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Abstract. On the basis of the modal theory of coherence, we study partially 
coherent sources whose modes belong to the class of Laguerre-Gauss functions 
for which the Laguerre polynomial has zero order. These modes present a phase 
profile with a helicoidal structure, which is responsible for notable phenomena, 
such as the propagation of optical vortices, beam twisting, and the presence of 
dislocations in interference patterns. By suitably choosing the eigenvalues 
associated with such modes, different partially coherent sources are obtained: 
sources with a flattened Gaussian profile, twisted Gaussian Schell-model 
sources with a saturated twist, and a new class of sources having an annular 
profile. Owing to the shape-invariance property of the underlying modes, the 
fields radiated by these sources do not change their transverse profile through 
propagation, except for scale and phase factors. We also prove that, if any such 
source is covered by a circularly symmetric filter, the new modal structure can 
he found in a straightforward manner. 

1. Introduction 

Since its introduction in 1982, Wolf‘s [l] modal theory of coherence has played 

an important role in our understanding of partially coherent sources and of the 

fields that they generate [2]. Explicit knowledge of the modes is not required for 

certain applications [3] whereas it is essential in other cases [4]. For a prescribed 

cross-spectral density (CSD) across the source the mode evaluation entails solution 

of a Fredholm integral equation and this can be a formidable task from the 

mathematical standpoint. On the other hand, we can ask what type of source is 

obtained by superposing modes of a family of orthogonal functions with certain 

weights. This  is the same as passing from an analysis to a synthesis problem. In  

doing this we are free to choose any set of orthogonal functions. As a useful choice, 

we can refer to modes whose propagation features are known because this makes it 

easy to describe how the overall field radiated by the source behaves in the course 

of propagation. Procedures of this type have been used with reference to Hermite- 

Gaussian modes [5]. 

In recent times, interest has arisen in helicoidal fields. By this term we mean 

fields whose wave fronts are endowed with vortex structures [6-8]. Peculiar 
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540 F. Gori et al. 

twisting phenomena are then observed under propagation [9-131. Further, use of 

vortices for practical applications has been proposed [7,13,14]. 

Little is known about the role of vortices in partially coherent fields. The most 

significant results are to be found in twisted Gaussian Schell-model (TGSM) 

sources [15], whose modal structure, synthesis procedures and propagation 

features have been discussed [16-201. 

In this paper we examine some general features of partially coherent planar 

sources whose modes are the simplest type of coherent vortex fields belonging to 

the class of Laguerre-Gauss beams [21]. After some preliminary remarks about the 

modal theory of partial coherence (section 2)) in section 3 we give the general 

expression for the CSD of sources with these kinds of mode. In the following three 

sections we specialize our analysis to some cases, namely sources with a flattened 

Gaussian profile [22], TGSM sources, and a new class of sources with an annular 

profile. Finally, in section 7 we show that, if any of the previous sources is covered 

by a filter with a circularly symmetric transmission function, the modal expansion 

for the resulting source can always be determined explicitly. 

2. Preliminaries 

can be written [2] 

Let us recall that the CSD across a typical planar (primary or secondary) source 

W(r1,r2) = (V*(r1)V(r2)), ( 1 )  

where rl and r2 are the position vectors of two points in the source plane, V is the 

optical disturbance, the angular brackets denote average over a suitable ensemble 

of monochromatic fields, and the asterisk stands for complex conjugate. We do not 

indicate explicitly the dependence of W on the frequency because we assume the 

latter to be fixed. Wolf's modal expansion of W is [2] 

where ,On and 4,, are eigenvalues and eigenfunctions respectively of the following 

integral equation: 

integration being extended to the (possibly infinite) source domain. I t  is assumed 

that W belongs to the class of Hilbert-Schmidt kernels. It turns out that W is 

semidefinite positive so that all its eigenvalues pfl are non-negative. The  summa- 

tion index in equation (2) stands for the set of numbers needed to specify an 

eigenfunction. Generally, for a two-dimensional source a pair of integers is 

required. The eigenfunctions 4,, are known as the modes of the source and 

represent coherent fields distributions to be assumed as normalized and mutually 

orthogonal. In physical terms they correspond to different contributions to the 

total field across the source that oscillate in a completely uncorrelated manner (on 

ensemble average). The eigenvalue p,, then accounts for the fraction of the source 

power to be associated to the nth mode. We shall loosely refer to the pfl values as 

the weights of the modes. 
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Partially coherent sources with helicoidal modes 541 

Let us now recall that in the set of Laguerre-Gauss beams there exists a subset 

in which the Laguerre polynomial has order zero and therefore is a constant. Using 

cylindrical coordinates r ,  8, z the normalized field distributions associated with 

these beams are [21] 

where k is the wavenumber and w,, R, and @, have the well known expressions 

Here X is the wavelength and wo is the spot size at the waist. The  term exp(is6) 

accounts for the vortex structure of the wave fronts, which are helicoidally shaped. 

The sign of s determines the sense of rotation of the helicoid. We note that the 

fields represented by equation (4) are shape invariant because the corresponding 

intensity distributions across any plane z = constant vary only for a scale factor 

with respect to those seen at z = 0. In the following, for brevity, we shall denote by 

YoS(r) the field distributions corresponding to equation (4) at z = 0, or 

exp (is.19) exp (- 2) (s = O , f l ,  5 2 ,  . . .). (6) 

3. Sources with twisting modes 

In this section we want to discuss some general features of partially coherent 

planar sources whose modes are of the form (6). We then assume that the source 

lies in the plane z = 0 and that its cross-spectral density has the form 

where Ps are non-negative numbers such that the series converges. Written in a 

more explicit form, equation (7) is 

The expression for the CSD across a plane z = constant > 0, say W,(rl, r2), is 

obtained by equation (7) on replacing the field distributions Yos(r) at z = 0 by the 

propagated fields Ys(r ,  8, z) given by equation (4). We then obtain 
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542 F. Gori et al. 

On comparing equations (8) and (9) we see that apart from scale and curvature 

terms the CSD maintains the same structure across any plane z = constant. This is 

briefly expressed by saying that the partially coherent fields radiated by our 

sources are shape invariant. By virtue of this property we can refer most of our 

considerations to the plane z = 0. It should also be noted that equation (9) is 

rotationally invariant. 

In order to distinguish between contributions of opposite helicity we shall 

set 

Then equation (8) can be written 

21112 exp [-i(292 - 7 9 1 ) ]  

w i  

where the functions f (+) and f (-), defined as 

account for incoherent superpositions of modes with positive helicity and negative 

helicity respectively. 

Some particular cases can be considered. First, let us refer to the case in which 

only one of the two functionsf(+) andf(-)  is different from zero. In such a case all 

the underlying modes have the same type of helicoidal structure. In the course of 

propagation they all twist in the same sense and we can expect that some twisting 

property is inherited by the corresponding cross-spectral density. While this is not 

immediately evident from equation (9) because of its rotational invariance, the 

twisting properties can be exhibited when such an invariance is broken by the 

insertion of astigmatic optical elements, for example a cylindrical lens, on the path 

of the field [ l l ,  15,18,19]. 

On the other hand, if neitherf(+) norf(-)  vanishes, the overall field radiated by 

the partially coherent source has no a przorz obvious twisting properties. A 

particular case occurs when f (+) and f (-) coincide. As can be seen from equation 

(12), this implies that p,") = &I. The CSD can be written 
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Partially coherent sources with helicoidal modes 543 

and can be thought of as the sum of contributions having angular amplitude 

modulation but no twist. Then no twisting phenomena are to be expected for the 

field radiated by the source. 

In the sections to follow we shall examine some particular sources belonging to 

the above classes. 

4. Partially coherent flattened Gaussian beams 

Equation (11) for the modal expansion assumes a very simple form when 

only the functionf(') (or, equivalently, f(-)), defined in equation (12), is different 

from zero and reduces to a finite sum of powers of the variable C. If we let, for 

example, 

A ( s = 1 , 2  ,..., N), 
F 0 (s = 1 , 2 ,  . . .), (1 4) 

0 (s > N ) ,  
p" = A ,  p,'" = 

with A > 0, equation (11) reduces to 

Recalling that [2] 

where Go is the spectral density or optical intensity at the chosen frequency and po 

the degree of spectral coherence, both at the plane z = 0, we easily arrive at the 

following expressions: 

The expression for the optical intensity in equation (17) coincides with that for 

a flattened Gaussian profile of order N [22,23]. It presents a plateau for values of r 

ranging from 0 up to approximately w 0 ( N / 2 ) ' / ~  and goes continuously to zero for 

higher values (figure 1). For N = 0 it coincides with a Gaussian function, while it 

tends to a constant for increasing values of N. 

In figure 2 (a) the intensity distribution of a partially coherent flattened 

Gaussian beam (FGB) of order N = 4 as a function of the normalized variable 

p = r/wo(N/2)'l2 is represented. With this choice, the transition to low values of 

the function occurs approximately around p = 1. In  figures 2(b),  (c) and (d), 
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Figure 1 .  Optical intensity (arbitrary units) of flattened Gaussian sources (see equation 
( 1  7)) for several values of N .  
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Figure 2. (a )  Intensity profile and (b)-(d) contour plots of the common logarithm of the 

modulus of po as a function of (&,q1) for N = 4 and ( b )  ( 6 2 , q z )  = (O ,O) ,  

(4 (62,772) = (0.570) and (4 ( < 2 , q 2 )  = (190). 
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Partially coherent sources with helicoidal modes 545 
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Figure 3. The same as in figure 2, but with N = 16. 

contour plots of the common logarithm of the modulus of the degree of spectral 

coherence po are shown as a function of the normalized variables (<lr771),t for 

(!2,772)  = ( O , O ) ,  ([2,712) = ( 0 . 5 , O )  and (&,772) = ( 1 , O )  respectively. In figure 3 the 

same quantities as in figure 2 are shown, but with N = 16. The analysis of these 

figures leads to some remarks. First, the coherence area decreases on increasing N, 

and this is ascribed to the presence of a greater number of uncorrelated modes in 

the total field. Second, the coherence area increases when the point with coordi- 

nates (!1,771) is far from the origin. This is because, owing to the spatial 

distribution of the Laguerre-Gauss functions, in the outside regions only 

higher-order modes contribute to the total field. Finally, we note that, except 

when (!2,772) = ( O , O ) ,  the degree of spectral coherence is not radially symmetric 

and presents a number of zeros equal to the order of the beam. In fact, if the vector 

r2 (i.e. the pair ( t2 ,qz))  is kept fixed, the numerator of equation (18) is a polynomial 

of order N with respect to the complex variable rl exp (-191) and then it admits 

exactly N complex roots. 

t By and 17 we mean the Cartesian coordinates of the normalized vector p. 
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10 
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Figure 4. Behaviour of M 2  as a function of N for coherent (0 )  and partially coherent (A) 
FGBs. 

Propagation of coherent beams having a flattened Gaussian profile at a given 

transverse plane were studied in [24-261. While, in the coherent case, flattening of 

the waist profile is lost on free-space propagation, partially coherent FGBs exhibit 

an intensity profile that is shape invariant, apart from a scale factor, as we 

remarked in the previous section. This is a consequence of the mutual uncorrela- 

tion between the modes of the source. 

Since flat-top profiles [27-301 are desirable in several applications, one might 

argue that the partially coherent case should be preferred to the coherent case. 

While it is true that partially coherent beams can exhibit behaviours that could not 

be obtained by coherent beams, it is to be borne in mind that this does not occur 

without paying some price. In the present case, the width of the partially coherent 

FGB increases at a higher pace with respect to the coherent case. 

For a better specification of this point let us refer to the M 2  quality factor [31], 

which indicates the diverging attitude of a beam once its spot size at the waist, that 

is its minimum width, has been fixed. M 2  can be evaluated for both coherent [24] 

and partially coherent FGBs. In the latter case it is simply given by the sum of the 

M 2  factors of the underlying modes, weighted by the coefficients of the modal 

expansion and normalized with respect to the energy carried out by the beam [31]. 

The final result, that is 

N 

2 
M 2  = 1 +-, 

is compared in figure 4 (full triangles) with the data obtained in the case of 

coherent FGBs (full circles). On increasing N, the difference between the two 

quality factors becomes greater and greater. This is because the M 2  of a partially 

coherent FGB is a linear function of N while in the coherent case it behaves as 

N'f4  [24]. 
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Partially coherent sources with helicoidal modes 547 

5. Twisted Gaussian Schell-model sources 

following: 

Another simple choice for the expansion coefficients in equation (1 1) is the 

po = A ,  /?!+) = AqS, pi-) = 0 (s = 1 ,2 , .  . .), (20) 

with A > 0 and 0 < q < 1. In fact the function f(+) becomes in this case (see 

equation (1 2)) 

f(+)(<) = A [ e v  (qC) - 11, (21) 

while f(-) vanishes. Taking equation (11) into account, it is seen that the 

corresponding CSD is 

By simple algebraic manipulations, equation (22) can be written 

where (xj,yj) are the Cartesian components of rj ( j  = 1,2) .  The source described 

by equation (23) is characterized by the following quantities: 

where 

I t  belongs to the class of T G S M  sources [15]. The  only difference with respect to 

the ordinary Gaussian Schell-model source [2] is constituted by the twist term 

exp [iuo(xly2 - x2yl)l.t The  quantity uo is called the twist parameter and, for 

T G S M  sources of the most general type described in [15], it has to satisfy the 

inequality 

In the present case it is seen from equation (25) that the equality sign holds. 

One then speaks of saturated twist. In conclusion, the elementary procedure 

explained above has led us to a particular case of TGSM source. It should be 

noted that finding the modal expansion for the general case required an impressive 

amount of analytical work [16, 171. It is a gratifying result that the case of saturated 

t The  sign in front of uo is minus, as in [15], or plus, as in the present case, depending on 
whether one defines the CSD in its original form [32] or in its complex conjugate form 
(equation (1)). 
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548 F. Gori et al. 

twist can be dealt with in such a simple way. We note that the expression of the 

cross-spectral density across any plane z = constant could be easily written down 

using the shape-invariance property discussed in relation to equation (9). The 

reader is referred to [15,19,20] for a discussion of the effects of twist on the 

propagation of the field radiated by this type of sources. An experimental 

realization of TGSM sources using an acousto-optic coherence control technique 

has been reported in [ 181. 

A further type of source can be obtained by superposing in an incoherent way 

two TGSM sources with opposite helicities. The  resulting source is characterized 

by the following relations: 

Go(r) = 2Bo exp (- -$-) , po(r1, r2) = exp (- (r1ic)2) cos [UO(XIYZ - XZYI)].  

2uG0 

This is no longer a twisted source because the opposite twists of the two 

underlying TGSM sources cancel each other. In fact, it is not a Schell-model 

source because of the presence of the cosine term in the degree of spectral 

coherence. It is interesting to note, however, that the two T G S M  sources with 

opposite twists as well as the source specified by equation (27) give rise to the same 

optical intensity distribution throughout the whole space. This is a further 

example of fields endowed with distinct coherence properties that cannot be 

distinguished from one another on the basis of intensity measurements [33-351. 

Finally, it should be noted that the modes (6) constitute a one-parameter 

family, being in fact dependent only on s. On the contrary, when IuI < ui”, 

eigenfunctions and eigenvalues depend on two indices [15, 171. This is true in 

particular for vanishing twist (u = 0), in which case the T G S M  source reduces to 

an ordinary GSM source [36,37]. Therefore the presence of saturated twist 

simplifies the modal structure. 

6. Annular twisted Gaussian Schell-model sources 

In this section we introduce a new class of Gaussian correlated partially 

coherent sourcest whose intensity distributions have annular shapes. The  pertain- 

ing CSDs include a saturated twist term and, as we shall see in a moment, can be 

derived from that of a T G S M  source with saturated twist. 

Let us start from the modal expansion established in the preceding section. We 

shall write it in the form 

obtained from equations (7), (lo), (20) and (22). The series on the right-hand side 

is uniformly convergent with respect to q. Consequently we can take the derivative 

term by term. Taking the nth derivative of both sides of equation (28) (with 

respect to q)  we obtain the identies 

t Following [15], by Gaussian correlated source we mean a partially coherent source for 
which the modulus of the degree of spectral coherence is Gaussian. 
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Partially coherent sources with helicoidal modes 549 

where the case n = 0 gives the same result as equation (28). For conciseness, in 

equation (29) and throughout this section we omit the specification ( n  = 0,1, .  . .). 
The right-hand sides can be thought of as modal expansions because the weights 

remain non-negative. This ensures that the kernels on the left-hand sides are 

positive semidefinite, and hence that they represent possible CSDs. Therefore we 

have the new class of partially coherent sources whose CSDs are 

the quantity Bo being defined in equation (25). Here, for convenience, the 

dependence of WO on 4 has been explicitly indicated. 

The main features of such sources are demonstrated by considering the optical 

intensity G t ) ( r )  and the spectral coherence degree pt)(r l ,  r2). The following 

expressions are derived immediately: 

We note that the modulus of the spectral coherence degree is Gaussian and 

depends on the difference rl - r2 only. Furthermore, the cross-spectral densities 

(30) have circular symmetry and contain a saturated twist term. Accordingly, the 

present sources constitute a generalization of the TGSM source with saturated 

twist, to which they reduce when n = 0. 

An interesting feature of this class of sources is the following. From equations 

(31) and (32) we obtain 

where Co is independent of r and the quantities pi  and TO', defined as 
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Figure 5 .  Normalized optical intensities of annular beams (see equation (33))  for several 
values of n. 

give account of the source size and the coherence area respectively. We stress that, 

for fixed n, the intensity profile is completely determined by the value of pg.  By 

inverting equation (35) the following relations are easily obtained: 

In particular we see that, for any choice of p i ,  the quantity 7: may assume any 

value from zero to infinity, the corresponding values of wo and q being given by 

equation (36). This means that, for any given size of the source, the coherence area 

can be chosen at will. 

For further characterization of our sources, note that, except for n = 0, they 

have annular shapes (figure 5).  The dark central region can be traced back to the 

fact that the first n- 1 modes are absent in the modal expansion, as seen from 

equation (29). The value of Y at which the maximum intensity is attained, say r t )  
(figure 6), is easily found to be 

If we define the width A r t )  of the annulus as the distance between the values of 

r where the second derivative of G t )  vanishes (figure 6) we find the expression 

(.) - po [4n + 1 + (16n + 1)’12]’’2 - [4n + 1 - (16n + 1) 112 ] 112 
Ar, - 2  2112 . (38) 

Since the size of the source can be chosen arbitrarily, a significant parameter is 

the relative width of the annulus, that is the ratio Art) /$’ .  By taking equations 

(37) and (38) into account, this quantity turns out to be 
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Partially coherent sources with helicoidal modes 551 

r 

Figure 6. Definition of parameters used to characterize an annular profile. 

A Y ~ )  [ 4 n + 1 + ( 1 6 n + 1 ) ' / 2 ] ' / 2 - [ 4 n + 1  - (16n+1)  112 ] 112 
- -- 

( n )  2n'/2 
> 

YO 

or, for large values of n,  

(39) 

Then, the relative width of the annulus can be controlled through the sole order n 

of the sources. For practical purposes, it is convenient to note that the estimate 

given in equation (40) differs from the exact value by less than 1% if n > 3. 

So far we considered CSDs at the source plane. As already remarked in the 

previous section, the extension to plane z = constant > 0 is straightforward. We 

only stress that, because of the shape invariance of the underlying modes, the 

beams produced by such sources are themselves shape invariant, that is they 

maintain the annular transverse intensity distribution, apart from a scale factor, at 

any plane z = constant. 

We recall that annular beams with different analytical expressions have been 

studied for the coherent case [38-40]. 

7. Effect of circularly symmetric filters on the modal structure 
An important feature of the sources considered above is that the orthogonality 

of the underlying eigenfunctions stems from their angular dependence (see 

equation (6)). This implies that any two such functions remain orthogonal under 

multiplication by an arbitrary function of the radius r.  This in turn allows us to 

find the pertinent modal expansion when any such source is covered by a circularly 

symmetric filter. The same technique was used for the determination of the modal 

structure of Jo-correlated Schell-model sources [41]. 
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Suppose that the source is covered by a filter possessing a (possibly complex) 

transmission function, say T ( Y ) ,  endowed with circular symmetry. The  CSD of the 

field emerging from the source now becomes 

00 

W!?(r1,r2) = 7*(~1)7(~2)Wo(h,r2) = 7 * ( ~ 1 ) 7 ( ~ 2 )  ~Ps 'Po l ( r~ )Y '~ , ( r2 ) ,  (41) 
s=o 

where WO has been expressed through its modal expansion (see equation (7)). 
Let us define the functions 

us(r) = NsT(y)Y'os(r), (s = 0,1, .  . .), (42) 

where N, are normalization coefficients to be found in the following way. Taking 

into account the explicit form of the functions Yos(r) (see equation (6)) the 

following relation is easily proved: 

where 6,,l is the Kronecker symbol. The functions Us are then orthonormal if 

we let 

Equation (41) can now be written 

This shows that the functions Us are the modes of the modified source and the 

weights /3,' are given by 

It should be stressed that the new modes (42) differ from the original modes. In 

particular, in the course of propagation they generate fields that are no longer 

shape invariant and therefore the study of propagation of the field generated by the 

present sources can be less immediate than for the cases in the previous sections. 

8. Conclusions 

In this work, the properties of some classes of partially coherent sources have 

been studied. Such sources are obtained as incoherent superpositions of Laguerre- 

Gauss beams having Laguerre polynomials of zero order. A notable characteristic 

of these beams is to present a vortex phase structure, which can be demonstrated 

through interference experiments. Fields of this type can be realized, for example, 

by converting Hermite-Gauss into Laguerre-Gauss beams by means of cylindrical 

lenses or, alternatively, by using masks with suitable, transmission functions 

[42-45]. As a consequence of the shape invariance of the Laguerre-Gauss beams 
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under paraxial propagation, beams generated by such partially coherent sources 

retain this property. 

As a particular case, we presented a model for describing partially coherent 

beams having a flat-top transverse profile and studied how their divergence 

features depend on their coherence properties. 

Furthermore, we showed how TGSM sources with saturated twist can be 

obtained through a suitable choice of the weights of the modal expansion, and also 

a new class of sources with annular intensity profiles can be defined. With 

reference to the latter class, we proved that, for any given relative width of the 

annulus, it is possible to tune the parameters in such a way that any value of the 

coherence area can be chosen. As limiting cases, perfectly coherent and complete 

incoherent annular sources are obtained. 
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