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Abstract. The problem of computing a fixed point of a nonexpansive function f is considered. Sufficient

conditions are provided under which a parallel, partially asynchronous implementation of the iteration

x:=f(x) converges. These results are then applied to (i) quadratic programming subject to box constraints,

(ii) strictly convex cost network flow optimization, (iii) an agreement and a Markov chain problem, (iv)

neural network optimization, and (v) finding the least element of a polyhedral set determined by a weakly

diagonally dominant, Leontief system. Finally, simulation results illustrating the attainable speedup and the

effects of asynchronism are presented.

Key words, parallel algorithms, asynchronous algorithms, nonexpansive functions, network flows, neural

networks, agreement, Markov chains, Leontief systems

AMS(MOS) subject classifications. 49, 90

I. Introduction. In this paper we consider the computation of a fixed point of a
nonexpansive function f using parallel, partially asynchronous iterative algorithms of
the form x :=f(x). We give sufficient conditions under which such algorithms converge,
we show that some known methods satisfy th•se conditions, and we propose some
new algorithms. The convergence behavior of our methods is qualitatively different
from the convergence behavior of most asynchronous algorithms that have been studied
in the past by many authors [1]-[3], [5], [8], [27]-[30].-'!

We consider a fixed point problem in the n-dimensional Euclidean space 9R". We
are given functions f : 91t" --, "R, i = 1, - - - , n, and we wish to find a point x* E T" such
that

x* =f(x*),

where f: !t" -. WR" is defined by f(x) = (f(x),.. -- , f,(x)).

We consider a network of processors endowed with local memories, which com-
municate by message passing, and which do not have access to a global clock. We
assume that there are exactly n processors, each of which maintains its own estimate
of a fixed point, and that the ith processor is responsible for updating xi, the ith
component of x. (If the number of processors is smaller than n, we may let each
processor update several components; the mathematical description of the algorithm
does not change and our results apply to this case as well.) We assume that processor
i updates its component by occasionally applying f to its current estimate, say x, and
then transmitting (possibly with some delay) the computed value f.(x) to all other
processors, which use this value to update the ith component of their own estimates
(see Fig. 1.1).

We use a nonnegative integer variable t to index the events of interest (e.g.,
processor updates). We will refer to t as time, although t need not correspond to the
time of a global clock. We use the following notations:
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FIG. 1.1. (a) Processor i computes new estimate of the ith

tradsmits new estimate to other processors.
component of a fixed point. (b) Processor i

xi(t) = ith component of the solution estimate stored by processor i at time t.
-, = an infinite set of times at which processor i updates xi.

ri(t) = a time at which the jth component of the solution estimate stored by
processor i at time t was stored in the local memory of processor j
(j = 1, - -- , n; t E •-). (Naturally, rjo(t)- t.)

In accordance with the above definitions, we postulate that the variables x1(t) evolve
according to:

(1.1) f(t(x,(1 il(t)), , x,(, (t))) if therwise.

xx(t) otherwise.

The initial conditions x,(0) are given, and for notational convenience we assume
that x4(t) = x,(0) for t 5 0, so that the asynchronous iteration (1.1) is well defined for
Ti.j(t) 0. We may view the difference t- i (t) as a "' communication delay" between
the current time I and the time hij(t) at which the value of the jth coordinate, used by
processor i at time t, was generated at processor j.

Asynchronous computation models may be divided into totally asynchronous and'
partially asynchronous. In the totally asynchronous model [I1-[3], [8], [30], the "delays"
t- r,j(t) can become unbounded as t increases. This is the main difference with the
partially asynchronous model, where the amounts t-7i,(t) are assumed bounded; in
particular, the following assumption holds.

Assumption A. (Partial Asynchronism). There exists a positive integer B such
that, for each i and each t E -,, there holds:

(a) 05t-r T(t)•-B-1, forallj {1,---,n}.

(b) There exists t' e 3•- for which 1 - t' - t - B.
(c) (t) = t.
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Parts (a) and (b) of Assumption A state that both the communication delays and
the processor idle periods are bounded and can be expected to hold in most practical
cases; for example, (b) holds if each processor uses a local clock, if the ratio of the
speeds of different local clocks is bounded, and if each processor computes periodically
according to its own local clock (see [7], p. 484). Part (c) of Assumption A states that
a processor i always uses the most recent value of its own component x,. This assumption
typically holds in practice, but it is interesting to note that, while it is necessary for
our results (see the proof of Lemma 2.3(a)), it is not needed in the convergence analysis
of totally asynchronous algorithms.

Partially asynchronous iterations have already been studied in the context of
gradient optimization algorithms, for which it was shown that convergence is obtained
provided that the bound B of Assumption A is sufficiently small [27]-[29]. Our results
concern a fundamentally different class of partially asynchronous methods which are
convergent for every value of the bound B. At least two interesting examples of such
methods are known: the agreement algorithm of [29] and the Markov chain algorithm
of [20]. However, it appears that these methods have not been recognized earlier as
a class. Their convergence behavior is somewhat surprising because their totally
asynchronous versions do not converge in general; for a counterexample, see [7, p. 484].

In this paper we focus on the convergence issues of partially asynchronous methods
with arbitrarily large values of the asynchronism bound B. Our main result (Proposition
2.1) is the first general convergence result for these methods. In §§ 3-7, we show that
Proposition 2.1 applies to a variety of methods for several important problems, including
the agreement and Markov chain algorithms mentioned earlier. Some of our conver-
gence results are new, even when they are specialized to the case of synchronous
algorithms; for example, the convergence of Jacobi relaxation methods for strictly
convex cost network flow problems in § 4.

2. A general convergence theorem. Throughout this paper, we let X*=
{x e T" lf(x)= x} be the set of fixed points of f and, for each x rt", we let Ilxll =
maxi= ,...x, jil denote the maximum norm of x For any x E 91", we denote by p(x) the
distance of x from X*, defined by

p(x) = inffEx. Iix - Yll-

Finally, given any x e R" and x* e X*, we let I(x; x*) be the set of indices of coordinates
of x that are farthest away from x*, that is,

I(x; x*)= {il x,-xIl = |Ix-x*tl},

and we also denote

U(x; x*)= {yE I y= x, for all i E I(X; x*),

and jly-xIj< IIx-x*Il for all i.f I(x; x*)}.

Loosely speaking, U(x; x*) is the set of all vectors y with Ily -x*Jl = jjx -x*I1 that
agree with x in the components that are farthest away from x* (see Fig. 2.1).

Our main assumption on the structure of f is the following.
Assumption B.
(a) f is continuous.
(b) The set of fixed points X* is convex and nonempty.
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U(v;x*) -*

w x = (I,i)

U(x;x*)

FIG. 2.1. Illustration of the sets I( -; x*) and U(- ; x*). Let n = 2 and suppose that x* = (0, 0) e X*. For

the indicated points x, v, and w, we have I(x; x*) = {1, 2}, I(v; x*) = {1}, I(w; x*) = (2}. The set U(v; x*) is

the set of all vectors of the form (-1, c), where c satisfies -1< c< 1, which ts the segment joinmng the points

i-1, -1) and (-I, 1), the endpotnts excluded. Similarly, U(w; x*) = {(c, 1) -1< c < l. Finally, we have

U(x, x*)= {x}.

(c) Ilf(x) - x*ti - |Ix - x*li, for all x E 9', for all x* E X*.
(d) For every x E n" and x* E X* such that I x -x* = p(x) > 0, there exists some

i e I(x; x*) such that f(y) # y, for all y e U(x; x*).

Part (c) of Assumption B states that f does not increase the distance from a fixed

point and will be referred to as the pseudo-nonexpansive property. This is slightly

weaker than requiring that f be nonexpansive (that is, Ilf(x) -f(y)I <l- l-x -yll for all

x and y in R") and in certain cases is easier to verify (see § 4). We interpret part (d)

as follows: Consider some x - X*. Then f(x) # x, and there exists some i such that

f(x) # x,. Assumption B(d) imposes the additional requirement that such an i can be

found among the set of worst indices, that is, i belongs to the set I(x; x*) of indices

corresponding to components farthest away from a closest element of X*. Furthermore,
if we change some of the other components of x to obtain another vector y e U(x; x*),
we still retain the property f(y) • y,, for this particular i. This part of Assumption B

is usually the most difficult to verify in specific applications.

Unfortunately, the following simple example shows that Assumptions A and B

alone are not sufficient for convergence of even the synchronous version of iteration

(1.1): Suppose that f(x, x 2) = (x 2 , x1) (which can be verified to satisfy Assumption B

with X* = {(A, A) E }). Then the sequence {x(t)} generated by the synchronous

iteration x(t + 1) =f(x(t)) (which is a special case of (1.1)), with x(0) = (1, 0), oscillates

between (1, 0) and (0, 1).

The difficulty in this example is that, at each iteration, while the worst coordinate

i E I(x; x*) is changed from 1 to 0, the other coordinate is increased from 0 to 1, and

the distance p(x) from X* is not changed. The following assumption is designed to

prevent such behavior.

Assumption C. For any i, x e- ", and x* E X*, if f(x) # x,, then If(x)- x*i <

ix - x*I .

---- c------~
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An important fact, shown below, is that any mapping satisfying Assumption B
can be modified by introducing a relaxation parameter, so that it satisfies Assumption
C as well.

LEMMA 2.1. Let h : ~ -9 Y" be afunction satisfying Assumption B. Then the mapping
f: T"• ~" whose ith component is

f(x) = (1- y)x, + yhi(x),

where y•, - - , y, are scalars in (0, 1), has the same set of fixed points as h and satisfies
both Assumptions B and C.

Proof It is easily seen that f is continuous and has the same set of fixed points
as h, so it satisfies parts (a) and (b) of Assumption B. Since f(x) 0 x, if and only if
hi(x) # x,, we see that f satisfies part (d) of Assumption B. Since h is pseudo-
nonexpansive, for all i, x e 91, and x* e X*, both xi and h,(x) belong to the interval

[x4,- IIx- x*II, x+ IIx - x*].

Therefore, fi(x), which is a convex combination of x, and hi(x), must also belong to
this interval, proving that f is pseudo-nonexpansive, (cf. part (c) of Assumption B).
Furthermore, if hi(x) # xi, then the convex combination fi(x) must belong to the interior
of this interval, showing that f satisfies Assumption C. 0

We now prove our main convergence result, showing that Assumptions A, B, and
C are sufficient for the sequence {x(t)} generated by the asynchronous iteration (1.1)
to converge to an element of X*. To motivate our proof, consider the synchronous
iteration x(t + 1) =f(x(t)). Under Assumptions B and C, eithpr (i) p(x(t + 1)) < p(x(t))
or (ii) p(x(t+l))= p(x(t)) and x(t+l1) has a smaller number of components at a
distance p(x(t)) from X* than x(t). Thus, case (ii) can occur for at most n successive
iterations before case (i) occurs. This argument can be extended for the asynchronous
iteration (1.1), but because of communication and computation delays (each bounded
by B, due to Assumption A), the number of time steps until the distance to X* decreases
is upper bounded by roughly 2nB (see part (c) of Lemma 2.3).

PROPOSITION 2.1. Suppose that f: T" - T" satisfies Assumptions B and C, and
suppose that Assumption A (partial asynchronism) holds. Then the sequence {x(t)}
generated by the asynchronous iteration (1.1) converges to some element of X*.

Proof For each integer t t 0 denote

z(t) =(x(t- B+ 1), - - , x(t)),

d(z(t))= min {max {jIx(t-B+1)-x*jl, - - ,jx(t)-x*ll}}.
x*EX*

Notice that the minimum in the definition of d(z(t)) is attained because the set X*
is closed (as a consequence of the continuity of f). For each t -0, we fix an element
x*(t) of X* attaining the minimum

(2.1) X*(t) =arg min max {lIx(t-B+ I)-x*ll, - - - Ix(t)-x*jj}}.
X·e X*

As part of the proof of Proposition 2.1, we prove some preliminary facts in the
following two lemmas, which show that the distance d(z(t)) cannot increase at any
iteration while it decreases strictly "every few" iterations.

LEMMA 2.2. d(z(t+ 1))-d(z(t)), for all z(t) E ~", for all t -0.
Proof We will prove by induction that

jIx(r)-x*(t)j <-d(z(t)), VrŽ t- B+1,

..:.
.... ..:
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which implies the result. From (2.1) and the definition of d(z(t)), this inequality holds
for rE{t-B+1, - - -, t}. Suppose that it holds for all re {t-B+l, - - , r'}, where r'
is some integer greater than or equal to t. We will show that it holds for r'+ 1. By
(1.1), for each i, either xi(r'+ 1) = xi(r') or x,(r') =f,(x,(rT,(r')), • -, x,,(r,(r'))). In the
former case, we have Ixi(r'+1)-x*(t)l= lx,(r')-x*(.t)- 5d(z(t)) by the induction
hypothesis. In the latter case, we have by Assumption A(a), r'- B + 15 <= (r') 5 r', so

by the induction hypothesis, Ixj(ro,(r'))- x(t)l -d(z(t)) for all j. Using the pseudo-
nonexpansive property of Assumption B(c), we obtain

Ixi(r'+ 1) - x*(t)l - max Kxj(rij(r')) - x*(t)! _ d(z(t)).
1

Thus, in either case we have Ixi(r'+l)-x*(t)l 5d(z(t)), and this is true
index i. Therefore, Ilx(r'+ 1) -x*(t)ll - d(z(t)), completing the induction.

LEMMA 2.3. Fix some t 0 for which d(z(t))>0 and denote

J(r)={illx,(r)-x*(t)l=d(z(t))}, Vr>=t.

(a) Ifxi(r+ 1) 3 x(r) for some r= 1t, then ig J(r+ 1).

(2.3) (b) J(r+l1)J(r),for all r -t.

(c) d(z(t+2nB+ B-1))<d(z(t)).

Proof For convenience, we will use the notation '

for every
0

P = d(z(t)),

:3:..1:.I;C

(a) If x,(r+l)#x,(r), we have r E 3". Furthermore,

(x,(r,(r))," , x.(r,,(r))) = x1(r+ I) # x,(r)= xj(ru(r)),

where the last equality follows from Assumption A(c). Using Assumption C, we obtain

Ix,(r + 1) -x* il < max Ixj(7j(r)) - x*| - t,

where the last inequality follows from r - B + I _ 7Tij(r) r (cf. Assumption A(a)) and

Lemma 2.2 (cf., (2.2)). Thus, iZ J(r + 1).
(b) If ieJ(r+ 1), then part (a) shows that x,(r)= x,(r+ 1), which implies that

i eJ(r).
(c) We first show by contradiction that, for all r t,

(2.4) d(z(r+2B)) = P->J(r+2B) 3 J(r).

Suppose that, for some r-_ t, we have d(z(r+2B))=/3 and J(r)= J(r+2B). By part

(b), J(r)= J(r+ 1) = ... = J(r+2B). Denote J = J(r). Then, by part (a),

(2.5) x,(r)=x,(r+l)= ... =x,(r+2B), VieJ,

and by the definition of J,
.~~::" ~ .1. ~....:::...

(2.6)

Now, from the definition of J, x* and / we have that Ixi(r) -xl = P for all iE J; hence
(2.6) implies

J= 1(x(r); x*).

.~·:
':"'"

.~~...... ..
q~·i~~i~u~:

x* = x*(t).

Ix,(r)-x*l <P,--- , Ix,(r+2B)-xfl <3, Vi J.

(2.7) I|x(r) - x*ll = P,
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Also by Assumption A(b), for each ie J, there exists ri e { r + B, - , r +2B - 1} such
that r E 3-C and the iteration (1.1) yields

(2.8) x,(r,+ 1) =f((x,(ri,(r)), .. x,(r,,(r))), Vie J.

Let us denote

x'= (x,(r,,(r,)), .- -x,(ri.(r,))), ViE l

By Assumption A(c), 7,(r,) = r, for all i eJ, which together with (2.5) implies that

x,(r,+l)=x, (;,(r,)), ViEJ.

Therefore, (2.8) can be written as

(2.9) x =fj(x'), ViEJ.

Furthermore, by Assumption A(a), r! rji(rj)5 r+2B for all ieJ and all j, which

together with (2.5)-(2.6) implies that

x, = xj(r), ViEJ, VjeJ,

Ix;-xfj<Py,Viel, VjaJ.

Therefore from (2.7) we also have

(2.10) x'E U(x(r); x*), ViEJ.

It now follows that

P = jjx(r) -x* > p(x(r)),-"

since if I|x(r)-x*ll =p(x(r)), then in view of the'fact I(x(r); x*)=J (cf. (2.7)) and
(2.9)-(2.10), Assumption B(d) would be violated.

Thus, we conclude that there exist y* e X* and 0 e [0, 0) such that jIx(r) - y* I = 0.
Let

e=max {Ix ,(m)-x*li iJ, m = r+B,- • -, r+2B- 1},

M =max {ix,(m)-yl IiiJ, m = r+ B,- .- , r+2B-1}

(see Fig. 2.2). Since X* is convex, we have that, for any w e (0, 1), z* = (1 - w)x* + wy*

Mx 
(r)

x* gx(r+B)

i-u i] x(r+2B-l)

FIG. 2.2
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is in X* and, form=r+B,---,r+2B-1,

Ix,(m) - zIl = Ix,(r) - zlI

_- (1 -w)Ix(r) -xj + wjx,(r) -y*l

=(1-w)p3+iO0, VieJ,

xi,(m) -z41 (1- w)lxi(m) - xl + wlx(m) -yfl

(1 -w)e+wM, VigJ.

Since e <3p and 0 < 3, we have that, for w sufficiently small,

Ilx(m)-z*ll<3P, Vm=r+B, - , r+2B-1.

This implies that d(z(r+2B-1))</3, a contradiction.
Since by Lemma 2.2, d(z(r)) is nonincreasing, either d(z(t+2nB-1))<(3, in

which case the result is proved, or d(z(t+2nB-1))=/3. In the latter case, by (2.3)
and (2.4), J(t+2nB) -... =J(t+2nB+B- 1)=0, and

d(z(t+2nB+B-1)) = max {Ilx(t+2nB)-x*ll, - - *, lx(t + 2n + B+B- )-x*l}<.

We now complete the proof of Proposition 2.1.
By (2.2), the sequence {z(t)} is bounded and, by Lemma (2.3)(c), d(z(t))

monotonically decreases to some limit P. If P = 0, then Lemma 2.2 and (2.2) imply
that {x(r)} has a unique limit point, which is in X*, and our proof is complete. Suppose,
to obtain a contradiction, that p > 0. Let

At=2nB+ B-1.

Since, by (2.2), {z(t)} is bounded, there exist some z* e "9, z**E~ t "B and a sub-
sequence T of {0, 1, - - - } such that

(2.11) {z(t + At)},~, z**.

Note that since d(z(t))-•p and d is a continuous function, (2.11) implies that
d(z*) = d(z**) = 3.

From (1.1), Assumption A and the definition of z(t), we see that we can express
z(t+At) as a continuous function of z(t). In particular, we can write

(2.12) z(t +At)= g(z(t); (t)),

where F(t)= (Ft(t), • • , r,(t)) and ri(t) denotes the set

(2.13) fi(t)={(r- t, rti(r)-t, .- - -7,,(r)-t) re • ( t,- - -, t+&t}},
and g(.; F(t)): M-+n_%"S is some continuous function that depends on f and F(t)
only. (Note that g(-; F(t)) is the composition of the f's in an order determined by
r(t) and is continuous because f is continuous.) Since (cf. (2.13) and Assumption A)
F(t) takes values from a finite set, by further passing into a subsequence, if necessary,
we can assume that r(t) is the same set for all te T. Let F= (F, ,. • , ,.) denote this
set. Then from (2.12) we obtain that

z(t+At)=g(z(t); F), Vti T.

Since g(-; n) is continuous, this, together with (2.11), implies that z** = g(z*; F) or,
equivalently, z(At) = z** if z(0) = z* and

{ l(r7,(r 'i(r,))r rei(f.{0, .- ,}}= F,, VL

Since d(z*) = p >0, this, together with Lemma 2.3(c), implies that d(z**)< d(z*),
contradicting the hypothesis d(z**)= P. 0

.: ....:: :r:.'.:. ··:
:·..·:::·:~··-·:· : :-.·rr: .·.:.:

i.
:~;;·i3-i1'.3"-~··.S-r·rTr:*,rr-`^.'-·U

{z(t)},.T- Z*,

-I: i"`r· :,::~::::~:.: ::.::· ~.: :

:...

·- ·- : · · ·· ·:. .
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The convexity of X* is sometimes hard to verify. For this reason we will consider
another assumption that is stronger than Assumption B but is easier to verify.

Assumption B'.
(a) f is continuous.
(b) The set of fixed points X* is nonempty.
(c) lIf(x)-x*I[ x IIx -x*U, for all xe , for all x*eX*.

(d) For every x 0 X* and x* e X*, there exists some i E [(x; x*) such thatfi(y) # y,

for all y E U(x; x*) such that y i X*.
Compared to Assumption B, part (d) of the new assumption is stronger but part

(b) is weaker because convexity is not assumed. We have the following result.
LEMMA 2.4. Assumption B' implies Assumption B.
Proof. It can be seen that Assumption B'(d) implies Assumption B(d), so we only

need to show that X* is convex. Suppose the contrary. Since X* is closed, then there

exist x* e X* and y* e X* such that (x*+ y*)/20 X*. Let x = (x*+y*)/2. It can be

seen that IIx - x*ll = x - y*ll > 0, x i X*, and I(x; x*) = I(x; y*) (see Fig. 2.3). By
Assumption B'(d), there exists i E I(x; x*) such that f,(x) # xj. Suppose that x > y*.
Then if fj(x)>x,, we obtain jIf(x)-y*ll ý-fi(x)-y*>x,-y*= jlx-y*ll and if

f,(x) < x, we similarly obtain IIf(x) - x* II > IIx - x*ll. In either case Assumption B'(c)
is contradicted. The case where x, < y, is treated analogously. 0

Assumption B will be used in § 4, while Assumption B' will be used in §§ 3,-.6,

and 7.

3. Nonexpansive mappings on a box. Let g: 1" - 91" be a continuously differenti-

able function satisfying the following assumption:

Assumption D.
(a) For each i, , jag,(x)/axl 5 1, for all x e'".

(b) For each i and j, either ag,(x)/ax, = 0, for all x eM", or ag,(x)/ax, 0, for all

XE T".

. .. . . . .

. . . . .- . - ' - .

-" " , " " .. . -. .- : " "- :.- -.: -° -. ,:" .

9 x*- y*ll

: : :: 1

4 *- y4Ixy U

I(x;x*) = I(x;y*) = 12). I(x;x*) = I(x;y*) = {1,2}.

FIG. 2.3. Two configurations of x* and y*.

(c) The graph with node set { l,. , n} and arc set {(i, j) Iag (x)/ax: # 0} is strongly

connected.
Let C be a box (possibly unbounded) in N", i.e.,

C = {x E "l x,- c,, Vi},

for some scalars 1, and c; satisfying 1, 5 c, (we allow li = -co or cq = +oo). Let also [x] ÷

. . . . . . . . '

"''

I
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denote the orthogonal projection of x onto C, i.e.,

[x]' = (max {II, min {c,, x}}, -- - , max {l,, min {c., x,}}).

We use the notation x" to denote the transpose of a column vector x_ The following
is the main result of this section.

PROPOSIrION 3.1. Let g: ~" 91" satisfy Assumption D. If either g has a fixed point
or if C is bounded, then the function h: W" - 91" defined by

(3.1) h(x) = [g(x)]÷

satisfies Assumption B'.
Proof Since both g and [-]÷ are continuous functions, so is their composition,

and part (a) of Assumption B' holds.
By the Mean Value Theorem, for any x e 1", y e 9", and index i, there exists

E9EW" such that

I
;-5-- ·-:·:.:1::1:·: XL:·i·~·~1~: Cr···.· · _7···r -·1··

I

.·: · ~·
- · · · ·

.·:

~-·.··..·.,·'~'~"I~`L
FLn··,xr ~··~;*r--·l~`r··h·

(3.2)

This implies that

gi(y)- g(x) = (Vg,(W))(y _ x).

Ig;(y) - g,(x): lag,()/ax,l ly, -xi

- (~ Igi(W)/axij)1x- -y11

- IIx-yll,
where the last inequality follows from Assumption D(a). Sirfce the choice of i was
arbitrary, g is nonexpansive with respect to the maximum n6rm. Since projection
onto a box can be easily seen as nonexpansive with respect to the maximum norm, it
follows from (3.1) that 1Ih(x) -h(y)ll - Ilg(x) -g(y)1j. Thus, h is nonexpansive with
respect to the maximum norm, and part (c) of Assumption B' is satisfied.

We now show that h has a fixed point. Suppose first that g has a fixed point y*.
Choose 3 sufficiently large so that the set Y = {x e 9" tlx - y*i /3} 1 C is nonempty.
Then for every x e Y we have, for all i,

y* - p - g,(x) - y* +P,

either 1I-g,(x)<c, or g,(x)<l, y*,+P3 or y,-f3<5c<g,(x).

Since h,(x)= max {li, min {ci, g,(x)}}, this implies that h(x) Y (see Fig. 3.1 below).

...(x).

y *
13

Y

FiG. 3.1

h(x)

C

~.... ~- -·.~.--. ~~. ~~. .. 4.,.,.... ..i. ~-.1.·
~ :- ·~

'.' .- ·.I
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Since h is also continuous and Y is convex and compact, a theorem of Brouwer ([ll],
p. 17) shows that h has a fixed point. Now suppose C is bounded. Since h(x) e C for
all x ( C and C is convex and compact, the same theorem of Brouwer shows that h
has a fixed point. Thus, part (b) of Assumption B' is satisfied.

We finally show that Assumption B'(d) holds. Suppose the contrary. Then
there exists some x i X* and some x* e X*, such that for every ie I(x; x*) there
is an x'e U(x; x*) with x' j X* and hi(x')= x'. Let J= I(x; x*),/3 = IJx-x*jl and fix
some i J. By the Mean Value Theorem, there exists some E s " such that g,(x')-
g,(x*) = (Vgi(e))T(x ' - x*). Let a,= agi(e)/axa. Then

/ = xil -xfl = 1h,(x')- hi(x*)l

- g,(x') - g,(x*)l

-+ aij(x! -x*-) ),

EJc

where the first inequality follows from the fact that the projection onto [/I, c,] is
nonexpansive and the last inequality follows from the fact (cf. Assumption D(a)) that
Y_ lajl - 1. Since Ix, -x7* l <3P for all j 0 J, the above inequality implies that aj = 0 for
all j 0 J. Since the choice of i E J was arbitrary, we obtainlfrdm Assumption D(b) that
agi(C)/dxj=0 for all fe R", iE J, j J. By Assumption D(c), we must have that
J ={1, - , n }. In that case, U(x; x*) is a singleton and all the vectors x' are equal.
It then follows from the equalities h,(x') = x:, for all i, that each x' is a fixed point of
h, a contradiction of the hypothesis x' o X*. 0

Since Assumption B' is satisfied, the partially asynchronous iteration

x:= (1 - Y)x + yig(x)]+

(with 0< y< 1) converges (cf. Lemmas 2.1, 2.4, and Proposition 2.1).
An important special case is obtained if C = O", g(x) = Ax+ b, where A is an

n x n matrix and b is a given vector in T". Thus, the problem is to solve the linear system

x = Ax +b,

and Assumption D amounts to the requirement that A= [a,] is irreducible (see [22]
for a definition of irreducibility) and ,j laIl 5 1, for all i. Then, provided that the system
x = Ax + b has a solution (not necessarily unique), the partially asynchronous iteration

x:= (1 - y)x+ y(Ax + b)

(with 0< y < 1) will converge to such a solution.
As a special case of our results, we obtain convergence of the synchronous iteration

x(t+ 1) =(I - y)x(t)+ y(Ax(t)+ b).

This seems to be a new result under our assumptions. Previous convergence results
[17], [22] have made the stronger assumption that either: (a) A is irreducible and
E, la,• 5 1, for all i, with strict inequality for at least one i, or (b) j, lail < 1, for all i.
Two other important special cases are studied below.

3.1. Quadratic costs subject to box constraints. Consider the following problem.

.. :.:

...:.:..:. r.;.~..:.. ·;.:·.1-.·:1.·-;·-· ----·..-

`'' ''
;;-·~-;;.; ,.......,~.. :~o:li_~

.1.
.. ·· '·-`

.:-.. ·: ~,~~ ·· ·'~·
-- :- :·
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Minimize x TQx/ 2 +pTx

Subject to x E C,

where Q = [qi,] is a symmetric, irreducible, nonnegative definite matrix of dimension
n x n satisfying the weak diagonal dominance condition

.:'.". ~'i' !.." '; . -° ".: 'i:
:::'..... .' .-. .....

S ..... ~ ".4.: .- . .: 
-

"..".. ". ::.: ' ... ::".-~ -. . - ~ ·~-·''. - -s.- -1·

. .

(3.4) Xq#J:5qii, qi>0, Vi
joi

p is an element of 9R", and C is, as before, a box in N".
Let D denote the diagonal matrix whose ith diagonal entry is qi,. Let A = I - D - Q

and b = -D-'p. We have the following result.
PROPOSITION 3.2. The function g:,R" -~ defined by g(x)= Ax+b satisfies

Assumption D.
Proof. g is clearly continuously differentiable and (cf. (3.4)) Y IlaJl=

Yj, JIqJ1/qii - 1 for all i Since ag,(x)/ax, aiJ for all xe R" and A is irreducible, g satis-
fies Assumption D. 0

It can be seen (by using the Kuhn-Tucker optimality conditions [23]) that each
optimal solution of (3.3) is a fixed point of [Ax+b] ÷ and vice versa, where [.-]
denotes the orthogonal projection onto C. Hence, if (3.3) has an optimal solution,
then (cf. Lemma 2.1, 2.4, and Propositions 2.1, 3.1, 3.2) the partially asynchronous
iteration

(3.5) x:=(1 -y)x+ y[Ax+b]r

(with 0< y <1) converges to such a solution. Note that for y -"1, the iteration (3.5)
takes the form x:= [x - D-'(Qx+p)]* which is a diagonally scaled gradient projection
iteration. However, this iteration need not be convergent in the absence of additional
assumptions.

3.2. Separable quadratic costs with sparse 0, +1, -1 matrix. Consider the following
problem.

(3.6)

,· r,.Sk7·7~~::
'`'I~ ·: ~i

-:·

::·'::.
.: :... : :

.: ::

Minimize w'Dw/2+P3Tw

Subject to Ew - d,

where D is an m x m positive definite diagonal matrix, 1 is an element of l'", d is
an element of W", and E = [eik] is an n x m matrix having at most two nonzero entries
per column, and each nonzero entry is either -1 or 1. Furthermore, we assume that
the undirected graph 9 with node set {1, • • •, n} and are set {(i, j) eik # 0 and ei, • 0
for some k} is connected.

Consider the following Lagrangian dual [23] of (3.6).

Minimize x7 Qx/2+pTx

Subject to x _ 0,

where Q = ED-'ET, p = -d - ED-'3. We show below that this is a special case of the
problem considered in the previous subsection.

PROPOSITION 3.3. Q is symmetric, irreducible, nonnegative definite and weakly
diagonally dominant (cf. (3.4)).

Proof Since D is symmetric and positive definite, Q is symmetric and nonnegative
definite. To see that Q satisfies (3.4), let a, denote the kth diagonal entry of D (a, > 0),
let O(i) denote the set of indices k such that eik . 0, and let q, denote the (i, j)th entry

... ".............

(3.3)

.:.·. · e



P. TSENG, D. P. BERTSEKAS, AND J. N. TSITSIKLIS

of Q. Then

IqJ,:= e7ik(C) ejk

_ Z (ak) -
k~ O()'lO(j)

with equality holding if i =j. Hence, for each i,

J~i j*ý koti}lO(pu

< X (ak-'
kEOkil

= qi,;

where the second inequality follows from the fact that if k E O(i) O(j) for some j,
then k O(i) n O(j') for all j' not equal to i or j. Finally, Q is irreducible because IN

is connected and q, 0 0 for i #j if and only if there exists' some k such that eik # 0
and eik 0. 0

An example of constraints Ew - d satisfying our conditions on E is

YWk51 and Y wkO for r=1,2,- .,R,
k k K,

where K,, K 2, - , KR are some mutually 'disjoint subsets of {1, 2, - -, m}. Such
constraints often arise in resource allocation problems.

4. Strictly convex cost network flow problems. Consicder a connected, directed graph
(network) with the set of nodes X ={1,- , n} and the set of arcs d g• x Ax.V We
assume that i j for every arc (i, j) and that at most one arc connects any ordered
pair of nodes, so that the arc (i, j) has unambiguous meaning. (These restrictions can
be easily removed.) For each node i 'X, denote by 2(i) the set of downstream neighbors
of i (that is, .(i) = (j I(i, j) E }) and by OL(i) the set of upstream neighbors of i (that
is, U(i) = (j (j, i) E d}). Consider the following problem:

(4.1)

(4.2)

Minimize Z ai(f )

Subject to 5 fj,- _ f,=s,, VieX,
J =- , (1

where each ai,: IR - (-co, +co] is a strictly convex, lower semicontinuous function and
each s, is a real number. We interpret f. as the flow on the arc (i, j), s, as the supply
(or demand if s, <0) at node i, and a,(fCj) as the cost of sending a flow of f on arc
(i, j). The goal is then to find a set of arc flows that minimizes the total cost while
satisfying the flow conservation constraints (4.2) (see Fig. 4.1). Note that capacity
constraints of the form

q1(i) ?(i)

FIG. 4.1

. . . .. .... ...." ' :' ' .. : ,,.:!: . :,-.-. f .,A ., 
.

............ .. : .

v .... ...

. .
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where bq, co are given scalars, can be incorporated into the cost function a,q by letting
ai.(f ,) = +oo for f, i [b,, c].

The above network flow problem is an important optimization problem, with
applications to data networks, traffic assignment, matrix balancing, etc. The interested
reader is referred to [7, Chap. 5] for a detailed discussion of this problem. (Also see
[5], [6], [9], [12], [21], [24], [31]-[33].)

Denote by g;,:R - (-cc, +oo] the conjugate function ([23, § 12]; [24, p. 330]) of
ao, i.e.,

(4.3) gi,(i) = sup ({4 - a,(C)}.
;=-!I

·
· ·: :...:..·.:·-·
:

"' ·:·-- ··-- ~3~-=
r·:j

zii~ilfi~. ~·\.-··;~;,,--;;,-~; ;s~-:.,, .....-

Each g, is convex and, by assigning a Lagrange multiplier p, (also called a price) to
the ith constraint of (4.2), we can formulate the dual problem ([24, § 8G]) of (4.1) as
the following convex minimization problem.

Minimize q(p)= Z gi,(p,-p,)- 5 p,s,

(4.4) i
Subject to pc 'j".

We make the following assumption.
Assumption E.
(a) Each conjugate function g,, is real valued. o
(b) The set P* of optimal solutions of the dual problem (4.4) is nonempty.

Assumption E implies (cf. [24, § 11D]) that the original problem (4.1) has an optimal
solution, and the optimal objective value for (4.1) and (4.4) sunt,-o iero. Furthermore,
the strict convexity of the aj,'s implies that (4.1) has a unique optimal solution, which
we denote byf* = ( - • • , f*, • • • )(,j,•, and that every gy is continuously differentiable
([23, pp. 218, 253]). Hence q given by (4.4) is also continuously differentiable. Its
partial derivative aq(p)/ap,, to be denoted by d,(p), is given by

(4.5) aq(p)
d,(p)= Vg,(p,-p,)- , Vg,i(pi-_p)-si.

ap. .=-•.r i ) J.' i

Given a price vector p E 91", we consider an iteration whereby the dual objective
function q is minimized with respect to the ith coordinate p,, while the remaining
coordinates are held fixed. In view of the convexity and the differentiability of q, this
is equivalent to solving the equation di(p. ". p,-,, p , , p,~,- -, p)= 0 with respect
to the scalar 0. This equation can have several solutions and we will consider a mapping
which chooses the solution that is nearest to the original price p,. Accordingly, we
define a function h : T" -, ," whose ith coordinate is given by

(4.6)

We will show later in Lemma 4.1 that the set in (4.6) is nonempty and the minimum
in (4.6) is attained, so that h is well defined. Notice that h(p)=p if and only if
aq(p)/api = d,(p) =0 for every i. It follows that P* is the set of fixed points of h.

Since q is convex, the set P* is convex (P* is also nonempty by assumption).
Also from Proposition 2.3 in [6] we have that, for any p e R and any p* e P*,

min {p,-p*}<h,(p)-p*-max {p,-p*}, Vie.K,

and hence h has the pseudo-nonexpansive property

I1h(p)-p*ll- 5|lp -p*l|.

~··'·- · · ·

::~:::::':1- · ·· ·: :,,:~ ~
rE~~~~I~~l~.~ :::::W"'L~ "' ""~~1

l'i r~

· ·· ·· · .·· ·..... ·::::~.':. -·`- ·~:·

.. : .··
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.. ... .. ..

, .... . . . . ' : . . . - . , . . '. . - . ' , .

Furthermore, by using Proposition I in [5] and an argument analogous to the proof
of Proposition 2.5 in Chapter 7.2 of [7], we can show that the mapping h is continuous.
Therefore, h satisfies parts (a)-(c) of Assumption B. We show below that h is well
defined and also satisfies part (d) of Assumption B.

LEMMA 4.1. The mapping h is well defined and satisfies Assumption B(d).
Proof. We start by mentioning certain facts that will be freely used in the course

of the proof.
(a) For any (i, j) e d, the function Vgj, is nondecreasing. (This is because g,j is

convex.)
(b) d, ::" - 91 is a nondecreasing function of the ith coordinate of its argument

when the other coordinates are held fixed. (This is because the dual functional q is
convex and d, = aq/8p.)

(c) A vector p* e %" belongs to P* if and only if, for every arc (i, j), we have
Vg;,(p* - p*) =f,*. (This is a direct consequence of the Network Equilibrium Theorem
in [24, p. 349].)

We first show that h is well defined. Fix any p e N" and any i. We claim that there
exists 0, such that d,(p+ 0,e') 0, where e' denotes the ith coordinate vector in R".
To see this, let p* be any element of P* and let 0, be any scalar sufficiently large so that

p,-p,+0,-p*-p*, Vj E(i),

pj -p- 0, 5p*-p* ," Vj •E (i).

Since Vgk, is nondecreasing for all (k, 1) e d, this implies that

Vgj(p;-p, +01,)Vg0(pt - pf) =f, , .,Vj e (i),
Vgji(pj-p,-0i)<__Vgji(p*-p*)=f7, *jE•;( pi - pi ,-6) g,( pi -p,) -- f*,, Vj E CI(i).

Upon summing the above inequalities, we obtain that

d,(p+O,e')= F Vgij(pj-p,+0)- I Vgji(pj-pi-Ot)-si
f :( f) t E (i)

> • f1*- C fT-S,
j~t(i) jsal( i)

where the last equality follows because the flows f,* and fj' must satisfy the flow
conservation equation (4.2). Similarly, we can show that there exists 02 such that
d,(p + 02e' ) O. Since d (p.+ Be') is a continuous function of 0, this implies that there
exists some 0 between 0, and 02 such that d,(p + 0e') = 0. Therefore the set in (4.6) is
nonempty. Since this set is also convex (due to the convexity of q) and closed (due
to the continuity of d,), the minimum in (4.6) is attained. Hence h is well defined.

Now we show that h satisfies Assumption B(d). We will argue by contradiction.
Suppose that h does not satisfy Assumption B(d). Then for some p 0 P* and p* L P*
such that 1i p - p*jl = p(p) > 0 there exists, for every i E I(p; p*), a vector p' E U(p; p*)
such that h,(p')= pl. (p(p) denotes the maximum norm distance of p from P*.) Let
6 = p(p), J = I(p; p*), e = - max {Ipp -pfl ij i J, k E J}, and

J-= {IIi p-p = -P},

J={i Ip,-p = 0.

Then e >0, J= J- U J and, for all i J,
(4.7) p T-+eBespj•5p7+p -e, VjzJ,

(4.8a) p)=p7-fP, VjeJ-,
(4.8b) p-=p7-+P, VjeJ +.

-- ~

·-- -e 3i :. -r~~ .. ,,,I.....
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.... : .":

Fix any iE J-. The relations (4.7), (4.8a) imply that

pi -p< (p*-P)-(p -P)=p*-p
* , VjIe(i),

i i

p -p >(p*-f)-(p*-f)=pi*-p
*, VjIe(i),

and, since Vgk, is nondecreasing for all (k, 1) E d,

(4.9a) Vgyi(p -pi) Vg **(p -p,*) =ff , Vje (i),

(4.9b) Vg ,(pj -p=))Vgj,(pj -p f )=fjj, VjE 9(i).

Since i E J-, we have hj( p') = pi or, equivalently, d,(p') = 0. Then (4.5) and (4.9a)-(4.9b)

imply that

0= d, (p')

= y Vg,(p,-p p)- E Vgi,(pj-pi)-s,

jea(i) jje((()

= 0,

where the last equality follows because the flows f* and fj must satisfy the flow

conservation equation (4.2). It follows that the inequalities in (4.9a)-(4.9b) are actually
equalities and

(4.10a) Vgq(p-pj)=fij, VjEie(i), .

(4.10b) Vgji(p, -p) =f*T, Vj e q(i)..

Since the choice of ieJ- was arbitrary, (4.10a)-(4.10b) hold for all irJ-. By an

analogous argument (using (4.8b) in place of (4.8a)) we can show that (4.10a)-(4.10b)
hold for all i J' as well.

Let er E T" be the vector whose ith component is

(4.11) 7, =Pp-6p-e if iJ-,

p' ? if i z J.

We claim that

(4.12) Vgij(7T,-7j)=fif,, V(ij)-A

To see this, we first note from the definition of r (cf. (4.11)) that

ri,-r,=p*-p*, if igJ,jOJ orif iEJ,jeJ + orif iJ-,jeJ-.

Also, from (4.7), (4.8a)-(4.8b), (4.11) and the fact E -5P we have that

p -p=(p*+ p)-(p-3p)> -r--p*-p * ,  
if E J+ jE J-,

p -p=(pf-=p)-(p* +p)< wi - rr, -p-p*, if iE f J-,jE J
+ ,

P -p)-L(p*+p) -(p*+ -P-e)-= p'r,- p-p * , if iEJ, joJ,

p -p5 (p*- e)-(-(p*-P3+e)= 7r,-s7: p -p , ifi J-,jJ J,

pi:-pp <(p*+s-P )-(p*+f3 )=7T,-7T ,<p*.-p
*, if iiJ,j J+,

p -p>-(pp-P*+e)-(p -p )= 'n. -n >-p*-p* , if idJ,jJ-.

:::~:~·'-··:::':··:·:·- -:~: :-"·-::: ::-·:·. .~.:···-· :::::.. ~.I:. I: .:.:..::::~.:.:...-. .·.
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Consider any (i, j) e s. The preceding inequalities show that 7ri - %- is always between

p -p' and p*-p*. The monotonicity of Vg, and the equalities Vg,(p*-p*) = f, =
Vg,(pp - p,) (cf. (4.10a)-(4.10b)) imply that Vgi,(77, - %i) =f . This completes the proof

of (4.12).

Equation (4.12) implies that fr P*. Since (cf. (4.11) and the definitions of J-

and J') lip - 7r ] < i p -P*|I, this contradicts the hypothesis that p(p) = p - p* I. O

Since h has been shown to satisfy Assumption B, we conclude from Lemma 2.1

and Proposition 2.1 that the partially asynchronous iteration

p:= (1 - y)p + yh(p)

(with 0 < y < 1) converges to an optimal price vector p*. The optimal flows are obtained

as a byproduct, using the relation Vg, (p*- p*) =f,- Notice that the iteration for each

coordinate p, consists of minimization along the ith coordinate direction (to obtain

h,(p)) followed by the use of the relaxation parameter y to obtain the new value

(1 - y)p, + yh,(p). As a special case, we have that the synchronous Jacobi algorithm

p(t + 1)= (1- y)p(t)+ yh(p(t))

is also convergent, which is a new result.

A related result can be found in [5] where totally asynchronous convergence is

established even if y = 1, provided that a particular coordinate of p is never iterated

upon and that when this coordinate is fixed, the optimal price vector is unique. An

experimental comparison of the two methods will be presented in § 8. We remark that

the results in this section also extend to the case where each arc has a gain of either

+1 or -1 (i.e., each f, term in (4.2) is multiplied by eitlter +1 or -1).

5. Agreement and Markov chain algorithms. In this section we consider two prob-

lems: a problem of agreement and the computation of the invariant distribution of a

Markov chain. These problems are the only ones for which partially asynchronous

algorithms that converge for every value of the asynchronism bound B of Assumption

A are available [20], [27], [29] (in fact, these algorithms have been shown to converge

at a geometric rate). We show that these results can also be obtained by applying our

general convergence theorem (Proposition 2.1).

5.1. The agreement algorithm. We consider here a set of n processors, numbered

from 1 to n, that try to reach agreement on a common value by exchanging tentative

values and forming convex combinations of their own values with the values received

from other processors. This algorithm has been used in [28]-[29] in the context of

asynchronous stochastic gradient methods with the purpose of averaging noisy measure-

ments of the same variable by different processors.

We now formally describe the agreement algorithm. Each processor i has a set

of nonnegative coefficients {a,1 , . . , a,,} satisfying a,, > 0, Y, a, = 1, and at time t it

possesses an estimate x,(t) which is updated according to (cf. (1.1))

Sax(7 ( t )) if te ,,
(5.1a) x,(t+1)= , i (

[x,(t) otherwise.

(5.1b) x,(1- B)= ... = x,(O)= J,,

where 3, and -7,(t) are as in § 1 and ý, is the initial value of processor i. Let A be

the nx n matrix whose (i, j)th entry is a,, and let y c(0, 1) be such that 0<y

mrin {a, • - -. a,,}. By using the results from §§ I to 3 we obtain the following.
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PROPOSITION 5.1. If A is irreducible and Assumption A holds, then {x,(t)}- y for
all i, where y is some scalar between min, {9i} and max, {),}.

Proof. It can be seen that (5.1a) is a special case of (1.1) with f(x) = Ax. Let

D = (A- yl)/(1- y).

Then

(5.2) A= yl+(1- y)D,

and D= [dj] can be seen to satisfy F| Idj5 -1. Moreover, since A is irreducible, so is
D. Hence the function h: 91F -+ T" defined by h(x) = Dx satisfies Assumption D in § 3.
Since h has a fixed point (the zero vector), this, together with Proposition 3.1 and
Lemma 2.4, implies that h satisfies Assumption B. Since (cf. (5.2)) f(x) =
yx + (1 - y)h(x), this, together with Lemma 2.1, shows that f satisfies Assumption C.
Then by Proposition 2.1, the sequence {x(t)} generated by (5.1a)-(5.1b) converges to
some point x" satisfying Ax ° = x". Since A is irreducible and stochastic, x" must be
of the form (y, -- , y) for some ye t. It can be seen from (5.1b) that, for re
{1- B, ... ,0},

(5.3) x,(r) max {}, Vi

Suppose that (5.3) holds for all re {1- B,.. -- , t}, for some t _ 0. Then by (5.1a) and
the property of the ai's,

x,(t+ 1)= ajxi( ri(t))

-_, a.max {}."

= max { },

for all i such that te-n,, and x,(t +1)=x(t)s-maxj {£j} for all other L Hence, by
induction, (5.3) holds for all r e {1 - B, 2 - B, -- -}. Since x,(r) -- y for each i this implies
that y 5 max, {&j}. A symmetrical argument shows y = min, {5}. 0

It can be shown [7], [29] that Proposition 5.1 remains valid if a,i is positive for
at least one (but not all) i and, furthermore, convergence takes place at the rate of a
geometric progression. The proof, however, is more complex. Similar results can be
found in [29] for more general versions of the agreement algorithm.

5.2. Invariant distribution of Markov chains. Let P be an irreducible stochastic
matrix of dimension n x n. We denote by pij the (i, j)th entry of P and we assume that
pi >0 for all i. We wish to compute a row vector -*= (rr,.-.., r,) of invariant
probabilities for the corresponding Markov chain, i.e., Tr* 0, Y_ 7Tr = 1, r* = P7*P.
(We actually have ir >0, for all i, due to the irreducibility of P [14].) As in § 5.1,
suppose that we have a network of n processors and that the ith processor generates
a sequence of estimates {r1i(t)} using the following partially asynchronous version of
the classical serial algorithm 7r:= 7rP (cf. (5.1a)-(5.1b)):

(5.4)
F, pjjwrj(ro(t)) if t E 3-,

r;(t +1) = i=e
[rr(t) - otherwise.

where -, and r7i(t) are as in § 1 and 7ri(0) is any positive scalar. This asynchronous
algorithm was introduced in [20], where geometric convergence was established. We
show below that convergence also follows from our general results.

..... .:
'~ ~`""~
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PROPOSITION 5.2. If Assumption A holds, then there exists a positive number c such
that r(t) - csr*.

Proof We will show that (5.4) is a special case of (5.1a). Let

(5.5) x,(t) = ,(t)/*, a, = P,

Then the matrix A = [a,] is nonnegative and irreducible, has positive diagonal entries,
and

E a, =7 =p,,rr /-*
J i

= 1,

where the second equality follows from 7r*= 7r*P. Furthermore, it can be seen from

(5.4) and (5.5) that x,(t) evolves according to the iteration (5.1a). Therefore, by

Proposition 5.1 and the initial positivity conditions, {x,(t)}J c for all i, where c is

some positive scalar. It follows from (5.5) that 7r,(t) - crr* for all i. O

Upon obtaining crr*, the desired solution 7r* can be recovered by normalizing cr*.

6. Neural networks. Consider a connected, directed network with node set =

{1,.- , n} and arc set M gcXx.A~ . Let us, for each i.A, denote by q1(i) the set

{J I (j, i) e d} of upstream neighbors of i. Let do, - - , o,, be a set of given scalars and

let {A,)},j}e) be a set of nonzero scalars satisfying 1E ,,,, A, i 1 for all i. We wish to

find scalars xt,- - , x, such that

(6.1) X, = ,(i A ,,x +E O Vi,

where 4, :9~ - ~ is a continuous nondecreasing function satisfying

(6.2) lim .,(() = -, lim 4,(4{) = 1,

(see Fig. 6.1). Notice that the function 5, maps the box [-1, 1]" into itself and, by

Brouwer's fixed point theorem ([11, p. 17]), the system (6.1) is guaranteed to have a

solution.

If we think of each node i as a neuron, (6.1) and (6.2) imply that this neuron is

turned on (i.e., x, 1) if the majority of its inputs are also turned on. Thus, x, gives

the state ("on" or "off") of the ith neuron for a given set of connections (specified by

sd) and a given external excitation (specified by o,) (see Fig. 6.2.). Indeed, (6.1) and

(6.2) describe a class of neural networks that have been applied to solving a number

of problems in combinatorial optimization, pattern recognition, and artificial intel-

ligence [15]-[16], [19], [25].

1

L

------ ,-----

-1

FIG. 6.1. The function 6,.
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FIG. 6.2

Let f: S" W 9" be the function whose ith component is

(6.3) fi(x) = i Y_ kx,+oi), Vi.
\(E l(i)

Then solving (6.1) is equivalent to finding a fixed point of f In what follows, we
consider a special form for 0i and show that it gives rise, in a ýhatural way, to a
nonexpansive function f that satisfies Assumptions B' and C of § 2. To the best of our
knowledge, asynchronous convergence of neural networks has not been explored
before. In some sense, asynchronous neural networks are quite natural since biological
neural connections may experience long propagation delay [25].

Let 4~, denote the right derivative of 0,, i.e.,

d+(T)=lim (d;(S+e)-d4(E))/e, VfI'E.

The following result shows that, if 4t is sufficiently small foriall i, then f given by
(6.3) satisfies Assumption B'.

PROPOSTION 6.1. If W is strongly connected and each 4i is continuous, satisfies (6.2)

(6.4)

then f given by (6.3) satisfies Assumption B'.
Proof We have seen earlier that f has a fixed point. Since each Ok is continuous,

f is also continuous. Now we will show that f is nonexpansive. Fix any i J•:. Since
(cf. (6.4)) the slope of 4i is bounded inside the interval [0, 1], we have

4,j(b)- ,(a)jls-b-al, Vael, bET.

Hence, for any x E " and yE T",

Ifi(y) -f (x)|= i AJyE+<r ) ) ; je Ax+uu

(6.5)
jeAu(i) Iy

j•_i(i)

Since • (j,(ijl AI - 5 1, (6.5) implies that

If(y) -f,(x)l -- |IX -yll.

Since the choice of i was arbitrary, this in turn implies that

TIf(x)-f(y)llf -Ix-yll, Vxe", ys".

Therefore f is nonexpansive.
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It remains to show that f satisfies Assumption B'(d). Suppose the contrary. Then
for some x E X* and some x* c X*, where X* is the set of fixed points of f there
exists, for every i E f(x; x*), an x' c U(x; x*) such that

x' X* and f(x')=x,.

Let J = (x; x*) (Jr since x' iX* for all ieJ) and p = jix- x*ll. Fix any iE J. By
(6.5) and the fact x* =f(x*), we obtain that

Hence

IA X I-xj-

Since Ix - x* < 3 and A,, 5 0 for all je c~(i),j •J, this implies that OM(i)_ J. Since the
choice of ieJ was arbitrary, it follows that 91(i)cJ for all ieJ. Hence 19 is not
strongly connected, a contradiction of our hypothesis. 0

It follows from Lemmas 2.1, 2.4 and Propositions 2.1, 6.1 that the asynchronous
iteration

X:=(l0 Y)x± -f- YO. 95X +, ("

(with 0 < y < 1) converges. Two examples of 04, that satisfy the hypothesis of Proposition
6.1 are

6,(, )=2(1+e- 2) - t - 1,

and

6,(f) = max {-1, min {1, j}}.

Let us briefly discuss an alternative form for the function 05,. If we assume that
each 9, is continuously differentiable and its derivative 70, satisfies 0<V Vo,()< 1 for
all g• E)I, then it can be shown that the restriction of the function f on a compact set
is a contraction. In that case, the asynchronous neural iteration

xi:= <4, ( A,, x, + ,

can be shown to converge even under the total asynchronism assumption

lim r,(t)= +oo, Vi, Vj

(cf. [7, Chap. 6.2, Prop. 2.1]).

7. Least element of weakly diagonally dominant, Leontief systems. Let A = [akj] be
a given mx n matrix (with m _ n) and b = (b 1, , b,) be an element of Tm. We

make the following assumption.
Assumption F.
(a) Each row of A has exactly one positive entry and the index set

i(i) = {kla,, > 0}

is nonempty for all i (i.e., every column has at least one positive entry).
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(b) Y, akj - 0, for all k.
(c) For any (k,. - - , k,) E 1(1) X . • x I(n), the n x n matrix [ak,j] is irreducible.
Since aki >0 for all ke l(i), we will, by dividing the kth constraint by aki if

necessary, assume that aki = 1 for all k a I(i), in which case parts (a) and (b) of
Assumption F are equivalent to

(7.1) aki =, -= aki - 1 and akj- 0, Vj i,

for all k 1(i) and all i.
Let X be the polyhedral set

(7.2) X = {x e t" I Ax t b}.

We wish to find an element 77 of X satisfying

x-27, VxEX

(such an element is called the least element of X in [10] and [13]). Notice that if a
least element exists, then it is unique. Let h: "--1i" be the function whose ith
component is

(7.3) hi(x)= max bk b k- axjl
kel(i) j Ji

It is shown in [10] that X has a least element for all b such that X is nonempty if
and only if Ar is Leontief (a matrix E is Leontief if each column of E has at most
one positive entry and there exists y - 0 such that Ey > 0 compon.ntwise). The following
lemma sharpens this result by giving a necessary and sufficient condition for X to
have a least element that is simpler to verify. It also relates the least element of X to
the fixed points of h.

LEMMA 7.1. Suppose that X # 0 and that Assumption F holds. Then,
(a) X has no least element if and only if

(7.4)

. .·. . . . ..

(b) If 77 is a least element of X, then it is a fixed point of h.
Proof We first prove (a). Suppose that (7.4) holds and let e e 91" be the vector

with all coordinates equal to 1. Equation (7.4) says that Ae = 0. Thus, if x is an element
of X, then x - Ae E X, for all positive scalars A. It follows that X cannot have a least
element. Now suppose that (7.4) does not hold. We first show that X is bounded from
below (i.e., there exists some a E 91" such that x = a componentwise for all x e X). If
this were not so, then there would exist some v E 1" and some x e X such that v, <0
for some i and x + Av E X for all positive scalars A. The latter implies that A(x + Av) - b
for all A > 0 and hence Av 0. Fix any scalars (k 1 ,,- - , k) e [(1) x . x I(n) and
consider an i such that v, = min i {vj}. Then (cf. Av Ž 0)

0-5 ak,JV ak) v, + E akj(v, - v,).

Since v, <0 and v, - v e- 0 for all j i, this, together with the facts (cf. (7.1)) Y- ak,, - 0
and ak, , 0 for all j • i, implies that Y, ak,j = 0 and vi = vj for all j - i such that ak,, 0.
By Assumption F(c), there exists j # i such that akj # 0. We then repeat the above
argument with j in place of i. In this way, we eventually obtain that v, = ... = v. and
Y, a,,j = 0 for all i. Since our choice of (k, -. . , k,)E I(1) X . . x I(n). was arbitrary,
(7.4) holds--contradicting our hypothesis. Hence X is bounded from below. Using

Sakj = 0, Vk.
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(7.1), it is easily verified that if x' and x" are two elements of X, then the n-vector x
whose ith component is min {x!, x'} is also an element of X. Since X is closed and
bounded from below, X has a least element.

We next prove (b). Since 7w E X, we have (cf. (7.1), (7.2))

Sakj7 +,77 bk, VkeI(i), VL
it6

Thus,

h,(7)= max fbk- akjiT} 7i, Vi

If 47 is not a fixed point of h, then the set I = {il h,(7) < 7i,} is nonempty. Then we have

(7.5)

.. :.*

7akj,>bk, Vkel(i), ViEL

Consider the n-vector i, defined by ii = ~, - e, if i E I, and ,i = 17, otherwise. For e
positive and small enough, the inequalities (7.5) remain valid. On the other hand, for

all io I and all kE I(i) we have

Xakj, =Y ak77 + Y aki(,7j - e) ak77j bk,
j jaI jEl J

where we used the property akj - 0 for allj such that k 0 I(j). Thus, i E X, contradicting

the hypothesis that 77 is the least element of X. 0

Let X* denote the set of fixed points of h. Suppose that X* is nonempty (Lemma

7.1 gives sufficient conditions for X* to be nonempty). We Will show that h satisfies

Assumption B'. Since (cf. (7.3)) h is continuous, it suffices to show that parts (c) and

(d) of Assumption B' hold.

LEMMA 7.2. Ilh(x) - h(y)llj 5 IJx -yll for any x E 9" and any ye O".
Proof Let z = h(x), w = h(y) and consider any i {1, - - -, n}. We will show that

zlz - wI j IIx-yy|, from which our claim follows. Since z, = h,(x) and w, = hi(y), it
follows from (7.3) that, for some k in I(i),

(7.6a)

(7.6b)

ak xi + zi - bk,

Sak y + wi = bk.
j#i

Subtracting (7.6b) from (7.6a), we obtain

Sakj(Xj - yj) 
+ (zi - wi) 2 O.

This together with (7.1) implies that

wi - z,-  akj(xj -yj)
j#i

S a-y jix -yll.

- I|x - yll.
The inequality z, - w, 5 I x - yll is obtained similarly. 0

LEMMA 7.3. h satisfies Assumption B'(d).

Proof. Suppose the contrary. Then for some x i X* and some x* E X*, there exists,
for every i I(x; x*), an x' e U(x; x*) such that

xiiX* and hi(x')=x,.

-E

-.. Y-
"'. "" " ::":"" ,•. ' '.-.:..-. ?":i .?7 '.



PARTIALLY ASYNCHRONOUS, PARALLEL ALGORITHMS

Let J= I(x; x*),J-= {i I x, - x = -P}, J ={il x-x =/3}andp3 = Ix - x*i. (We must

have J ? {1, - - -, n} because otherwise the set U(x; x*) would be a singleton, implying

that the vectors x', • • , x" are all equal, in which case each x' is a fixed point of h,
a contradiction.)

Fix any i E J-. By (7.3) and the hypothesis x* = h(x*), there exists some ki e I(i)
such that

Sak,, x* = bk.

Since xf = h,(x'), we then have 1, akjx' b = ak, X=, SO

Z ak,j(x; - x) 0.

This implies (using (7.1) and the facts k, E I(i), i J-) that

0:--3 Z ak,+P 3  _ ak,,+ iak 1,x -xj*
jJ -E je' )J J

=-/3 ak, -3 Z lakj+Z ak,•l1X-x 1 *i
JEJ jJJ

=-13 (1- akj -2/3 jakjjl+ Z akjl(Ixj-x*-16).

Since Ixj-xI*l < p for all j ý J, (7.1) implies that

(7.7) ak, =-1 and akj=O, Vj J-.

Since the choice of i was arbitrary, (7.7) holds for all i E J-. By an analogous argument,
we also obtain that, for all i J',

(7.8) 7 akj=-1 and ak,=0, VjiJ ÷,

where each ki is a scalar in I(i) such that

E akj x = bk.

For each ij J, let k, be any element of I(i). Since J • {1, - - -, n}, (7.7) and (7.8) imply

that the n xn matrix [ak,,j,, is not irreducible-a contradiction of Assumption
F(c). E

We may now invoke Lemmas 2.1, 2.4 and Proposition 2.1 to establish that the

partially asynchronous iteration

x:= (1- y)x+ yh(x)

(with 0< y < 1) converges to a fixed point of h. Unfortunately, such a fixed point is
not necessarily the least element of X. We have, however, the following characterization

of such fixed points.
LEMMA 7.4. If X has a least element 77, then, for any fixed point x* of h, there exists

a nonnegative scalar A such that x* = 77 + (A, -. . , A).
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Proof Since x* is a fixed point of h, x* e X. Hence x* 77. We then repeat the
proof of Lemma 7.3, with J- ={1, --, n} and x' = 7 for all i. This yields that, for
every iE {1, - - - , n}, there exists some ki E I(i) such that x* - -5 Cj',, lak,JI(x* - 77).
Since x* - 77 0, Assumption F(c) and (7.1) imply that the x! - il,'s are equal. 0

Lemma 7.4 states that, given a fixed point x* of h, we can compute the least
element of X by a simple line search along the direction (-1, - - - , -1) (the stepsize
A is the largest for which x* -(, ( k -, A) is in X). An example of X for which the
corresponding h has multiple fixed points is

X = (xI, x) I x, - 2 x, - 0.5x 2 -1, -x 1 + x 2 - 0}.

Here hj(x)= max {x2,0.5x 2 -1}, h,(x)= x, and both (-1, -1) and (-2, -2) are fixed
points of h (the least element of X is (-2, -2)).

Let us remark that if the inequalities in Assumption F(b) are strict, then the
mapping h is a contraction mapping (the same argument as in Lemma 7.2) and
convergence under total asynchronism is obtained. We also remark that, if in the
statement of Assumption F(c) we replace "For any" by the weaker "For some," then
Lemmas 7.1 and 7.2 still hold, but Lemmas 7.3 and 7.4 do not. In fact, it can be shown
that X* is not necessarily convex in this case.

8. Simulation for network flow problems. In this section we study and compare,
using simulation, the performance of syncfironous and partially asynchronous
algorithms for the network flow problem of § 4. We measure the following: (a) the
effects of the stepsize y (cf. Lemma 2.1), the problern' size n, and the asynchrony
measure B on the performance of partially asynchronous"hlgorithms, (b) the efficiency
of different partially asynchronous algorithms relative to each other and also relative
to the corresponding synchronous algorithms.

In our study, we consider a special case of the network flow problem (4.1)-(4.2)
where each cost function aj(-) is a quadratic on [0, +oo], i.e.,

(8.1) j(f =alfiJL12+ PifJ iffia:0,

t+00 otherwise,

where ao, is a given positive scalar and 3ij is a given scalar. This special case has many
practical applications and has been studied extensively [6], [9], [12], [21], [31]. In
what follows, we will denote by h :"~*~ the function given by (4.3), (4.5)-(4.6),
and (8.1). All of the algorithms involved in our study are based on h.

8.1. Test problem generation. In our test, each a,, is randomly generated from the
interval [1, 5] and each jpy is randomly generated from the set {1, 2, - -, 100}. The
number of arcs is ten times the number of nodes and the average node supply is 1000,
i.e., Isl+"- - +Is.] = 1000n. Half of the nodes are supply nodes and half of the nodes
are demand nodes (we say a node i is a supply (demand) node if s, > 0 (s; <0)). The
problems are generated using the linear cost network generator NETGEN [18],
modified to generate quadratic cost coefficients as well.

8.2. The main partially asynchronous algorithm. The main focus of our study is
the partially asynchronous algorithm described in § 4. This algorithm, called PASYN,
generates a sequence {x(t)} using the partially asynchronous iteration (1.1) under
Assumption A, where the algorithmic mapping f is given by

(8.2) f(x) = (1 - y)x + yh(x).
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In our simulation, the communication delays t- rij(t) are independently generated
from a uniform distribution on the set {0, 1, - - •, B - I} and, for simplicity, we assume
that -i = {1, 2, - - -} for all i. (This models a situation where the computation delay
is negligible compared to the communication delay.) The components of x(l - B),
x(2 - B),. - - , x(O) are independently generated from a uniform distribution over the
interval [0, 10] (this is to reflect a lack of coordination among processors) and the
algorithm terminates at time t if max,.-t,_..B...,j, Ix(7)-x(T')l S 0.001.

500 -

.: c

B-- 8=2
-e B=4

-- 8=8
SB=16

0 200 400 600 800 1000 1200

Problem Size (n)

FIG. 8. (a). Termination time for PASYN (y = 0.1), for different values of B and n.

-0- B=2

-4- B=4
- 8-=8
-e B=16

0 200 400 600 800 1000 1200

Problem Size (n)

FIG. 8.1(b). Termination time for PASYN (y=0.5), for different values of B and n.
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FIG. 8.1(C). Termination time for PASYN (y =0.9), for different values of B and n.

The termination time of PASYN, for different valu.s of y, B, and n, is shown in

Figs. 8.1(a)-(c). In general, the rate of convergence of PAY·YN is the fastest for y near
1 and for B small, corroborating our intuition. The termin'ation time grows quite slowly
with the size of the problem n but quite fast with decreasing y. For y near 1, the
termination time grows roughly linearly with B (but not when y is near 0).

8.3. An alternative partially asynchronous algorithm. Consider the function

fo: t" -• t" whose ith component is given by

fP(x)=Ih,(x) if i 1,

1xI otherwise.
(8.3)

It is shown in [5] that the algorithm x:= fo(x) converges under the total asynchronism
assumption. Hence it is of interest to compare this algorithm with that described in
§ 8.2 (namely PASYN) under the same assumption of partial asynchronism. The

partially asynchronous version of the algorithm x:=fo(x), called TASYN, is identical
to PASYN except that the function f in (8.2) is replaced by fo. (Note that TASYN
has the advantage that it uses a unity stepsize.)

The termination time of TASYN, for different values of B and n, is shown in Fig.
8.2. A comparison with Figs. 8.1(a)-(c) shows that TASYN is considerably slower than
PASYN. The speed of TASYN is improved iff in (8.2) is replaced by fo only after a
certain amount of time has elapsed, but the improvement is still not sufficient for it
to compete with PASYN.

8.4. Two synchronous algorithms. In this subsection we consider two types of

synchronous algorithms based on h: the Jacobi algorithm and the Gauss-Seidel

algorithm. In particular, the Gauss-Seidel algorithm has been shown to be efficient

for practical computation (see [6], [9], [21], [31]). Hence, by comparing the asyn-
chronous algorithms with these algorithms, we can better measure the practical
efficiency of the former.
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FIG. 8.2. Termination time for TASYN, for different values of B and n.

The Jacobi algorithm, called SYNJB, is a parallel algorithm that generates a
sequence {x(t)} according to

x(t + 1) = (1 - y)x(t)+ yh(x(t)),

where ye (0, 1). The initial estimates x,(0), - - - , x,(0) are independently generated
from a uniform distribution over the interval [0, 10], and the algorithm terminates at
time t if jjx(t) - x(t - 1)II - 0.001. (SYNJB can be seen to be a special case of PASYNB
where B= I and hence {x(t)} converges to a fixed point of h.)

Consider any positive integer b and any function 3 : {1, -- - , n}--> {1, , b} such
that h,(x) does not depend on x, if /(i) = P(j). We associate with b and/3 a Gauss-
Seidel algorithm that generates a sequence {x(t)} according to

h,(x(t)) if t p/(i)-1 (mod b),.x(t + 1)=
.` -.•x•.(t) otherwise.

In our simulation, the initial estimates x,(0), • • ", x,(0) are independently generated

from a uniform distribution over the interval [0, 10] and the algorithm terminates at

time t if

max IIx(r) -x(7')II |-0.001.
rr's {t--b,...,t)

(Convergence of {x(t)} to a fixed point of h follows from Proposition 2.4 in [6]. Note
that, similar to TASYN, this algorithm has the advantage of using a unity stepsize.)
We consider both a serial and a parallel version of this algorithm (this is done by
choosing b and P appropriately). SYNGS1 is the serial version which chooses b= n
and P(i) = i for all i. SYNGS2 is the parallel version which uses a coloring heuristic
to find, for each problem, a choice of b and P for which b is small.

The termination time for SYNJB, SYNGSI and SYNGS2, for different values of
n, are shown in Figs. 8.3(a)-(b). In Fig. 8.3(a), the choice of b obtained by the coloring
heuristic in SYNGS2 is also shown (in parentheses). In general, SYNJB is considerably

---- ~
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faster than either of the two Gauss-Seidel algorithms SYNGS1 and SYNG2 (however
in SYNJB all processors must compute at all times). From Fig. 8.3(b) we see that, as
n increases and the problems become more sparse, SYNGS2 (owing to its high
parallelism) becomes much faster than the serial algorithm SYNGS1. (Notice that the
time for SYNGSI is approximated by the time for SYNGS2 multiplied by n/b, as
expected.) Comparing Fig. 8.3(a) with Fig. 8.1(c), we see that SYNJB is approximately

................. ... C

-- SYNJB (= =.9)

+- SYNGS2

(11)

cm- U

0 200 400 600 800 1000 -~200

Problem Size (n)

FIG. 8.3(a). Comparing the termination time for the two synchronous, parallel algorithms SYNJB (y = 0.9)

and SYNGS2, for different values of n.

2000

.·'

1000

0 200 400 600 800 1000 1200

Problem Size (n)

FIG. 8.3(b). Comparing the termination time for the serial algorithm SYNGS I and for the synchronous,
parallel algorithm SYNGS2, for diferent values of n.
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" -j

3/2 times faster than PASYN and that PASYN is faster than SYNGS2, unless PASYN
suffers long delays.

8.5. Simulation of synchronous algorithms in the face of communication delays. In

this subsection we consider the execution of the synchronous iterations of § 8.4 in an

asynchronous computing environment, that is, in an environment where communication
delays are variable and unpredictable. The mathematical description of the algorithms

in this subsection is identical to that of the algorithms considered in the preceding
subsection; for this reason, the number of iterations until termination is also the same.

On the other hand, each processor must wait until it receives the updates of the other

processors before it can proceed to the next iteration. For this reason, the actual time

until termination is different from the number of iterations. In our simulation, the

delays are randomly generated but their statistics are the same as in our simulation
of asynchronous algorithms in §§ 8.2 and 8.3 (uniformly distributed over the set
{0, 1,- - - , B - 1}, where B denotes the maximum delay). This will allow us to determine

whether asynchronous methods are preferable in the face of communication delays.
More precisely, consider any synchronous algorithm and let T denote the number

of iterations at which this algorithm terminates. With each t {1, - - -, T} and each
i •{, - - - , n}, we associate a positive integer o-(t) to represent the "time" at which

the. update of the ith component at iteration t is performed in the corresponding

asynchronous execution. (Here we distinguish between "iteration" for the synchronous

algorithm and "time" for the asynchronous execution.) Then ({oy(t)} is recursively

defined by the following formula:

o'i(t) = max {oj(t - 1) + (communication delay from m'roc. j

to proc. i at time o-j(t- 1))},

where the maximization is taken over all j such that the jth component influences the
ith component at iteration t. The termination time of the asynchronous algorithm is
then taken to be

max {cri(T)}.

The partially asynchronous algorithms that simulate SYNJB, SYNGS1 and

SYNGS2 are called, respectively, PASYNJB, PASYNGS1 and PASYNGS2. The termi-

.- nation times for these algorithms are shown in Figs. 8.4-8.6 (they are obtained from

the termination times shown in Figs. 8.3(a)-(b) using the procedure described above).

Comparing these figures with Figs. 8.1(a)-(c), we see that PASYNJB is roughly 3/4

as fast as PASYN (when both use the same stepsize y = 0.9) while the other two

algorithms PASYNGS1 and PASYNGS2 are considerably slower than PASYN (even

when PASYN uses the most conservative stepsize y = 0.1).
To summarize, we can conclude that PASYN is the fastest algorithm for partially

asynchronous computation and that its synchronous counterpart SYNJB is the fastest

for synchronous parallel computation. We remark that similar behavior was observed
in other network flow problems that were generated. Furthermore, the asynchronous

algorithm PASYN seems to be preferable to its synchronous counterpart SYNJB in
the face of delays. In practice, the assumption that the delays are independent and

identically distributed might be violated. For example, queueing delays are usually

dependent; also, the distance between a pair of processors who need to communicate
could be variable, in which case the delays are not identically distributed. On the other

hand, such aspects cannot be simulated convincingly without having a particular
parallel computing system in mind.
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FIG. 8.4. Termination time for PASY NJB ( = 0.9), for different values of B and n.
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FIG. 8.5. Termination time for PASYNGS1, for different values of B and n.

9. Conclusion and extensions. In this paper we have presented a general
framework, based on nonexpansive mappings, for partially asynchronous computation.
The key to this framework'is a new class of functions that are nonexpansive with
respect to the maximum norm. We showed that any algorithm whose algorithmic
mapping belongs to this class converges under the partial asynchronism assumption
with an arbitrarily large bound on the delays. While some of the asynchronous
algorithms thus obtained are known, others are quite new. Numerical experimentation
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FIG. 8.6. Termination time for PASYNGS2, for different values of B and n.

with network flow problems suggests that, for partially asynchronous computation, the
new algorithms may be substantially faster than those obtained from synchronous
algorithms.
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