIi(Ii − 1
βIiRIi)IiR instead of as βRIi(I − 1

β R)IiR

then it can be shown that for stationary signals the sequential algorithm enjoys a more lenient condition on µ for
convergence in the mean: 0 < µ < 2

maxi{λmax(IiRIi)} . This condition is more lenient than that of regular LMS:
0 < µ < 2

λmax(R) .

With a little extra effort a tighter bound on the spectral radius of
∏P

i=1(I − µIiR) can be demonstrated.
Theorem 3: Fix µ∗ < 2/λmax(R) and let Ii be such that

∑P
i=1 Ii = I . Then there exists a constant 0 < αµ∗

dependent only on µ∗ such that ρ(
∏P

i=1(I − µIiR)) is contained within a circle of radius (1 − µαµ∗) for all
0 < µ < µ∗.

Proof: Let x0 ∈ Cl N be an arbitrary non-zero vector of length N as before. Let xi = (I − µIiR)xi−1. and
P(µ) =

∏P
i=1(I − µIiR).

From the proof of Theorem 2, we have for i = 1, . . . , P

xH
i Rxi ≤ xH

i−1Rxi−1 − µ(1 − µ
λmax(R)

2
)xH

i−1RIiRxi−1

= xH
i−1Rxi−1 − µ(1 − µ

λmax(R)
2

)xH
i−1R

1/2R1/2IiR
1/2R1/2xi−1

≤ xH
i−1Rxi−1 − αiλ

∗
minµ(1 − µ

λmax(R)
2

)xH
i−1Rxi−1

≤ xH
i−1Rxi−1 − αiλmin(R)µ(1 − µ

λmax(R)
2

)xH
i−1Rxi−1

with λ∗
min = min{λ(R1/2IiR

1/2) > 0} ≥ λmin(R) and αi = (y′
i)

Hy′
i

xH
i−1Rxi−1

. y′
i = Pi(R1/2xi−1) where Pi(x) denotes

the projection of x onto the non-zero eigenspace of R1/2IiR
1/2.

Next, consider x̂i = R1/2xi, i = 0, 1, . . . , P . Then the update equation for x̂i is x̂i = (I − R1/2IiR
1/2)x̂i−1.

Let y′
i be as before and yi = Pi(x̂0).

Let
zi = x̂i − x̂i−1 = −µR1/2IiR

1/2x̂i−1

then
zH

i zi ≤ µ2λ2
max(R)(y′

i)
Hy′

i = 4(y′
i)

Hy′
i.

Also,

yi = Pi(x̂0) = Pi(
i−1∑
j=1

zj) + Pi(x̂i−1) =
i−1∑
j=1

Pi(zj) + y′
i

for i = 1, . . . , P . Next, denoting |z| for
√

zHz and making use of the facts that x̂H
i x̂i = xH

i Rxi ≤ xH
0 Rx0 = x̂H

0 x̂0

and |P(zj)| ≤ |zj | we obtain for i = 1, . . . , P

|yi| ≤
i−1∑
j=1

|zj | + |y′
i| ≤ 2

i−1∑
j=1

|y′
j | + |y′

i| = 2
i−1∑
j=1

√
αj |x̂i−1| + √

αi|x̂i|

≤ (2
P∑

j=1

√
αj)|x̂0|.

Therefore, atleast one of αj is greater than or equal to 1
4P 3

λmin(R)
λmax(R) . Otherwise, λmin(R)x̂H

0 x̂0 ≤ x̂H
0 Rx̂0 ≤

λmax(R)
∑P

i=1 yH
i yi < λmin(R)x̂H

0 x̂0 which is a contradiction.
Next, choosing αµ∗ = 1

8P 3 (1 − µ∗ λmax(R)
2 ) λ2

min(R)
λmax(R) and noting that 1

4P 3 (1 − µλmax(R)
2 ) λ2

min(R)
λmax(R) > 2αµ∗ for all

0 < µ < µ∗ we obtain

xH
P RxP ≤ (1 − µ2αµ∗)xH

j Rxj

≤ (1 − µαµ∗)2xH
0 Rx0

This leads to

(1 − µαµ∗)−2xH
P RxP ≤ xH

0 Rx0.
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Finally, using Theorem 1, we conclude that ρ((1 − µαµ∗)−1P(µ)) ≤ 1 or ρ(P(µ)) ≤ (1 − µαµ∗).
Remark 3: If we assume that R is block diagonal such that R =

∑P
i=1 IiRIi with

∑P
i=1 Ii = I then an even

tighter bound on ρ(P(µ)) can be obtained. In this case, IiR = IiRIi and P(µ) turns out to be simply

P∏
i=1

(I − µIiR) =
P∏

i=1

(I − µIiRIi) = I − µ
P∑

i=1

IiRIi = I − µR.

III. STOCHASTIC PU-LMS ALGORITHM

The description of SPU-LMS is similar to that of S-LMS (section II). The only difference is as as follows. At
a given iteration, k, for S-LMS one of the sets Si, i = 1, . . . , P is chosen in a pre-determined fashion whereas for
SPU-LMS, one of the sets Si is sampled at random from {S1, S2, . . . , SP } with probability 1

P and subsequently
the update is performed. i.e.

wk+1,j =

{
wk,j + µe∗kxk,j if j ∈ Si

wk,j otherwise
(9)

where ek = dk − WH
k Xk. The above update equation can be written in a more compact form

Wk+1 = Wk + µe∗kIkXk (10)

where Ik now is a random matrix chosen with equal probability from Ii, i = 1, . . . , P (Recall that Ii is obtained
by zeroing out the jth row of the identity matrix I if j /∈ Si).

A. Analysis: Stationary Stochastic Signals, Independent Input and Coefficient Vectors

For the stationary signal analysis of SPU-LMS the desired signal dk, is assumed to satisfy the same conditions
as in Section II namely dk = WH

optXk + nk. In this section, we make the usual assumptions used in the analysis
of standard LMS [3]: We assume that Xk is a Gaussian random vector and that Xk and Vk = Wk − Wopt are
independent. Ik and Xk are independent of each other by definition. We also assume, in this section for tractability,
that R = E[XkX

H
k ] is block diagonal such that

∑P
i−1 IiRIi = R.

For convergence-in-mean analysis we obtain the following update equation conditioned on a choice of Si.

E[Vk+1|Si] = (I − µIkR)E[Vk|Si]

= (I − µIiR)E[Vk|Si]

which after averaging over all choices of Si gives

E[Vk+1] = (I − µ

P
R)E[Vk]. (11)

To obtain the above equation we have made use of the fact that the choice of Si is independent of Vk and Xk.
Therefore, µ has to satisfy 0 < µ < 2P

λmax
to guarantee convergence in mean.

For the convergence-in-mean square analysis of SPU-LMS the convergence of the error variance E[eke
∗
k] is

studied as in [19]. Under the independence assumptions we obtain E[eke
∗
k] = ξmin + tr{RE[VkV

H
k ]} where ξmin

is as defined earlier.
First, conditioned on a choice of Si, the evolution equation of interest for tr{RE[VkV

H
k ]} is given by

RE[Vk+1V
H
k+1|Si] = RE[VkV

H
k |Si] − 2µRIiRE[VkV

H
k |Si] + (12)

µ2IiRIiE[XkX
H
k AkXkX

H
k |Si] + µ2ξminRIiRIi

where Ak = E[VkV
H
k ]. Let Uk = QVk where Q satisfies QRQH = Λ. Applying the definition of Uk to (12) we

obtain the equation

Gk+1 = (I − 2µ

P
Λ +

µ2

P
Λ2 +

µ2

P
Λ211T )Gk +

µ2

P
ξminΛ21 (13)

where Gk is a vector of diagonal elements of ΛE[UkU
H
k ] and 1 is an N × 1 vector of ones.
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It is easy to obtain the following necessary and sufficient conditions (following the procedure of [19]) for
convergence of E[VkV

H
k ] from (12)

0 < µ < 2
λmax

(14)

η(µ) def=
∑N

i=1
µλi

2−µλi
< 1

which is independent of P and identical to that of LMS. As pointed out in Section II-A the above conditions have
been obtained under the independence assumption that are not valid in general.

The integrated MSE difference [19]

J =
∞∑

k=0

[ξk − ξ∞] (15)

introduced in [11] is used as a measure of the convergence rate and M(µ) = ξ∞−ξmin

ξmin
as a measure of misadjustment.

It is easily established that the misadjustment takes the form

M(µ) =
η(µ)

1 − η(µ)
(16)

which is the same as that of the standard LMS. Thus, we conclude that random update of subsets has no effect on
the final excess mean-squared error.

Finally, it is straightforward to show (following the procedure of [11]) that the integrated MSE difference is

J = P tr{[2µΛ − µ2Λ2 − µ2Λ211T ]−1(G0 − G∞)} (17)

which is P times the quantity obtained for standard LMS algorithm. Therefore, we conclude that for block diagonal
R, random updating slows down convergence by a factor of P without affecting the misadjustment. Furthermore,
it can be easily verified that a much simpler condition 0 < µ < 1

tr{R} , provides a sufficient region for convergence
of SPU-LMS and the standard LMS algorithm.

B. Analysis: Deterministic Signals

Here we follow the analysis for LMS, albeit extended to complex signals, given in [24, pp. 140–143]. We assume
that the input signal Xk is bounded, that is supk(XH

k Xk) ≤ B < ∞ and that the desired signal dk follows the
model

dk = WH
optXk

which is different from (2) in that dk is assumed to be perfectly predictable from Xk.
Define Vk = Wk − Wopt and ek = dk − WH

k Xk.
Lemma 1: If µ < 2/B then e2

k → 0 as k → ∞. Here, {·} indicates statistical expectation over all possible
choices of Si, where each Si is chosen randomly from {S1, . . . , SP }.

Proof: See Appendix I
For a positive definite matrix Ak, we say that Ak converges exponentially fast to zero if there exists a γ, 0 < γ < 1

and a positive integer K such that tr{Ak+K} ≤ (1− γ)tr{Ak} for all k. tr{A} denotes the trace of the matrix A.
Theorem 4: If µ < 2/B and the signal satisfies the following persistence of excitation condition:

for all k, there exist K < ∞, α1 > 0 and α2 > 0 such that

α1I <
k+K∑
i=k

XiX
H
i < α2I (18)

then Vk
H

Vk → 0 and V H
k Vk → 0 exponentially fast.

Proof: See Appendix I
Condition (18) is identical to the persistence of excitation condition for standard LMS [24]. Therefore, the

sufficient condition for exponential stability of LMS is enough to guarantee exponential stability of SPU-LMS.
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C. Analysis: Correlated Input and Coefficient Vectors

In this section, the performance of LMS and SPU-LMS is analytically compared in terms of stability and
misconvergence when the uncorrelated input and coefficient signal vectors assumption is invalid. Unlike the analysis
in Section III-A where the convergence analysis and the performance analysis could be tackled with the same set
of equations, here the stability and performance analyses have to be done separately. For this we employ the
theory, extended here to circular complex random variables, developed in [15] for stability analysis and [2] for
final mean-squared error analysis. Our analysis holds for the broad class of signals which are φ-mixing. Mixing
conditions provide a very general and powerful way to describe the rate of decay of the dependence between pairs
of samples as the sample times are moved farther apart. Such conditions are much weaker than conditions on the
rate of decay of the autocorrelation function, which are restricted to second order analysis and Gaussian processes.
For this reason general mixing conditions, such as the φ-mixing condition defined in Appendix III, have been
widely used in adaptive signal processing and adaptive detection [2], [7], [15], [16], [22] to analyze convergence of
algorithms for dependent processes. We adopt this framework in this paper (see Appendices II and IV for detailed
proofs and definitions) and summarize the results in this section.

The analysis in Section III-A is expected to hold for small µ even when the uncorrelated input and coefficient
vectors assumption is violated. It is, however, not clear for what values of µ the results from Section III-A are valid.
The current section makes the dependence of the value of µ explicit and concludes that stability and performance
of SPU-LMS are similar to that of LMS.

Result 1 (Stationary Gaussian Process): Let xk be a stationary Gaussian random process such that E[xkxk−l] =
rl → 0 as l → ∞ and Xk = [xk xk−1 . . . xk−n+1] then for any p ≥ 1, there exist constants µ∗ > 0, M > 0, and
α ∈ (0, 1) such that for all µ ∈ (0, µ∗] and for all t ≥ k ≥ 0

E

∥∥∥∥∥∥
t∏

j=k+1

(I − µIjXjX
H
j )

∥∥∥∥∥∥
p


1/p

≤ M(1 − µα)t−k

if and only if the input correlation matrix E[XkX
H
k ] = Rxx, is positive definite.

Proof: See Appendix II.
It is easily seen from the extension of [15] to complex signals that the LMS algorithm requires the same necessary

and sufficient conditions for convergence (Appendix II). Therefore, the necessary and sufficient conditions for
convergence of SPU-LMS are identical to those of LMS.

The analysis in Result 1 validates the analysis in Section III-A, for similar input signals, where the analysis was
done under the independence assumption. In both cases, we conclude that necessary and sufficient condition for
convergence is that the covariance matrix be positive definite. Although, Section III-A also gives some bounds on
the step-size parameter µ, it is known they are not very reliable as the analysis is valid only for very small µ.

The mean squared analysis on Vk
def= Wk − Wopt is based on the analysis in [2] which follows the method of

successive approximation. The details of the extension of this method to SPU-LMS are provided in Appendix IV.
The analysis in this section is performed by assuming that

dk = XH
k Wopt + nk.

The effectiveness of the method is illustrated in Results 2 and 3 where the steady state performance of the two
algorithms is compared for two simple scenarios where the independence assumption is clearly violated.

Result 2 (i. i. d. Gaussian Process): Let Xk = [xk xk−1 . . . xk−N+1]T where N is the length of the vector Xk.
{xk} is a sequence of zero mean i.i.d Gaussian random variables. Let σ2 denote the variance of xk and σ2

v denote
the variance of nk. It is assumed that nk is a white i.i.d. Gaussian noise. Then for LMS, we have

lim
k→∞

E[VkV
H
k ] = µ2

[
σ2

v

2µ
I +

Nσ2σ2
v

4
I + Cµ1/2I

]
(19)

and for SPU-LMS, assuming N to be a multiple of P and sets Si to be mutually exclusive, we have

lim
k→∞

E[VkV
H
k ] = µ2

[
σ2

v

2µ
I +

(N+1)P−1
P σ2σ2

v

4
I + Cµ1/2I

]
.
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Note that the constant C in the final mean square expression for SPU-LMS is the same as that for LMS. Therefore,
for large N , it can be seen that SPU-LMS is marginally worse than LMS in terms of misadjustment.
Proof: See Appendix IV-A.

It will be interesting to see how the results above compare to the results obtained under the independence
assumptions analysis in Section III-A. From (13), we obtain the vector of diagonal elements of limk→∞ E[VkV

H
k ]

Vd, to be

Vd = µ2

[
σ2

v

2µ
1 +

(N + 1)σ2σ2
v

4
1

]
+ O(µ4)1

for both LMS and SPU-LMS where 1 is an N × 1 vector of ones. The analysis in this section gives

Vd = µ2

[
σ2

v

2µ
1 +

Nσ2σ2
v

4
1

]
+ O(µ3/2)1

for LMS and

Vd = µ2

[
σ2

v

2µ
1 +

(N+1)P−1
P σ2σ2

v

4
1

]
+ O(µ3/2)1

for SPU-LMS.
Result 3 (Spatially Uncorrelated Temporally Correlated Process): Let Xk be given by

Xk = κXk−1 +
√

1 − κ2Uk

where Uk is a vector of circular Gaussian random variables with unit variance. Here also, it is assumed that nk is
a white i.i.d. Gaussian noise with variance σ2

v . Then for LMS, we have

lim
k→∞

E[VkV
H
k ] = µ2

[
σ2

v

2µ
I +

Nσ2
v

4
I + Cµ1/2I

]
(20)

and for SPU-LMS, assuming N to be a multiple of P and sets Si to be mutually exclusive, we have

lim
k→∞

E[VkV
H
k ] = µ2

[
σ2

v

2µ
I +

σ2

4
[N + 1 − 1

P
]I + Cµ1/2I

]
.

Here also, for large N , SPU-LMS is marginally worse than LMS in terms of misadjustment.
Proof: See Appendix IV-B.

Here also, the results obtained above can be compared to the results obtained from the analysis in Section III-A.
From (13), we obtain Vd, to be

Vd = µ2

[
σ2

v

2µ
1 +

(N + 1)σ2
v

4
1

]
+ O(µ4)1

for both LMS and SPU-LMS. The analysis in this section gives

Vd = µ2

[
σ2

v

2µ
1 +

Nσ2
v

4
1

]
+ O(µ3/2)1

for LMS and

Vd = µ2

[
σ2

v

2µ
1 + (N + 1 − 1

P
)
σ2

4
1

]
+ O(µ3/2)1

for SPU-LMS.
Therefore, the analysis in this section highlights differences in the the convergence of LMS and SPU-LMS that

would not have been apparent from the analysis in Section III-A. It can be noted that for small N the penalty
for assuming independence is not insignificant (especially for SPU-LMS). However, for large N the independence
assumption analysis manages to yield reliable estimate even for larger values of µ inspite of the assumption being
clearly violated.
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IV. DISCUSSION AND EXAMPLES

It is useful to compare the performance of the new algorithm to those of the existing algorithms by performing
the analyses of Sections III-A, III-B and III-C on the periodic Partial Update LMS Algorithm (P-LMS) and the
sequential Partial Update LMS Algorithm (S-LMS). To do that, we first need the update equation for P-LMS which
is as follows

Wk+P = Wk + µe∗kXk.

We can begin with comparing the convergence-in-mean analysis of the partial update algorithms. Combining
P -iterations we obtain for LMS Vk+P = (I − µR)P Vk, for P-LMS Vk+P = (I − µR)Vk, for SPU-LMS Vk+P =
(I − µ

P R)P Vk, and finally for S-LMS (assuming R =
∑P

i=1 IiRIi) Vk+P = (I − µR)Vk. Therefore, the rate of
decay of all the partial update algorithms is P times slower than that of LMS.

For convergence-in-mean square analysis of Section III-A we will limit the comparison to P-LMS. The conver-
gence of Sequential LMS algorithm has been analyzed using the small µ assumption in [10]. Under this assumption
for stationary signals, using the independence assumption, the conditions for convergence turn out to be the same as
that of SPU-LMS. For P-LMS using the method of analysis described in [19] it can be inferred that the conditions
for convergence are identical to standard LMS. That is (14) holds also for P-LMS. Also, the misadjustment factor
remains the same. The only difference between LMS and P-LMS is that the integrated MSE J (15) for P-LMS
is P times larger than that of LMS. Therefore, we again conclude that the behavior of SPU-LMS and P-LMS
algorithms is very similar for stationary signals.

However, for deterministic signals the difference between P-LMS and SPU-LMS becomes evident from the
persistence of excitation condition. The persistence of excitation condition for P-LMS is [10]: for all k and for all
j, 1 ≤ j < N/P , there exist K < ∞, α1 > 0 and α2 > 0 such that

α1I <

(k+K)N/P+j∑
i=kN/P+j

XiX
H
i < α2I.

As it must hold for all j, this condition is stricter than that for SPU-LMS (18).
Taking this further, using the analysis in Appendix II, for mixing signals, the persistence of excitation condition

can similarly be shown to be: there exists an integer K > 0 and a constant δ > 0 such that for all k ≥ 0 and for
all j, 1 ≤ j < N/P ,

(k+K)N/P+j∑
i=kN/P+j

E[XiX
H
i ] ≥ δI.

Here also, it can be seen that this condition is stricter than that of SPU-LMS (24). In fact, in Section IV-A signals
are constructed, based on the persistence of excitation conditions for SPU-LMS and P-LMS, for which P-LMS is
guaranteed not to converge whereas SPU-LMS will converge.

The analysis of Appendix II can be extended to S-LMS if an additional requirement of stationarity is imposed
on the excitation signals. For such signals, it can be easily seen that the necessary and sufficient conditions for
statibility of LMS, SPU-LMS and P-LMS are exactly the same and are sufficient for exponential stability of S-LMS
(details in Appendix III).

Also, applying the analysis of Appendix IV used to derive Results 2 and 3 it can be easily seen that the final
error covariance matrix for P-LMS is same as that of LMS (expressions (19) and (20)). Exactly the same results
can be obtained for S-LMS as well by combining the results of Appendix III with the analysis in Appendix IV
restricted to stationary φ-mixing signals.

For non-stationary signals, the convergence of S-LMS is an open question although analysis for some limited
cyclo-stationary signals has been performed in [14]. In this paper, we show through simulation examples that this
algorithm diverges for certain non-stationary signals and therefore should be employed with caution.

In summary, for stationary signals all three algorithms P-LMS, S-LMS and SPU-LMS enjoy the same convergence
properties as LMS. It is for non-stationary signals that S-LMS and P-LMS might fail to converge and it is for such
signals that the advantage of SPU-LMS comes to the fore. SPU-LMS enjoys the same convergence properties as
LMS, even for non-stationary signals, and is guaranteed to converge for all signals that LMS converges for.
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A. Numerical Examples

In the first two examples, we simulated an m-element uniform linear antenna array operating in a multiple signal
environment. Let Ai denote the response of the array to the ith plane wave signal:

Ai = [e−j( m

2
−m̃)ωi e−j( m

2
−1−m̃)ωi . . . ej( m

2
−1−m̃)ωi ej( m

2
−m̃)ωi ]T

where m̃ = (m + 1)/2 and ωi = 2πD sin θi

λ , i = 1, . . . , M . θi is the broadside angle of the ith signal, D is the
inter-element spacing between the antenna elements and λ is the common wavelength of the narrowband signals in
the same units as D and 2πD

λ = 2. The array output at the kth snapshot is given by Xk =
∑M

i=1 Aisk,i + nk where
M denotes the number of signals, the sequence {sk,i} the amplitude of the ith signal and nk the noise present at
the array output at the kth snapshot. The objective, in both the examples, is to maximize the SNR at the output of
the beamformer. Since the signal amplitudes are random the objective translates to obtaining the best estimate of
sk,1, the amplitude of the desired signal, in the MMSE sense. Therefore, the desired signal is chosen as dk = sk,1.
Example 1: In the first example (Figure 1), the array has 4 elements and a single planar waveform with amplitude,
sk,1 propagates across the array from direction angle, θ1 = 0. The amplitude sequence {sk,1} is a binary phase
shifty keying (BPSK) signal with period four taking values on {−1, 1} with equal probability. The additive noise
nk is circular Gaussian with variance 0.25 and mean 0. In all the simulations for SPU-LMS, P-LMS, and S-LMS

s k

D=λ/π

x
1,k

x x
3,k

x
2,k 4,k

BPSK Signal,
=0Broadside angle 

4-element Uniform Array

kX  = A s  + nk k

d  = s k k

Fig. 1. Signal Scenario for Example 1

the number of subsets for partial updating, P was chosen to be 4, that is a single coefficient is updated at each
iteration. It can be easily determined from (14) that for Gaussian and independent signals the necessary and sufficient
condition for convergence of the update equations for LMS and SPU-LMS under the independence assumptions
analysis is µ < 0.225. Figure 2 shows representative trajectories of the empirical mean-squared error for LMS,
SPU-LMS, P-LMS and S-LMS algorithms averaged over 100 trials for µ = 0.01. All algorithms were found to be
stable for the BPSK signals even for µ values greater than 0.225. It was only as µ approached 0.32 that divergent
behavior was observed. As expected, LMS and SPU-LMS were observed to have similar µ regions of convergence.
It is also clear from Figure 2, that, as expected, SPU-LMS, P-LMS, and S-LMS take roughly 4 times longer to
converge than LMS.
Example 2: In the second example, we consider an 8-element uniform linear antenna array with one signal of
interest propagating at angle θ1 and 3 interferers propagating at angles θi, i = 2, 3, 4. The array noise nk is
again mean 0 circular Gaussian but with variance 0.001. Signals are generated, such that sk,1 is stationary and sk,i,
i = 2, 3, 4 are cyclostationary with period four, which make both S-LMS and P-LMS non-convergent. All the signals
were chosen to be independent from time instant to time instant. First, we found signals for which S-LMS doesn’t
converge by the following procedure. Make the small µ approximation I −µ

∑P
i=1 IiE[Xk+iX

H
k+i] to the transition

matrix
∏P

i=1(I − µIiE[Xk+iXk+i]) and generate sequences sk,i, i = 1, 2, 3, 4 such that
∑P

i=1 IiE[Xk+iX
H
k+i] has

roots in the negative left half plane. This ensures that I − µ
∑P

i=1 IiE[Xk+iX
H
k+i] has roots outside the unit circle.

The sequences found in this manner were then verified to cause the roots to lie outside the unit circle for all µ.
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Fig. 2. Trajectories of MSE for Example 1

D=λ/π 4-element Uniform Linear Array

Broadside angle =

Broadside angle =

Broadside angle 

−π/4

Cyclostationary BPSK type Interferer, s
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2,k

k
d  = s k 1,k

1X  = A  s   + A   s    + A   s    + n2 2,k k1,k 3 3,k

π/6

=π/4

Fig. 3. Signal Scenario for Example 2

One such set of signals found was: sk,1 is equal to a BPSK signal with period one taking values in {−1, 1} with
equal probability. The interferers, sk,i, i = 2, 3, 4 are cyclostationary BPSK type signals taking values in {−1, 1}
with the restriction that sk,2 = 0 if k % 4 �= 1, sk,3 = 0 if k % 4 �= 2 and sk,4 = 0 if k % 4 �= 3. Here a % b stands
for a modulo b. θi, i = 1, 2, 3, 4 are chosen such that θ1 = 1.0388, θ2 = 0.0737, θ3 = 1.0750 and θ4 = 1.1410.
These signals render the S-LMS algorithm unstable for all µ.

The P-LMS algorithm also fails to converge for the signal set described above irrespective of µ and the choice
of θ1, θ2, θ3, and θ4. Since P-LMS updates the coefficients every 4th iteration it sees at most one of the three
interfering signals throughout all its updates and hence can place a null at atmost one signal incidence angle θi.
Figure 4 shows the envelopes of the e2

k trajectories of S-LMS and P-LMS for the signals given above with the
representative value µ = 0.03. As can be seen P-LMS fails to converge whereas S-LMS shows divergent behavior.
SPU-LMS and LMS were observed to converge for the signal set described above when µ = 0.03.
Example 3: In the third example, consider a 4-tap filter (N = 4) with a time series input, that is Xk =
[xk xk−1 xk−2 xk−3]. The input, the filter coefficients and the desired output are all real valued. In this example,
the goal is to reconstruct the transmitted BPSK signal sk, from the received signal xk at the receiver using a linear
filter. xk is a distorted version of sk when sk passes through a linear channel with transfer function given by
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Fig. 4. Trajectories of MSE for Example 2

1
1+0.4z−1−0.26z−2−0.2z−3 . The receiver noise nk is a zero mean Gaussian noise with variance 0.01. sk is a signal
with symbol duration of 4 samples. The desired output dk, is now simply given by dk = sk. The update is such
that one coefficient is updated per iteration, i.e. P = 4. In this case, the coefficient error variance is plotted rather
than the mean squared error as this is a better indication of system performance. Figure 5 shows the trajectories
of coefficient-error variance for LMS, SPU-LMS, P-LMS and S-LMS for a representative value of µ = 0.01,
respectively. As can be seen P-LMS and S-LMS fail to converge whereas LMS and SPU-LMS do converge.
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Fig. 5. Trajectories of MSE for LMS, SPU-LMS, P-LMS and S-LMS for Example 3

V. CONCLUSION AND FUTURE WORK

In this paper, the sequential partial update LMS algorithm has been analyzed and a new algorithm based on
randomization of filter coefficient subsets for partial updating of filter coefficients has been proposed.

For S-LMS, stability bounds on step-size parameter µ for wide sense stationary signals have been derived. It has
been shown that if the regular LMS algorithm converges in mean then so does the sequential LMS algorithm for the
general case of arbitrary but fixed ordering of the sequence of partial coefficient updates. Relaxing the assumption
of independence, for stationary signals, stability and second order (mean square convergence) analysis of S-LMS
has been performed. The analysis was used to establish that S-LMS has similar behavior as LMS.

In the context of non-stationary signals the poor convergence properties of S-LMS and Periodic LMS have
been demonstrated and as a result a new algorithm SPU-LMS with better performance has been designed. For
SPU-LMS the conditions on step-size for convergence-in-mean and mean-square were shown to be equivalent to
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those of standard LMS. It was verified by theory and by simulation that LMS and SPU-LMS have similar regions
of convergence. It was also shown that the Stochastic Partial Update LMS algorithm has the same performance
as P-LMS and S-LMS for stationary signals but, can have superior performance for some cyclo-stationary and
deterministic signals. It was also demonstrated that the randomization of filter coefficient updates doesn’t increase
the final steady state error as compared to the regular LMS algorithm.

The idea of random choice of subsets proposed in this paper can be extended to include arbitrary subsets of size
N
P and not just subsets from a particular partition. No special advantage is immediately evident from this extension
though.

In the future, tighter bounds on the convergence rate of the mean update equation of S-LMS for stationary signals
can be established for the general case of input correlation matrix R. Necessary and sufficient conditions for the
convergence of the algorithm for the general case of mixing-signals still need to be derived. These can be addressed
in the future.

In addition, it can be investigated whether the Max PU-LMS algorithm described in Section I can be analyzed
using similar techniques. The algorithm is similar to SPU-LMS in the sense that the coefficient subset chosen to
be updated at an iteration is not pre-determined. However, update equations (11) and (13) are not valid for Max
PU-LMS as we can no longer assume that Xk and Ii are independent since the coefficients to be updated in an
iteration explicitly depend on Xk.

APPENDIX I
PROOFS OF LEMMA 1 AND THEOREM 4

Proof of Lemma 1: First note that ek = −V H
k Xk. Next, consider the Lyapunov function Lk+1 = V H

k+1Vk+1 where
{·} is as defined in Lemma 1. Averaging the following update equation for V H

k+1Vk+1

V H
k+1Vk+1 = V H

k Vk − µtr{VkV
H
k XkX

H
k Ii} − µtr{VkV

H
k IiXkX

H
k } + µ2tr{VkV

H
k XkX

H
k IiXkX

H
k }

over all possible choices of Si, i = 1, . . . , P we obtain

Lk+1 = Lk − µ

P
tr{VkV

H
k Xk(2 − µXkX

H
k )XH

k }.

Since supk(XH
k Xk) ≤ B < ∞ the matrix (2I − µXkX

H
k ) − (2I − µBI) is positive definite. Therefore,

Lk+1 ≤ Lk − µ

P
(2 − µB)tr{VkV

H
k XkX

H
k }.

Since µ < 2/B

Lk+1 ≤ Lk − tr{VkV
H
k XkX

H
k }

Noting that e2
k = tr{VkV

H
k XkX

H
k } we obtain

Lk+1 +
k∑

l=0

e2
k ≤ L0

since L0 < ∞ we have e2
k = O(1/k) and limk→∞ e2

k = 0
Before proving Theorem 4 we need Lemmas 2 and 3. We reproduce the proof of Lemma 2 from [24] using our

notation because this enables us to understand the proof of Lemma 3 better.
Lemma 2: [24, Lemma 6.1 p. 143-144] Let Xk satisfy the persistence of excitation condition in Theorem 4. let

Πk,k+D =

{ ∏k+D
l=k (I − µ

P XlX
H
l ) if D ≥ 0

1 if D < 0

and

Gk =
K∑

l=0

ΠH
k,k+l−1Xk+lX

H
k+lΠk,k+l−1

where K is as defined in Theorem 4 then Gk − ηI is a positive definite matrix for some η > 0 and ∀k.
Proof: Proof is by contradiction. Suppose not then for some vector ω such that ωHω = 1 we have ωHGkω ≤ c2

where c is any arbitrary positive number.
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Then
K∑

l=0

ωHΠH
k,k+l−1Xk+lX

H
k+lΠk,k+l−1ω ≤ c2

⇒ ωHΠH
k,k+l−1Xk+lX

H
k+lΠk,k+l−1ω ≤ c2 for 0 ≤ l ≤ K.

Choosing l = 0 we obtain ωHXkX
H
k ω ≤ c2 or ‖ωHXk‖ ≤ c.

Choosing l = 1 we obtain ‖ωH(I − µ
P XkX

H
k )Xk+1‖ ≤ c. Therefore,

‖ωHXk+1‖ ≤ ‖ωH(I − µ

P
XkX

H
k )Xk+1‖ +

µ

P
‖ωHXk‖‖XH

k Xk+1‖
≤ c +

µ

P
Bc = c(1 + 2/P ).

Choosing l = 2 we obtain ‖ωH(I − µ
P XkX

H
k )(I − µ

P Xk+1X
H
k+1)Xk+2‖ ≤ c. Therefore,

‖ωHXk+2‖ ≤ ‖ωH(I − µ

P
XkX

H
k )(I − µ

P
Xk+1X

H
k+1)Xk+2‖ +

µ

P
‖ωHXkX

H
k Xk+2‖

+
µ

P
‖ωHXk+1X

H
k+1Xk+2‖ +

µ2

P 2
‖ωHXkX

H
k Xk+1X

H
k+1Xk+2‖

≤ O(c).

Proceeding along similar lines we obtain ‖ωHXk+l‖ ≤ Lc for l = 0, . . . , K where L is some constant. This
implies ωH ∑k+K

l=k XlX
H
l ω ≤ (K + 1)L2c2. Since c is arbitrary we obtain that ωH ∑k+K

l=k XlX
H
l ω < α1 which is

a contradiction.
Lemma 3: Let Xk satisfy the persistence of excitation condition in Theorem 4. let

Pk,k+D =

{ ∏k+D
l=k (I − µIlXlX

H
l ) if D ≥ 0

1 if D < 0

where Il is a random masking matrix chosen with equal probability from {Ii, i = 1, . . . , P} and let

Ωk =
K∑

l=0

ΠH
k,k+l−1Xk+lX

H
k+lΠk,k+l−1

where K is as defined in Theorem 4 and {·} is the average over randomly chosen Il then Ωk − γI is a positive
definite matrix for some γ > 0 and ∀k.

Proof: Proof is by contradiction. Suppose not then for some vector ω such that ωHω = 1 we have ωHΩkω ≤ c2

where c is any arbitrary positive number.
Then

K∑
l=0

ωH PH
k,k+l−1Xk+lX

H
k+lPk,k+l−1 ω ≤ c2

⇒ ωH PH
k,k+l−1Xk+lX

H
k+lPk,k+l−1 ω ≤ c2 for 0 ≤ l ≤ K.

Choosing l = 0 we obtain ωHXkX
H
k ω ≤ c2 or ‖ωHXk‖ ≤ c.

Choosing l = 1 we obtain ωH (I − µXkX
H
k Ik)Xk+1X

H
k+1(I − µIkXkX

H
k ) ω ≤ c2. Therefore,

ωHXk+1X
H
k+1ω − µ

P
ωHXkX

H
k Xk+1X

H
k+1ω − µ

P
ωHXk+1X

H
k+1XkX

H
k ω+

µ2

P
ωHXkX

H
k

[
P∑

i=0

IiXk+1X
H
k+1Ii

]
XkX

H
k ω ≤ c2.

Now

‖ωHXkX
H
k Xk+1X

H
k+1ω‖ ≤ ‖ωHXk‖‖Xk‖‖XH

k+1Xk+1‖‖ω‖
≤ cB3/2
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and

‖ωHXkX
H
k

[
P∑

i=0

IiXk+1X
H
k+1Ii

]
XkX

H
k ω‖ ≤ c2PB2.

Therefore, ωHXk+1X
H
k+1ω = O(c) which implies ‖ωHXk+1‖ = O(c1/2). Proceeding along the same lines we

obtain ‖ωHXk+1‖ = O(c1/L) for l = 0, . . . , K for some constant L. This implies ωH ∑k+K
l=k XlX

H
l ω = O(c2/L).

Since c is arbitrary we obtain that ωH ∑k+K
l=k XlX

H
l ω < α1 which is a contradiction.

Now, we are ready to Prove Theorem 4.
Proof of Theorem 4: First, we will prove the convergence of V

H
k V k. We have V k+1 = (I − µ

P XkX
H
k )V k.

Proceeding as before, we obtain the following update equation for V kV
H
k

V
H
k+K+1V k+K+1 = V

H
k+KV k+K − 2

µ

P
V

H
k+KXk+KXH

k+KV k+K

+
µ2

P 2
V

H
k+KXk+KXH

k+KXk+KXH
k+KV k+K

≤ V
H
k+KV k+K − µ

P
V

H
k+KXk+KXH

k+KV k+K .

The last step follows from the fact that µ < 2/B. Using the update equation for Vk repeatedly, we obtain

V
H
k+K+1V k+K+1 ≤ V

H
k V k − µ

P
V

H
k GkV k.

From Lemma 2 we have,
V

H
k+K+1V k+K+1 ≤ (1 − µ

P
η)V H

k V k

which ensures exponential convergence of tr{V kV
H
k }.

Next, we prove the convergence of V H
k Vk. First, we have the following update equation for tr{VkV

H
k }

tr{Vk+K+1V
H
k+K+1} ≤ tr{Vk+KV H

k+K} − µ

P
tr{Xk+KXH

k+KVk+KV H
k+K}. (21)

Using (21) and also

Vk+1V
H
k+1 = (I − µIkXkX

H
k )VkV

H
k (I − µXkX

H
k Ik)

repeatedly, we obtain the following update equation

tr{Vk+K+1V
H
k+K+1} ≤ tr{VkV

H
k } − tr{ΩkVkV

H
k }.

From Lemma 3 we have
tr{Vk+K+1V

H
k+K+1} ≤ (1 − µγ)tr{VkV

H
k }

which ensures the exponential convergence of tr{VkV
H
k }.

APPENDIX II
STABILITY ANALYSIS FOR MIXING SIGNALS

The results in this section are an extension of analysis in [15] to SPU-LMS with complex input signals. Notations

are the same as those used in [15]. Let ‖A‖ def= {∑i,j |a|2ij}1/2 = ‖A‖F be the Frobenius norm of the matrix A.

This is identical to the definition used in [2]. Note that in [15], ‖A‖ def= {λmax(AAH)}1/2 = ‖A‖S is the spectral
norm of A. Since for a m× n matrix A, ‖A‖S ≤ ‖A‖F ≤ max{m, n}‖A‖S the results in [15] could as well have
been stated with the definition used here.

A process εk is said to be φ-mixing if there is a function φ(l) such that φ(l) → 0 as l → ∞ and

sup
A∈Mk

−∞(X),B∈M∞
k+l(ε)

|P (B|A) − P (B)| ≤ φ(l),∀m ≥ 0, k ∈ (−∞,∞)

where Mj
i (ε), −∞ ≤ i ≤ j ≤ ∞ is the σ-algebra generated by {εk}, i ≤ k ≤ j.
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Let Xk be the input signal vector generated from the following process

Xk =
∞∑

j=−∞
A(k, j)εk−j + ψk (22)

with
∑∞

j=−∞ supk ‖A(k, j)‖ < ∞. {ψk} is a d-dimensional deterministic process, and {εk} is a general m-
dimensional φ-mixing sequence. The weighting matrices A(k, j) ∈ Rd×m are assumed to be deterministic.

Define the index set S = {1, 2, . . . , N} and Ii as in section III. Let Ij be a sequence of i.i.d d × d masking
matrices chosen with equal probability from Ii, i = 1, . . . , P .

Then, we have the following theorem which is similar to Theorem 2 in [15].
Theorem 5: Let Xk be defined by (22) in Appendix III with {εk} a φ-mixing sequence such that it satisfies for

any n ≥ 1 and any increasing integer sequence j1 < j2 < . . . < jn

E

[
exp

(
β

n∑
i=1

‖εji
‖2

)]
≤ M exp(Kn) (23)

where β, M , and K are positive constants. Then for any p ≥ 1, there exist constants µ∗ > 0, M > 0, and α ∈ (0, 1)
such that for all µ ∈ (0, µ∗] and for all t ≥ k ≥ 0

E

∥∥∥∥∥∥
t∏

j=k+1

(I − µIjXjX
H
j )

∥∥∥∥∥∥
p


1/p

≤ M(1 − µα)t−k

if and only if there exists an integer h > 0 and a constant δ > 0 such that for all k ≥ 0
k+h∑

i=k+1

E[XiX
H
i ] ≥ δI. (24)

Proof: The proof is just a slightly modified version of the proof of Theorem 2 derived in Section IV of [15, pp.
763-769]. The modification takes into account that Fk in [15] is Fk = XkX

H
k whereas it is Fk = IkXkX

H
k in the

present context.
Note that Theorem 2 in [15] can be stated as a corollary to Theorem 5 by setting Ij = I for all j. Also, note

that Condition (24) has the same form as Condition (18).
For Result 1, which is just a special case of Theorem 5, it is enough [15] to observe that

1) Gaussian Xk is obtained from (22) by choosing Ak = 0 and ψk = 0 for all k and εk to be Gaussian
2) Gaussian signal sequence as described in Result 1 is a phi-mixing sequence
3) Gaussian signals satisfy the condition in (23).
4) For stationary signals, E[XiX

H
i ] = Rxx for all values of i. Therefore, the following condition:

• there exists an integer h > 0 and a constant δ > 0 such that for all k ≥ 0
k+h∑

i=k+1

E[XiX
H
i ] ≥ δI (25)

simply translates to Rxx being positive definite.

APPENDIX III
S-LMS STABILITY ANALYSIS FOR STATIONARY MIXING SIGNALS

The results in this section are an extension of analysis in [15] to S-LMS with stationary complex input signals.
Notations are the same as those used in Appendix II. Let εk, Xk, ψk and A(k, j) be as defined in Appendix II.

In this section, we will place an additional restriction of stationarity on εk. Define the index set S = {1, 2, . . . , N}
and Ii as in section III. Then Theorem 3 means that Fi = Ii%P+1XiX

H
i satisfies the following property of averaged

exponential stability.
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Lemma 4: Let Fi = Ii%P+1XiX
H
i then Fi is averaged exponentially stable. That is, there exist constants µ∗ > 0,

M > 0, and α > 0 such that for all µ ∈ (0, µ∗] and for all t ≥ k ≥ 0∥∥∥∥∥∥
t∏

j=k+1

(I − µE[Fj ])

∥∥∥∥∥∥ =

∥∥∥∥∥∥
t∏

j=k+1

(I − µIj%P+1R)

∥∥∥∥∥∥
≤ M(1 − µα)t−k

Proof: From Theorem 3, we know that there exist µ∗ > 0, M0 > 0 and γ > 0 such that for all t, k > 0∥∥∥∥∥∥
k+tP∏
j=k+1

(I − µIj%P+1R)

∥∥∥∥∥∥ ≤ M0(1 − µγ)t.

Note that
‖I − µIj%P+1R‖ ≤ ‖I‖ + µ‖Ij%P+1‖‖R‖ ≤ M ′

for some M ′ > 0 and for all µ ∈ (0, µ∗] and j = 1, . . . , P . Let λ = (1 − µγ)1/P then∥∥∥∥∥∥
k+tP+l∏
j=k+1

(I − µIj%P+1R)

∥∥∥∥∥∥ ≤ M0λ
tP+l(M ′)l/λl.

Noting that 0 < µγ < 1 we have

(1 − µγ)1/P =
(

1 − µ

P
γ + O((µγ)2))

)
< (1 − µα)

for some α > 0. This leads to ∥∥∥∥∥∥
t∏

j=k+1

(I − µIj%P+1R)

∥∥∥∥∥∥ ≤ M(1 − αµ)t−k

where M = M0 max{1, (M ′/λ∗)P } and λ∗ = (1 − µ∗γ)1/P .
Using Lemma 4 and following the analysis of [15] we have the following theorem which is similar to Theorem

2 in [15].
Theorem 6: Let Xk be defined by (22) with {εk} a stationary φ-mixing sequence such that it satisfies for any

n ≥ 1

E
[
exp

(
βn‖εk‖2

)]
≤ M exp(Kn) (26)

where β, M , and K are positive constants. Then for any p ≥ 1, there exist constants µ∗ > 0, M > 0 and α ∈ (0, 1)
such that for all µ ∈ (0, µ∗] and for all t ≥ k ≥ 0

E

∥∥∥∥∥∥
t∏

j=k+1

(I − µIj%P+1XjX
H
j )

∥∥∥∥∥∥
p


1/p

≤ M(1 − αµ)t−k

if Rxx = E[XjX
H
j ] is positive definite.

The corresponding result for LMS obtained from the extension of the analysis in [15] to complex signals is:
Result 4 (LMS Stability: Stationary Process): Let Xk be defined by (22) with {εk} a stationary φ-mixing se-

quence such that it satisfies for any n ≥ 1

E
[
exp

(
βn‖εk‖2

)]
≤ M exp(Kn) (27)

where β, M , and K are positive constants. Then for any p ≥ 1, there exist constants µ∗ > 0, M > 0 and α ∈ (0, 1)
such that for all µ ∈ (0, µ∗] and for all t ≥ k ≥ 0

E

∥∥∥∥∥∥
t∏

j=k+1

(I − µXjX
H
j )

∥∥∥∥∥∥
p


1/p

≤ M(1 − αµ)t−k



JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002 20

if and only if Rxx = E[XjX
H
j ] is positive definite.

Therefore, exponential stability of LMS implies exponential stability of S-LMS.
The application of Theorem 6 to Xk obtained from a time-series signal is illustrated below.
Result 5 (Stationary Gaussian Process): Let xk be a stationary Gaussian random process such that E[xkxk−l] =

rl → 0 as l → ∞ and Xk = [xk xk−1 . . . xk−n+1] then for any p ≥ 1, there exist constants µ∗ > 0, α ∈ (0, 1)
and M > 0 such that for all µ ∈ (0, µ∗] and for all t ≥ k ≥ 0

E

∥∥∥∥∥∥
t∏

j=k+1

(I − µIj%P+1XjX
H
j )

∥∥∥∥∥∥
p


1/p

≤ M(1 − αµ)t−k

if the input correlation matrix E[XkX
H
k ] = Rxx, is positive definite.

Proof: See Appendix III.

APPENDIX IV
PERFORMANCE ANALYSIS FOR MIXING SIGNALS

The results in this section are an extension of analysis in [2] to SPU-LMS with complex signals. The results
enable us to predict the steady state behaviour of SPU-LMS without the standard uncorrelated input and coefficient
vectors assumption employed in Section III-A. Moreoever, the two lemmas in this section state that the error terms
for LMS and SPU-LMS are bounded above by the same constants. These results are very useful for comparison of
steady state errors of SPU-LMS and LMS in the sense that the error terms are of the same magnitude. A couple of
examples using the analysis in this section was presented in Section III-C as Results 2 (details in Appendix IV-A)
and 3 (details in Appendix IV-B) where the performance of SPU-LMS and LMS was compared for two different
scenarios.

We begin the mean square error analysis by assuming that

dk = XH
k Wopt + nk.

Then we can write the evolution equation for the tracking error Vk
def= Wk − Wopt as

Vk+1 = (I − µPkXkX
H
k )Vk + µXknk

where Pk = I for LMS and Pk = Ik for SPU-LMS.
In general Vk obeys the following inhomogeneous equation

δk+1 = (I − µFk)δk + ξk, δ0 = 0

δk can be represent by a set of recursive equations as follows

δk = J
(0)
k + J

(1)
k + . . . + J

(n)
k + H

(n)
k

where the processes J
(r)
k , 0 ≤ r < n and H

(n)
k are described by

J
(0)
k+1 = (I − µF̄k)J

(0)
k + ξk; J

(0)
0 = 0

J
(r)
k+1 = (I − µF̄k)J

(r)
k + µZkJ

(r−1)
k ; J

(r)
k = 0, 0 ≤ k < r

H
(n)
k+1 = (I − µFk)H

(n)
k + µZkJ

(n)
k ; H

(n)
k = 0, 0 ≤ k < n

where Zk = Fk − F̄k and F̄k is an appropriate deterministic process, usually chosen as F̄k = E[Fk]. In [2] under
appropriate conditions it was shown that there exists some constant C < ∞ and µ0 > 0 such that for all 0 < µ ≤ µ0,
we have

sup
k≥0

‖H(n)
k ‖p ≤ Cµn/2.

Now, we modify the definition of weak dependence as given in [2] for circular complex random variables. The
theory developed in [2] can be easily adapted for circular random variables using this definition. Let q ≥ 1 and
X = {Xn}n≥0 be a (l×1) matrix valued process. Let β = (β(r))r∈N be a sequence of positive numbers decreasing
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to zero at infinity. The complex process X = {Xn}n≥0 is said to be (δ, q)-weak dependent if there exist finite
constants C = {C1, . . . , Cq}, such that for any 1 ≤ m < s ≤ q and m-tuple k1, . . . , km and any (s − m)-tuple
km+1, . . . , ks, with k1 ≤ . . . ≤ km < km + r ≤ km+1 ≤ . . . ≤ ks, it holds that

sup
1≤i1,...,is≤l,fk1,i1 ,fk2,i2 ...fkm,im

∣∣∣cov
(
fk1,i1(X̃k1,i1) · . . . · fkm,im

(X̃km,im
),

fkm+1,im+1(X̃km+1,im+1) · . . . · fks,is
(X̃ks,is

)
)∣∣∣ ≤ Csβ(r)

where X̃n,i denotes the i-th component of Xn −E(Xn) and the set of functions fn,i() that the sup is being taken
over are given by fn,i(X̃n,i) = X̃n,i and fn,i(X̃n,i) = X̃∗

n,i.
Define N (p) from [2] as follows

N (p) =
{

ε :
∥∥∥∑t

k=s Dkεk

∥∥∥
p
≤ ρp(ε)

(∑t
k=s |Dk|2

)1/2 ∀0 ≤ s ≤ t

and ∀D = {Dk}k∈N (q × l) deterministic matrices

}

where ρp(ε) is a constant depending only on the process ε and the number p.
Fk can be written as Fk = PkXkX

H
k where Pk = I for LMS and Pk = Ik for SPU-LMS. It is assumed that the

following hold true for Fk. For some r, q ∈ N , µ0 > 0 and 0 < α < 1/µ0

• F1(r, α, µ0): {Fk}k≥0 is is Lr-exponentially stable. That is,
E

∥∥∥∥∥∥
t∏

j=k+1

(I − µFj)

∥∥∥∥∥∥
r


1/r

≤ M(1 − µα)t−k

• F2(α, µ0): {Fk}k≥0 is is averaged exponentially stable. That is,∥∥∥∥∥∥
t∏

j=k+1

(I − µE [Fj ])

∥∥∥∥∥∥ ≤ M(1 − µα)t−k

Conditions F3 and F4 stated below are trivially satisfied for Pk = I and Pk = Ik.
• F3(q, µ0): supk∈N supµ∈(0,µ0] ‖Pk‖q < ∞ and supk∈N supµ∈(0,µ0] |E[Pk]| < ∞
• F4(q, µ0): supk∈N supµ∈(0,µ0] µ

−1/2‖Pk − E[Pk]‖q < ∞
The excitation sequence ξ = {ξk‖k≥0 [2] is assumed to be decomposed as ξk = Mkεk where the process

M = {Mk}k≥0 is a d × l matrix valued process and ε = {εk}k≥0 is a (l × 1) vector-valued process that verifies
the following assumptions

• EXC1: {Mk}k∈Z is Mk
0(X)-adapted3 and Mk

0(ε) and Mk
0(X) are independent.

• EXC2(r, µ0): supµ∈(0,µ0] supk≥0 ‖Mk‖r < ∞, (r > 0, µ0 > 0)
• EXC3(p, µ0): ε = {εk}k∈N belongs to N (p), (p > 0, µ0 > 0)
The following theorems from [2] are relevant.
Theorem 7 (Theorem 1 in [2]): Let n ∈ N and let q ≥ p ≥ 2. Assume EXC1, EXC2(pq/(q − p), µ0) and

EXC3(p, µ0). For a, b, α > 0, a−1 + b−1 = 1, and some µ0 > 0, assume in addition F2(α, µ0), F4(aqn, µ0) and
• {Gk}k≥0 is (β, (q + 2)n) weakly dependent and

∑
(r + 1)((q+2)n/2)−1β(r) < ∞

• supk≥0 ‖Gk‖bqn < ∞
Then, there exists a constant K < ∞ (depending on β(k), k ≥ 0 and on the numerical constants p, q, n, q, b, µ0, α

but not otherwise on {Xk}, {εk} or on µ), such that for all 0 < µ ≤ µ0, for all 0 ≤ r ≤ n

sup
s≥1

‖J (r)
s ‖p ≤ Kρp(ε) sup

k≥0
‖Mk‖pq/(q−p)µ

(r−1)/2.

Theorem 8 (Theorem 2 in [2]): Let p ≥ 2 and let a, b, c > 0 such that 1/a + 1/b + 1/c = 1/p. Let n ∈ N .
Assume F1(a, α, µ0) and

• sups≥0 ‖Zs‖b < ∞
3A sequence of random variables, Xi is called adapted with respect to a sequence of σ-fields Fi if Xi is Fi measurable [6].
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• sups≥0 ‖J (n+1)
s ‖c < ∞

Then there exists a constant K ′ < ∞ (depending on the numerical constants a, b, c, α, µ0, n but not on the process
{εk} or on the stepsize parameter µ), such that for all 0 < µ ≤ µ0,

sup
s≥0

‖H(n)
s ‖p ≤ K ′ sup

s≥0
‖J (n+1)

s ‖c.

We next show that if LMS satisfies the assumptions above (assumptions in section 3.2 in [2]) then so does
SPU-LMS. Conditions F1 and F2 follow directly from Theorem 5. It is easy to see that F3 and F4 hold easily for
LMS and SPU-LMS.

Lemma 5: The constant K in Theorem 7 calculated for LMS can also be used for SPU-LMS.
Proof: Here all that is needed to be shown is that if LMS satisfies the conditions (EXC1), (EXC2) and (EXC3)

then so does SPU-LMS. Moreover, the upper bounds on the norms for LMS are also upper bounds for SPU-LMS.
That easily follows because MLMS

k = Xk whereas MSPU−LMS
k = IkXk and ‖Ik‖ ≤ 1 for any norm ‖ · ‖.

Lemma 6: The constant K ′ in Theorem 8 calculated for LMS can also be used for SPU-LMS.
Proof: First we show that if for LMS sups≥0 ‖Zs‖b < ∞ then so it is for SPU-LMS. First, note that for LMS

we can write ZLMS
s = XsX

H
s − E[XsX

H
s ] whereas for SPU-LMS

ZSPU−LMS
s = IsXsX

H
s − 1

P
E[XsX

H
s ]

= IsXsX
H
s − IsE[XsX

H
s ] + (Is − 1

P
I)E[XsX

H
s ]

That means ‖ZSPU−LMS
s ‖b ≤ ‖Is‖b‖ZLMS

s ‖b+‖Is− 1
P I‖b‖E[XsX

H
s ]‖b. Therefore, since sups≥0 ‖bE[XsX

H
s ]‖b <

∞ and sups≥0 ‖ZLMS
s ‖b < ∞ we have

sup
s

‖ZSPU−LMS
s ‖b < ∞.

Since all conditions for Theorem 2 have been satisfied by SPU-LMS in a similar manner the constant obtained is
also the same.

A. I.I.D Gaussian Input Sequence

In this section, we assume that Xk = [xk xk−1 . . . xk−N+1]T where N is the length of the vector Xk. {xk} is
a sequence of zero mean i.i.d Gaussian random variables. We assume that wk = 0 for all k ≥ 0. In that case

Vk+1 = (I − µPkXkX
H
k )Vk + µXknk V0 = −Wopt,0 = Wopt

where for LMS we have Pk = I and Pk = Ik in case of SPU-LMS. We assume nk is a white i.i.d. Gaussian
noise with variance σ2

v . We see that since the conditions (23) and (24) are satisfied for theorem 5 both LMS and
SPU-LMS are exponentially stable. In fact both have the same α exponent of decay. Therefore, conditions F1 and
F2 are satisfied.

We rewrite Vk = J
(0)
k + J

(1)
k + J

(2)
k + H

(2)
k . Choosing F̄k = E[Fk] we have E[PkXkX

H
k ] = σ2I in the case of

LMS and 1
P σ2I in the case of SPU-LMS. By Theorems 7 and 8 and Lemmas 5 and 6 we can upperbound both

|J (2)
k | and |H(2)

k | by exactly the same constants for LMS and SPU-LMS. In particular, there exists some constant
C < ∞ such that for all µ ∈ (0, µ0], we have

sup
t≥0

∣∣∣E[J (1)
t (J (2)

t + H
(2)
t )H ]

∣∣∣ ≤ C‖X0‖r(r+δ)/δρ
2
r(v)µ1/2

sup
t≥0

∣∣∣E[J (0)
t H

(2)
t ]

∣∣∣ ≤ Cρr(v)‖X0‖r(r+δ)/δµ
1/2.

Next, for LMS we concentrate on

J
(0)
k+1 = (1 − µσ2)J (0)

k + µXknk

J
(1)
k+1 = (1 − µσ2)J (1)

k + µ(σ2I − XkX
H
k )J (0)

k
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and for SPU-LMS we concentrate on

J
(0)
k+1 = (1 − µ

P
σ2)J (0)

k + µIkXknk

J
(1)
k+1 = (1 − µ

P
σ2)J (1)

k + µ(
σ2

P
I − IkXkX

H
k )J (0)

k .

After tedious but straightforward calculations (follwing the procedure in [2]), we obtain for LMS

lim
k→∞

E[J (0)
k (J (0)

k )H ] = µ2

[
σ2

v

µ(2 − µσ2)
I

]

lim
k→∞

E[J (0)
k (J (1)

k )H ] = 0

lim
k→∞

E[J (0)
k (J (2)

k )H ] = 0

lim
k→∞

E[J (1)
k (J (1)

k )H ] = µ2

[
Nσ2σ2

v

(2 − µσ2)2
I

]

= µ2

[
Nσ2σ2

v

4
I + O(µ)I

]

which yields limk→∞ E[VkV
H
k ] = µ2

[
σ2

v

2µI + Nσ2σ2
v

4 I + O(µ1/2)I
]

and for SPU-LMS we obtain

lim
k→∞

E[J (0)
k (J (0)

k )H ] = µ2

[
σ2

v

µ(2 − µ
P σ2)

I

]

lim
k→∞

E[J (0)
k (J (1)

k )H ] = 0

lim
k→∞

E[J (0)
k (J (2)

k )H ] = 0

lim
k→∞

E[J (1)
k (J (1)

k )H ] = µ2

[
(N+1)P−1

P σ2σ2
v

(2 − µ
P σ2)2

I

]

= µ2

[
(N+1)P−1

P σ2σ2
v

4
I + O(µ)I

]

which yields limk→∞ E[VkV
H
k ] = µ2

[
σ2

v

2µI +
(N+1)P−1

P
σ2σ2

v

4 I + O(µ1/2)I
]
.

B. Temporally Correlated Spatially Uncorrelated Array Output

In this section we consider Xk given by

Xk = κXk−1 +
√

1 − κ2Uk

where Uk is a vector of circular Gaussian random variables with unit variance. Similar to Appendix IV-A, we
rewrite Vk = J

(0)
k + J

(1)
k + J

(2)
k + H

(2)
k . Since, we have chosen F̄k = E[Fk] we have E[PkXkX

H
k ] = I in the

case of LMS and 1
P I in the case of SPU-LMS. Again, conditions F1 and F2 are satisfied because of Theorem 5.

By [2] and Lemmas 1 and 2 we can upperbound both J
(2)
k and H

(2)
k by exactly the same constants for LMS and

SPU-LMS. By Theorems 7 and 8 and Lemmas 5 and 6 we have that there exists some constant C < ∞ such that
for all µ ∈ (0, µ0], we have

sup
t≥0

∣∣∣E[J (1)
t (J (2)

t + H
(2)
t )H ]

∣∣∣ ≤ C‖X0‖r(r+δ)/δρ
2
r(v)µ1/2

sup
t≥0

∣∣∣E[J (0)
t H

(2)
t ]

∣∣∣ ≤ Cρr(v)‖X0‖r(r+δ)/δµ
1/2.

Next, for LMS we concentrate on

J
(0)
k+1 = (1 − µ)J (0)

k + µXknk

J
(1)
k+1 = (1 − µ)J (1)

k + µ(I − XkX
H
k )J (0)

k
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and for SPU-LMS we concentrate on

J
(0)
k+1 = (1 − µ

P
)J (0)

k + µIkXknk

J
(1)
k+1 = (1 − µ

P
)J (1)

k + µ(
1
P

I − IkXkX
H
k )J (0)

k .

After tedious but straighforward calculations (following the procedure in [2]), we obtain for LMS

lim
k→∞

E[J (0)
k (J (0)

k )H ] = µ2

[
σ2

v

µ(2 − µ)
I

]

lim
k→∞

E[J (0)
k (J (1)

k )H ] = −µ2

[
κ2σ2

vN

2(1 − κ2)
I + O(µ)I

]

lim
k→∞

E[J (0)
k (J (2)

k )H ] = µ2

[
κ2σ2

vN

4(1 − κ2)
I + O(µ)I

]

lim
k→∞

E[J (1)
k (J (1)

k )H ] = µ2

[
(1 + κ2)σ2

vN

4(1 − κ2)
I + O(µ)I

]

which leads to limk→∞ E[VkV
H
k ] = µ2

[
σ2

v

2µI + Nσ2
v

4 I + O(µ1/2)I
]

and for SPU-LMS we obtain

lim
k→∞

E[J (0)
k (J (0)

k )H ] = µ2

[
σ2

v

µ(2 − µ
P )

I

]

lim
k→∞

E[J (0)
k (J (1)

k )H ] = −µ2

[
κ2σ2

vN

2(1 − κ2)P
I + O(µ)I

]

lim
k→∞

E[J (0)
k (J (2)

k )H ] = µ2

[
κ2σ2

vN

4(1 − κ2)P
I + O(µ)I

]

lim
k→∞

E[J (1)
k (J (1)

k )H ] = µ2

[
σ2

v

4
[
N

P

1 + κ2

1 − κ2
+ (N + 1)

P − 1
P

]I + O(µ)I

]

which leads to limk→∞ E[VkV
H
k ] = µ2

[
σ2

v

2µI + σ2

4 [N + 1 − 1
P ]I + O(µ1/2)I

]
.
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