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CHAPTER I 

I NT RO DUCT ION 

In the randomized-block design, the size of the block of experi

mental units must be a multiple of the number of the treatments to be 

compared. Various types of experimental designs have been introduced 

since 1936
1 

for testing a large number of treatments . They are designed 

to suit the requirements of the experimenter, with the object of 

achieving maximum efficiency for a limited amount of the experimental 

material . Sometimes it is desirable or necessary to have the block 

size smaller than the total number of treatments. These designs are 

referred to as incomplete block designs. 

A balanced incomplete block design has the property that any pair 

of treatments appears together equally often within the same block. 

Thus, as shown below, every pair of treatments appears together twice 

in the same block, where the numbers represent the treatments and the 

columns represent the block. 

3 1 2 1 2 

5 4 2 2 3 3 4 

6 6 5 3 4 4 5 

7 7 7 6 7 5 6 ( 1. 1 ) 

This property insures that the same standard error may be used for com

paring every pair of treatments. 

These designs have found fruitful applications in experiments in 

1 . 
F. Yates, 11Incomplete Randomized Blocks, 11 Annals of Eugenics, 

VII (1936), 121-40. 



which individuals are asked to make a comparative rat i ng of different 

objects that are presented to them. Some examples are the rating of 

di fferent ways of preparing a food as to palatability, different colors 

i n which some article is made as to acceptability, and different 

occupations as to the i r social status. This is taste and preference 

test i ng.
2 

Scheffe
3 

has also indicated that these desi gns can be 

applied to the following: 

1. Many varieties of a crop are to be compared i n one field 

experiment in which yields will be measured, but blocks of this number 

of plots are undesirable because they would inevitably display soil 

heterogeneity. 

2. Different makes of automobile tires are to be compared. The 

natural block consists of four wheels of a car. 

In balanced incomplete block designs, each pair of treatments 

is compared with equal precision, and each treatment is paired wi th 

every other treatment an equal number of times with i n a common block; 

A is a constant for all treatments. There is one assoc i ate class for 

each treatment in balanced incomplete block designs . These are the 

most important balanced incomplete block designs, but the need some

t i mes arises for others; either because no suitable balanced incomplete 

block design exists, or because, for example, it is necessary to make 

some comparisons more precisely than others. We can see balanced 

incomplete block designs form that special case of partially balanced 

designs in which there is one associate class for each treatment. In 

2w. G. Cochran and G. M. Cox, Exper i ment a l Des i gns~ (2nd ed.; 
New York: John Wiley & Sons, 1957), p. 440. 

3Henry Scheffe, The Analysis of Vari ance (New York: John Wiley 
& Sons, 1958), p. 161. 

2 
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this paper, the author will discuss the partially balanced incomplete 

block design with two associate classes. 

Partially balanced incomplete block designs (PBIB designs) were 

first introduced by Bose and Nair. Bose and Shimamoto introduced the 

concept of association schemes of a PBIB design. Then a considerable 

quantity of research was carried out on the combinatorial properties 

of association schemes and the designs obtained from them. Rao
4 

introduced the analysis of yields of a tomato trial using the PBIB 

design (twenty varieties and sixteen blocks). Bose and Shimamoto5 

have also used the PBIB design in work on cotton experiments (ten 

treatments and ten blocks). 

It is the object of this paper to describe the most important 

properties of partially balanced designs and to give both the intra

block and inter-block analysis. Thus, the scope of this paper includes 

the following: 

1. The definition of PBIB designs. 

2. Relations between the parameters. 

3. Some theorems for partially balanced designs. 

4. Five types of association schemes in PBIB designs and examples. 

Many useful designs belonging to each type have been published by 

the Institute of Statistics, University of North Carolina.
6 

4c. R. Rao, ''General Methods of Analysis for Incomplete Block 
Designs," Journal of the American Statistical Association, XLI I ( 1947), 
541-61. 

5R. C. Bose and T. Shimamoto, "Classification and Analysis of 
Partially Balanced Incomplete Block Designs with Two Associate Classes," 
Journal of the American Statistical Association, XLVII (1952), 151-84. 

6R. C. Bose, W. H. Clatworthy, and S. S. Shrikhande, Tables of 
Partially Balanced Designs with Two Associate Classes, North Carolina 
Agricultural Experiment Station, Technical Bulletin No. 107 (Raleigh, 
North Carolina: North Carolina Agricultural Experiment Station, 1954). 



Def i ni ti on 

CHAPTER I I 

THE DESCRIPTION OF PARTIALLY BALANCED 

INCOMPLETE BLOCK DESIGNS 

An incomplete block design is said to be partially balanced if 

it satisfies the following conditions:
7 

l. The experimental material is divided into b blocks of k 

units each, different treatments being applied to the uni ts i n the 

same block. 

2. There are v treatments, each of which occurs in r blocks 

(times) . 

3. There can be established a relation of associat i on between 

any two treatments, satisfying the following requi rements: 

a. Two treatments are either first, second, ... , or mth 

associates. 

b. Each treatment has exactly n. , ith associates (i = 1 ,2, 
l 

.. . ,m). 

c. Given any two treatments which are ith associates, the 

number of treatments common to the jth associates of the first, 

and the kth associates of the second, is Pj~ and is independent 

i i of the pair of treatments with which we start. Also, Pjk = Pkj· 

4. Two treatments which are ith associates occur together in 

exactly\ . blocks. 
l 

7
Bose and Shimamoto, "Classification and Analysis," pp. 151-84. 

4 
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The numbers v,b,r,k,A 1,A2 , ••• ,Am,n1,n2 , ••• ,nm are called the para

meters of the first kind and the numbers Pj~(i ,j,k = 1,2, .. . ,m) the 

parameters of the second kind, belonging to the design. Thus, there 

are 2m + 4 parameters of the first kind, and m2 (m + 1)/2 parameters 

the second kind (since Pj~ = Pk}). Originally, Bose and Nair
8 

had 

imposed the condition that A1,Az, ... ,Am were unequal, but Nair and 

Rao9 found that this condition was not necessary . 

The relations between the parameters 

It is known that the following relations are satisfied by the 

parameters of the designs: 

bk= vr 

m 

I 
i=l 

n. = V -
1 

m 

I 
i = 1 

i 
n.P.k 

1 J 

If m = 2, then clearly 

n.A. 
1 1 

=r(k-1) 

(ifit-j) 

= n. 
J 

1 (if i = j) 

of 

( 2. 1 ) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2. 7) 

(2.8) 

8R. C. Bose and K. R. Nair, "Partially Balanced Incomplete Block 
Designs," Sankhya, IV (1939), 337. 

9K. R. Nair and C. R. Rao, "A Note on Partially Balanced Incomplete 
Block Designs," Science and Culture, VII (1942), 568. 
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(2.9) 

(2: 10) 

There are eight parameters of the first kind and six parameters 

of the second kind. When m = 2, we shall require that A1 i A2, for 

if A1 = A2, the design becomes a balanced incomplete block design, 

which we do not wish to consider. 

These relationships establish constraints on the choice of the 

parameter value~. Altogether, given the n. , 
l 

only m(m2 
- 1)/6 of the 

i 
p jk are independent. 

Proof : To begin 

say for i = 1. Since 

with, consider the matrix (Pj~) for some fixed i, 

the matrix is symmetric, it is defined by (m; 1
) 

values ; since the row and column totals are fixed, only(;) of these 

are independent. 

If the P~k are known, then the relation n1P}k = n2 Pfk determines 

Hence, in the matrix (P~.), only the second to mth 
Jl 

columns and rows remain free to be determined, and these form a 

matri x in which (m 2 
1

) values are independent, since row and column 

totals are again fixed . 

Continuing, we find (m 2 
2

) independent values among the 

Unt,· 1 (m - (m2 - 2)) 1 1 . so on, = va ue remains among m-1 
the P j k 

values of the P.~ are then implicitly fixed and we have- in all 
m-2 . J 

Pjk' and 

The 

I (m-,) = m(m2 -1)/6· independent values of the parameters of the 
i=o 2 

second kind. 

Form= 2, we have m(m2
- 1)/6 = 1, and this will be used later. 

Association schemes and plans 

Most of the research carried out so far has been concerned with 

designs of two associate classes. These designs depend on eight 



parameters of the first kind v,b,r,k,A1,A2,n1,n2 and six parameters of 

the second kind Pj~(i ,j,k = 1,2). The parameters of the second kind 

may be exhibited as elements of two symmetric matrices . 

7 

p~ = ~PL 
Jk pl 

{2:11) 

21 

As an illustration, let v = 10, m = 2. Arrange the ten treatments 

1,2,3,4,5,6,7,8,9,l0 in the scheme. 

* 1 2 3 4 

1 * 5 6 7 

2 5 * 8 9 

3 6 8 * 10 

4 7 9 10 * 

(2.12) 

Suppose that the rule of association is that two treatments are first 

associates if and only if they occur together in the same column of 

the scheme; otherwise, they are second associates. Let us consider 

treatment 1. The other treatments that appear in the same block as 

treatment 1 are treatments 2, 3, and 4 (block (1)), and treatments 5, 

6, and 7 (block (2)). There are three other treatments (8, 9, and 10) 

which do not appear in the same block as treatment 1. Similarly, if 

we start with any other treatment, we find six treatments that are in 

the same block with it, and three that are not. Now, that means each 

treatment has six first associates and three second associates. Thus, 

condition (2.2) is satisfied with n1 = 6, n2 = 3. 

Take a pair of treatments that are first associates, say 1 and 2, 

and consider the relationships of the other treatments to these two. 

Treatments 2, 3, 4, 5, 6, and 7 are in the same block as 1, while 8, 9, 

and 10 are not. For treatment 2, the other treatments that are in the 
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same block are 1, 3, 4, 5, 8, and 9; while 6, 7, and 10 do not appear 

in the same block; namely, 

Treatment First associates Second associates 

1 2, 3, 4, 5' 6, 7 8, 9' 10 

2 1 ' 3, 4, 5, 8, 9 6, 7, 10 (2.13) 

These relationships may be presented in a 2 X 2 table (Table 1). 

Table 1. Relationship of the other treatment to 1 and 2 

Relation to 1 
1st associate 2nd associate 

Relation 
to 2 

1st associate 

2nd associate 

3, 4, 5 

6, 7 

8, 9 

10 

Treatments 3, 4, and 5 are first associates of both 1 and 2; treat

ments 6 and 7 occur in the same block with 1 but not with 2, and hence 

are first associates of 1 and second associates of 2, and so on. The 

same holds for other Pj~ 1 s. 

equation (2. 11) are 

i 
The parameters Pjk' when exhibited in 

P: = [3 2] , p~ = [4 2] 
Jk 2 1 Jk 2 0 

Remembering that n1 = 6, n2 = 3, and m = 2, we can now verify the 

ti ons (4) and ( 5) as follows: 

PL + Pf2 = 4 + 2 = 6( = n, }J (if i r j) 
PL + P½2 = 2 + 1 = 3( = n2) 

PL + Pt2 = 3 + 2 = 5( = n, - 1}} ( if i j) = 
PL + P~2 = 2 + 0 = 2( = n2 - 1 ) 

n1PL = n2Pf1 6 X 2 = 3 X 

:} (if i ,k 1 ' j = = 
n2Pf 1 = n1Pi2 3 X 4 = 6 X 

(2.14) 

rel a-

2) 



n2Pf2 = n1P½2 

n1P½2 = n2P~1 

3 X 2 = 6 X 11_ 

6 X 1 = 3 X 2] (if i,k = 2, j = 1) 

As the scheme (2. 12) pictorially summarizes the association rela

tions between the treatments, we may call it an "association scheme." 

To get a design based on this association scheme, we now have to 

arrange the ten treatments into blocks, satisfying the requirements 

(1), (2), and (4) of the definition. These blocks then give the plan 

of the design. It may happen that there is more than one design based 

on the same association scheme. For example, there are four different 

designs based on the association scheme discussed here. These are 

the design numbers 1, 2, 3, and 4 of Tables 3 and 4. Table 3 gives 

the parameters v, b, r, k, A1, A2, n, C1, c2 , 6, H, where n in the 

side of the square in the association scheme; and c 1 , c2 , 6, and Hare 

certain constants useful for analysis of the results of the design. 

Their use is explained later. Table 4 gives the association scheme 

and the plans (the blocks are given by the columns of the plan). As 

an illustration, consider the plan for design number 4. Since b = 10, 

k = 4, r = 4, there are ten blocks each containing four treatments, 

and each treatment occurring in four blocks. This design has two 

associate classes. For example, the first associates of treatment 

are 2, 3, 4, 5, 6, and 7; treatment 1 appears with each of these treat

ments in A1 = 1 block. The second associates of treatment 1 are 8, 

9, and 10; treatment 1 appears with each of these treatments in \ 2 = 2 

block . 

9 
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Table 2. Associate classes for design 

Treatment First associates Second associates 

1 2' 3, 4, 5, 6, 7 8, 9' 10 

2 1 ' 3' 4, 5, 8, 9 6, 7, 10 

3 1 ' 2' 4, 6, 8, 10 5' 7' 9 

4 1 ' 2, 3, 7' 9, 10 5' 6, 8 

5 1 ' 2, 6, 7' 8, 9 3, 4, 10 

6 1 ' 3, 5' 7' 8, 10 2, 4, 9 

7 1 ' 4, 5, 6, 9' 10 2' 3' 8 

8 2, 3' 5' 6, 9, 10 1 ' 4, 7 

9 2, 4, 5' 7' 8, 10 1 ' 3' 6 

10 3, 4, 6, 7, 8, 9 1 ' 2' 5 
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CHAPTER III 

TYPES OF ASSOCIATION SCHEMES 

All partially balanced incomplete block designs with two associate 

classes can be divided into a small number of types according to the 

nature of the association relations among the treatments . The following 

types of association schemes will be discussed. 

1. The group divisible type. 

2. The triangular block type. 

3. The Latin square type . 

4. The eye 1 i c type. 

5. The simple type. 

The group divisible type 

Group divisible incomplete block designs are an important subclass 

of part i ally balanced designs with two associate classes, and the 

simplest type of partially balanced designs with two associate classes 

is the group divisible,denoted by GD. There are v = mn treatments 

divided into m groups of n treatments each. The treatments of the same 

group occur together in A1 blocks and the treatments of the different 

groups occur together in A2 blocks. If A1 = A2 = A (say), then every 

pair of treatment occurs in A blocks, and the design becomes a balanced 

incomplete block design. We shall therefore confine outselves to the 

case A1 f A2 • The association scheme can be exhibited by placing the 

treatments in an nxm rectangle, where the columns form the groups. If, 

in a GD design with parameters v, b, r, k, A1 , A2, m, n, treatments 



belonging to the same group are considered as first associates, and 

treatments belonging to different groups are considered as second 

associates, then it is easy to see that it is a partially balanced 

design with two associate classes for which 

i =fno-2 
pjk L 

n1 = n(m 1) 

p~k = i o n - , 1 
J ~ - 1 n(m - 2lJ 

12 

( 3. 1 ) 

(3.2) 

Conversely, suppose for a partially balanced design, P!2 = o. Then 

from (2.8), P}1 = n1 - 1. The relation of the first association between 

two treatments is by definition commutative. We shall show that in the 

present case, it is also transitive. Let the treatments 0 0 and 01 

be first associates. Let the other first associates of 0 0 be 02, 03, 

... ,e . Now, since e o and 01 have n1 - 1 common first associates, 
n1 

they can be no other than 02, 03, ... ,e . Also, since 01 has exactly 
n1 

n1 first associates, all its first associates are 0 0 , 82,0 3 , ... ,e 
n1 

This shows that any first associate of e o (other than 01) is also a 

first associate of 01. These conditions are sufficient to insure that 

the v treatments can be divided into groups of n1 + 1 such that two 

treatments in the same group are first associates, and two treatments 

in different groups are second associates. Hence, the design is a GD 

design where the treatments of the same group are first associates. 

Similarly, if Pr2 = 0, we can show that the partially balanced design 

is a GD design, the treatments of the same group being second associates. 

We can therefore state: 

Theorem 1. The necessary and sufficient condition for a partially 

balanced design, to be group divisible, is vanishing of Pl2- If Pi2 = 

0, then the treatments in the same group are associates i = 1. 
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Any given treatment occurs in r blocks . Since each of these blocks 

contains k - 1 other treatments, there are r(k - 1) pairs of which 

one member is 8. But 8 must form A1 pairs with each of then - 1 

treatments belonging to the same group as 8, and A2 pairs with each 

of the n(m - 1) treatments not in the same group as 8. Hence, 

v = mn , bk= vr (3.3) 

(n - l) A1 + n(m- l) A2 = r(k - 1), n1 = n - 1, n2 = n(m-1) (3.4) 

also, 

The eight parameters v, b, r, k, A1 , A2, m, n are therefore 

connected by the three relations (3 .3) and (3.4), so that only five 

parameters are free . 

(3.5) 

Let N be the incidence matrix of the general PBIB design; that is, 

N = 

n 
V l 

(3.6) 

where the rows represent treatments, the column represents blocks, and 

n .. = 1 or O according as the ith treatment (i = 1,2, .. . , v) does or 
1 J 

does not occur in the jth block (j = 1,2, ... ,b). Since every treat-

ment is replicated r times, 
b 

l 
j =l 

n~. = r 
lJ 

(3. 7) 

and since every treatment must occur in As blocks with each of its sth 

associates (s = 1, 2, ... , m), if treatments i and u are sth associates, 

then 
b 

l 
j=l 

n .. n . = A 
1 J UJ S 

(i ! u; i, u = 1, 2, ... ,v) (3.8) 

Hence, the elements of the symmetric matrix NN' are r in the principal 
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diagonal and \ 's 
s 

elsewhere. We can write 

A B ... B 

NN' 
B A ... B 

= 
( 3. 9) 

B B ... A 

where N' is the transpose of the matrix N, and A and Bare nxn matrices 

defined by 

r \1 \1 \2\2 ... \2 

\1r \1 \2\2 ... \2 
A = B = (3.10) ........ . ....... 

\1\1 ... r \2\2 .. , \2 

Each row or column in the matrix on the right-hand side i n (3.9) contains 

A in the diagonal position and contains Bin the other m-1 positions . 

Bose and Conner
10 

have shown that 

INN' I = rk(rk - v\2 )m - 1(r - \ 1)m(n - l) 

For every GD design, the following inequalities can be shown: 

r ~ A1 ' rk - VA2 ~ 0 

(3.11) 

(3.12) 

According to these relations, we can divide all GD designs into 

three exhaustive and mutually exclusive classes: 

l. Singular GD designs, characterized by r = \ 1. 

2. Semi-regular GD designs, characterized by r > \ 1, rk - v\ 2 = 0. 

3. Regular GD designs, characterized by r > \1 , rk - v\2 > 0. 

The main combinatorial properties of each of these three classes are as 

fo 11 ows: 

Singular GD designs. A singular GD design is always derivable 

from a corresponding balanced incomplete block design on replacing each 

10R. C. Bose and W. S. Connor, "Combinatorial Properties of Group 
Divisible Incomplete Block Designs," Annals of Mathematical Statistics, 
XXIII (1952), 367-383. 



treatment by a group of n treatments. Consider a balanced incomplete 

block design with v* treatment, each replicated r* times in b* blocks 

of s i ze k*, such that any two treatments occur together in A* blocks . 

Now t here are v = nv* treatments divided into v* groups (each group 

corresponding to one of the original treatments). Two treatments 

belonging to the same group now occur together r* t i mes and two treat

ments belonging to different groups occur together A* times . Thus, 

we get a GD design with parameters . 

v = nv*, b = b*, r = r*, k = nk* 

15 

A 1 = r*, A 2 = A* , m = v* , n (3 . 13) 

Conversely , consider a singular GD design with parameter s v, b, 

r, k, A1, A2, m, n, where r = >-i. Let e and ¢ be any two treatments 

belongi ng to the same group. e occurs in r blocks, and since r = A1, 

¢ must occur in each of these r blocks and nowhere else. Hence, if a 

t reatment occurs in a certain block, every treatment belonging to the 

group occurs in that block. Let each group of treatments be replaced 

by a single treatment in the design; then there are v* = m treatments in 

the new design, and because any two treatments belonging to different 

groups occur together A2 times in the original design, the new design 

is a balanced incomplete block design with parameters. 

v* = m, b* = b, r* = r, k* = k/n, A*= A2 (3.14) 

Therefore, we may state: 

Theorem 2. If, in a balanced incomplete block design with para

meters v*, b*, r*, k*, A*, each treatment is replaced by a group of 

n treatments, we get a singular GD design with parameters given by 

(3. 13). Conversely, every singular GD design is obtainable in this way 

from a corresponding balanced incomplete block design. 



For example, let us consider the balanced incomplete block design 

with parameters v* = b* = 7, r* = k* = 3, A*= 1. The plan for this 

is given below, where the columns represent the blocks. 

1 2 3 4 5 6 7 

16 

2 3 4 5 6 7 1 

4567123 

(3.15) 

If n = 2, then we may replace the treatment 1 by 1 and 8, and do 

the same for the other treatments. We then get the singular GD design 

with the parameters 

v=l4, b=7, r=3, k=6, A1=3, A2=1,m=7,n=2 

the plan for which is shown below. 

Reps. 

I 
1 2 3 4 5 6 7 

8 9 10 11 12 13 14 

I I 
2 3 4 5 6 7 

9 10 11 12 13 14 8 

I I I 
4 5 6 7 2 3 

11 12 13 14 8 9 10 

As before, the columns represent the blocks. 

(3. 16) 

The relation rk - VA2 ~ 0 is true by definition for semi-regular 

and regular GD designs. We shall show that it holds for singular GD 

designs also. 

Then, using the parameters of a singular GD design given by (3. 13), 

r = r*, k = nk*, A1 = r*, A2 = A*, m = v*. From (3.4) we know 

(n - l)A1 + n(m - l)A2 = r(k - 1) 

n(m - l)A2 = r(k - 1) - (n - l)A1 

n(v* - l)A* = r*nk* - r* - nr* + r* 

: . A* ( v* - 1 ) = r* ( k * - 1 ) (3.17) 

The relation (3. 17) holds for a balanced incomplete block design. 



Hence, we may state: 

rk - VA2 = n(r*k* - V*A*) 

= n(r* A*) 

f 0 

Theorem 3. For any GD design, rk - VA2 ~ 0. 

Semi-regular GD design. For a semi-regular GD design, we have by 

definition 

r - Al > 0' rk - VA 2 = 0 

·: (n - l)A1 + n(m - l)A2 = r(k - 1) 

(n l) A1 = r(k 1) - n(m - l) A2 

17 

(3.18) 

Hence, 

r + ( n - 1 ) A 1 = nA 2 

For a semi-regular GD design, these hold the inequality.
11 

b~r-m+l 

(3.19) 

(3.20) 

Also, each block must contain the same number of treatments from 

each group so that k must be divisible by m. If k = cm, then every 

block must contain c treatments from every group. 

Proof: Let ej treatments from the first group occur in the jth 

b 1 ock (j = 1 , 2, ... , b) . 

Then, 

l libid. 

b 

l 
j=l 

b 
I e. = nr 

j=l J 

e . (e . - 1) = n(n - l)A1 
J J 

(3.21) 

(3.22) 
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since each treatment from the first group occurs in r blocks, and every 

pair of treatments from the first group occurs in \ 1 blocks. Using 

(3.19), (3.21), and (3.22) 

Let 
b 

1 , _ nr 
e=-b l e.--b 

j=l J 

·: bk = vr = mnr 

bk 
- = nr 
m 

nr k 
b = in 

. k 
.. e = m 

from (3.3), hence, 

b b 

L ( eJ. - e) 2 = L 
j=l j=l 

= n2\2 

= n2\2 

= n2>..2 

= n2(>..2 - rk/v) 

= 0 (° .' rk - VA 2 = 0) 

from (3.3) and (3. 18); therefore, 

(3.23) 

(3.24) 

Since ej must be integral, k must be divisible by m. If k = cm, then 

ej = e (j = 1, 2, ... , b). The same argument applies to treatments of 

any other group. 
12 

120. Raghavarao, "A Generalization of Group Divisible Designs," 
Annal s of Mathematical Statistics~ XXXI (1960), 756-771. 
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For example, if v = 6, b = 9, r = 6, k = 4, lq = 3, \2 = 4, m = 2' 

n = 3, the plan for which is shown below: 

Reps. 

I 1 1 1 5 5 5 3 3 3 

II 2 4 6 2 4 6 2 4 6 

III 3 3 3 1 1 5 5 5 

IV 4 6 2 4 6 2 4 6 2 (3.25) 

As before, the columns represent the blocks. 

Regular GD designs. For a regular GD design, we have, by definition: 

r - \1 > 0, rk - v\ 2 > 0 

For a regular GD design, the following inequality holds: 

b ~ V 

For example, if v = 6, b = 6, r = 4, k = 4, \ 1 = 3, \ 2 = 2, 

m = 2, n = 3. 

Reps. 

I 3 5 2 4 6 

II 2 4 6 1 3 5 

II I 4 6 2 3 5 1 

IV 6 2 4 5 1 3 

As before, the columns represent the blocks . 

The triangular block type 

(3.26) 

( 3. 27) 

( 3. 28) 

Another important type of partially balanced design is the trian

gular type denoted by T. A partially balanced design with two associate 

classes is said to be triangular if the number of treatments is v = n 

(n - 1)/2 and the association scheme is an array of n rows and n 

columns with the following properties.
13 

13s. S. Shri khan de, "On a Characterization of the Triangular 
Association Scheme," .Annals of Mathematical Statistics, XXX (1959), 
39-47. 



1. The positions in the principal diagonal (running from upper 

left hand to lower right hand corner) are left blank. 

2. The n(n - 1)/2 positions above the principal diagonal are 

filled by the numbers 1, 2, ... , n(n - 1)/2 corresponding to the 

treatments. 

3. The n(n - 1)/2 positions below the principal diagonal are 

filled so that the array is symmetrical about the principal diagonal. 

4. For any treatment i, the first associates are exactly those 

treatments which lie in the same row (or in the same column) as i. 

20 

n1 = 2n - 4, n2 = (n - 2)(n - 3)/2 (3.29) 

pjk [n - 2 n - 1 J = 
n - 3 (n - 3)(n - 4)/2 

pjk = [2n ~ 
2n 

- 8 J 
8 (n - 4)(n - 5)/2 

It is easy to write down the association scheme for the 

gular block type. Shrikhande pointed 

* 2 3 

* n n - 1 

2 n * 2n - 2 

3 n - 1 2n - 2 * 
4 n - 2 2n - 1 3n - 5 

n - 2 2n - 4 3n - 7 4n - 11 

n - 1 2n - 3 3n - 6 4n - 10 

4 

n - 2 

2n - 1 

3n - 5 

* 

out the genera 1 ru 1 e, 

n - 2 n - 1 

2n - 4 2n - 3 

3n - 7 3n - 6 

4n - 11 4n - 10 

* V 

V * 

(3.30) 

trian-

as fo 11 ows: 

(3.31) 

* represents the empty treatment which lies in the principal 

diagonal. The array is symmetric about the principal diagonal. 

It can happen that there is more than one design based on the same 

association scheme. For example, there are four different designs based 

on the same association scheme in Table 4. Table 3 gives the parameters. 
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Table 3. Parameters of some triangular type designs 

Reference 
V b r k A1 ,\ 2 

no. n1 n2 n C1 C2 ti H 

1 10 5 2 4 1 0 6 3 5 2/5 -1/5 10 13/2 

2 10 10 3 3 1 0 6 3 5 3/10 -3/20 40/9 13/3 

3 10 5 3 6 2 1 6 3 5 2/3 1/3 15/2 11/2 

4 10 10 4 4 1 2 6 3 5 4/15 8/ 15 45/4 27 /4 

Theore m 4. It has been pointed out by Raghavarao14 that if in a 

PBIB design with two associate classes having a triangular association 

scheme 

(3.32) 

then 2k i s divisible by n. Further, every block of the design contains 

2k/n treatments from each of then rows of the association scheme. 

Proof: Let e] treatment occur in the jth block from the ith row 

of the association scheme (i = 1, 2, ... , n; j = 1, 2, ... , b) . Then 

we have 

b i 
I e.=(n-l)r 

j=l J 

b 

I 
j=l 

i( i - 1) e . e . = 
J J 

(n - l)(n - 2),\1 (3.33) 

since each of the treatments occurs in r blocks and every pair of treat

ments from the same row of the association scheme occurs together in 

A1 blocks . From (3.5), we get 

140. Raghavarao, 110n the Block Structure of Certain PBIB Designs 
with Two Associate Classes Having Triangular and L2 Association Scheme,11 

Anna,Zs of Mathematical Statistics, XXXI (1960), 787-791. 
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Table 4. Association schemes and plan for some triangular type designs 

Reference no. Association scheme Plan 

* 1 2 3 4 Reps. 

* 5 6 7 5 8 10 4 
I 

1 2 5 * 8 9 2 6 9 3 7 

3 6 8 * 10 3 7 2 6 9 
II 

4 7 9 10 * 4 5 8 10 

Reps. 

I 1 8 2 7 9 5 3 10 4 6 
2 Same as 1 

I I 2 9 8 5 4 6 10 7 1 3 

I II 5 10 3 9 2 8 4 6 7 1 

Reps. 

5 10 4 7 1 
I 

6 9 3 2 8 

7 4 9 3 
3 Same as 1 I I 

8 2 10 5 6 

9 3 7 1 5 
II I 

10 8 6 4 2 

Reps. 

I 2 10 7 6 1 5 8 3 9 4 

II 10 1 3 2 9 4 7 5 6 8 
4 Same as 1 

I I I 6 2 8 9 10 3 4 7 1 5 

IV 7 5 2 4 8101936 



Define 

Then 

b . 
I (e '. 

j=l J 

from ( 3. 4). 

b . 

j~l (e})
2 

= (n - l){r + (n - 2)A1} 

. l b ,· 
e~ = - I e. = (n - l)r/b = 2k/n. 

b j=l J 

; ) 2 e. = (n - l){r + (n - 2)A1} 

= 2(n - l)[{n(r - \1)/2} (rk - VA1)]/2 

= 0 

i i 
Therefore, e1 = e2 = _ ei _ i 

- b - e. = 2k/n. Since e} 

23 

(3.34) 

(i = 1, 2, ... , n; j = 1, 2, ... ' b) must be integral, 2k is divisible 

by n. 

For example, if v = 15, b = 15, r = 3, k = 3, n1 = 8, n2 = 6, 

Ai = 0, A2 = 1. We have 

Association scheme 

* 2 3 4 5 

1 * 6 7 8 9 

2 6 * 10 11 12 

3 7 10 * 13 14 

4 8 11 13 * 15 

5 9 12 14 15 * 

Reps. Plan 

I l 11 12 2 14 13 15 8 3 6 4 9 5 7 10 

II 10 l 13 15 2 9 3 12 11 14 7 4 6 5 8 

III 15 14 l 7 8 2 6 3 9 4 12 10 13 11 5 

This triangular association scheme is rk - VA1 = n(r - A1)/2 = 6, then 

2k is divisible by n. 



The Latin square type 

There are v = n2 treatments (n a positive integer). This type is 

denoted by LS. The number of treatments is a perfect square, say 

v = n2. The treatment may be set forth in a square scheme. For the 

case i = 2, two treatments are first associates if they occur in the 

same row or column, and second associates otherwise. For the general 

case, we take a set of i - 2 mutually orthogonal Latin squares and 

superimpose them on the array. Then, two treatments are first asso

ciates if they occur in the same row or column of the array, or if 

they correspond to the same letter in one of the squares. 

For this scheme, 

24 

n1 = i(n 1 ) ' n2 = (n - i + 1) ( n 1 ) (3.35) 

P\ ~ 
2 

- 3i + n ( i 1 ) ( n - i 
+ 1 iJ = 

.J (i - l)(n - ; + 1 ) (n i ) ( n - i + 1) 

pjk = ~ (i -
1 ) i ( n - i ) 

J i ( n - i) (n - 1)2 + i - (3.36) 

For example, if V = 9, b = 9, r = 4, k = 4, n1 = 4, n2 = 4, )q = 1' 

.11.2 = 2, i = 2 

pjk = 
G ~ pjk = 

C J 
Association scheme 

2 3 

4 5 6 

7 8 9 

Reps. Plan 

I 6 8 9 2 4 5 7 3 

II 6 8 1 2 4 9 7 3 5 

III 9 2 4 5 7 3 1 6 8 

IV 2 4 9 7 3 5 6 8 1 
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The cyclic type 

For this case, instead of taking the treatments to be 1, 2, 3, ... , 

v. The first associates of the treatment i are i + d1, i + d2, . .. , 

i + dn
1
' where d1, d2, ... , dn

1 
are integers satisfying the following 

conditions: 

1. The d . are all different, and 0 < d. < v for each j (j = 1, 
J J 

2, .. . ,n 1). 

2. Among the n1(n1 - 1) differences d . - d'.(j, j 1 = l,2, . . . ,n 1, 
J J 

j f j 1 
), each of the integers d1, d2, . .. , d occurs g times, and each 

n i 

of the other n2 positive integers less than v occurs h times . 

,h=P f1 , 

The 
i 

given by parameters 

r 
are 

pjk = 
g n1 - g - 1 

1] - g - 1 n2 - n1 + g + 

pjk [n, 
h n1 - h 

- 1] 
= 

- h n2 - n1 + h ( 3. 37) 

As an example, consider the following design 

v=l3, b=l3, r = 3, k = 3, n 1 = 6, n2=6, \ 1=1, \ 2=0, g=2, h=3 

pjk = 

[: :1 
pjk = [: :1 

Association scheme 

Variety 1st associates 

I 3 6 7 8 9 12 

Reps. Plan 

I 1 2 3 4 5 6 7 8 9 10 11 12 13 

II 3 4 5 6 7 8 9 10 11 12 13 1 2 

III 9 10 12 12 13 1 2 3 4 5 6 7 8 
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The simple type 

A partially balanced design with two associate classes is said to 

be simple if either: (a) )q t- 0, \2 = 0, or (b) \1 = 0, \2 t- 0. The 

case (b) can be reduced to (a) by interchanging the designation of 

first and second associates. Hence, case (a) will be taken as the 

standard. It may happen that a design of the simple type also belongs 

to one of the other types; viz., group divisible, triangular, Latin 

square, or cyclic. For a simple design, a separate association scheme 

is not necessary since the plan itself serves as an association scheme. 

Any two treatments which occur together in the same block must nee-

ess ari ly be first associates (it being assumed that the design is in the 

standard form \1 t- 0, '-2 = 0). 

For example, if V = 19, b = 19, r = 3, k = 3, n1 = 6, n2 = 12, 

\ 1 = l, 1-2= 0. 

pjk = [~ :] pjk = 
[! ;J 

Plan 

Reps. 

I 1 4 7 15 19 5 16 8 12 14 17 11 2 3 18 6 10 9 13 

I I 3 6 8 4 11 5 10 13 16 18 2 14 9 15 12 19 17 7 

II I 2 5 4131810 9 11 15 19 8 17 12 3 14 6 7 16 



CHAPTER IV 

ANALYSIS OF PARTIALLY BALANCED 

INCOMPLETE BLOCK DESIGNS 
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When partially balanced incomplete block designs are used for 

procuring experimental data, it may be possible to make two independent 

analyses on the data. The usual analysis, termed the intra-block 

analysis, depends only on comparisons within the block; whereas the 

second analysis, termed the inter-block analysis makes use of the block 

totals only. This latter analysis is sometimes referred to as "the 

recovery of inter-block information," and depends on the assumption 

that the block effects are random variables. 

The customary use of the inter-block information is to combine 

this additional information with the intra-block analysis so as to 

estimate the treatment effects with greater precision than if the 

intra-block estimates had been used alone. 

Intra-block analysis 

Let there be v treatments whose effects it is required to compare 

by using a partially balanced incomplete block design with two asso

ciate classes. We may divide the N( = bk) experimental units to which 

the treatments are to be applied into b blocks, each block containing 

k units. The design divides the treatments into b sets, such that each 

set contains k treatments, and each treatment occurs in r sets, other 

conditions for a partially balanced design with two associate classes 

being satisfied. The b sets of treatments are assigned randomly to 



the b blocks, and the individual treatments of a set are assigned 

randomly to the units of the corresponding block. Let Y;j represent 

the observation of the ith treatment in the jth block. Furthermore, 

we assume that the mathematical model can be written as 15 
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y .. =µ+t.+b.+E .. 
lJ 1 J 1J 

(i = 1,2, ... ,v; j = 1,2, ... ,b) ( 4. 1 ) 

where y .. is only defined when the ith treatment occurs in the jth 
lJ 

block. The parameterµ represents a general component common to all 

observations, and component ti and bj denote the constant effects of 

the ith treatment and the jth block, respectively. In order to obtain 

the minimum variance unbiased estimates of the unknown parameters, it 

is only necessary to assume that the Eij are a sequence of uncorrelated 

random variables having a mean zero and variance a2. We also assume 

that the Eij follow a normal distribution. 

Let 

n .. = ~ if the ith treatment appears in the jth block. 

lJ ~ otherwise . 

and denote by Ti the total of the observations for the ith treatment; 

i. e ., Ti is the sum of the observations from the r experimental units 

to which the ith treatment has been applied. Let Bi be the sum of the 

totals for blocks in which treatment i occurs. Denote by kQi the 

adjusted treatment totals, where Qi is obtained by subtracting from Ti 

the sum of the block averages for those blocks in which the ith treat

ment occurs. Thus, we have 

kQ. = kT. - B. 
1 1 1 

(4.2) 

Further, let kS1(Qi) be the sum of the adjusted treatment totals for 

15
sose and Shimamoto, pp. 167-170. 
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all the first associates of the ith treatment; and likewise, kS2(Qi) 

is the sum of the adjusted treatment totals for all the second associates 

of the ith treatment . We denote the grand total of the N observations 

by G. 

Bose
16 

has shown that the ith intra-block equation can be written 

kQ. 
l 

= r(k - l)t. - IA- t 
l SfilS S 

i=l,2, . .. ,v (4.3) 

where \ is is the number of blocks in which treatment i ands occur 

together, and t . is the intra-block estimate of treatment effect i. The 
l 

" s i de condition is I ti = 0. 
i 

Now let S.(Q. ) =IQ and S.(t.) =It , where the summation is 
J l s s J l s s 

made over all treatments s, such that i ands are jth associates . Then 

(4. 3) becomes 

kQ. = r ( k - 1 ) t . - I \ . S . ( t . ) 
l l j=l J J l 

In the case of two associate classes, we have
17 

kSi(Qi ) = - \1n1ti + Si(ti){r(k - 1) - \1 Pi 1 - \2 Pl2} 

+ S2(t.){ - \1PL - \2 Pf2} 
l 

\2 n2ti + S1 (ti){ \1Pi2 \ 2P½2} 

+ S2(t. ){r(k - 1) - \1 Pf2 - \2 P~2} 
l 

There are two methods of continuing the analysis . They are 

gi ven by Rao18 and by Bose and Shimamoto. 
19 

(4.4) 

(4.5) 

(4.6) 

16
R. C. Bose, 11Least Square Aspects of the Analysis of Variance, 11 

Series 9 (Ra1eigh, North C~rolina: University of North Carolina, 1949), 
pp. 10-12. (Mimeographed. J 

17z. Marvin, 11Analysis for Some Partially Balanced Incomplete 
Block Designs Having a Missing Block, 11 Biometrics, X (1954), 274. 

18 
Rao, pp. 550-553. 

19
Bose and Shimamoto, p. 169. 



Rao's solution. 

(": ft. = 0) . , , 
A2Fi = A2{ti + Si(ti) + S2(ti )} = 0 , 

:. - A2S2(t.) = A2Si(t.) + Azt. , , , 
Substituting from (4.7), then (4.4) becomes 

kQi = r(k - 1 )ti - A1S1 (ti) + A2S1 (ti) 

= (r(k - 1) + A2)ti + (:\2 A1)Si(ti) 

30 

( 4. 7) 

·: t. + S1(t.) + S2(t.) = 0 (4.8) 
1 1 1 

We can simplify (4.5) as follows: 

kSi(Qi) =-:\1n1t
1 

+ S1(ti){r(k - 1) - A1PL - A2Pl2} 

+ (t. + S1(t.)){:\1Pf1 + A2Pf2} 
1 1 

- - A1n1t
1 

+ Si(t
1

){r(k - 1) - A1Pl1 - A2Pl2} 

A 2 2 (" ) 2 2 + t.{:\1P11 + A2P12} + S1 t. {:\1P11 + A2P12 
1 1 

= {,- A1n1 + A1Pf1 + A2Pf2}t
1 

+ S1(ti){r(k - 1) 

- A1Pl1 - A2Pl2 + A1Pf1 + A2Pt2} 

Using (2.8) and (2.9), 

kS1(Q.) = { - A1n1 - A1(n1 - Pr2) + A2Pf2}t. + S1(t.){r(k - 1) 
1 1 1 

- A1Pl1 - A2(n1 - 1 - P}1) + A1Pf1 + A2(n1 - Pf1)} 

kSi(Qi) = (A2 - A1 )Pf2ti + Si(ti) 

{r(k - 1) + A2 + (:\2 - A1)(Pl1 - Pr1)} (4.9) 

Let 

A12 = r(k - 1) + A2 



A22 = (A2 A1 )Pf 2 

B22 = r(k l) + A2 + (A2 - A1)(Pl1 - Pf1) 

6r = A12B22 - A22B12 

Then (4.8) and (4.9) become 

kQi = A12ti + B12S1(t;) 

kS1(Q
1

) = A22t; + B22S1(ti) 

Solving two equations (4.10) and (4.11), we get 

6rti = k{B22Qi - B12S i(Qi)} 

Rao has also shown that the variance of the estimate of the 

difference between two treatments is 

Var(ti - tu)= 2k(B22 + B12)a2/6r 

if treatment i and u are first associates 

or 

2kB22 a2/6r 

i f treatment i and u are second associates . 

Example: See reference number 4 of Tables 3 and 4. 

There have 

V = b = 10, r = k = 4, A1 = l , A 2 = 2' n1 = 6, n2 

p ~. = 13 21 
1 J l2 ~ 

p~. = ~ ~] lJ 

A 12 = 14, B 1 2 = l , A2 2 = 2, B 2 2 = 13, 6r = 180 

using (4. 12), then 
7 
l Q. 

. 2 1 1= 

= 3 

31 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

Var(t 1 tJ = 28cf/ 45 

Var(t 1 t 8 ) = 26cf/45 

if treatment l and 2 are first associates. 

if treatment 1 and 8 are second associates. 



32 

The solution of Bose and Shimamoto. Rewriting the equations (4.5) 

and (4.6) as 

Where 

kS1 (Qi) 

kS2(Q;) 

>--1n1t; + a11S1'ti) + a 12S2(t 1) 

>--2n2ti + a21S1(t;) + a 22S2(t;) 

Consider the linear combination 

L. = k2Q. + c1kS1(Q.) + C2kS2(Q. ) 
1 1 1 1 

Substi tuting from (4.14), (4.15), and (4.4) 

L . = k { r ( k - l ) t . - A 1 S 1 ( t . ) - A 2 S 2 ( t . ) } + C1 { - A 1 n 1 t , + a 1 1 S 1 ( t . ) 
1 1 1 1 1 1 

+ a1 2S2Ct. )} + cd- >--2n2t- + a21S1 (t.) + a22S2(t. )} 
1 1 1 1 

= rk(k - 1 )ti - (C1A1n1 + C2A2n2)ti + (a 11C1 + a21C2 - A1k) 

S1(t.)+ (a12c1+a22C2- >--2k)S2(t.) 
1 1 

We choose c1 and c2 so that (4. 18) becomes 

k2Qi+c 1kSi(Qi) + C2kS2(Q;) = rk(k-l)Q
1 

This requires that 

So 

giving 

- (c1 >--1n1 + C2A2n2)ti + (a 11C1 + a21C2 - A1k)S 1 (t;) 

+ (a12C1 + a22C2 - A2k)S2(ti) = 0 

·: t. + Si(t.) + S2(t . ) = 0 
1 1 1 

A1k = (a 11 + A1n1)C1 + (a21 + A2n2)C2 

A2k = (a 12 + A1n1)C1 + (a22 + A2n2)C2 

(4.14) 

(4. 15) 

(4. 16) 

(4 . 17) 

(4.18) 

(4. 19) 
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solving by determinants 

C1 = 01/D 

C2 = 02/D (4.20) 

Where 

02 = \ 1k(a12 + \1 n1) \2 k(a 11+ \ 1n1) 

Subst i tuting from (4. 16) to 0, we get 

D = {r( k - l) - \1 PL - \2 Pi2 + \1 ni}{r(k- l) - \ 1PI2 - \2 P~2 + \2 n2} 

- { - \ 1PL - \2 PI2 + \ 1nd{ - \ 1Pi2 - \2 P½2 + \2 n2} 

= {r(k - l) - \1 (n1 - l - Pr2) - \2 Pi2 + \1 nd 

{r(k - l) - \1 PI2 - \2 (n2 - l - P~1) + \2 n2} 

(4.21) 

- { - \ 1 ( nr· Pf 2 ) - \ 2 PL + \ 1 n i} { - \ 1 Pi 2 - \ 2 ( n 2 - PL ) + \ 2 n 2} 

= {r(k- l) + Pr2(\ 1 - \ J + \i}{ r( k - l) - P12(\1 - \2 ) + \2} 

+ {\1PI2 - \2 P12}{\1Pi2 - \2 P½1} 

(·: PL = P12 ' PL = Pl2 ) 

D = (r k - r + \1 )(rk - r + \2 ) + (\1 - \2 ){r (k - l)(P t2 - P12) 

+ \2 Pi2 - \1 P12} 

(Bose and Shimamoto write k26 for 0.) 

Subst i tuting for a21 and a22 in 01, we get 

01 = \ 1k{r(k - l) - \ 1P12 - \2 P~2 + \2 n2} 

- \2 k( - \ 1Pi2 - \ 2P½2 + \2 n2) 

= \ 1k{rk - r - \ 1PI2 - \ 2(n2 - l - P12) + \2 n2} 

- \2 k{ - \ 1Pl2 - \ 2(n2 - Pl2 ) + \ 2n2} 

= \ 1k(rk r + \2 ) + \ 1k(\ 2Pi2 - \1 P12) - \2 k(\ 2Pt2 - \1 P12) 

= \ 1k(rk r + \2 ) + k(\ 1 - \2 )( \2 Pi 2 - \1 P12) 

Using (4.20), we get 



k6C1 = A1(rk - r + A2) + k (A1 - A2)(A2Pi2 - A1Pt2) 

( . C1 = D1/D = D1/k 26, k6c1 = D1/k) 

Similarly, substituting for a11 and a12 in D2, we get 

D2 = A1k( - A1PI1 - A2Pr2 + A1n1) - A2k{r(k- l )- A1PL - A2Pf2 + A1n1} 

= A 1 k { - A 1 ( n 1 - PI 2) - A2 PI 2 + A 1 n i} 

- A2k{r(k - l) - Ai(n1 - l - Pf 2)- A2Pi2 + Aini} 

= A2k(rk- r+\1)+ A1k(A2Pt2- A1Pf2 )- A2k(A2Pi2- A1Pf2) 

= A 2 k ( rk - r + A 1 ) + k ( A 1 - A 2 )( A 2 Pl 2 - A 1 Pr 2) 

... k6C2 = A2(rk - r + A1) + (A1 - A2)( A2Pl2 - A1Pt2) 

Bose and Shimamoto have also shown that the variance of the 

estimate of the difference between two treatment effects are 

(
A -"'t)=2(k-C1)a2 

Var ti u r(k - lJ 

if treatments i and u are first associates, or 

if treatments i and u are second associates . 

In our example a11 = 5, a12 = - 8, a21 = - 4, a22 = 10. 

Two equations (4 . 19) to be solved are 

f4 = llc1 + 2C2 

ls = -2c1 + l6c2 

C1 = 4/15, C2 = 8/15, D = 166 = 180, 6 = 45/4 
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(4.22) 

(4.23) 

Var(t1 t2) = 28a2/45 

Var(t 1 ta) = 26a2/45 

if tretment l and 2 are first associates. 

if treatment l and 8 are second associates. 

In practice, it is convenient to write the solution 

rk ( k - l ) t . = k 2 Q · + C 1 k S 1 ( Q . ) + C 2 k S 2 ( Q 
1
. ) 

l l l 

·:Q,. + S1(Q. ) + S2(Q.) = 0 
l l 

rk(k - l)t . = k2Q. + C1kS1(Q.) - C2k{Q. + S1(Q. )} 
l l l l l 



rk(k - 1 )ti = (k - C2)kQi + (c 1 - C2)kS1 (Qi) 

In the above example, we get the same result. 
7 

45t1 = 13Q1 - Si(Q1) = 13Q1 - L Q. 
. 2 1 

The combined inter- and intra-block 
analysis 

1= 

35 

(4.25) 

The general formulae for the recovery of inter-block information 

were shown by Nair
20 

and Rao
21

. Bose and Shimamoto have also defined 

as additional constant H for the combined inter- and intra-block 

analysis, 

and define 

W1 = 1/if 

W2 = t{r-1) 
k(b-1)~-(t - k) a2 

w = W2 

W1 - W2 

We also require constant d1 and d2, which take the place of the c1 

and c2 in the intra-block analysis. 

d1 = (c 16 + r\1W)/(6 + rHW + r 2W2) 

d2 = (c26 + r\2W)/(6 + rHW + r 2W2) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

The combined intra- and inter-block estimate t1 of the treatment 

t. is given by the equation 
1 

(4.32) 

Where 

2
°K. R. Nair, "The Recovery of Inter-Block Information in Incomplete 

B 1 ock Desi gns," Sankhya., VI ( 1944) , 383-390. 

21 
Rao, pp. 550- 553. 



Qi= Ti - Qi - rG/N 

P. = W1Q, + W2Q! 
1 1 1 

And S1(P;) is the sum of the P; 's for those treatments which are the 

first assoc i ates of the ith treatment . 

The variance of the estimate of the difference between two treat

ment effects is given by 

Var(t ! - t') = {2(k - d1)}/[r{w 2 + wi(k - 1 )}] 
1 U 

if treatment i and u are first associates . 

36 

or= {2(k - d2)}/[r {w2 + w1(k - l) }] (4.33) 

if treatment i and u are second associates. 

Computational details for the intra-block analysis and combined 

int er- and i ntra-bloc k analysis are given in Cochran and Cox.22 

22cochran and Cox, pp. 456-463. 
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CHAPTER V 

SUMMARY 

The essential feature of balanced i ncomplete block designs i s that 

each treatment is paired wi th every other treatment an equal number 

of times wi thin a common block; \ is a constant for all treatments . 

These balanced desi gns may be considered as special cases of a broader 

cl ass of desi gns known as part i ally balanced incomplete block desi gns . 

In the general case of partially balanced incomplete block designs, 

each treatment may have m associate classes . Treatments in the first 

assoc i ate class of treatment i are paired with treatment i in \ 1 

bl ocks; treatments in the second associate class of i are paired with 

i i n \ 2 blocks; and treatments in the mth associate class of i are paired 

with i i n \ m blocks. Balanced incomplete block desi gns form that 

special case of partially balanced designs in which there is one asso

ci ate class for each treatment . 

The partially balanced incomplete block designs with two associate 

classes are classified as: (a) group divisible type; (b) triangular 

block type; (c) Latin square type; (d) cyclic type; and (e) simple 

type . Group divisible designs are divided into three types: (a) singu

lar ; (b) semi-regular; and (c) regular. 

The symmetries imposed upon the structure of partially balanced 

designs are what permit s implified solution of the normal equations 

obtained in using the least-square principle in the estimation process. 

Partially balanced incomplete block designs may be analyzed either with 
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or without the recovery of inter-block treatment information. Extensive 

tables of partially balanced incomplete block designs have been com

piled by Bose, Clatworthy, and Shrikhande.
23 

Since all treatments 

are not paired an equal number of times within a common block, in 

comparing pairs of treatments, the proper error terms depend upon 

the kind of association between the pair in question. 

23sose, Clatworthy, and Shrikhande, pp. 90-255. 
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