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Partial-Volume Bayesian Classification of Material
Mixtures in MR Volume Data using Voxel

Histograms
David H. Laidlaw, Kurt W. Fleischer, Alan H. Barr

Abstract— We present a new algorithm for identifying the distribution
of different material types in volumetric datasets such as those produced
with Magnetic Resonance Imaging (MRI) or Computed Tomography (CT).
Because we allow for mixtures of materials and treat voxels as regions,
our technique reduces errors that other classification techniques can create
along boundaries between materials and is particularly useful for creating
accurate geometric models and renderings from volume data. It also has
the potential to make volume measurements more accurately and classifies
noisy, low-resolution data well.

There are two unusual aspects to our approach. First, we assume that,
due to partial-volume effects, or blurring, voxels can contain more than
one material, e.g., both muscle and fat; we compute the relative propor-
tion of each material in the voxels. Second, we incorporate information
from neighboring voxels into the classification process by reconstructing a
continuous function, �(x), from the samples and then looking at the dis-
tribution of values that �(x) takes on within the region of a voxel. This
distribution of values is represented by a histogram taken over the region
of the voxel; the mixture of materials that those values measure is identi-
fied within the voxel using a probabilistic Bayesian approach that matches
the histogram by finding the mixture of materials within each voxel most
likely to have created the histogram. The size of regions that we classify is
chosen to match the spacing of the samples because the spacing is intrinsi-
cally related to the minimum feature size that the reconstructed continuous
function can represent.

Keywords—Bayesian probability theory, discrete signal processing, fea-
ture detection, function theory, geometric modeling, image processing, par-
tial volume, mixture modeling and estimation, multiscale analysis, mul-
tispectral classification, multivariate segmentation, magnetic resonance
imaging microscopy, scale space, tissue classification, volume measurement

I. I NTRODUCTION

I
DENTIFYING different materials within sampled datasets
can be an important step in understanding the geometry,

anatomy, or pathology of a subject. By accurately locating dif-
ferent materials, we can identify them as individual parts and
measure their size and shape. We can also use the spatial loca-
tion of materials to selectively visualize parts of the data, thus
better controlling a volume-rendered image [1], a surface model
[2], or a volume model created from the data, and making visi-
ble otherwise obscured or subtle features. Classification is a key
step towards understanding such geometry. Figure 1 shows an
example of classified MRI data; each color represents a single
material identified within the data.

Applications of classified images and geometric models de-
rived from them include surgical planning and assistance, di-
agnostic medical imaging, conventional computer animation,
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anatomical studies, and predictive modeling of complex biolog-
ical shapes and behavior.

A. A partial-volume classification approach using voxel his-
tograms.

We use Bayesian probability theory to estimate the highest-
probability combination of materials within each voxel-sized re-
gion. The estimation is based on the histogram of data values
within the region. The posterior probability, which we max-
imize, is based on conditional and prior probabilities derived
from the assumptions about what we are measuring and how the
measurement process works [3]. With this information we iden-
tify the materials contained within each voxel based on the sam-
ple values for the voxel and its neighbors. We treat each voxel as
a region (see Figure 2), not as a single point. The sampling the-
orem [4] allows us to reconstruct a continuous function,�(x),
from the samples. We then represent all of the values that�(x)
takes on within a voxel by creating a histogram of�(x) over the
voxel. Figure 3(a) shows samples, Figure 3(b) shows the func-
tion�(x) reconstructed from the samples, and Figure 3(c) shows
a continuous histogram calculated from�(x).

We assume that each voxel is a mixture of materials, with
mixtures occurring where partial-volume effects occur, i.e.,
where the band-limiting process blurs measurements of pure
materials together. From this assumption we derive basis func-
tions that model histograms of voxels containing a pure mate-
rial and of voxels containing a mixture of two materials. Linear
combinations of these basis histograms are fit to each voxel, and
the most likely combination of materials is chosen probabilisti-
cally.

The regions that we classify could be smaller or larger than
voxels. Smaller regions would include less information, and so
the context for the classification would be reduced and accuracy
would suffer. Larger regions would contain more complicated
geometry because the features that could be represented would
be smaller than the region. Again, accuracy would suffer. Be-
cause the spacing of sample values is intrinsically related to the
minimum feature size that the reconstructed continuous func-
tion, �(x), can represent, that spacing is a natural choice for the
size of regions to be classified.

B. Related work.

Many researchers have worked on identifying the locations of
materials in sampled datasets [5], [6], [7], [8]. [9] gives an ex-
tensive review of the segmentation of MRI data. However, exist-
ing algorithms still do not take full advantage of all the informa-
tion in sampled images; there remains room for improvement.
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(a) Original Data

(b) Results of Algorithm
Classified White Matter (white), Gray Matter (gray)

Cerebro-Spinal Fluid (blue), Muscle (red)

(c) Combined Classified Image

Fig. 1. One slice of data from a human brain. (a) The original two-valued
MRI data. (b) Four of the identified materials, white matter, gray matter,
cerebro-spinal fluid, and muscle, separated out into separate images. (c)
Overlaid results of the new classification mapped to different colors. Note
the smooth boundaries where materials meet and the much lower incidence
of misclassified samples than in Figure 4.
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Fig. 2. We define a sample as a scalar or vector valued element of a 2-D or 3-D
dataset. A voxel is the region surrounding a sample.
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Fig. 3. Continuous histograms. The scalar data in (a) and (b) represent mea-
surements from a dataset containing two materials,A andB, as shown in
Figure 5. One material has measurement values nearvA and the other near
vB . These values correspond to the Gaussian-shaped peaks centered around
vA andvB in the histograms, which are shown on their sides to emphasize
the axis that they share. This shared axis is “feature space.”

Many of these algorithms generate artifacts like those shown
in Figure 4, an example of data classified with a maximum-
likelihood technique based on sample values. These techniques
work well in regions where a voxel contains only a single ma-
terial, but tend to break down at boundaries between materials.
In Figure 4 note the introduction of both stair-step artifacts, as
shown between gray matter and white matter within the brain,
and thin layers of misclassified voxels, as shown by the white
matter between the skull and the skin. Both types of artifacts
can be ascribed to the partial-volume effects ignored by the seg-
mentation algorithms and to the assignment of discrete material
types to each voxel.

[10] presents a technique that usesa priori information about
brain anatomy to avoid the layers of misclassified voxels. How-
ever, this work still produces a classification where each voxel is
assigned to a single, discrete material; results continue to exhibit
stair-step artifacts. It is also very dependent on brain anatomy
information for its accuracy; broader applicability is not clear.

[11] demonstrates that accounting for mixtures of materials
within a voxel can reduce both types of artifacts, and approxi-
mates the relative volume of each material represented by a sam-
ple as the probability that the sample is that material. Their tech-
nique works well for differentiating air, soft tissue, and bone in
CT data, but not for differentiating materials in MR data, where
the measured data value for one material is often identical to the
measured value for a mixture of two other materials.

[12] and [13] avoid partial-volume artifacts by taking linear
combinations of components of vector measurements. An ad-
vantage of their techniques is that the linear operations they per-
form preserve the partial-volume mixtures within each sample
value, and so partial-volume artifacts are not created. A disad-
vantage is that the linear operations are not as flexible as non-
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Fig. 4. Discrete, maximum-likelihood (DML) classification of the same brain
data shown in Figure 1. This existing method assigns each voxel to a single
material class. The class is identified here by its color: gray for gray matter,
blue for CSF/fluid, white for white matter, red for muscle. Note the jagged
boundaries between materials within the brain and the layer of misclassified
white matter outside of the skull. See Section VII for more detail.

linear operations, and so either more data must be acquired or
classification results will not be as accurate.

[14] and [15] address the partial-volume issue by identifying
combinations of materials for each sample value. As with many
other approaches to identifying mixtures, these techniques use
only a single measurement taken within a voxel to represent its
contents. Without the additional information available within
each voxel region, these classification algorithms are limited in
their accuracy.

[16] derives a distribution of data values taken on for partial
volume mixtures of two materials. We share the distribution
that they derive. Their application of the distribution, however,
fits a histogram of an entire dataset and then quantifies mate-
rial amounts over the entire volume. In contrast with our work,
they represent each voxel with a single measurement for clas-
sification purposes, and do not calculate histograms over single
voxels.

[17] presents an interesting approach to partial-volume imag-
ing that makes assumptions similar to ours about the underly-
ing geometry being measured and about the measurement pro-
cess. The results of their algorithm are a material assignment for
each sub-voxel of the dataset. Taken collectively, these multiple
sub-voxel results provide a measure of the mixtures of materials
within a voxel but arrive at it in a very different manner than we
do. This work has been applied to satellite imaging data, and
so their results are difficult to compare with ours, but aspects of
both may combine well.

[18] gives an overview of the technique presented below in the
context of the Human Brain Project, and [19] gives a complete
description. [20] describes an imaging protocol for acquiring
MRI data from solids and applies our classification technique to
the extraction of a geometric model from MRI data of a human
tooth (see Figure 10).

II. OVERVIEW

In this section we describe the classification problem that we
solve, define terms, state assumptions we make about the data
we classify, and sketch the algorithm and its derivation. Sec-
tions III–VI give more information on each part of the process,
with detailed derivations in Appendices A and B. Section VII
shows results of the application of the algorithm to simulated
MR data and to real MR data of a human brain, hand, and
tooth. We discuss some limitations and future extensions in Sec-
tion VIII and conclude in Section IX.

A. Problem statement.

The input to our process is sampled measurement data, from
which we can reconstruct a continuous, band-limited function,
�(x), that measures distinguishing properties of the underlying
materials. The output is sampled data measuring the relative
volume of each material in each voxel.

B. Definitions.

We refer to the coordinate system of the space containing the
object we are measuring as “spatial coordinates,” and generally
usex 2 X to refer to points. This space isn-dimensional,
wheren is three for volume data, can be two for slices, and
is one for the example in Figure 3. Each measurement, which
may be a scalar or vector, lies in “feature space” (see Figure 3),
with points frequently denoted asv 2 V . Feature space isnv-
dimensional, wherenv is one for scalar-valued data, two for
two-valued vector data, etc. Tables IV and V in Appendix B
contain these and other definitions.

C. Assumptions.

We make a set of assumptions about the objects that we are
measuring and the measurement process.
1: Discrete materials. The first assumption is that materials
within the objects that we measure are discrete at the resolution
that we are sampling. Boundaries need not be aligned with the
sampling grid. Figure 5(a) shows an object with two materials.
We make this assumption because we are generally looking for
boundaries between materials, and because we start from sam-
pled data, where information about detail finer than the sampling
rate is blurred.
This assumption does not preclude homogeneous combinations
of sub-materials that can be treated as a single material at our
sampling resolution. For example, muscle may contain some
water, and yet be treated as a separate material from water. This
assumption is not satisfied where materials gradually transition
from one to another over many samples or are not relatively uni-
formly mixed; however, our algorithm appears to degrade grace-
fully even in these cases.
2: Normally-distributed noise. We assume that noise from the
measurement process is added to each discrete sample and that
the noise is normally distributed. We assume a different vari-
ance in the noise for each material. This assumption is not
strictly satisfied for MRI data, but seems to be satisfied suffi-
ciently to classify data well. Note that the sample values with
noise added are interpolated to reconstruct the continuous func-
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Fig. 5. Partial-volume effects. We start from the assumption that in a real-world
object each point is exactly one material, as in (a). The measurement process
creates samples that mix materials together; from the samples we reconstruct
a continuous, band-limited measurement function,�(x). PointsP1 andP2
lie inside regions of a single material. PointP3 lies near a boundary between
materials, and so in (b) lies in the A&B region where materials A and B are
mixed. The grid lines show sample spacing and illustrate how the regions
may span voxels.

tion, �(x). The effect of this band-limited noise is discussed
further in Section VI.
3: Sampling theorem is satisfied. The third assumption we
make is that the sampled datasets we classify satisfy the sam-
pling theorem [4]. The sampling theorem states that if we sam-
ple a sufficiently band-limited function, we can exactly recon-
struct that function from the samples, as demonstrated in Fig-
ure 3(b). The band-limiting creates smooth transitions in�(x)
as it traverses boundaries where otherwise�(x) would be dis-
continuous. The intermediate region of Figure 5(b) shows a
sampling grid and the effect of sampling that satisfies the sam-
pling theorem. Partial-volume mixing of measurements occurs
in the region labeled “A & B.” Multi-slice MRI acquisitions do
not satisfy this assumption in the through-plane direction. For
these datasets we interpolate the data only within each plane.
4: Linear mixtures. Each voxel measurement is a linear com-
bination of pure material measurements and measurements of
their pair-wise mixtures created by band limiting (see Figure 5).
5: Uniform tissue measurements.Measurements of the same
material have the same expected value and variance throughout
a dataset.
6: Box filtering for voxel histograms. The spatial measure-
ment kernel, or point-spread function, can be approximated by a
box filter for the purpose of deriving histogram basis functions.
7: Materials identifiable in histogram of entire dataset.The
signatures for each material and mixture must be identifiable in
a histogram of the entire dataset.

For many types of medical imaging data, including MRI and
CT, these assumptions hold reasonably well, or can be satisfied
sufficiently with preprocessing [21]. Other types of sampled
data, e.g., ultrasound, and video or film images with lighting
and shading, violate these assumptions, thus our technique does
not apply directly to them.

D. Sketch of derivation.

Histograms represent the values taken on by�(x) over var-
ious spatial regions. In section III we describe the histogram
equation for a normalized histogram of data values within a re-
gion. In Section IV we use the histogram equation to create basis
functions that model histograms taken over small, voxel-sized
regions. These basis functions model histograms for regions
consisting of single materials and for regions consisting of mix-
tures of two materials. Using Bayes’ Theorem, the histogram of
an entire dataset, our histogram model basis functions, and a se-
ries of approximations, we derive an estimate of the most likely
set of materials within an entire dataset in Section V. Similarly,
given the histogram of a voxel-sized region, we derive, in Sec-
tion VI, an estimate of the most likely density for each material
in that voxel. The classification process is illustrated in Figure 6.

III. N ORMALIZED HISTOGRAMS

In this section we present the equation for a normalized his-
togram of a sampled dataset over a region. We will use this
equation as a building block in several later sections, with re-
gions that vary from the size of a single voxel to the size of the
entire dataset. We will also use this equation to derive basis
functions that model histograms over regions containing single
materials and regions containing mixtures of materials.

For a given region in spatial coordinates, specified byR,
the histogramhR(v) specifies the relative portion of that re-
gion where�(x) = v, as shown in Figure 3. Because we
treat a dataset as a continuous function over space, histograms,
hR(v) : Rnv ! R; are also continuous functions:

hR(v) =

Z
R(x)�(�(x) � v)dx (1)

Equation 1 is the continuous analogue of a discrete histogram.
R(x) is non-zero within the region of interest and integrates to
one. We setR(x) constant in the region of interest, making ev-
ery spatial point contribute equally to the histogramhR(v), but
R(x) can be considered a weighting function that takes on val-
ues other than zero and one to more smoothly transition between
adjacent regions. Note also thathR(v) integrates to one, which
means that it can be treated as a probability density function, or
PDF.� is the Dirac-delta function.

A. Computing voxel histograms.

We calculate histograms in constant-sized rectangular “bins,”
sized such that the width of a bin is smaller than the standard
deviation of the noise within the dataset. This ensures that we
do not lose significant features in the histogram.

We first initialize the bins to zero. We subdivide each voxel
into sub-voxels, usually 4 for 2-D data or 8 for 3-D data, and
evaluate�(x) and its derivative at the center of each sub-voxel.
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Fig. 6. The classification process. We collect MR data, calculate a his-
togram of the entire dataset,hall(v), and use that to determine parameters
of histogram-fitting basis functions, one for each pure material and one for
each mixture in the dataset. We then calculate histograms of each voxel-
sized region,hvox(v), and identify the most likely mixture of materials for
that region. The result is a sampled dataset of material densities within each
voxel.

�(x) is interpolated from the discrete data using a tri-cubic B-
spline basis [22] that approximates a Gaussian. Thus, function
and derivative evaluations can be made not only at sample loca-
tions, but anywhere between samples as well. From the function
value and the derivative we use Equation 1 to calculate the con-
tribution of a linear approximation of�(x) over the sub-voxel
to each histogram bin, accumulating the contributions from all
sub-voxels. This gives us a more-accurate histogram than we
would obtain by evaluating only the function values at the same
number of points.

IV. H ISTOGRAM BASIS FUNCTIONS FOR PURE MATERIALS

AND MIXTURES

In this section we describe basis functions that model his-
tograms of regions consisting of pure materials and of regions

 s1 s0

c 0 c 1c

 s

(a) (b)

Fig. 7. Parameters for histogram basis function. (a) Single-material histogram
parameters includec, the mean value for the material, ands, which measures
the standard deviation of measurements (see Equation 2). (b) Correspond-
ing parameters for a two-material mixture basis function.s0 ands1 affect
the slopes of the two-material histogram basis function at either end. For
vector-valued data,c ands are vectors and are the mean values and standard
deviations of the noise for the two constituent materials (see Equation 3).

consisting of pairwise mixtures of materials. Other voxel con-
tents are also possible and are discussed in Section VIII. The
parameters of the basis functions specify the expected value,c,
and standard deviation,s, of each material’s measurements (see
Figure 7).

We use Equation 1 to derive these basis functions which we
fit to histograms of the data. We then verify that the equations
provide reasonable fits to typical MR data, which gives us con-
fidence that our assumptions about the measurement function,
�(x), are reasonable. The details of the derivations are in Ap-
pendix A.

For a single material, the histogram basis function is a Gaus-
sian distribution:

fsingle(v; c; s) =

 
nvY
i=1

1

si
p
2�

!
exp

 
�1

2

nvX
i=1

�
vi � ci
si

�2
!
;

(2)
wherec is the vector-valued mean,s the vector-valued standard
deviation, andvi; ci; andsi scalar components ofv; c; ands,
respectively. We derive this equation by manipulating Equa-
tion 1 evaluated over a region of constant material, where the
measurement function,�(x), is a constant value plus additive,
normally-distributed noise. Because the noise in different chan-
nels of multi-valued MRI images is not correlated, the general
vector-valued normal distribution reduces to this equation with
zero co-variances.

For mixtures along a boundary between two materials, we
derive another equation similarly:

fdouble(v; c; s) =

Z 1

0

kn((1� t)c1 + tc2 � v; s)dt (3)

As with the single material case, this derivation follows from
Equation 1 evaluated over a region where two materials mix.
In this case, we approximate the band-limiting filter that causes
partial-volume effects with a box filter and make the assump-
tion that the variance of the additive noise is constant across the
region. This basis function is a superposition of normal distribu-
tions representing different amounts of the two constituent pure
materials.kn is the normal distribution, centered at zero,t the
relative quantity of the second material,c (comprised ofc1 and
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Fig. 8. Basis functions fit to histogram of entire dataset. This figure illustrates
the results of fitting basis functions to the histogram of the hand dataset.
The five labeled circular regions represent the distribution of data values
for pure materials, while the colored regions connecting them represent the
distribution of data values for mixtures. The mixture between muscle (red)
and fat (white), for example, is a salmon-colored streak. The green streak
between the red and yellow dots is a mixture of skin and muscle. These fitted
basis functions were used to produce the classified data used in Figure 11.

c2) the expected values of the two materials, ands the standard
deviation of measurements.

The assumption of a box filter affects the shape of the result-
ing histogram basis function. We derived similar equations for
different filters (triangle, Gaussian, and Hamming), but chose
the box filter derivation because we found it sufficiently accu-
rate in practice and because its numerical tractability saves sig-
nificant computation.

V. ESTIMATING HISTOGRAM BASIS FUNCTION

PARAMETERS

In this section we describe parameter-estimation procedures
for fitting histogram basis functions to a histogram of an entire
dataset. For a given dataset we first calculate the histogram,
hall(v), of the entire dataset. We then combine an interactive
process of specifying the number of materials and approximate
feature-space locations for them with an automated optimiza-
tion [21] to refine the parameter estimates. Under some circum-
stances, users may wish to group materials with similar mea-
surements into a single “material,” whereas in other cases they
may wish the materials to be separate. The result of this pro-
cess is a set of parameterized histogram basis functions, together
with values for their parameters. The parameters describe the
various materials and mixtures of interest in the dataset. Fig-
ure 8 shows the results of fitting a histogram. Each colored re-
gion represents one distribution, with the labeled spot-shaped
regions representing pure materials and connecting shapes rep-
resenting mixtures.

To fit a group of histogram basis functions to a histogram,
as in Figure 8, the optimization process estimates the relative
volume of each pure material or mixture (vector�all), and the
mean value (vectorc) and standard deviation (vectors) of mea-
surements of each material. The process is derived from the
assumption that all values were produced by pure materials and

two-material mixtures. We definenm as the number of pure
materials in a dataset, andnf as the number of histogram ba-
sis functions. Note thatnf � nm, sincenf includes any basis
functions for mixtures, as well as those for pure materials.

The optimization minimizes the function

E(�all; c; s) = 1

2

Z �
q(v;�all; c; s)

w(v)

�2

dv; (4)

with respect to�all; c; ands, where:

q(v;�all; c; s) = hall(v) �
nfX
j=1

�allj fj(v; cj ; sj) (5)

Note thatfj may be a pure or a mixture basis function and that
its parametercj will be a single feature-space point for a pure
material or a pair for a mixture. The functionw(v) is analogous
to a standard deviation at each point,v, in feature space, and
gives the expected value ofjq(v)j. We approximatew(v) as a
constant, and discuss it further in Section VIII.

Equations 4 and 5 are derived in Appendix B using Bayesian
probability theory with estimates of prior and conditional prob-
abilities.

VI. CLASSIFICATION

In this section we describe the process of classifying each
voxel. This process is similar to that described in Section V
for fitting the histogram basis functions to the entire dataset
histogram, but now we are fitting histograms taken over small,
voxel-sized regions. We use the previously computed histogram
basis functions calculated from the entire dataset histogram and
no longer vary the mean vector,c, or standard deviation,s. The
only parameters allowed to vary are the relative material vol-
umes (vector�vox), and an estimate of the local noise in the
local region (vector�N ) (see Equations 6 and 7).

Over large regions including many voxels, the noise in�(x)
is normally distributed, with zero mean; however, for voxel re-
gions the noise mean is generally non-zero. This is because nor-
mally distributed noise is added to each sample value, not to
each point of�(x). When the samples are used to reconstruct
�(x), the values�(x) takes on near a particular sample tend to
be similar, and so have a non-zero mean. We label the local
mean voxel noise value�N . As derived in Appendix B the equa-
tion that we minimize, with respect to�vox and �N , is:

E(�vox; �N) =
1

2

nvX
i=1

� �Ni

�i

�2

+
1

2

Z �
q(v;�vox; �N)

w(v)

�2

dv

(6)
where

q(v;�vox; �N) = hvox(v � �N)�
nfX
j=1

�voxj fj(v); (7)

the minimization is subject to the constraints

0 � �voxj � 1; and

nfX
j=1

�voxj = 1;
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and vector� is the standard deviation of the noise over the entire
dataset. For MR data the standard deviations in the signals for
different materials are reasonably similar, and so we estimate
� to be an average of the standard deviations of the histogram
basis functions.

With optimal vector�vox for a given voxel-sized region and
the mean value, vector�v, within that region, we solve for the
amount of each pure material contributed by each mixture to the
voxel. This is our output, the estimates of the amount of each
pure material in the voxel-sized region.

�v =

Z  
hvox(v)�

nmX
i=1

�ifsingle(v)

!
dv (8)

�v contains the mean signature of the portion of the histogram
that arises only from regions with partial-volume effects. We
determine how much of each pure component of pairwise mix-
ture materials would be needed to generate�v, given the amount
of each mixture that�vox indicates is in the voxel.tk repre-
sents this relative amount for mixturek, with tk = 0 indicating
that the mixture is comprised of only the first pure component,
tk = 1 indicating that it is comprised of only its second compo-
nent, and intermediate values oftk indicating intermediate mix-
tures. Thetk values are calculated by minimizing the following
equation with respect tot, subject to the constraint0 � tk � 1.

E�v(t) =
 
�v �

nfX
k=nm+1

�k (tkcka + (1� tk)ckb)

!2

(9)

Vectorcka is the mean value for the first pure material compo-
nent of mixturek, and vectorckb the mean value for the second
component. The total amount of each material is the amount of
pure material added to thetk-weighted portion of each mixture.

VII. RESULTS

We have applied our new technique to both simulated and
collected MRI datasets. When results can be verified and con-
ditions are controlled, as shown with the classification of simu-
lated data, the algorithm comes very close to “ground truth,” or
perfect classification. The results based on collected data illus-
trate that the algorithm works well on real data, with a geometric
model of a tooth showing boundaries between materials, a sec-
tion of a human brain showing classification results mapped on
to colors, and a volume-rendered image of a human hand show-
ing complex geometric relationships between different tissues.

We compare our Partial Volume Bayesian algorithm (PVB)
with three other algorithms. The first, DML (Discrete Maximum
Likelihood), assigns each voxel or sample to a single material
using a Maximum Likelihood algorithm. The second, PPVC
(Probabilistic Partial Volume Classifier), is described in [23],
and the third is a Mixel classifier [14].

PVB significantly reduces artifacts introduced by the other
techniques at boundaries between materials. In Figure 9 we
compare performance of PVB, DML and PPVC on simulated
data. PVB produces many fewer misclassified voxels, particu-
larly in regions where materials are mixed due to partial-volume
effects. In Figure 9(b) and (d) the difference is particularly no-
ticeable where an incorrect layer of dark background material

TABLE I

COMPARATIVE RMS ERROR FOR THREE ALGORITHMS: PVB, PPVC,AND

MIXEL . THE PPVC/PVBCOMPARISON IS FROM A SIMULATED DATA TEST

CASE ILLUSTRATED IN FIGURE 9, SNR=14.2. THE PPVC/MIXEL

COMPARISON IS TAKEN FROMFIGURES7 AND 8 IN [14], SNR=21.6. PVB,

IN THE PRESENCE OF MORE NOISE, REDUCES THEPPVC RMSERROR TO

APPROXIMATELY HALF THAT OF THE MIXEL ALGORITHM .

Improvement Ratio
PPVC PVB PPVC/PVB

Background 20% 6.5% 3.09
Outer 25% 4.3% 5.79
Inner 20% 6.5% 3.04

PPVC Mixel PPVC/Mixel
Background 16% 9.5% 1.68
Tumor 21% 13.5% 1.56
White matter 37% 16.0% 2.31
Gray matter 36% 17.0% 2.11
CSF 18% 13.0% 1.38
All other 20% 10.0% 2.00

TABLE II

COMPARATIVE VOLUME MEASUREMENT ERROR FOR THREE ALGORITHMS

(PVB, PPVC,AND MIXEL ). THE PPVC/PVBCOMPARISON IS FROM THE

SIMULATED DATA TEST CASE ILLUSTRATED IN FIGURE 9, SNR=14.2. THE

PPVC/MIXEL COMPARISON IS TAKEN FROMFIGURE 9 AND TABLE V IN

[14], SNR=21.6.

PPVC PVB PPVC Mixel
2.2% 0.01% 5.6% 1.6%

-5.3% -0.45% 44.1% 7.0%
0.3% 0.15%

has been introduced between the two lighter regions, and where
jagged boundaries occur between each pair of materials. In both
cases this is caused by partial-volume effects, where multiple
materials are present in the same voxel.

Table I shows comparative RMS error results for the PPVC
and PVB simulated data results, and also compares PPVC with
the Mixel algorithm. Signal-to-noise ratio (SNR) for the data
used in PPVC/PVB comparison was 14.2. SNR for the data
used in PPVC/Mixel comparison was 21.6. Despite lower SNR,
PPVC/PVB RMS error improvement is approximately double
that of the PPVC/Mixel improvement. RMS error is defined aspP

x (�(x) � p(x))2, where�(x) is classified data andp(x)
is ground truth. The sum is made only over voxels that contain
multiple materials.

Table II shows similar comparative results for volume mea-
surements made between PPVC and PVB on simulated data,
and between PPVC and Mixel on real data. Volume measure-
ments made with PVB are significantly more accurate that those
made with PPVC, and the PPVC to PVB improvement is better
than the PPVC to Mixel improvement.

Figures 1 and 4 also show comparative results between PVB
and DML. Note that the same artifacts shown in Figure 9 occur
with real data and are reduced by our technique.

Models and volume-rendered images, as shown in Figures 10
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(a) ground truth (b) DML (c) PVB (d) PPVC (e) Slice Geometry

Fig. 9. Comparison of DML classification (b), our new PVB classification (c), and PPVC classification (d). (a) is a reference for what “ideal” classification should
produce. Note the band of dark background material in (b) and (d) between the two curved regions. This band is incorrectly classified, and could lead to errors
in models or images produced from the classified data. The original dataset is simulated, two-valued data of two concentric shells, as shown in (e), with SNR
of 14.2.

TABLE III

MRI DATASET SOURCES, ACQUISITION PARAMETERS, AND FIGURE

REFERENCES.

Object Machine Voxel Size TR=TE1=TE2 Figs.
mm s/ms/ms

shells simulated 1:92 � 3 N/A 9
brain GE 0:942 � 3 2=25=50 1, 4
hand GE 0:72 � 3 2=23=50 11
tooth Bruker 0:3123 15=0:080 10

Fig. 10. A geometric model of tooth dentine and enamel created by collect-
ing MRI data samples using a technique that images hard solid materials
[20] and classifying dentine, enamel, and air in the volume data with our
new PVB algorithm. Polygonal isosurfaces define the bounding surfaces of
the dentine and enamel. The enamel-dentine boundary, shown in the left
images, is difficult to examine non-invasively using any other technique.

Fig. 11. A volume-rendering image of a human hand dataset. The opacity of
different materials is decreased above cutting planes to show details of the
classification process within the hand.

and 11, benefit from our new techniques because less incorrect
information is introduced into the classified datasets, thus the
images and models more accurately depict the objects they are
representing. Models and images such as these are particularly
sensitive to errors at geometric boundaries because they illus-
trate the underlying geometries.

Table III lists the datasets, the MRI machine they were col-
lected on, some collection parameters, the voxel size, and the
figures in which each dataset appears. The GE machine was a
1.5T Signa. The Bruker machine was an 11.7T AMX500. Ac-
quired data were collected with a spin-echo or fast spin-echo
protocol, with one proton-weighted and oneT2-weighted acqui-
sition. The tooth was acquired with a technique described in
[20]. Preprocessing was only performed on data used for the
hand example (Figure 11). For this case each axial slice was
multiplied by a constant and then offset by another to compen-
sate for intensity falloff as a function of the distance from the
center of the RF coil. The constants were chosen to make the
mean values of user-identified material regions consistent from
slice to slice.



108 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. Y, FEBRUARY 1998

VIII. D ISCUSSION

We have made several assumptions and approximations while
developing and implementing this algorithm. This section will
discuss some of the tradeoffs, suggest some possible directions
for further work, and consider some related issues.

A. Mixtures of three or more materials.

We assume that each measurement contains values from at
most two materials. We chose two-material mixtures based on
a dimensionality argument. In an object that consists of regions
of pure materials, as shown in Figure 5, voxels containing one
material will be most prevalent because they correspond to vol-
umes. Voxels containing two materials will be next most preva-
lent, because they correspond to surfaces where two materials
meet. As such, they are the first choice to model after those
containing a single material. Our approach can be extended in a
straightforward manner to handle the three-material case as well
as cases with other less-frequent geometries, such as skin, tubes,
or points where four materials meet. This extension could be
useful for identifying sub-voxel-sized geometry within sampled
data, thus extending the resolution.

B. Mixtures of materials within an object.

Based on our assumptions, voxels only contain mixtures of
materials when those mixtures are caused by partial-volume ef-
fects. These assumptions are not true in many cases. By relaxing
them and then introducing varying concentrations of given ma-
terials within an object, one could derive histogram basis func-
tions parameterized by the concentrations and could fit them to
measured data. The derivation would be substantially similar to
that presented here.

C. Benefits of vector-valued data.

As with many other techniques, ours works on vector-valued
volume data, in which each material has a characteristic vec-
tor value rather than a characteristic scalar value. Vector-valued
datasets have a number of advantages and generally give better
classification results. Such datasets have improved SNR and fre-
quently distinguish similar materials more effectively (see Fig-
ure 12).

D. Partial mixtures.

We note that the histograms,hvox(v), for some voxel-sized
regions are not ideally matched by a linear sum of basis func-
tions. We discuss two possible sources of this mismatch.

The first source is the assumption that within a small region
we still have normally distributed noise.�N models the fact that
the noise no longer averages to zero, but we do not attempt to
model the change in shape of the distribution as the region size
shrinks.

The second source is related. A small region may not con-
tain the full range of values that the mixture of materials can
produce. The range of values is dependent on the bandwidth of
the sampling kernel function. As a result, the histogram over
that small region is not modeled ideally by a linear combination
of pure material and mixture distributions. We are investigat-
ing model histogram basis functions with additional parameters
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Fig. 12. Benefits of histograms of vector-valued data. We show histograms
of an object with three materials. (a) This histogram of scalar data shows
that material mean values are collinear. Distinguishing among more than
two materials is often ambiguous. (b) and (c) are two representations of
histograms of vector-valued data and show that mean values often move
away from collinearity in higher dimensions, and so materials are easier
to distinguish. High/bright locations indicate more-common(v0; v1) data
values. While less likely, (d) shows that the collinearity problem can exist
with vector-valued data.

to better match histograms [18], [19]. Modeling the histogram
shape as a function of the distance of a voxel from a boundary
between materials is likely to address both of these effects and
give a result with a physical interpretation that will make geo-
metric model extraction more justifiable and the resulting mod-
els more accurate.

We postulate that these two effects weight the optimization
process such that it tends to make�N much larger than we expect.
As a result, we have found that settingw(v) to approximately 30
times the maximum value inhvox(v) gives good classification
results. Smaller values tend to allow�N to move too much, and
larger values hold it constant. Without these problems we would
expectw(v) to take on values equal to some small percentage of
the maximum ofhvox(v).
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E. Non-uniform spatial intensities.

Spatial intensity in MRI datasets can vary due to inhomo-
geneities in the RF or gradient fields. We assume that they are
small enough to be negligible for our algorithm, but it would be
possible to incorporate them into the histogram basis functions
by making the parameterc vary spatially.

F. Quantitative comparison with other algorithms

Because of the lack of a “gold standard” against which clas-
sification algorithms can be measured, it is difficult to compare
our technique with others. Each technique presents a set of re-
sults from some application area, and so anecdotal comparisons
can be made, but quantitative comparisons require reimplement-
ing other algorithms. Work in generating a standard would
greatly assist in the search for effective and accurate classifica-
tion techniques. Our technique appears to achieve a given level
of accuracy with fewer vector elements than the eigenimages
of [12] or the classification results of [14], which use 3-valued
data. Their results are visually similar to ours, and underscore
the need for quantitative comparison. Because we interpolate
neighboring sample values, we are able to achieve a given accu-
racy with two-valued or even scalar data, while their technique
is likely to require more vector components. [13] shows good
results for a human brain dataset, but we believe their technique
will be less robust in the presence of material mixture signatures
that overlap, a situation their examples do not include.

G. Implementation.

Our implementation is written in C and C++ on Unix work-
stations. We use a sequential-quadratic-programming (SQP)
constrained-optimization algorithm [24] to fithvox for each
voxel-sized region, and a quasi-Newton optimization algorithm
for fitting hall. The algorithm classifies approximately 10 vox-
els per second on a single HP9000/730, IBM RS6000/550E, or
DEC Alpha AXP 3000 Model 500 workstation. We have imple-
mented this algorithm in parallel on these machines and get a
corresponding speedup on multiple machines. The performance
is slower than many other methods and the current implementa-
tion would not be practical for a clinical situation. However, we
believe that the algorithm can be sped up significantly through
a more efficient implementation, which we have not attempted,
and through the inevitable speedups in computer technology.

IX. CONCLUSIONS

Our new algorithm for classifying scalar- and vector-valued
volume data produces more-accurate results than existing tech-
niques in many cases, particularly at boundaries between ma-
terials. The improvements arise because: 1) we reconstruct a
continuous function from the samples, 2) we use histograms
taken over voxel-sized regions to represent the contents of the
voxels, 3) we model of sub-voxel partial-volume effects caused
by the band-limiting nature of the acquisition process, and 4)
we use a Bayesian classification approach. We have demon-
strated the technique on both simulated and real data, and it
correctly classifies many voxels containing multiple materials.
It also enables the creation of more-accurate geometric models
and images. Because the technique correctly classifies voxels

containing multiple materials, it works well on low-resolution
data, where such voxels are more prevalent. The examples also
illustrate that it works well on noisy data (SNR < 15).

The construction of a continuous function is based on the
sampling theorem, and while it does not introduce new informa-
tion, it provides classification algorithms such as ours a richer
context for the information. It incorporates neighbor informa-
tion into the classification process for a voxel in a natural and
mathematically rigorous way and thereby greatly increases clas-
sification accuracy. In addition, because the operations that can
be safely performed directly on sampled data are so limited,
treating the data as a continuous function helps to avoid intro-
ducing artifacts.

Histograms are a natural choice for representing voxel con-
tents for a number of reasons. First, they generalize single mea-
surements to measurements over a region, allowing classifica-
tion concepts that apply to single measurements to be general-
ized. Second, the histograms can be calculated easily. Third, the
histograms capture information about neighboring voxels; this
increases the information content over single measurements and
improves classification results. Fourth, histograms are orienta-
tion independent; orientation independence reduces the number
of parameters in the classification process hence simplifying and
accelerating it.

Partial-volume effects are a nemesis of classification algo-
rithms, which traditionally have drawn from techniques that
classify isolated measurements. These techniques do not take
into account the related nature of spatially-correlated measure-
ments. Many attempts have been made to model partial-volume
effects, and ours continues that trend, with results that suggest
that continued study is warranted.

We believe that the Bayesian approach we describe is a
useful formalism for capturing the assumptions and informa-
tion gleaned from the continuous representation of the sample
values, the histograms calculated from them, and the partial-
volume effects of imaging. Together, these allow a general-
ization of many sample-based classification techniques, one of
which we have demonstrated.
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APPENDIX

I. DERIVATION OF HISTOGRAM BASIS FUNCTIONS

In this appendix we derive parameterized model histograms
that we use as basis functions,fi, for fitting histograms of data.
We derive two forms of basis functions: one for single, pure
materials; another for two-material mixtures that arise due to
partial-volume effects in sampling. Equation 1, the histogram
equation, is:

hR(v) =

Z
R(x)�(�(x) � v)dx

and measures a histogram of the function�(x) over a region
defined byR(x). x ranges over spatial locations, andv over
feature space. Note that if�(x) contains additive noise,n(x; s),
with a particular distribution,kn(v; s), then the histogram of�
with noise is the convolution ofkn(v; s) with �(x)�n(x; s) (i.e,
�(x) without noise).kn(v; s) is, in general, a normal distribu-
tion. Thus,

hR(v) = kn(v; s) �
Z
R(x)�((�(x) � n(x; s))� v)dx(10)

A. Pure Materials

For a single pure material we assume that the measurement
function has the form:

�single(x) = c+ n(x; s) (11)

wherec is the constant expected value of a measurement of
the pure material, ands is the standard deviation of additive,
normally-distributed noise.

The basis function we use to fit the histogram of the measure-
ments of a pure material is

fsingle(v; c; s) =Z
R(x)�(�single(x)� v)dx

=

Z
R(x)�(c + n(x; s)� v)dx

= kn(v; s) �
Z
R(x)�(c � v)dx

= kn(v; s) �
�
�(c� v)

Z
R(x)dx

�
= kn(v; s) � �(c� v)

= kn(v � c; s)

=

 
nvY
i=1

1

si
p
2�

!
exp

 
�1

2

nvX
i=1

�
vi � ci
si

�2
!

(12)

Thus,fsingle(v; c; s) is a Gaussian distribution with meanc and
standard deviations. vi; ci; andsi are scalar components ofv; c;
ands. We assume the noise is independent in each element of
vector-valued data, which for MRI appears to be reasonable.

B. Mixtures

For a mixture of two pure materials, we assume the measure-
ment function has the form:

�double(x) = `double(x; c1; c2) + n(x; s) (13)

where`double approximates the band-limiting filtering process,
a convolution with a box filter, by interpolating the values within
the region of mixtures linearly betweenc1 andc2, the mean val-
ues for the two materials.

`double = (1� t)c1 + tc2 (14)

fdouble(v; c; s) =Z
R(x)�(�double(x)� v)dx

=

Z
R(x)�(`double(x; c1; c2) + n(x; s)� v)dx

= kn(v; s) �
Z
R(x)�(`double(x; c1; c2)� v)dx

=

Z 1

0

kn(v; s) � �((1� t)c1 + tc2 � v)dt

=

Z 1

0

kn((1� t)c1 + tc2 � v; s)dt (15)

II. D ERIVATION OF CLASSIFICATION PARAMETER

ESTIMATION

In this appendix we derive the equations that we optimize to
find model histogram parameters and to classify voxel-sized re-
gions. We use Bayesian probability theory [3] to derive an ex-
pression for the probability that a given histogram was produced
by a particular set of parameter values in our model. We maxi-
mize an approximation to this “posterior probability” to estimate
the best-fit parameters.

maximize P ( parameters j histogram ) (16)

We use this optimization procedure for two purposes:
� Find model histogram parameters. Initially, we find param-
eters of basis functions to fit histograms of the entire datasethall.
This gives us a set of basis functions that describes histograms
of voxels containing pure materials or pairwise mixtures.
� Classify voxel-sized regions. We fit a weighted sum of the
basis functions to the histogram of a voxel-sized regionhvox.
This gives us our classification (in terms of the weights�).
The posterior probabilitiesP all andP vox share many common
terms. In the following derivation we distinguish them only
where necessary, usingP where their definitions coincide.

A. Definitions

Table IV lists Bayesian probability terminology as used in [3]
and in our derivations. Table V defines additional terms used in
this section.
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TABLE IV

PROBABILITIES, USING BAYESIAN TERMINOLOGY FROM [3].

P (�; c; s; �N jh) posterior probability (we maximize this)
P (�; c; s; �N) prior probability
P (hj�; c; s; �N) likelihood
P (h) global likelihood

TABLE V

DEFINITIONS OF TERMS USED IN THE DERIVATIONS.

Term Dim. Definition
nm scalar number of pure materials
nf scalar number of pure materials & mix-

tures
nv scalar dim. of measurement (feature space)
� nf relative volume of each mixture and

material within the region
c nf � nv mean of material measurements for

each material
s nf � nv standard deviation of material mea-

surements (chosen by procedure dis-
cussed in Section V) for each mate-
rial

�N nv mean value of noise over the region
p1�6 scalars arbitrary constants
hall(v) R

nv ! R histogram of an entire dataset
hvox(v) R

nv ! R histogram of a tiny, voxel-sized re-
gion

B. Optimization

We perform the following optimization to find the best-fit pa-
rameters:

maximize P (�; c; s; �N jh) (17)

With P � P all, we fit histogram basis function parameters
c; s, �all to the histogram of an entire dataset,hall(v). With
P � P vox, we fit�vox, �N to classify the histogram of a voxel-
sized region,hvox(v).

C. Derivation of the posterior probability,P (�; c; s; �N jh)
We start with Bayes’ Theorem, expressing the posterior prob-

ability in term of the likelihood, the prior probability, and the
global likelihood.

P (�; c; s; �N jh) = P (�; c; s; �N)P (hj�; c; s; �N)

P (h)
(18)

Each of the terms on the right side is approximated below, using
p1�6 to denote positive constants (which can be ignored during
the optimization process).

C.1 Prior probabilities.

We assume that�, c, s, and �N are independent, so

P (�; c; s; �N) = P (�)P (c; s)P ( �N ) (19)

Because the elements of� represent relative volumes, we re-
quire that they sum to 1 and are positive.

P (�) =

8<
:

0 if
Pnf

j=1 �j 6= 1

0 if �j < 0 or �j > 1
p1 (constant) otherwise

(20)

We use a different assumption forP (c; s) depending on which
fit we are doing (hall or hvox). For fittinghall(v), we consider
all values ofc; s equally likely:

P all(c; s) = p6 (21)

For fitting hvox, the means and standard deviations,c; s, are
fixed at c0; s0 (the values determined by the earlier fit to the
entire data set):

P vox(c; s) = �(c� c0; s� s0) (22)

For a small region, we assume that the mean noise vector,�N ,
has normal distribution with standard deviation�:

P vox( �N) = p2e
�

1
2

P
nv

i=1

� �Ni
�i

�2
(23)

For a large region, the mean noise vector,�N , should be very
close to zero; hence,P all( �N) will be a delta function centered
at �N = 0.

C.2 Likelihood.

We approximate the likelihood,P (hj�; c; s; �N), by analogy
to a discrete normal distribution. We defineq(v) to measure
the difference between the “expected” or “mean” histogram for
particular�; c; s; �N and a given histogramh(v):

q(v;�; c; s; �N) = h(v � �N)�
nfX
j=1

�jfj(v; c; s) (24)

Now we create a normal-distribution-like function.w(v) is anal-
ogous to the standard deviation ofq at each point of feature
space:

P (hj�; c; s; �N) = p3e
�

1
2

R �
q(v;�;c;s; �N)

w(v)

�2
dv (25)

C.3 Global likelihood.

Note that the denominator of Equation 18 is a constant nor-
malization of the numerator:

P (h) =

Z
P (�̂; ĉ; ŝ; N̂)P (hj�̂; ĉ; ŝ; N̂)d�̂dĉdŝdN̂(26)

= p4 (27)

C.4 Assembly

Using the approximations discussed above, we arrive at the
following expression for the posterior probability:

P (�; c; s; �N jh) =

p5P (�)P (c; s) exp

 
�1

2

nvX
i=1

� �Ni

�i

�2
!

(28)

exp

 
�1

2

Z �
q(v;�; c; s; �N)

w(v)

�2

dv

!
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For fittinghall, the mean noise is assumed to be zero, so max-
imizing equation 28 is equivalent to minimizingEall to find the
free parameters(�all; c; s):

Eall(�all; c; s) = 1

2

Z �
q(v;�all; c; s)

w(v)

�2

dv (29)

subject toP (�all) 6= 0. Because bothP (�all) andP all(c; s) are
constant valued in that region, they are not included.

For fittinghvox, the parametersc ands are fixed, so maximiz-
ing equation 28 is equivalent to minimizingEvox to find the free
parameters(�vox; �N):

Evox(�vox; �N) =
1

2

nvX
i=1

� �Ni

�i

�2

+
1

2

Z �
q(v;�vox; �N)

w(v)

�2

dv

(30)
subject toP (�vox) 6= 0.

As stated in Equation 6, Section VI, Equation 30 is minimized
to estimate relative material volumes,�vox, and the mean noise
vector, �N .
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