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A new class of partially coherent light sources is intro-
duced. At the source plane, they exhibit perfect coher-
ence along any annulus that is concentric to the source
center. Between two points at different distances from
the center, coherence can be partial or even vanishing.
Such sources can be synthesized by using a general-
ized form of van Cittert–Zernike theorem where axial
sources are used. Beam radiated by this type of sources
are analyzed at the source plane and upon free propaga-
tion for some simple cases. © 2017 Optical Society of America
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Modeling partially coherent sources with different character-
istics across the source plane and on propagation has been a big
deal during the last decades [1–21]. Experimental procedures
aimed at synthesizing sources with tunable coherence properties
have been also presented [22–27]. For a detailed review on the
structure and synthesis of partially coherent sources, see [28]
and references therein. Among the conceivable partially coher-
ent sources, those of the Schell-model type [29] have played
a crucial role in coherence theory. Such sources are character-
ized by a shift-invariant spectral degree of coherence [29] and
then provide a useful model to represent many natural sources.
Schell-model sources can be synthesized in a rather simple way,
because they can be produced starting from a primary incoherent
two-dimensional source and exploiting the van Cittert–Zernike
theorem [29].

In this letter we present a class of planar, circularly symmet-
ric, partially coherent sources, for which the degree of coherence
between two points depends only on their distances from the
source center. This means, in particular, that source regions con-
taining points with high correlation have the shape of a donut
and, in particular, the fields at any pair of points lying along a
ring concentric with the source are mutually perfectly coherent.
Natural sources endowed with such a property are rather un-
usual but, as will be shown, they can be synthesized in a very
simple way. On the other hand, their propagation properties
can be of interest, because their symmetry exactly reflects that of
most optical systems used in practical applications.

The proposed class of sources is characterized by a cross-
spectral density (CSD) at the source plane of the type

W0(r1, r2) = τ∗(r1)τ(r2) g

(
r2

2 − r2
1

δ2
µ

)
, (1)

where r is the modulus of the position vector on the source plane
(r), while g and τ are complex-valued functions. The parameter
δµ has been introduced as a positive quantity having dimensions
of a length, in order for g to be a function of a dimensionless
argument. As we shall see, δµ can be related to the coherence
properties of the source. Note that CSDs written as in Eq. (1)
fulfill the non-negativeness condition, and therefore represents
physically realizable sources, for any g having non-negative
Fourier transform [29]. Here and in the following we shall omit
the explicit dependence from the temporal frequency.

The irradiance profile of the source, namely, I0(r) = W0(r, r),
is completely determined by the function τ(r), while the degree
of spectral coherence between the points r1 and r2, defined as
[29]

µ0(r1, r2) =
W0(r1, r2)√

W0(r1, r1)W0(r2, r2)
, (2)

is related to the function g. More precisely, it turns out that

µ0(r1, r2) =
τ∗(r1)τ(r2)

|τ(r1)τ(r2)|
g

(
r2

2 − r2
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δ2
µ

)
, (3)

where, without loss of generality, we set g(0) = 1. In particular,
the modulus of the degree of coherence depends only on the
difference between the squared radial coordinates of the two
points, and is one for any pairs of points lying on a circle centered
on the axis origin. The analytical form of such a CSD reminds
that of a source of the Schell-model type, but in the present case
the dependence of the modulus of the degree of coherence is
through the difference r2

2− r2
1, instead that through the difference

of the position vectors themselves (r2 − r1).
To illustrate some general coherence properties of this kind

of sources, we first consider the case where one of the two points
coincides with the axis origin. Then, the parameter δµ can be
defined in such a way to represent the maximum distance from
the origin for which a significant correlation exists between the
field values at the two points. In this way, the quantity πδ2

µ
provides an estimate of the coherence area of the source. In a
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more general case, the argument of the function g can be written
as

r2
2 − r2

1
δ2

µ
=

(r2 + r1)(r2 − r1)

δ2
µ

=
2 r̄
δ2

µ
(r2 − r1) , (4)

where r̄ = (r1 + r2)/2 is the average radial distance of the two
points. Equation (4) shows that, if r̄ is kept fixed, the depen-
dence of the degree of coherence on the radial coordinates of
the two points is just of the Schell-model type in one dimension.
Therefore, for any fixed value of r̄ we can identify an annular
region, having mean radius r̄ and width δ2

µ/2r̄, within which a
significant correlation exists between the field values (a “coher-
ence donut”). The width of this annulus decreases on increasing
r̄ but its area, approximately given by 2πr̄ δ2

µ/2r̄ = πδ2
µ, remains

constant. In this sense, πδ2
µ can be taken as a measure of the

coherence area across the source. Plots describing the behavior
of the degree of coherence of the source are shown in Fig. 1 for
the case g(·) = sinc(·), with δµ = 1 (in arbitrary units).

The coherence properties of the radiated field across a trans-
verse plane at a distance z from the source can be obtained,
under paraxial approximation, by means of the Fresnel diffrac-
tion integral. The resulting CSD is [29]

W (R1, R2, z) =
1

λ2z2

∫∫
W0 (r1, r2) (5)

× exp
[
− ik

2z

(
|R1 − r1|2 − |R2 − r2|2

)]
dr1dr2 ,

where R1 and R2 are the position vectors of two points across
the plane z = constant. Taking the circular symmetry of W0 into
account, Eq. (5) can be written as

W (R1, R2, z) =
k2
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(6)

where k is the wave number and J0(·) is the Bessel function of
the first kind and zero order [30]. Of course, the CSD preserves
its circular symmetry during propagation.

Besides the trivial case δµ → ∞, which gives rise to a per-
fectly coherent beam, the opposite limiting case is of interest.
When δµ → 0, in fact, the width of the coherence donuts tends
to zero but perfect correlation still exists between points lying
on concentric rings. Therefore, the source consists of the super-
position of a continuous set of mutually incoherent but perfectly
coherent thin annular sources. Each such coherent source gives
rise to a zero-order Bessel beam [31], with its own width and
amplitude, so that the propagated CSD reduces to the sum of
CSDs of perfectly coherent Bessel beams.

The expression of the CSD in the far zone is directly obtained
from Eq. (6) on neglecting the exponential term inside the in-
tegral. To give an example, we take g as a sinc function (with
δµ = 1, in arbitrary units), and the irradiance profile as a Gaus-
sian, i.e., τ(r) = exp(−ar2), with a being related to the width
of the source irradiance. Figure 2 shows the behavior of the
spectral degree of coherence across a transverse plane in the far
zone. Normalized variables R1/z and R2/z are used.

In the following of the letter we present a possible experi-
mental setup aimed at producing sources of the type introduced
here. About this, it is worth doing a remark on the analytical
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Fig. 1. Absolute value of the spectral degree of coherence, with
g(·) = sinc(·): across the source plane for r1 = 1 (upper plot);
as a function of r2 for several values of r1 (central plot); across
the plane r1, r2 (lower plot). All lengths are normalized to the
value of δµ

.
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structure of the CSD in Eq. (1). Note, in fact, that the position of a
typical source point enters only through a single, scalar variable.
Accordingly, the source itself can be thought of, in a well defined
sense, as one-dimensional. As we shall see, this remark is a key
for suggesting practical realization schemes. A possible scheme
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Fig. 2. Absolute value of the spectral degree of coherence
across a transverse plane in the far zone, with g(·) = sinc(·),
τ(r) = exp(−ar2), and a = 1 (in units of δµ): across the plane
(R1/z, R2/z) (upper plot) and as a function of R2/z for several
values of R1/z (lower plot).

is shown in Fig. 3. The source plane is located across the image
focal plane of a converging lens having focal length f . Behind
the lens, a line source is placed along the z axis. To denote the
line-source elements it is convenient to introduce an axis, paral-
lel to the z axis but oriented in the opposite direction, and having
its origin at the lens position. The coordinate on such axis is
denoted by ξ. At the plane z = 0 a thin planar transparency, or a
spatial light modulator, is placed, having transmission function
τ(r).

Each element of the source, of length dξ, radiates a spherical
wave, whose amplitude is proportional to A(ξ)dξ, where A(ξ)
is an amplitude density. Such spherical wave passes through the
lens and, eventually, through the transparency. We are going to
evaluate the CSD of the field across the plane z = 0, just beyond
the transparency. We will assume the paraxial conditions to be
satisfied.

Starting from the Fresnel propagation formula, it is easy to
evaluate the field produced across the plane z = 0 by a single
source element as

dV0(r) =
−i
λ f

A(ξ) eik(ξ+ f ) e

ik
2 f

(
1− ξ

f

)
r2

dξ , (7)
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Fig. 3. Basic experimental scheme

where λ = 2π/k, and the field produced by the whole line
source after the transparency turns out to be

V0(r) = τ(r)
−i
λ f

∞∫
−∞

A(ξ) eik(ξ+ f ) e

ik
2 f

(
1− ξ

f

)
r2

dξ . (8)

Although the source length is generally finite, the integral in
Eq. (7) has been formally extended between −∞ and ∞, the real
extension of the segment being considered through the function
A(ξ).

The CSD of the field beyond the transparency can be evalu-
ated as

W0(r1, r2) = 〈V∗0 (r1)V0(r2)〉 , (9)

where the angle brackets denote ensemble average. On inserting
from Eq. (8) into Eq. (9) we readily obtain

W0(r1, r2) =
1

(λ f )2 τ∗(r1)τ(r2) e

ik
2 f

(
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2 − r2
1

)

×
∞∫
−∞

∞∫
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WS(ξ1, ξ2) eik(ξ2−ξ1) e
− ik

2 f 2

(
r2

2ξ2 − r2
1ξ1

)
dξ1dξ2 ,

(10)
where the correlation function of the field along the source,
namely,

WS(ξ1, ξ2) = 〈A∗(ξ1)A(ξ2)〉 , (11)

has been introduced.
Equation (10) takes a simpler form if the points of the line

source are supposed to radiate independently from one another.
In such a case the line source is spatially incoherent and its CSD
can be given the form

WS(ξ1, ξ2) = IS(ξ1) δ(ξ1 − ξ2) , (12)

where IS(ξ) is proportional to the irradiance along the line source
and δ(·) is the Dirac delta function. Therefore, the expression of
the CSD of the source across z = 0 becomes

W0(r1, r2) =
1

(λ f )2 τ∗(r1)τ(r2) e

ik
2 f

(
r2

2 − r2
1

)

×
∞∫
−∞

IS(ξ) e
−2π i

(
r2

2 − r2
1

2λ f 2

)
ξ

dξ .

(13)

It has to be noted that the function depending on r2
2 − r2

1 in
the latter equation, except for a phase factor giving account for
a spherical wavefront, is given by the one-dimensional Fourier
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transform of the intensity of the line source. Therefore, Eq. (13)
expresses an extension of van Cittert–Zernike theorem [29] for
axial line sources.

Let us now go on from Eq. (13) and consider the realistic
case of a finite line source. We denote by L the length of the
source and by ξ̄ the coordinate of its central point. Then, we
change the integration variable ξ into ζ = ξ − ξ̄ in such a way
that the integration interval becomes symmetric and, to sim-
plify the notations, we introduce the function G(ζ) = IS(ξ̄ + ζ).
Equation (13) then becomes

W0(r1, r2) =
1

(λ f )2 τ∗(r1)τ(r2) e

ik
2 f

(
1− ξ̄

f

)(
r2

2 − r2
1

)

×
L/2∫
−L/2

G(ζ) e
−2π i

(
r2

2 − r2
1

2λ f 2

)
ζ

dζ .

(14)
The exponential term outside the integral accounts for an

overall spherical curvature and vanishes if we let the central
point of the line source to coincide with the focus of the lens (i.e.,
if we put ξ̄ = f ). With such a position, Eq. (14) takes the form

W0(r1, r2) =
1

(λ f )2 τ∗(r1) τ(r2) G̃

(
r2

2 − r2
1

2λ f 2

)
, (15)

which coincides with Eq. (1) with

g

(
r2

2 − r2
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δ2
µ

)
=

1
(λ f )2 G̃

(
r2

2 − r2
1

2λ f 2

)
. (16)

We finally stress that any bona fide CSD of the type in Eq. (1)
can be synthesized using the proposed experimental scheme.
The irradiance along the line source has to be chosen as the
Fourier transform of the function g. Conversely, any Fourier
transformable intensity IS(ξ) gives rise to a new source de-
scribed by a CSD of the type in Eq. (1). It is much the same
that happens when two-dimensional Schell-model sources are
synthesized starting from planar spatially incoherent sources
[29].

Simple examples can be envisaged. For instance, a uniform
intensity within the interval, i.e.,

G(ζ) = G0 rect(ζ/L) , (17)

with constant G0, leads to

W0(r1, r2) =
LG0

(λ f )2 τ∗(r1) τ(r2) sinc

[
L(r2

2 − r2
1)

2λ f 2

]
, (18)

which gives rise to the functional form of the degree of coherence
used in the previous numerical examples. The coherence area of
the source (≈ δ2

µ = 2λ f 2/L) can be easily modified by changing
the focal length of the lens or the length of the line source. As
an example, the value δµ = 1 mm can be obtained with f = 100
mm, L = 10 mm and λ = 500 nm.

Summarizing, a new class of sources has been introduced,
having the property of being completely coherent for any pair of
points on a given ring concentric to the source center. The field is
partially coherent for points located at different radial distances
from the source center. The geometry of the problem suggests
that sources of this kind may find application whenever circular
symmetry is required, as, for example, in synthesis procedures of

Bessel beams. A simple optical set up for obtaining the proposed
sources has been presented, which uses a primary incoherent
line source placed along the axis of the source and exploits
an extension of the van Cittert–Zernike theorem, relating the
degree of coherence across the source to the line intensity. Our
results were originated from symmetry considerations, which
also allowed us to identify the class of sources giving rise to
fields with the requested coherence characteristics. A posteriori,
it could be noticed that such results could have been also derived
in the framework of the fields radiated from quasi-homogeneous
tridimensional primary sources [29].
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