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Abstract

To classify a large number of unlabeled examples we combine a lim-
ited number of labeled examples with a Markov random walk represen-
tation over the unlabeled examples. The random walk representation ex-
ploits any low dimensional structure in the data in a robust, probabilistic
manner. We develop and compare several estimation criteria/algorithms
suited to this representation. This includes in particular multi-way clas-
sification with an average margin criterion which permits a closed form
solution. The time scale of the random walk regularizes the representa-
tion and can be set through a margin-based criterion favoring unambigu-
ous classification. We also extend this basic regularization by adapting
time scales for individual examples. We demonstrate the approach on
synthetic examples and on text classification problems.

1 Introduction

Classification with partially labeled examples involves a limited dataset of labeled exam-
ples as well as a large unlabeled dataset. The unlabeled examples to be classified provide
information about the structure of the domain while the few labeled examples identify the
classification task expressed in this structure. A common albeit tacit assumption in this
context associates continuous high-density clusters in the data with pure classes. When
this assumption is appropriate, we only require one labeled point for each cluster to prop-
erly classify the whole dataset.

Data points are typically given relative to a global coordinate system with an associated
metric. While the metric may provide a reasonable local similarity measure, it is frequently
inadequate as a measure of global similarity. For example, the data may lie on a subman-
ifold of the space, revealed by the density, and any global comparisons should preferably
be made along the manifold structure. Moreover, we often wish to assign higher similarity
values to examples contained in the same high-density regions or clusters implying that
comparisons ought to incorporate the density in addition to the manifold structure.

A representation of examples that satisfies these and other desiderata can be constructed
through a Markov random walk similarly to [3]. The resulting global comparisons of ex-
amples integrate a “volume” of paths connecting the examples as opposed to shortest paths
that are susceptible to noise. The time scale of the Markov process (the number of tran-
sitions) will permit us to incorporate the cluster structure in the data at different levels



of granularity. We start by defining the representation and subsequently develop several
classification methods naturally operating on such representations.

2 Representation based on Markov random walks

We define a Markov random walk based on a locally appropriate metric [3]. The metric is
the basis for the neighborhood graph, associated weights on the edges, and consequently
the transition probabilities for the random walk. The new representation for the examples
can be obtained naturally from the random walk.

More formally, consider a set of points
���������	���
���
���

with a metric ��� ����������� . We first
construct a symmetrized � nearest neighbor graph � over the points and assign a weight� �������
 "! ��#$�%� �
�&����'(�&)+*
� to each undirected edge in the graph. The weights are sym-
metric and

� �,�-�/.
as we include self-loops;

� �0�1�32
for all non-neighbors. Note that

the product of weights along a path in the graph relates to the total length of the path in the
same way as the edge weights relate to the distances between the corresponding points. The
one-step transition probabilities 4 �,' from 5 to 6 are obtained directly from these weights:

4 �,'7�
� �8'

9 � � ��� (1)

(4 �8':��2
for any non-neighbor 6 ). While the weights

� �,'
are symmetric, the transition

probabilities 4 �,' generally are not, because the normalization varies from node to node.

We use ;=<?> @A�B6
C 5 � to denote the D step transition probabilities ( D here should be interpreted as
a parameter, not as a random variable). If we organize the one step transition probabilities
as a matrix E whose 5 � 6 -th entry is 4 �8' , we can simply use a matrix power to calculate

;=<?> @F�B6
C 5 �G�IH E <BJ �8' � (2)

The matrix E is row stochastic so that rows sum to 1.

We assume that the starting point for the Markov random walk is chosen uniformly at
random, i.e., ;K�L5 �M�N.+)PO

. We can now evaluate the probability that the Markov process
started from 5 given that it ended up in 6 after D steps. These conditional probabilities;=@�> <P�L5
C 6 � define our new representation for the examples. In other words, each point 6 is
associated with a vector of conditional probabilities ;�@�> <P�L5
C 6 � , 5 �Q.A���	�����&O

. The points
in this representation are close whenever they have nearly the same distribution over the
starting states. This representation is crucially affected by the time scale parameter D . WhenDSRUT , all the points become indistinguishable provided that the original neighborhood
graph is connected. Small values of D , on the other hand, merge points in small clusters. In
this representation D controls the resolution at which we look at the data points (cf [3]).

The representation is also influenced by � ,
*

, and the local distance metric � , which to-
gether define the one-step transition probabilities (see section 4).

3 Parameter estimation for classification

Given a partially labeled data set
� � �V�(�XWY �
�P�	���	�
� � �
Z[�XWY Z\�
���
Z^]=�+���	�������
�S� , we wish to clas-

sify the unlabeled points. The labels may come from two or more classes, and typically,
the number of labeled points _ is a small fraction of the total points

O
.

Our classification model assumes that each data point has a label or a distribution ;K� Y C 5 �
over the class labels. These distributions are unknown and represent the parameters to be
estimated. Now given a point 6 , which may be labeled or unlabeled, we interpret the point



as a sample from the D step Markov random walk. Since labels are associated with the
original (starting) points, the posterior probability of the label for point 6 is given by

;���������� Y C 6 �G�	� � ;K� Y C 5 � ;=@�> <P� 5PC 6 �
� (3)

To classify the 6 -th point, we choose the class that maximizes the posterior:
 ' � arg�
�  �� ; ������� � Y � 
 C 6 � .
We will now discuss two techniques for estimating the unknown parameters ;K� Y C 5 � : maxi-
mum likelihood with EM, and maximum margin subject to constraints.

3.1 EM estimation

The estimation criterion here is the conditional log-likelihood of the labeled pointsZ�'��=������� ;K� WY ' C 6 �G�
Z�'��V�������

�� ���=� ;K� WY ' C 5 � ;�@�> <P�L5
C 6 �P� (4)

Since ;=@�> <
� 5
C 6 � are fixed for any specific D , this objective function is jointly concave in the
free parameters and has a unique maximum value. The concavity also guarantees that this
optimization is easily performed via the EM algorithm.

Let ;K� 5PC 6 �FWY ' � be the soft assignment for component 5 given �B6 �AWY ' � , i.e.,;K�L5
C 6 �XWY '+��� ;K� WY ' C 5 � ;=@�> < � 5
C 6 � . The EM algorithm iterates between the E-step, where
;K�L5
C 6 �XWY '+� are recomputed from the current estimates of ;K� Y C 5 � , and the M-step where we
update ;K� Y C 5 ��� 9 '! #"$�% � $ ;K�L5
C 6 �XWY '+�&)G9 ' ;K� 5
C 6 �AWY '+� , (see [1]).

3.2 Margin based estimation

An alternative discriminative formulation is also possible, one that is more sensitive to
individual classification decisions rather than the product of their likelihoods. Define the
margin of the classifier on labeled point 6 and class � to be & '(' � ;)�����*�	� Y � WY ' C 6 � #; �+����� � Y � ��C 6 � . For correct classification, the margin should be nonnegative for all classes� other than

WY ' , i.e. & '!'-, 2
, and be zero for the correct class & '."$�% =0.

During training, find the parameters ;K� Y C 5 � that maximize the average margin on the la-
beled points, thereby forcing most of them to be correctly classified. Unbalanced classes
are handled by the per class margin, and we obtain the linear program

�
�  /.0 $ > ��132 4 %65 .7 � 7 # .��
Z�'��=�

8� '9�=� .
O 8 0 '�1 & '(' subject to (5)

;)�����*��� Y ��WY ' C 6 �:, ;��������	� Y � � C 6 ��; & '('=< 6?> . ����� _ < �@> .G�	��� 7 (6)8� � �=� ;K� Y � 
 C 5 �G� .
and

2
A ;K� Y C 5 �BA . < 5 � (7)

Here
7

denotes the number of classes and
O 8 0 '�1 gives the number of labeled points in the

same class as 6 . The solution is achieved at extremal points of the parameter set and thus
it is not surprising that the optimal parameters ;K� Y C 5 � reduce to hard values (0 or 1). The
solution to this linear program can be found in closed form:

;K� Y � 
 � C 5 �G�DC .
if 
 ��� arg�E�  � ��.F 9 'G �"$ % � � ;=@�> <P� 5PC 6 �2
otherwise.

(8)
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Figure 1: Top left: local connectivity for � =5 neighbors. Below are classifications using
Markov random walks for D =3, 10, and 30 (top to bottom, left to right), estimated with
average margin. There are two labeled points (large cross, triangle) and 148 unlabeled
points, classified (small crosses, triangles) or unclassified (small dots).

The resulting posterior probabilities can also be written compactly as;)�+������� Y � 
 C 6 �-� 9 �# /.0 $ � � > ��1*�=� ;=@�> <P� 5PC 6 � . The closed form solution for the label distri-
butions facilitates an easy cross-validated setting of the various parameters involved in the
example representations.

The large margin restricts the �
4

dimension of the classifier (section 3.4) and encourages
generalization to correct classification of the unlabeled points as well. Note that the margins
are bounded and have magnitude less than 1, reducing the risk that any single point would
dominate the average margin. Moreover, this criterion maximizes a sum of probabilities,
whereas likelihood maximizes a product of probabilities, which is easily dominated by low
probability outliers.

Other margin-based formulations are also possible. For separable problems, we can maxi-
mize the minimum margin instead of the average margin. In the case of only two classes,
we then have only one global margin parameter & for all labeled points. The algorithm
focuses all its attention at the site of the minimum margin, which unfortunately could be
an outlier. If we tackled noisy or non-separable problems by adding a linear slack variable
to each constraint, we would arrive at the average margin criterion given above (because of
linearity).

Average- and min-margin training yields hard parameters 0 or 1. The risk of overfitting
is controlled by the smooth representation and can be regularized by increasing the time
parameter D . If further regularization is desired, we have also applied the maximum entropy
discrimination framework [2, 1] to bias the solution towards more uniform values. This
additional regularization has resulted in similar classification performance but adds to the
computational cost.

3.3 Examples

Consider an example (figure 1) of classification with Markov random walks. We are given
2 labeled and 148 unlabeled points in an intertwining two moons pattern. This pattern has a



manifold structure where distances are locally but not globally Euclidean, due to the curved
arms. Therefore, the pattern is difficult to classify for traditional algorithms using global
metrics, such as SVM. We use a Euclidean local metric, � =5 and

*
=0.6 (the box has extent�����

), and show three different timescales. At D =3 the random walk has not connected all
unlabeled points to some labeled point. The parameters for unconnected points do not
affect likelihood or margin, so we assign them uniformly to both classes. The other points
have a path to only one of the classes, and are therefore fully assigned to that class. AtD =10 all points have paths to labeled points but the Markov process has not mixed well.
Some paths do not follow the curved high-density structure, and instead cross between the
two clusters. When the Markov process is well-mixed at D =30, the points are appropriately
labeled. The parameter assignments are hard, but the class posteriors are weighted averages
and remain soft.

3.4 Sample size requirements

Here we quantify the sample size that is needed for accurate estimation of the labels for the
unlabeled examples. Since we are considering a transduction problem, i.e., finding labels
for already observed examples, the sample size requirements can be assessed directly in
terms of the representation matrix. As before, the probabilities ;[@�> <
�L5
C � � and ;=@�> <P�L5
C 6 �
denote the conditional probabilities of having started the random walk in 5 given that the
process ends up in � , 6 , respectively. For simplicity, we consider a binary problem with
classes 1 and -1, and let � �M� ;K� Y �/. C 5 � # ;K� Y � # . C 5 � . Classification decisions are
then directly based on the sign of ��� 6 �G� 9 ����=� � � ;�@�> <P�L5
C 6 � .
Lemma 1 Consider the absolute distance between the representations of two points � �&'S�9 ����=� C ;=@�> <
� 5
C � � # ;�@�> <
�L5
C 6 � C . The �

4
dimension [5] of the binary transductive classifier

��� 6 � is upper bounded by the number of connected components of a graph with
O

nodes
and adjacency matrix E , where E �&'S� .

if � �&' A & and zero otherwise.

Proof: To evaluate �
4

, a measure of the capacity of the classifier, we count the number of
complete labelings Y ' consistent with the margin constraints Y ' ���B6 �B, & for all 6 (labeled
and unlabeled points). First, we establish that all examples � and 6 for which � �&' A & must
have the same label. This follows directly from

C ����� � #���� 6 � C A �� ���V� C ;�@�> <
�L5
C � � # ;=@�> <
� 5
C 6 � C�C ;���������� Y � . C 6 � # ;)��������� Y � # . C 6 � C (9)

A �� ���V� C ;�@�> <
�L5
C � � # ;=@�> <
� 5
C 6 � C � � �&' � (10)

as this difference must be larger than & for the discriminant functions to have different
signs. Since any pair of examples for which � �&'
A & share the same label, different labels
can be assigned only to examples not connected by the � �&'@A & relation, i.e., examples in
distinct connected components. 	
This theorem applies more generally to any transductive classifier based on a weighted
representation of examples so long as the weights are bounded in

H # .X�	. J .
To determine the sample size needed for a given dataset, and a desired classification mar-
gin & , let 
 � �

4
dimension. With high probability we can correctly classify the unla-

beled points given � ��
 ����� 
 � labeled examples [4]. This can also be helpful to determine
timescale D since it is reflected in the �

4
, for example �

4 � O
for D =0 and �

4 � .
for D = T

for the full range of &�> H 2^� � J .
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Figure 2: Windows vs. Mac text data. Left: Average per class margins for different D , 16
labeled documents. Right: Classification accuracy, between 2 and 128 labeled documents,
for Markov random walks and best SVM.

4 Choices for � , � , � , and �
The classifier is robust to rough heuristic choices of ����� � � � , � , and

*
, as follows. The local

similarity measure ����� � � � is typically given (Euclidean distance). The local neighborhood
size � should be on the order of the manifold dimensionality, sufficiently small to avoid
introducing edges in the neighborhood graph that span outside the manifold. However, �
must be large enough to preserve local topology, and ideally large enough to create a singly
connected graph, yielding an ergodic Markov process. The local scale parameter

*
trades

off the emphasis on shortest paths (low
*

effectively ignores distant points), versus volume
of paths (high

*
).

The smoothness of the random walk representation depends on D , the number of transitions.
This is a regularization parameter akin to the kernel width of a density estimator. In the
limiting case D =1, we employ only the local neighborhood graph. As a special case, we ob-
tain the kernel expansion representation [1] by D =1, � =

O
, and squared Euclidean distance.

If all points are labeled, we obtain the � -nearest neighbors classifier by D =1,
* R T . In

the limiting case D = T the representation for each node becomes a flat distribution over the
points in the same connected component.

We can choose D based on a few unsupervised heuristics, such as the mixing time to reach
the stationary distribution, or dissipation of mutual information [3].

However, appropriate D depends on the classification task. For example, if classes change
quickly over small distances, we want a sharper representation given by smaller D . Cross-
validation could provide a supervised choice of D but requires too many labeled points
for good accuracy. Instead, we propose to choose D that maximizes the average margin
per class, on both labeled and unlabeled data. Plot

�� F 9 '! ��� 	 �*� 0 '�1*� � 9 ' & '(' for each c,
separately for labeled and unlabeled points to avoid issues of their relative weights. For
labeled points, 
 � ���
��� 6 �S� WY ' , for unlabeled points, 
 � �����	� 6 � is the class assigned by the
classifier. Figure 2 shows the average margin as a function of D , for a large text dataset
(section 5). We want large margins for both classes simultaneously, so D ���

is a good
choice, and also gave the best cross-validation accuracy.

4.1 Adaptive time scales

So far, we have employed a single global value of D . However, the desired smoothness
may be different at different locations (akin to adaptive kernel widths in kernel density
estimation). At the simplest, if the graph has multiple connected components, we can



set individual D for each component. Ideally, each point has its own time scale, and the
choice of time scale is optimized jointly with the classifier parameters. Here we propose a
restricted version of this criterion where we find individual time scales D ' for each unlabeled
point but estimate a single timescale for labeled points as before.

The principle by which we select the time scales for the unlabeled points encourages the
node identities to become the only common correlates for the labels. More precisely, define;K� Y C 6 � for any unlabeled point 6 as

;K� Y C 6 �G�
.
� ' ��# #"$�� � $ ;=@�> < % �L5
C 6 �P� (11)

where
� ' � 9 � ;=@�> < % �L5
C 6 � and both summations are only over the labeled points. More-

over, let ;K� Y � be the overall probability over the labels across the unlabeled points or

;K� Y �G� � ' ;K�B6 � ;K� Y C 6 �
� (12)

where ;K�B6 � is uniform over the unlabeled points, corresponding to the start distribution.
Note that ;K� Y � remains a function of all the individual time scales for the unlabeled points.
With these definitions, the principle for setting the time scales reduces to maximizing the
mutual information between the label and the node identity:
� D �+���	���
� D�� �-� arg �E�  <�� 2������ 2 <
	 � � Y
� 6 �G� arg �E�  <�� 2������ 2 <
	 ��� � Y � # � � ;K� 6 � � ��� � Y C 6 � � � �A� (13)

� � Y � and
� � Y C 6 � are the marginal and conditional entropies over the labels and are com-

puted on the basis of ;K� Y � and ;K� Y C 6 � , respectively. Note that the ideal setting of the time
scales would be one that determines the labels for the unlabeled points uniquely on the
basis of only the labeled examples while at the same time preserving the overall variability
of the labels across the nodes. This would happen, for example, if the labeled examples
fall on distinct connected components. We optimize the criterion by an axis parallel search,
trying only discrete values of D ' large enough that at least one labeled point is reached
from each unlabeled point. We initialize D ' to the smallest number of transitions needed
to reach a labeled point. Empirically we have found that this initialization is close to the
refined solution given by the objective. The objective is not concave, but separate random
initializations generally yield the same answer, and convergence is rapid requiring about 5
iterations.

5 Experimental results

We applied the Markov random walk approach to partially labeled text classification, with
few labeled documents but many unlabeled ones. Text documents are represented by high-
dimensional vectors but only occupy low-dimensional manifolds, so we expect Markov
random walk to be beneficial. We used the mac and windows subsets from the 20 news-
groups dataset1. There were 958 and 961 examples in the two classes, with 7511 dimen-
sions. We estimated the manifold dimensionality to exceed 7, and a histogram of the dis-
tances to the 10 nearest neighbor is peaked at 1.3. We chose a Euclidean local metric,� =10, which leads to a single connected component, and

*
=0.6 for a reasonable falloff.

The average margin criterion indicated D � �
, and we also cross-validated and plotted the

decay of mutual information over D . We trained both the EM and the margin-based formu-
lations, using between 2 and 128 labeled points, treating all remaining points as unlabeled.
We trained on 20 random splits balanced for class labels, and tested on a fixed separate set
of 987 points. Results in figure 2 show that Markov random walk based algorithms have

1Processed as 20news-18827, http://www.ai.mit.edu/˜jrennie/20Newsgroups/,
removing rare words, duplicate documents, and performing tf-idf mapping.



a clear advantage over the best SVM using only labeled data (which had a linear kernel
and

7
=3), out of linear and Gaussian kernels, different kernel widths and values of

7
. The

advantage is especially noticeable for few labeled points, but decreases thereafter. The av-
erage margin classifier performs best overall. It can handle outliers and mislabeled points,
unlike the maximum min margin classifier that stops improving once 8 or more labeled
points are supplied.

The adaptive timescale criterion favors relatively small timescales for this dataset. For
90% of the unlabeled points, it picks the smallest timescale that reaches a labeled point,
which is at most 8 for any point. As the number of labeled points increases, shorter times
are chosen. For a few points, the criterion picks a maximally smooth representation (the
highest timescale considered here, D =12), possibly to increase the

� � Y � criterion. However,
our preliminary experiments suggest that the adaptive time scales do not have a special
classification advantage for this dataset.

6 Discussion

The Markov random walk representation of examples provides a robust variable resolution
approach to classifying data sets with significant manifold structure and very few labels.
The average margin estimation criterion proposed in this context leads to a closed form
solution and strong empirical performance. When the manifold structure is absent or un-
related to the classification task, however, our method cannot be expected to derive any
particular advantage.

There are a number of possible extensions of this work. For example, instead of choosing
a single overall resolution or time scale D , we may combine multiple choices. This can
be done either by maintaining a few choices explicitly or including all time scales in a
parametric form as in �

� < � � ; D?E ; D � E � ) ��� ; �	���
[7], but it is unclear whether the

exponential decay is desirable. To facilitate continuum limit analysis (and establish better
correspondence with the underlying density), we can construct the neighborhood graph on
the basis of � -balls rather than � nearest neighbors.
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