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Abstract

Time-invariant resting-state functional connectivity studies have illuminated the crucial role of

the right anterior insula (rAI) in prominent social impairments of autism spectrum disorder (ASD).

However, a recent dynamic connectivity study demonstrated that rather than being stationary,

functional connectivity patterns of the rAI vary significantly across time. The present study

aimed to explore the differences in functional connectivity in dynamic states of the rAI between

individuals with ASD and typically developing controls (TD). Resting-state functional magnetic

resonance imaging data obtained from a publicly available database were analyzed in 209 individ-

uals with ASD and 298 demographically matched controls. A k-means clustering algorithm was

utilized to obtain five dynamic states of functional connectivity of the rAI. The temporal proper-

ties, frequency properties, and meta-analytic decoding were first identified in TD group to

obtain the characteristics of each rAI dynamic state. Multivariate analysis of variance was then

performed to compare the functional connectivity patterns of the rAI between ASD and TD

groups in obtained states. Significantly impaired connectivity was observed in ASD in the ventral

medial prefrontal cortex and posterior cingulate cortex, which are two critical hubs of the default

mode network (DMN). States in which ASD showed decreased connectivity between the rAI

and these regions were those more relevant to socio-cognitive processing. From a dynamic per-

spective, these findings demonstrate partially impaired resting-state functional connectivity pat-

terns between the rAI and DMN across states in ASD, and provide novel insights into the neural

mechanisms underlying social impairments in individuals with ASD.
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1 | INTRODUCTION

Autism spectrum disorder (ASD) is a heterogeneous neurodevelop-

mental disorder manifested as pervasive impairments in social interac-

tion and communication, along with repetitive and stereotypic

behavioral patterns (American Psychiatric Association, 2013). Clinical

characteristics among individuals with ASD can vary widely; these

characteristics include variable degrees of communication skills, motor

abnormalities, intellectual impairments, and a wide range of comorbid-

ities. Social deficits are common symptoms in all ASD types.
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Prominent social impairments in ASD encompass multiple forms of

impaired social cognitive processes, including failure in establishing or

maintaining social reciprocity, deficits in developing body languages or

eye contact, and difficulty in understanding intentions, sensations, or

emotions of other people and inappropriate self-referential thought.

These impairments may be attributed to aberrant social orientation

and motivation in individuals with ASD (American Psychiatric Associa-

tion, 2013; Chevallier, Kohls, Troiani, Brodkin, & Schultz, 2012). In

general, individuals with ASD display different preferences to socially

salient stimuli spanning faces, eyes, and speech indicating aberrant

salience detection processes towards the social world (Ceponiene

et al., 2003; Klin, Jones, Schultz, Volkmar, & Cohen, 2002).

As a critical hub of salience network (SN), the anterior insula is

traditionally considered the principal brain region for interoceptive

processing involved in sensing human physiological states; awareness

of self, others, and the environment; experiencing emotions; and

interaction with other essential networks, such as the default mode

network (DMN) and central executive network (CEN) (Craig, 2009;

Menon, 2011; Menon & Uddin, 2010). In particular, the right but not

left, anterior insula is suggested to act as a “causal outflow hub” in ini-

tiating the switching of large-scale brain networks between internally

(e.g., DMN) and externally focused networks (e.g., CEN) during cogni-

tive information processing and the resting state (Menon, 2011;

Menon & Uddin, 2010; Sridharan, Levitin, & Menon, 2008; Uddin,

2015; Wang et al., 2018). In addition, the structural integrity of white-

matter tracts between the right anterior insula (rAI) and other SN

regions is necessary for efficient control of the DMN (Bonnelle et al.,

2012). The functional right-hemisphere lateralization of the anterior

insula has also been validated during error processing (Ham, Leff, de

Boissezon, Joffe, & Sharp, 2013), salience processing (Späti et al.,

2014), heartbeat awareness (Critchley, Wiens, Rotshtein, Öhman, &

Dolan, 2004), and self-related processing (Devue et al., 2007). Meta-

analytic studies characterizing functional diversity across the brain

have demonstrated that the rAI is a highly functionally diverse region

participating in various task domains while coactivating with a broad

set of brain regions (Anderson, Kinnison, & Pessoa, 2013; Uddin, Kin-

nison, Pessoa, & Anderson, 2013). Therefore, the functional centrality

of the rAI may establish its central role in salience processing in the

brain.

Socio-cognitive and other impairments in individuals with ASD

are increasingly linked to connectivity abnormalities at the whole-

brain circuit level, especially in large-scale brain networks (Doyle-

Thomas et al., 2015; Guo et al., 2016; Khan et al., 2015; Nomi &

Uddin, 2015). Among multiple brain regions characterized as the key

structures in ASD development, prior neuroimaging literature support

the vital role of the rAI in neural substrates underlying social dysfunc-

tions in ASD (Di Martino et al., 2009; Uddin & Menon, 2009). Conver-

gent hypoactivity was identified in the rAI in individuals with ASD

during various social tasks (Di Martino et al., 2009). This has shed light

on the potential relationship between functional alterations of the rAI

and social deficits in individuals with ASD. Another recent neuroimag-

ing study reported that during social and nonsocial attention tasks,

children with ASD exhibited different multivariate spatial activation

patterns of the rAI from those of typically developing peers (Odriozola

et al., 2015). These children also manifested atypical connectivity

patterns in the same region while processing socially deviant stimuli

compared with nonsocially deviant stimuli (Odriozola et al., 2015).

Aligned with the task-based evidence on abnormalities in the rAI in

ASD, resting-state functional connectivity studies have also under-

scored altered functional circuits of this structure in relation to autistic

symptoms in the social domain. Children and adolescents with ASD

exhibited intrinsic underconnectivity between the rAI and temporal

and dorsolateral prefrontal regions, and posterior cingulate cortex

(PCC), a primary node for the DMN (Abbott et al., 2016). Interestingly,

significant negative correlation between functional connectivity

within the SN and social deficits in individuals with ASD was absent in

the control group (Abbott et al., 2016). This finding indicates the spe-

cific role of the SN in the predominant impairments of social behaviors

in ASD. Decreased intrinsic functional connectivity was also demon-

strated between the rAI and amygdala in high-functioning autistic

individuals between 12 and 20 years of age (Ebisch et al., 2011). This

result highlights altered detection of emotional valence and impaired

ability to understand mental states of the self and others in ASD. Fur-

thermore, a hypoconnectivity pattern was identified within and

between brain networks associated with social processing in ASD

(von dem Hagen, Stoyanova, Baron-Cohen, & Calder, 2012). This

hypoconnectivity included reduced intrinsic connectivity between the

rAI and several critical hubs of DMN including the medial prefrontal

cortex (mPFC) and angular gyrus. These brain imaging studies across

various social tasks and during the resting state convergently indicate

that altered rAI activity and functional connectivity in ASD is likely to

be associated with prominent social impairments. These findings fur-

ther demonstrated the importance of investigating the rAI to facilitate

our understanding of the neural mechanisms underlying ASD.

Resting-state functional magnetic resonance imaging (fMRI) stud-

ies have shaped our understanding of the temporal correlations of

spatially distributed brain regions, described as intrinsic connectivity

networks in the absence of tasks or stimuli (Biswal et al., 2010; Biswal,

Zerrin Yetkin, Haughton, & Hyde, 1995; Fox et al., 2005). These corre-

lations are based on the assumption that spatiotemporal organization

of spontaneous brain activity is stationary over the measurement

period. With this hypothesis, traditional functional connectivity

approaches obtain a static connectivity pattern of coherent fluctua-

tions by estimating functional connectivity across an entire resting-

state acquisition. Recent advances in neuroimaging have revealed that

functional connectivity among brain regions exhibits meaningful varia-

tions over time, implicating the dynamic properties of resting-state

functional connectivity (Hutchison et al., 2013; Li et al., 2018; Preti,

Bolton, & Ville, 2016). A considerable number of analysis strategies

has been applied to capture the time-varying patterns of resting-state

functional connectivity (Hutchison et al., 2013; Khambhati, Sizemore,

Betzel, & Bassett, 2017; Preti et al., 2016). Among these approaches,

some dynamic functional connectivity (dFC) studies demonstrate the

time-varying dynamic interplay among brain regions, and identified

recurring functional connectivity patterns, called “dFC states” (Allen

et al., 2014; Calhoun, nbsp, Robyn, et al., 2014; Preti et al., 2016).

Typically developing individuals exhibit highly flexible dFC states

between the rAI and other brain regions throughout the resting state

(Nomi et al., 2016). Applying the dFC approach to neuropsychiatric

disorders has illustrated the clinical potential of dFC states in

GUO ET AL. 1265



illuminating complex, flexible neural mechanisms. For instance, previ-

ous dFC studies in schizophrenia demonstrated that pathological

alterations are only present in some dynamic states (Damaraju et al.,

2013; Du et al., 2016). Similar dFC studies in epilepsy revealed state-

specific impairments of functional connectivity patterns in participants

with epilepsy compared with healthy controls (Liao, Zhang, et al.,

2014; Liu et al., 2016). Individuals with ASD were also confirmed to

exhibit abnormal temporal variability in functional architecture at rest

(Falahpour et al., 2016; He et al., 2018; Zhang et al., 2016). Several

studies have examined functional connectivity profiles of the rAI at

rest in ASD (Abbott et al., 2016; Ebisch et al., 2011; von dem Hagen

et al., 2012). However, to the best of our knowledge, none of these

has considered the dynamic nature of synchronous fluctuations while

exploring the changes of functional connectivity patterns of the rAI

in ASD.

In the present study, we utilized a large, multisite, resting-state

fMRI dataset from the open-access Autism Brain Imaging Data

Exchange (ABIDE, http://fcon_1000.projects.nitrc.org/indi/abide/)

repository to examine the possible differences in functional connec-

tivity in dynamic states of the rAI between ASD and typically develop-

ing controls (TD) groups (Di Martino et al., 2014). Given that the

dynamic states are obtained by a data-driven approach, it is worth-

while to first specify their characteristics. The current study aimed to

answer two questions: (a) what are the characteristics of these dFC

states of the rAI? and (b) is there any difference between ASD and TD

groups in functional connectivity patterns in different dynamic states?

Therefore, we first analyzed the temporal properties, frequency prop-

erties, and the potential psychological and physiological processes of

dynamic states in TD group. Then, we compared functional connectiv-

ity patterns between ASD and TD in five obtained dynamic states.

Static functional connectivity studies showed rAI abnormalities in

ASD and these connectivity abnormalities play a critical role in social

impairments related to the disease (Abbott et al., 2016; Ebisch et al.,

2011; von dem Hagen et al., 2012). Thus, we hypothesized that indi-

viduals with ASD would exhibit altered functional connectivity

between the rAI and social brain regions.

2 | METHODS

2.1 | Participants

Original resting-state fMRI and demographic data were collected from

the open-access ABIDE database (Di Martino et al., 2014). Inclusion

criteria were the same as Chen, Nomi, Uddin, Duan, and Chen (2017).

Briefly, preliminary inclusion criteria of the present study were based

on the sample selection procedure of Di Martino et al. (2014) and

yielded an initial sample of 763 males (ASD/TD: 360/403) from

17 sites. Second-level inclusion criteria were established to reduce the

spurious effects of the potential confounds, such as group-level mis-

match on full-scale IQ (FIQ) and framewise displacement (FD) due to

the head motion during fMRI acquisition. Analyses were limited to:

(a) participants without excessive head motion (i.e., motion within

2 mm translation and 2� rotation and less than 50% frames with large

FD, as indicated in Preprocessing); (b) participants with complete

cortical coverage in the resting-state scan; (c) participants with age

within mean � 3 SD across groups; (d) using a data-driven algorithm

that maximized p values of group differences on age, FIQ, and mean

FD (using two sample t tests) to create a well-matched dataset of

ASD and TD groups. To exclude potential interaction effects induced

by sites, we also maximized p values of interaction effects between

sites and groups on age, FIQ, and mean FD using two-way analysis of

variance (ANOVA); and (e) sites with more than five ASD or TD partic-

ipants remaining after the above-mentioned selection procedure.

These criteria yielded a well-matched dataset of 507 individuals

(ASD/TD: 209/298) from 14 sites.

Detailed information on diagnostic protocols and ethical state-

ments are publicly available at http://fcon_1000.projects.nitrc.org/

indi/abide/. Briefly, all individuals with ASD had a clinical diagnosis of

Autistic Disorder, Asperger's Disorder, or Pervasive Developmental

Disorder Not-Otherwise-Specified. Individuals with typical develop-

ment showed no history of neurological or psychiatric disorders. All

experimental protocols were approved by the local Institutional

Review Boards. Written informed consent/assent was obtained from

every participant. Demographic data are summarized in Table 1.

2.2 | Data preprocessing

Resting-state fMRI data were preprocessed using the advanced edi-

tion of Data Processing Assistant for Resting-State fMRI (DPARSF

A v4.1, http://rfmri.org/DPARSF) (Yan & Zang, 2010). Image prepro-

cessing steps included discarding the first 10 volumes, slice-timing

correction, spatial realignment (participants with translational or rota-

tional head motion higher than 2 mm or 2� were excluded), normaliza-

tion to standard echo-planar imaging template in the Montreal

Neurological Institute (MNI) stereotaxic space and resampling to

3 × 3 × 3 mm3, spatial smoothing (full width at half maximum = 6

mm), the removal of linear trends, despiking by 3dDespike algorithm

in Analysis of Functional NeuroImaging (AFNI, https://afni.nimh.nih.

TABLE 1 Demographics and clinical characteristics of the participants

ASD
(n = 209)

TD
(n = 298)

p

Value

Age 16.5 � 6.2 16.8 � 6.2 .5642a

Site × group interaction – – .9642b

FIQ 110.6 � 13.4 110.2 � 11.4 .7191a

Site × group interaction – – .8502b

Mean FD (mm) 0.14 � 0.07 0.14 � 0.07 .7219a

Site × group interaction – – .8341b

ADOS

Social subscore 8 � 3 – –

Communication
subscore

4 � 1 – –

RRB subscore 2 � 1 – –

ADOS = Autism Diagnostic Observation Schedule (social and communica-
tions subscores are available for 131 ASD subjects; RRB subscore is avail-
able for 118 ASD subjects); ASD = autism spectrum disorder;
FD = framewise displacement; FIQ = the full-scale intelligence quotient;
RRB = restricted and repetitive behaviors; TD = typically developing
controls.
a p values for two sample t test.
b p values for analysis of variance (ANOVA).
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gov/afni/), nuisance covariates regression (including Friston 24 head

motion parameters [Friston, Williams, Howard, Frackowiak, & Turner,

1996; Satterthwaite et al., 2012; Chao-Gan Yan et al., 2013], global

signal, the top five principal components from the white matter and

cerebrospinal fluid signals by using component-based noise correction

[CompCor] method [Behzadi, Restom, Liau, & Liu, 2007]) and band-

pass filtering (0.01–0.1 Hz). Given the potential confounding effects

of head micromovements on functional connectivity measures

(Power, Barnes, Snyder, Schlaggar, & Petersen, 2012), we examined

FD values obtained in the realignment of each scan. Time points with

FD > 0.5 mm along with the preceding one and the latter two time

points were labeled as high-motion frames. Participants with more

than 50% high-motion frames were excluded from the analyses. We

utilized despiking instead of the “scrubbing” approach (Power et al.,

2012) to address the potential motion artifacts without adversely

affecting statistical power, as performed in prior studies (Allen et al.,

2014; Marusak et al., 2016; Nomi et al., 2016). Signal outliers higher

than the median absolute deviation were replaced with the best esti-

mate by using a third-order spline fit to clean portions of the time

series. This method retains the temporal information of signals while

improving the root-mean-square of temporal derivative of the time

courses. Detailed information about head motion is also summarized

in Table S1, Supporting Information 1. Average FD and maximum FD

values, number of time points with FD > 0.5 mm, percentage of time

points with FD > 0.5 mm, within-subject variability of six motion

parameters for each participant are provided in Supporting Informa-

tion 2. Group comparisons on head motion metrics showed no signifi-

cant difference.

2.3 | Regions of interest selection

Meta-analysis was performed using Neurosynth (http://www.

neurosynth.org/) to obtain coordinates of the rAI in the SN (Wager,

2011). We conducted a forward inference analysis of the term

“salience network.” The resulting statistical inference map was cor-

rected using false discovery rate (FDR, q < 0.01) for multiple compari-

sons. The voxel with the highest z value in corrected statistical

inference map was defined as the coordinates of rAI (MNI coordi-

nates: 38, 18, 2) (Figure S1, Supporting Information). In addition, we

conducted reverse inference meta-analysis by using the obtained

coordinates to assess whether these coordinates are reliably located

in the rAI (FDR correction, q < 0.01). Z-scores and posterior probabili-

ties were extracted to identify the most relevant terms in a reverse

inference analysis. As indicated by z-scores and posterior probabilities,

the top three terms associated with the meta-analysis included “ante-

rior insula,” “insula,” and “insular,” and “anterior insular,” “salience

network,” and “anterior insula,” respectively. Finally, a seed region of

interest (ROI) was constructed by drawing a radius of 6 mm sphere

centered on the rAI coordinates.

2.4 | dFC analysis

DFC maps were obtained using the dynamic brain connectome tool-

box (DynamicBC, http://restfmri.net/forum/DynamicBC) through

flexible least squares (FLS) strategy (Liao, Wu, et al., 2014). FLS

approach is a data-driven method that can yield a dFC map at each

time point for each scan. In brief, we first constructed a time-varying

parameter regression model to characterize dynamic changes in func-

tional connectivity:

y tð Þ¼ x tð Þβ tð Þ+ u tð Þ

where y(t) and x(t) are the time series of seed and target regions, u(t) is

the approximation error, and β(t) is the parameter which measures the

covariance of the two time series and reflects the dFC between x and

y at time t. Afterward, the incompatibility cost function was calculated

to estimate the time-varying coefficient β(t):

C β,μ,Tð Þ¼ μ�r2D β,Tð Þ+ r2M β,Tð Þ

where r2D β,Tð Þ is the sum of squared residual dynamic error:

r2D β,Tð Þ¼
XT−1

t¼1
β t+1ð Þ−β tð Þð ÞT β t+1ð Þ−β tð Þð Þ

in which the vector of coefficients β(t) evolves slowly over time (β(t +

1) − β(t) ≈ 0). And r2M β,Tð Þ is the sum of squared residual measure-

ment errors:

r2M β,Tð Þ¼
XT

t¼1
y tð Þ−x tð Þβ tð Þð Þ2

that satisfies y(t) − x(t)β(t) ≈ 0. And μ is the weighting parameter with

a default value of 100 in the present study. As a result, the continuous

changed model parameters β(t) are optimally estimated to represent

the dFC between seed ROI (i.e., rAI) time course and time courses of

the other brain voxels at each time point (Chen et al., 2017; Liao, Wu,

et al., 2014). In this case, the number of dFC maps for each participant

was identical to the time points of preprocessed data. For each partici-

pant, the dFC of each voxel was then converted into Z-score by sub-

tracting the mean value of all dFC maps and divided by the SD. This

standardization procedure both reduces individual and site variability

and removes the common component among dFC maps. The grand

mean and variance maps of the processed dFC maps can be seen in

Figure S2, Supporting Information 1.

2.5 | Dynamic states and clustering

We applied k-means clustering algorithm to all dFC maps of all sub-

jects to obtain the different states present throughout the resting-

state scan. The elbow criterion on the cluster validity index, calculat-

ing as the ratio between within-cluster distance to between-cluster

distance, was used on exemplars to determine the optimal number of

clusters varying k from 2 to 20, following previous dFC studies (Allen

et al., 2014; Damaraju et al., 2013; Liu et al., 2016). For each subject,

the exemplars were selected as windows with local maxima in FC vari-

ance. The optimal value of k ranged from 4 to 6 (Figure S3, Supporting

Information 1). Bearing in mind that the previous work in neurotypical

individuals identified five dynamic states of the insula subdivisions

during rest (Nomi et al., 2016), a k value of 5 was adopted and we also

replicated our results using values of k of 4 and 6 (Figure S4, Support-

ing Information 1). In brief, our k-means clustering across all subjects

included two steps. The first step obtained dataset-level clustering

centroids, in which k-means clustering was performed on dFC maps

for each subject. A matching procedure for centroids was conducted
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on all subjects with a random subject as a reference. Then, clustering

centroids of all subjects were averaged as the dataset-level clustering

centroids. Next, the five clustering centroids of each subject were

matched with the dataset-level clustering centroids to determine the

corresponding states of dFC maps. Final dynamic connectivity state

maps for each subject were created by averaging dFC maps within the

same state. The correlation distance was used as the similarity mea-

surement in clustering and each k-means clustering was performed

10 times with random initial cluster centroids to avoid local minima

(Chen et al., 2017; Damaraju et al., 2013). Reproducibility analysis

using different distance functions was also established via Squared

Euclidean and L1 distance, and produced similar results (Figure S4,

Supporting Information 1).

To further illustrate the specificity of the rAI, an additional control

analysis was also performed for the left anterior insula (MNI coordi-

nates: −38, 18, 2). The procedures for estimating dFC and subsequent

statistical analyses were identical to those used for the rAI.

2.6 | Temporal and frequency properties of dFC

states

To investigate the temporal properties of dFC states, we assessed the

fraction of dwell time and state transition probability of the state vec-

tor for each TD participant. The fraction of dwell time is measured as

the proportion of time spent in each state. The state transition proba-

bility is the probability of transitioning from one state to another.

In the frequency spectrum analysis, global mean signals of dFC

maps in each state were extracted and transformed into the frequency

domain using the fast Fourier transform. We constructed the follow-

ing model to characterize the relationship between frequency domain

signal y and frequency f:

y¼
1
fα

Then, we performed logarithmic transformations on the equation

to solve the frequency parameter α:

log yð Þ¼ −α log fð Þ

Finally, we obtained the frequency parameters of dFC states for

each TD participant and averaged them across participants to obtain a

group-level α for each state. In addition, we calculated the number of

peaks and troughs of the dFC time series to characterize the wave-

form of each state. The mode of those values was used to represent

the state waveform in the TD group.

2.7 | Meta-analytic decoding of connectivity

patterns in different states

To decode the potential processes associated with each distinct rAI

connectivity profile, we examined the functional connectivity pattern

of each dynamic state in the TD group using NeuroSynth (http://

www.neurosynth.org/) (Yarkoni, Poldrack, Nichols, Van Essen, &

Wager, 2011). Guided by previous work in the meta-analytic decoding

of connectivity maps (Yamada et al., 2016), we first converted the

original t-statistic maps of the TD group obtained in one-sample t test

into z-statistic maps and then submitted them to the Neurosynth

system for meta-analytic decoding. Next, we ranked all correlation

coefficients for each state map in a descending order and identified

the top five terms that showed maximum correlation with each con-

nectivity map. Related items were incorporated into a base form to

avoid reduplicative selection. Radar charts were plotted for the result-

ing 16 distinct terms that represent the potential psychological and

physiological processes of each state.

2.8 | Statistical analyses

We used multivariate ANOVA (MANOVA) as provided by FSL's Per-

mutation Analysis for Linear Models tool to test differences between

ASD and TD groups in the five dFC states using Hotelling T-square

statistic (Winkler et al., 2016; Winkler, Ridgway, Webster, Smith, &

Nichols, 2014). Age, FIQ, mean FD, and sites (using a dummy coding

scheme) were taken as covariates in the model. Prespecified brain

masks were defined separately for each state using the union mask of

one-sample t-test results for ASD and TD groups (p < .001, uncor-

rected). Nonparametric permutation testing (5,000 permutations) with

threshold-free cluster enhancement inference was applied to the mul-

tivariate test and each univariate test, and the resulting voxel-wise

statistical maps were corrected for familywise error rate with a signifi-

cance level of p < .05.

2.9 | Behavioral correlations in the ASD group

We then explored the relationship between abnormal dFC values of

the rAI and symptom severity as assessed by Autism Diagnostic

Observation Schedule (ADOS) subscores (social interaction, communi-

cation, restricted, and repetitive behaviors) in the ASD group. Spheres

with a radius of 4-mm centered on the peak coordinates of the clus-

ters identified by MANOVA were defined as ROIs. Pearson correla-

tion analysis was performed between the averaged signal of each ROI

and ADOS subscores, with age, FIQ, mean FD, and sites (using a

dummy coding scheme) as covariates. Bonferroni correction for multi-

ple comparisons was then performed (q < 0.05, p < .05/(2 ×

3)= 0.008).

3 | RESULTS

3.1 | DFC of the rAI within each state

After k-means clustering, we obtained five dynamic states that are

stable during the resting-state scan. The TD group showed robust

functional connectivity between the rAI and diverse brain regions in

each dynamic state (Figure 1a–e). In particular, transient functional

connectivity associated with the rAI exhibited flexible patterns across

time. In state 1, the rAI had strong connectivity with the sensorimotor

regions, such as the precentral and postcentral gyrus; in state 2, the

rAI exhibited connections with the occipital gyrus and dorsolateral

PFC (DLPFC); in state 3, the rAI showed robust connectivity with the

DLPFC and DMN regions; in state 4, the rAI had strong connections

with the occipital gyrus; and in state 5, the rAI was highly connected

with the DMN regions, such as the ventral mPFC (vmPFC) and

PCC/precuneus.
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3.2 | Temporal and frequency analysis

The five dynamic states exhibited similar dwell times and frequency

spectra during the scan (Figure 2a,c). However, state 3 was less likely

to transition into state 4, and state 5 less likely to transition into state

1 than other transitions (Figure 2b). The most frequently occurring

waveform of state 1 was with one peak and one trough. The wave-

form of state 4 had two peaks and two troughs. We found similar

waveforms of the time series of states 2, 3, and 5 with two peaks and

one trough. The diagrammatic representation of waveform for each

state is plotted in Figure 2d.

3.3 | Meta-analytic decoding of dFC patterns in

different states

We further investigated whether discrepancies were present in the

potential psychological and physiological functions among identified

dynamic states associated with the rAI. This analysis yielded 16 terms

of high relevance to dFC profiles (Figure 2e). The five dynamic states

exhibited different cognitive functional profiles. Functional connectiv-

ity patterns of states 1 and 4 were overlapped with the functional

profiles of studies related to the sensorimotor terms, such as

“somatosensory,” “motor,” “sensorimotor,” and “visual”; state 2 showed

associations with the terms related to executive terms, such as

“switching,” “inhibition,” and “conflict”; states 3 and 5 were related to

the social cognitive terms, such as “theory of mind,” “self referential,”

“mentalizing,” “social,” and “emotion.”

3.4 | Group differences in rAI dynamic states

Overall MANOVA results indicated significantly different dFCs associ-

ated with the rAI in vmPFC and PCC (Figure 3 and Table 2). Subse-

quent univariate analyses showed that those differences only

occurred in two dFC states. Compared with TD individuals, ASD sub-

jects exhibited decreased functional connectivity between rAI and

vmPFC in state 3, as well as decreased connectivity with PCC in state

5. For dFC analyses with the left anterior insula as seed, no significant

difference was found with the MANOVA.

In addition, to ensure that group differences in dFC were not

related to head motion, we correlated mean FD values with the dFC

between rAI and vmPFC and PCC, respectively. No significant correla-

tions were found (Supporting Information 1).

3.5 | Brain–behavior analysis in the ASD group

We finally investigated the association between dFC abnormalities

and ASD symptom severity. Decreased dynamic connectivity between

the rAI and vmPFC in state 3 was negatively correlated with ADOS

social subscore in ASD group (p = .036, uncorrected) (Figure 3b).

However, this correlation did not survive Bonferroni correction for

multiple comparisons.

4 | DISCUSSION

The present study investigated state-specific alterations in resting-

state dFC of the rAI in ASD compared with neurotypical individuals.

Characteristics of five dynamic states were first identified in TD group

from multiple perspectives including temporal properties, frequency

spectrum, and the potential psychological and physiological processes,

to provide a complete view of each state. Then, we ascertained the

brain regions and dynamic states in which ASD showed abnormal

functional connectivity compared with TD. Meta-analytic decoding

results revealed distinct functional profiles for the five dynamic states.

Intriguingly, states 1 and 4 exhibited more associations with sensori-

motor terms; state 2 had relatively more links with executive terms,

FIGURE 1 Dynamic functional connectivity (dFC) patterns of states in typically developing control group. (a–e) Mean dFC patterns between the

right anterior insula (rAI) and other brain regions within each state. (f) The rAI seed [Color figure can be viewed at wileyonlinelibrary.com]
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while states 3 and 5 showed more associations with social cognitive

terms. We discovered impaired functional connectivity between the

rAI and predominant hubs of DMN, including vmPFC and PCC. Com-

pared with the TD group, the ASD group showed decreased connec-

tivity between the rAI and these regions in states 3 and 5, but not in

the other dFC states. These findings provide novel evidence for func-

tional connectivity abnormalities relevant to the rAI in individuals with

ASD from a dynamic perspective. Results also indicate the crucial role

of the dFC between the rAI and DMN regions in the neural mecha-

nisms underlying ASD.

4.1 | Dynamic states of the rAI

Across the five dynamic states, the rAI exhibited flexible functional

connectivity patterns with extensive brain regions, including DMN

regions, agreeing with previous reports of highly variable dynamic

states of the rAI and unstable dFC between the rAI and regions of

DMN in typically neurodeveloping individuals (Nomi et al., 2016). The

distinguishable reoccurring functional connectivity patterns reveal dif-

ferent types of coordination between the rAI and other brain net-

works (Nomi et al., 2016). Temporal analysis in the present study also

reflects different temporal properties of dFC within each state. These

results demonstrate that each dynamic state of the rAI possesses a

unique temporal and spatial profile. Furthermore, dynamic states asso-

ciated with the rAI differentially overlapped with previous task-based

studies related to psychological and physiological processing. States

1 and 4 were more linked with sensorimotor terms, and states 3 and

5 had more associations with social cognitive terms. This observation

may partly uncover the potential psychological and physiological

FIGURE 2 Analysis of five right anterior insula (rAI) dynamic states. (a) Fraction of dwell time. (b) State transition probability. (c) Frequency

spectrum analysis. (d) Diagrammatic representation of waveform for each state. (e) Meta-analytic decoding result of each rAI dynamic state. Radar
chart shows correlation coefficients for each state map with the 16 terms of interest [Color figure can be viewed at wileyonlinelibrary.com]
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processes involved in different dFC states during the resting state

(Chang, Yarkoni, Khaw, & Sanfey, 2012; Yamada et al., 2016). To the

best of our knowledge, this is the first study that has applied meta-

analytic methods in the study of dFC. A combination of the dynamic

state analysis and meta-analytic decoding shows promise in boosting

future development in dFC investigations.

4.2 | Aberrant dFC between the rAI and DMN

in ASD

Referred to as the social brain areas, brain regions consisting of the

DMN serve cognitive functions which are hypothesized to be involved

in mentalizing, self-monitoring, and social cognition (Dante & Wim,

2013; Nathan & Grady, 2010; Susan et al., 2014). Abundant neuroim-

aging studies have provided support for potential links between aber-

rant activation and functional connectivity in the DMN associated

with ASD. Individuals with ASD displayed diminished deactivation in

the anterior DMN node during mentalizing tasks in comparison with a

TD group (Kana et al., 2009; Kennedy, Elizabeth, & Eric, 2006). Neuro-

typical individuals showed more neural responses for the self-

referential than for other-referential processing in the vmPFC

(Lombardo et al., 2010). However, individuals with ASD showed no

distinction in activating between self and others (Lombardo et al.,

2010). Resting-state functional connectivity findings showed that

abnormal PCC hyperconnectivity is related to the core social deficits

in children with ASD (Lynch et al., 2013). An underconnectivity pat-

tern between the anterior and posterior subnetworks of DMN was

suggested to contribute to ASD symptoms in the social domain

(Michal et al., 2010). Previous static functional connectivity research

has also provided evidence for functional connectivity abnormalities

between the rAI and regions of DMN associated with aberrant social

cognitive processes in ASD (Abbott et al., 2016; von dem Hagen et al.,

FIGURE 3 MANOVA and brain–behavior analysis results. (a) Significant group differences in the ventral medial prefrontal cortex (vmPFC) and

posterior cingulate cortex (PCC) revealed by MANOVA. (b) Relationship between social subscore of ADOS and dFC between right anterior insula
and vmPFC in state 3 in ASD group (uncorrected) [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Significant group differences in MANOVA

Brain areas Hemi Voxels BA

MNI coordinates

−log10(p) valuex y z

Multivariate tests

vmPFC L/R 39 11 0 51 −15 2.36

PCC L/R 7 31 3 −45 36 1.59

Univariate tests

State 3

vmPFC L/R 40 11 −3 45 −18 1.94

State 5

PCC R 7 31 3 −45 36 1.59

BA = Brodmann area; Hemi = hemisphere; L = left; MANOVA = multivariate analysis of variance; MNI = Montreal Neurological Institute; PCC = posterior
cingulate cortex; R = right; vmPFC = ventral medial prefrontal cortex.
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2012). Nevertheless, the present study demonstrated that aberrant

patterns of functional connectivity between the rAI and DMN regions

are present only in some of the dFC states, and not across the whole

period of the resting state. This finding poses a great challenge to pre-

vious static functional connectivity findings in ASD. It seems appropri-

ate to conclude that the conventional static functional connectivity

method is a relatively crude means of capturing the potential neuro-

physiological biomarkers specific to ASD; these static methods mask

delicate differences among dynamic states and potentially lead to dis-

crepant findings in neuroimaging.

Intriguingly, states in which ASD showed decreased dFC between

the rAI and DMN regions were those more relevant to socio-cognitive

processing implied by the meta-analytic results. These congruent rela-

tionships between functional connectivity abnormalities and cognitive

functions reveal that individuals with ASD may involve inadequate

spatiotemporal synchronization in states requiring high social

demands. Impaired intrinsic functional connectivity between the rAI

and DMN across resting-state dFC states possibly reflects brain net-

work regulation abnormalities initiated by the rAI. These regulation

abnormalities probably affect the vital role of the rAI in mediating

dynamic interactions between the DMN and CEN during complex

cognitive processes. These results provide new evidence for the

triple-network hypothesis, which states that many psychiatric and

neurological disorders are influenced by deficits in the function or

connectivity of the SN, DMN, and CEN (Menon, 2011). Given the

conceptual framework for the triple-network model, disrupted

engagement or disengagement of the DMN modulated by signals

from the rAI possibly results in aberrant self-referential mental pro-

cesses in individuals with ASD. This internally oriented activity can

lead to weak salience detection and reverse mapping of the SN with

the consequence of further aberrant control signals to the DMN and

CEN. In individuals with ASD, inappropriate internal self-referential

thoughts or interpersonal social processes may be caused by aberrant

dynamic interactions among the three core networks. Our findings

concur with previous task-based studies on social processing. Individ-

uals with ASD exhibited weaker cross-network interactions between

the rAI and other brain systems than those in their typically develop-

ing peers in social-demanding tasks, and higher social impairments

were associated with decreased connectivity during social processing

(Odriozola et al., 2015). The relationships between aberrant functional

circuits related to the rAI and social impairments of ASD in intrinsic

states and stimulus-evoked states further highlight the potential role

of the rAI in neuropathological mechanisms underlying social impair-

ments in ASD.

The rAI region has been reported to feature significant hypoacti-

vition during various social processes in individuals with ASD

(Di Martino et al., 2009). Convergent evidence suggest that the rAI

serves as an integral hub in detecting salient events and initiating net-

work switching between the DMN and CEN through transient control

signals (Menon, 2011). A previous real-time fMRI study in schizophre-

nia showed that improving activation in the rAI can enhance brain net-

work connectivities associated with this region (Ruiz et al., 2013).

Reduced rAI activity in ASD may result in insufficient control signals

from the rAI to initiate DMN responses in social cognitive processes.

Thus, individuals with ASD exhibited decreased functional interaction

between the rAI and DMN in states that may more relevant to socio-

cognitive processing.

4.3 | Limitations and future directions

First, the present findings were restricted to male participants. Sex-

ual differentiation has been frequently reported in ASD at the level

of cognition (Lai et al., 2012), core impairments (Van Wijngaarden-

Cremers et al., 2014), genetics (Jeste & Geschwind, 2014), brain

structure (Lai et al., 2013; Schaer, Kochalka, Padmanabhan, Supe-

kar, & Menon, 2015), and functional connectivity (Alaerts, Swin-

nen, & Wenderoth, 2016). Given the critical role of sex in the

heterogeneity of ASD (Halladay et al., 2015; Lai, Lombardo,

Auyeung, Chakrabarti, & Baron-Cohen, 2015), it is imperative for

future studies to disentangle the gender differences across ASD in

the dFC associated with rAI. Second, although we have meta-

analytically decoded the potential psychological and physiological

processes of dynamic states using a data-driven approach, further

task-based fMRI experiments are required to ascertain the links

between cognitive functioning and each dFC state of the rAI. The

current findings lay the groundwork for future dFC investigations.

Third, the current dFC approach is only one of multiple methods,

such as joint time–frequency analysis and dynamic graph analysis,

to characterize the time-varying patterns of resting-state functional

connectivity (Calhoun et al., 2014; Preti et al., 2016). Future studies

may explore how to combine different dynamic connectivity

methods to obtain alternative perspectives on the dFC patterns of

the rAI in ASD. Finally, limitations surrounding the interpretation of

ADOS scores in terms of symptom severity should also be acknowl-

edged. It is notable that ADOS scores tend to be influenced by par-

ticipant characteristics, such as age and IQ (Gotham, Pickles, & Lord,

2009; Hus, Gotham, & Lord, 2014). Although age, FIQ, mean FD,

and site were taken as covariates in the brain–behavior analysis,

these effects of participant characteristics cannot be completely

eliminated. The use of ADOS scores in this study is problematic

given that they are not reliable measures of symptom severity

(Gotham et al., 2009; Hus et al., 2014). We present this analysis as a

preliminary exploration of the relationship between ASD and rAI-

related dFC. The results remain to be validated by future work with

improved measurements of ASD symptom severity.

5 | CONCLUSION

The present study highlights abnormal dFC involving the rAI in ASD.

Individuals with ASD exhibited partially decreased dynamic functional

interaction between the rAI and DMN regions during the resting state.

Particularly, the connectivity patterns of abnormal dFC states had

increased overlap with the functional profiles of previous studies

involved in social cognitive processing. Overall, these findings offer a

novel perspective that deepens our understanding of ASD and sug-

gests a potential crucial role of the functional interaction between the

rAI and DMN in neurophysiological mechanisms underlying the social

impairments of ASD.
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