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Summary. This paper studies estimation of partially linear hazard regression models with

varying coefficients for multivariate survival data. A profile pseudo-partial likelihood estimation

method is proposed. The estimation of the parameters of the linear part is accomplished via

maximization of the profile pseudo-partial likelihood, while the varying-coefficient functions are

considered as nuisance parameters profiled out of the likelihood. It is shown that the estimators

of the parameters are
√

n-consistent and the estimators of the nonparametric coefficient func-

tions achieve optimal convergence rates. Asymptotic normality is obtained for the estimators

of the finite parameters and varying-coefficient functions. Consistent estimators of the asymp-

totic variances are derived and empirically tested, which facilitate inference for the model. We

prove that the varying-coefficient functions can be estimated as well as if the parametric com-

ponents were known and the failure times within each subject were independent. Simulations

are conducted to demonstrate the performance of the proposed estimators. A real dataset is

analysed to illustrate the proposed methodology.
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1. Introduction

Multivariate survival data are frequently encountered in data analysis. A key feature of

this type of data is that the failure times might be correlated. For example, in animal

experiments, the failure times of animals within a litter may be correlated because they

share common genetic and environmental traits; in clinical trials where the patients are

followed for repeated recurrent events, the times between recurrences for a given patient

may be correlated. Usually, the structures of correlation are unknown. Modeling the

multivariate failure times without specifying a correlation structure has been an active field

of research in statistical literature.

A popular approach for modeling multivariate failure data is the so-called marginal

hazard model approach which models the “population-averaged” covariate effects. This

model is attractive especially when the correlation among observations is not of interest. The

model also is linked with the Cox model in the univariate case because of its semiparametric

structures. It has received much attention in the literature. See for example, Wei, Lin and

Weissfeld 1989, Lee, Wei and Amato 1992, Liang, Self and Chang 1993, Lin 1994, Cai and

Prentice 1995, 1997, Prentice and Hsu 1997, Spiekerman and Lin 1998, Cai 1999, and Clegg,

Cai, and Sen 1999 among others.

Most statistical methods developed for handling the failure time data typically assume

that the covariate effects on the logarithm of the hazard function are linear and the re-

gression coefficients are constant. These assumptions, however, are mainly chosen for their

mathematical convenience. True associations in practical studies are usually more complex

than a simple linear relationship. An important extension of the constant coefficient model

is the varying coefficient model, which addresses an issue frequently encountered by inves-

tigators in practical studies. For instance, the effect of an exposure variable on the hazard

function may change with the level of a confounding covariate. This can be traditionally

modelled by including an interaction term in the model for simplicity, but when the effect

of the exposure on the hazard function changes nonlinearly with the confounding variable

this approach may introduce a large modeling bias. An illustrative example is the well-
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known Framingham Heart Study (Dawber 1980). There were totally 2,336 men and 2,873

women in the study. The investigators were interested in the effect of the body mass index

(BMI) on the time to coronary heart disease (CHD) and cerebrovascular accident (CVA),

where the effect could vary over different birth cohorts. To model possible birth cohort

effects of the BMI on the failure time (the times to CHD and CVA), one needs to use a

varying-coefficient model with the coefficient for the BMI being an unknown function of

the year of birth. The varying-coefficient structure allows one to model possible complex

interaction between the BMI and the birth cohort. In general, there may be several expo-

sure variables which interacts with a confounding covariate. This leads to a multivariate

varying-coefficient model with the coefficients of variables changing nonlinearly over the

level of the confounding variable.

Varying-coefficient models have received much attention in the analysis of non-failure

time data. Related work appears in the literature on multivariate nonparametric regression,

generalized linear models, analysis of longitudinal data, and nonlinear time series, etc. See,

for example, Hastie and Tibshirani (1993), Brumback and Rice (1998), Carrol et al. (1998),

Hoover et al. (1998), Fan and Zhang (1999), and Cai, Fan and Yao (2000), among others.

For univariate failure time data, Fan, Lin and Zhou (2006) studied the estimation of varying-

coefficient hazard model based on nonparametric smoothing techniques. This approach was

extended to model multivariate failure data by Cai, Fan, Zhou and Zhou (2007) using a local

pseudo-partial likelihood procedure. While this approach seems appealing in addressing the

interactions among covariates, it ignores possible linear structure in the hazard regression

and hence would suffer from the loss of efficiency when some coefficients are indeed constant.

Therefore, for modelling the multivariate failure time data without specifying a correlation

structure, there is a genuine need to consider a partially linear hazard regression model with

varying-coefficients, under the marginal hazard model framework.

To our knowledge there is no formal work elaborating this problem in the literature. It

is important to develop an effective estimation methodology for the partially linear model.

This paper addresses this problem by using the idea of profile likelihood. We develop a pro-
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file local pseudo-likelihood-based approach for estimating the varying-coefficient functions

α(·) and a global profile pseudo-likelihood-based method for estimating the finite parameter

vector β as specified in the model (1.1) below.

A recent article of Cai, Fan, Jiang and Zhou (2007) considered the partially linear hazard

regression model with a one dimensional nonlinear component for modelling multivariate

failure data, under the marginal hazard model framework. This model is useful to model

nonlinear covariate effects, but it cannot deal with possible interaction among covariates,

such as the BMI and birth cohort covariates mentioned above.

Suppose that there is a random sample of n subjects from an underlying population and

that there are J failure types in each subject. Let i indicate subject and (i, j) denote the jth

failure type in the ith subject. Let Tij (i = 1, · · · , n, j = 1, · · · , J) denote the failure time,

Cij (i = 1, · · · , n, j = 1, · · · , J) the censoring time, and Xij = min(Tij , Cij) the observed

time. Let ∆ij be an indicator which equals 1 if Xij is a failure time and 0 otherwise. Let Ft,ij

represent the failure, censoring and covariate information up to time t for the (i, j) failure

type as well as the covariate information of the other failure types in the ith subject up to

time t. The marginal hazard function is defined as λij(t) = limh↓0 h−1P [Tij ≤ t + h|Tij >

t,Ft,ij ]. The censoring time is assumed to be independent of the failure time conditional

on the covariates (that is the so-called “independent censoring scheme”). Throughout this

paper, for any vector b we use notation bT to denote the transpose of b.

The partially linear hazard regression model we consider is

λij(t) = λ0j(t)exp{βT Wij(t) + α(Vij(t))
T Zij(t)}, (1.1)

where Wij(·) = (Wij1(·), · · · , Wijq(·))T is a vector of covariates that has linear effects on

the logarithm of the hazard, Zij(·) = (Zij1(·), · · · , Zijp(·))T is a vector of covariates that

may interact with some exposure covariate Vij(·); λ0j(·) is an unspecified baseline hazard

function; and α(·) is a vector of unspecified coefficient functions. For example, in the afore-

mentioned FHS study, V would represent the calendar year of birthdate, W would consist of

confounding variables such as gender, blood pressure, cholesterol level and smoking status,

etc, and Z would contain covariates possibly interacting with V such as the BMI. Our in-
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terest centers around the efficient estimation of parameter vector β and coefficient functions

α(·).

We will show that the proposed estimator of β is root-n consistent and that the estima-

tors of α achieves optimal convergence rates. The asymptotic normality will be established

for both β and α(·). We will also provide consistent estimators for the asymptotic vari-

ances of the proposed estimators, in order to facilitate the inference for the parameters.

One particular challenge in developing those large sample properties lies in the fact that

the profile pseudo-partial likelihood involves the estimation of coefficient functions α(·)

which uses all observed information from the data, hence the score function of β cannot be

expressed asymptotically as an integration of a predictable process with respect to a mar-

tingale. Consequently, the commonly used martingale tools cannot be straightforwardly

applied. Obtaining the asymptotic properties of the estimators is a major challenge, and

a determined effort has been made in this article to derive the asymptotic distributions of

the proposed estimators.

This paper is organized as follows. In Section 2, we describe the procedure for estimating

the parameters β and the coefficient functions α(·) from model (1.1). Section 3 focuses on

the asymptotic properties of the proposed estimators. Issues on the implementation of the

proposed methods are discussed in Section 4. In Section 5, we conduct intensive simulations

and illustrate the proposed estimation via a real data analysis. Some technical conditions

are put in Appendix I. Proofs of the theorems are given in Appendix II.

2. Maximum Pseudo-partial Likelihood Estimation

We propose the following pseudo-partial likelihood function for estimating the regression

coefficient vector β and the coefficient functions α(.). Let Rj(t) = {i : Xij ≥ t} denote the

set of the individuals at risk just prior to time t for failure type j. If failure times from the

same subject were independent, then the partial likelihood for (1.1) is

L(β, α) =

J
∏

j=1

n
∏

i=1

{

exp{βT Wij(Xij) + α(Vij(Xij))
T Zij(Xij)}

∑

l∈Rj(Xij) exp{βT Wlj(Xij) + α(Vlj(Xij))
T Zlj(Xij)}

}∆ij

. (2.1)
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For the case with J = 1, if the coefficient functions are constant, the partial likelihood

above is just the one in Cox’s model (Cox 1972).

Since failure times from the same subject are dependent, the above partial likelihood is

referred to as pseudo-partial likelihood. We will use this pseudo-partial likelihood for our

estimation. However, we neither require that the failure times are independent nor specify

a dependent structure among failure times. This furnishes robustness of our estimation

method against the misspecification of correlations among failure times.

If α(·) has been parameterized, one can obtain the maximum pseudo-partial likelihood

estimator by maximizing (2.1) with respect to β and the parameters in α(·). Since the form

of α has not been specified in our nonparametric method, we can only use its qualitative

traits.

Next we suggest a naive nonparametric estimator. Assume that α(·) is smooth so that

it can be approximated locally by a linear function. Denote by fj(·) the density of V1j .

For any given point v0 ∈ ∑J
j=1 supp(fj), where supp(fj) denotes the support of fj(·) , by

Taylor’s expansion,

α(v) ≈ α(v0) + α′(v0)(v − v0) ≡ δ + η(v − v0), (2.2)

where δ = (δ1, · · · , δp)
T . Using the local model (2.2) for the data around v0, we obtain the

logarithm of the local pseudo-partial likelihood:

ℓ(β, γ) =

J
∑

j=1

n
∑

i=1

Kh(Vij(Xij) − v0)∆ij

{

βT Wij(Xij) + γT Uij(Xij , v0) − R∗
ij(β, γ)

}

, (2.3)

where Uij(u, v0) = {Zij(u)T , Zij(u)T (Vij(u)−v0)}T , γ = (δT , ηT )T , Kh(·) = K(·/h)/h, and

R∗
ij(β, γ) = log

(

∑

l∈Rj(Xij)

exp[βT Wlj(Xij) + γT Ulj(Xij , v0)]Kh(Vlj(Xij) − v0)
)

.

Here K is a probability density called a kernel function, and h represents the size of the

local neighborhood called a bandwidth. The kernel function is introduced to reflect the fact

that the local model (2.2) is only applied to the data around v0. It gives a larger weight to

the data closer to the point v0. For the univariate case, the local pseudo-partial likelihood

was derived by Fan et al. (1997) from a local maximum likelihood point of view.
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Let (β̂(v0), γ̂(v0)) maximize the local pseudo-partial likelihood (2.3). Then, an estimator

of α(·) at the point v0 is simply the local intercept δ̂(v0), namely α̂(v0) = δ̂(v0). When v0

varies over a grid of prescribed points, the estimates of the functions are obtained.

In the context of the generalized linear models, Carroll et al. (1997) show that such a

naive method produces an estimator for α that achieves the optimal rate of convergence.

However, the asymptotic variance for estimating α has been inflated. Since only the local

data are used in the estimation of β, the resulting estimator for β cannot be root-n consis-

tent. We refer to (β̂(v0), α̂(v0)) as the naive estimator. To fix the drawbacks of the naive

estimator, we next propose a new estimator for β that is root-n consistent.

Our proposed estimator is based on a profile likelihood. Specifically, for a given β, we

obtain an estimator of α̂(·, β) by maximizing (2.3) with respect to γ. Substituting the

estimator α̂(·, β) into (2.1), we obtain the logarithm of the profile pseudo-partial likelihood:

ℓp(β) =

J
∑

j=1

n
∑

i=1

∆ij

{

βT Wij + α̂(Vij , β)T Zij

− log
(

∑

l∈Rj(Xij)

exp[βT Wlj + α̂(Vlj , β)T Zlj ]
)}

. (2.4)

Here and hereafter, for the ease of presentation, we sometimes drop the dependence of

covariates on time, with the understanding that the methods developed in this paper are

applicable to external time dependent covariates (Kalbfleisch and Prentice, 2002). Let β̂

maximize (2.4). Our proposed estimator for the parametric component is simply β̂ and for

the coefficient function is α̂(·) = α̂(·, β̂).

With the estimators of β and α(·), one can estimate the cumulative baseline hazard

function Λ0j(t) =
∫ t

0
λ0j(u)du under mild conditions by a consistent estimator:

Λ̂0j(t) =

∫ t

0

[

n
∑

i=1

Yij(u) exp{β̂T
Wij(u) + α̂(Vij(u))T Zij(u)}

]−1
n

∑

i=1

dNij(u),

where Yij(·) is an at risk indicator process for the jth failure type of subject i, i.e. Yij(t) =

I(Xij ≥ t), and Nij(u) = 1(Xij ≤ u, ∆ij = 1).
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3. Asymptotic Properties

The technical challenges of deriving the property of the proposed estimator β̂ arise from

the fact that the logarithm of the profile pseudo-partial likelihood ℓp(β) in (2.4) involves

α̂(·, β) which utilizes all observed information. Consequently, the score function of β cannot

be expressed asymptotically as a sum of integrations of predictable processes with respect

to martingales. In other words, the score function cannot be expressed asymptotically as a

sum of martingales. Hence commonly-used martingale methods cannot be directly applied.

To derive the asymptotic properties of our estimators, we need some notations and

technical conditions which are relegated to Appendix I for ease of exposition. The following

theorems demonstrate that our estimators are consistent and asymptotically normal.

Theorem 1. Under Conditions (i)-(viii) in Appendix I, with probability tending to one

there exists a sequence of estimators β̂ which maximizes the global profile pseudo-partial

likelihood ℓp(β) such that β̂
P→ β0.

Theorem 2. Under Conditions (i)-(viii) in Appendix I, if nh2 → ∞ and nh4 → 0 then

the estimation sequence in Theorem 1 satisfies that
√

n(β̂ − β0) converges to a Gaussian

distribution with mean zero and covariance matrix Ω = I−1ΣI−1, specified in Appendix I.

From Theorem 2, the asymptotic covariance matrix of β̂ is of sandwich form, which can

be estimated by Ω̂ = Î−1Σ̂Î−1, where Î and Σ̂ are empirical plug-in estimators of I and Σ,

respectively, which are defined in Appendix I.

Note that Î and Σ̂ can be shown to be consistent for I and Σ, respectively. Hence, Ω̂

is a consistent estimator of Ω under the conditions of Theorem 2. Then for the following

semiparametric testing problem:

H0 : β = β0 versus H1 : β 6= β0,

where α(·) is a vector of nuisance functions, a generalized Wald test statistic Wn can be
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defined as

Wn = n(β̂ − β0)
T Ω̂

−1
(β̂ − β0). (3.1)

In particular, this can be applied for testing whether a set of variables is statistically sig-

nificant in the semiparametric model. By Theorem 2, we have the following results.

Theorem 3. Under Conditions of Theorem 2, the asymptotic null distribution of Wn is

χ2(q), where q is the dimension of β.

Theorem 4. Assume that Conditions (i)-(v) in Appendix I hold. If β̂ is
√

n-consistent

and nh5 is bounded, then

√
nh

[

H(γ̂ − γ) − bn(v0)
] L−→ N (0, Q(v0)),

where bn(v0) = 1
2h2µ2(α

′′(v0)
T , 0T

p )T + op(h
2) with 0p being a p × 1 vector of all elements

zeros, Q(v0) = blockdiag{ν0Ã
−1
1 (v0), ν2µ

−2
2 Ã−1

2 (v0)}, and H is a p × p diagonal matrix

whose first p diagonal elements are ones and others are h’s.

Corollary 1. Under the assumptions of Theorem 4,

√
nh

[

α̂(v0) − α(v0) − h2α′′(v0)µ2/2 + op(h
2)

]

L−→ N (0, ν0Ã
−1
1 (v0)).

Remark 1. It is interesting to note that if the marginal distributions of different failure

types within each subject are the same, then the asymptotic property of the proposed

estimator for α(·) reduces to that of Fan, Lin and Zhou (2006). That is, even though

the failure types within subjects are correlated, our estimators of the coefficient functions

perform as well as if they were independent. For an insight into this phenomena, see the

work of Masry and Fan (1997) and Jiang and Mack (2001).

Remark 2. Note that when β0 is known, one would maximize (2.4) with respect to γ.

The resulting estimator has the same asymptotic normality as in Corollary 1. In other

words, α̂(v) is adaptive in the sense that it estimates α(v) as well as if β0 were known.
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As a result of Corollary 1, the theoretic optimal bandwidth for estimating αk(·), in the

sense of minimizing the asymptotic weighted mean integrated squared error, is

hopt =
[

∫

Γk(v)w(v) dv
]1/5[

µ2
2

∫

[α′′
k(v)]2w(v) dv

]−1/5

n−1/5, (3.2)

where Γk and αk are the kth components of ν0Ã
−1
1 and α, respectively.

4. Implementation of the Proposed Methods

The proposed profile likelihood estimator involves maximization in (2.3) and (2.4). It can

be computed by an algorithm similar to that in Cai, Fan, Jiang and Zhou (2007). The

algorithm takes cares of the fact that α̂(·, β) is implicitly defined. Let vk (k = 1, · · · , m) be

a grid of points on the range of the exposure variable V . Then the algorithm proceeds as

follows.

1. Initialization. Use the average of the naive estimator β̄ = m−1
∑m

k=1 β̂(vk) as the

initial value. Set β̂ = β̄. This step can be undersmoothed for reducing biases, as the

average reduces the variances.

2. Estimation of coefficient function. Maximize the local pseudo-partial likelihood ℓ(β̂, γ)

at each grid point vk and obtain the nonparametric estimator α̂(·, β̂) at these grid

points. Obtain the nonparametric estimator at points {Vij} by using the linear in-

terpolation. We take h suitable for estimation of β. One example for such a suitable

bandwidth is the ad hoc bandwidth in (4.1) below.

3. Estimation of parametric component. With the estimator α̂(·, β̂), maximize the profile

estimator ℓp(β) with α(·, β) = α̂(·, β̂), using the Newton-Raphson algorithm and the

initial value β̂ from the previous step.

4. Iteration. Iterate between steps 2 and 3 until convergence.

5. Re-estimating the coefficient function. Fix β at its estimated value from step 4. The

final estimate of α̂(·) is α̂(·, β̂). At this final step we take bandwidth h suitable for

estimating α(·) such as the estimated optimal bandwidth ĥopt based on (3.2).
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In step 1, the estimators β̂(vk)’s are nonparametric ones from (2.3) using only those local

data around the point vk, and hence they and their average are consistent estimators of β in

a large range of bandwidth. In (2.3), we used local linear smoothing, and hence the biases

are of order O(h2) and variance are of order O(1/
√

nh). Using an optimal bandwidth

(h ∝ n−1/5) in smoothing will result in the biases and variances of order O(n−2/5). By

undersmoothing i.e. using a bandwidth less than the optimal one, the bias of each of

estimators β̂(vj) is reduced. Even though the variance of each estimator increases, the

average offsets this variance increase.

Since the initial estimator β̄ is consistent, we do not expect many iterations in step 4.

In implementation of the estimation method, an undersmoothing bandwidth h = O(n−1/3)

is used in step 1. Then the initial estimator in step 3 has at least the nonparametric

rate Op(h
2 + 1/

√
nh) = Op(n

−1/3), one-step or two-step iterations in the Newton-Raphson

algorithm suffices. This is backed by the theoretical work of Bickel (1975) and Robinson

(1988) in parametric models and by Fan and Chen (1999) and Fan and Jiang (2000) in

nonparametric models. In fact, according to Robinson (1988), if an initial parametric

estimator has a rate O(n−a), the difference between the k-step Newton-Raphson estimator

and the maximum likelihood estimator is only of order Op(n
−ak). With a = 1/3 and

k = 2, the order of error is o(n−1/2). Therefore, two iterations in the above algorithm

would produce an estimator as efficiently as the fully iterated estimator. Our experience in

simulations shows that the results are quite promising and in line with the above theory.

The estimation procedure involves the choice of a smoothing parameter h on two quite

different levels. In steps 2-3 of the algorithm the aim is to estimate β, and hence the

bandwidth h should be suitable for this task. From our theoretic result in Section 3, a large

range of bandwidths satisfies those theoretical requirements. For example, one can employ

the following ad hoc bandwidth

ĥopt × n
1

5 × n− 1

3 = ĥopt × n−2/15, (4.1)

where ĥopt is the optimal bandwidth estimated for α(·) based on (3.2). This guarantees

that the required bandwidth has correct order of magnitude. In the step 5, however, the
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goal is to estimate the nonparametric component α(·), and hence the bandwidth h should

be optimal in this respect.

5. Numerical Studies

This section illustrate the performance of proposed method by using simulated example and

a real data example. The results were obtained using Matlab and Splus softwares, which

are available at http://www.princeton.edu/∼jqfan/papers/06/PLVC/??????

5.1. Simulations

In this section, we evaluate the performance of the proposed estimation procedure in finite

samples. The aim of the simulations is three-fold: to demonstrate that our method cor-

rectly captures the forms of nonparametric coefficient functions and accurately estimates

the parametric components, to assess if the proposed variance estimation is consistent, and

to illustrate that the partly linear hazard regression model with varying coefficients can re-

veal interaction among covariates while usual Cox’s models with interactive effects of factors

fail.

Multivariate failure times were generated from a multivariate extension of the model

of Clayton and Cuzick (1985) in which the joint survival function for (T1, · · · , TJ) given

(V1, · · · , VJ ), (Z1, · · · , ZJ) and (W1, · · · , WJ) is

F (t1, · · · , tJ ; V1, · · · , VJ , Z1, · · · , ZJ , W1, · · · , WJ ) = {
J

∑

j=1

Sj(tj)
−1/θ − (J − 1)}−θ,

where Sj(t) is the marginal survival probability for the jth failure type, depending on the

covariates Vj , Zj and Wj to be specified below. Note that θ is a parameter which represents

the degree of dependence of Tj and Tj′ . Specifically, a small value of θ represents strong

positive dependence with θ → 0 giving maximal positive dependence, while a very large θ

gives nearly independence. The relationship between Kendall’s tau and θ is τ = 1/(2θ +1).
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The marginal distribution of T1j was taken to be exponential with failure rate

λ0j exp{βT Wj + α(Vj)
T Zj},

entailing the marginal survival function

Sj(t) = exp
{

−tλ0j exp[βT
0 Wj + α(Vj)

T Zj ]
}

.

We considered the settings with n = 100, 200, J = 2 and (p, q) = (1, 3). The baselines

λ01 = 1 and λ02 = 2 were used. The true parameter was set as β0 = (0.8, 0.6, 1.0)T .

We first simulated Zij
iid∼ N(0, 1) and Wij = (W

(1)
ij , W

(2)
ij , W

(3)
ij )T with components being

independently sampled from the Bernoulli distribution (taking 1 or 0 each with probability

0.5), N(0, 1) and U(0, 1), respectively. The covariate Vij was set as W
(3)
ij . The coefficient

function was taken as α(v) = 0.5+3v or α(v) = 2−3 cos((v−0.5)π/2). The censoring time

distribution was generated from an exponential distribution with mean chosen to produce

a certain percentage of censoring.

To gauge the relative performance of partly linear hazard model with varying coefficients,

we compare it with Cox’s model with the first-order interaction. Specifically, we consider

fitting the data to the following model for the marginal distribution of Tj:

λ0j exp{β1W
(1)
1j + β2W

(2)
1j + β3V1j + α0Z1j + α1V1jZ1j}. (5.1)

This specification of the model is correct when α(v) = 0.5 + 3v but incorrect when α(v) =

2 − 3 cos((v − 0.5)π/2). By using the Splus function coxph with strata(·) and cluster(id)

options, it is easy to fit the above model. We denote by β̃ the fitted parameters’ value for

β. This estimator can serve as a benchmark when α(v) = 0.5 + 3v.

The number of replications was 500. The parameter θ was set as 10 and 0.1 which

correspond to weak and strong correlation within each subject. The Epanechnikov kernel

function was employed for smoothing. By the argument in Section 4, the bandwidth h was

taken as ĥ = cn−1/3 for estimation of β in steps 2-3, and cn−1/5 for estimation of α(·) in

step 5 of the algorithm, with c = 0.4 and 0.3 respectively for the cases of α(v) = 0.5 + 3v

and 2 − 3 cos((v − 0.5)π/2).
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Table 1. Summary of Results in Simulations with α(v) = 0.5 + 3v.

Size Model 41% Censoring

(n, J) θ β Mean(β̂) Mean(β̃) SD(β̂) SD(β̃) se(β̂) se(β̃) CP (β̂) CP (β̃)

β1 0.83 0.82 0.22 0.21 0.25 0.20 0.952 0.928

(100,2) 10 β2 0.62 0.62 0.11 0.11 0.13 0.11 0.966 0.938

β3 1.01 1.02 0.41 0.39 0.50 0.38 0.960 0.948

β1 0.82 0.81 0.22 0.21 0.25 0.20 0.962 0.936

(100,2) 0.1 β2 0.62 0.62 0.12 0.12 0.14 0.11 0.960 0.920

β3 0.99 1.00 0.42 0.40 0.48 0.38 0.960 0.928

The estimators and their standard deviations (SD) for the finite parameters were eval-

uated along with the average of the estimated standard error (se) for the estimators. The

coverage probability (CP) of the 95% confidence intervels for β was also calculated based

on the normal approximation.

0 0.2 0.4 0.6 0.8 1

0

2

4

6

Estimated function α(⋅) with percentiles

0 0.2 0.4 0.6 0.8 1

0

2

4

6

Estimated function α(⋅) with percentiles

Fig. 1. Simulation Results for α = 0.5 + 3v. Estimated curves with confidence intervals. Left panel:

θ = 10; right panel: θ = 0.1. Dash-dotted: the 2.5th and 97.5th percentiles; dashed: the mean;

dotted: the median.

Tables 1 and 2 report the simulation results with 41% and 37.4% censoring, respectively.

It is evident from Table 1 that the proposed estimator performs similarly to the parametric

partial likelihood estimator for Cox’s model (5.1), except for a little larger SD. This demon-

strates that our estimators for parametric components are quite efficient and are indeed
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Table 2. Summary of Results in Simulations with α(v) = 2 − 3 cos((v − 0.5)π/2).

Size Model 37.4% Censoring

(n, J) θ β Mean(β̂) Mean(β̃) SD(β̂) SD(β̃) se(β̂) se(β̃) CP (β̂) CP (β̃)

β1 0.81 0.78 0.14 0.20 0.14 0.16 0.944 0.912

(200,2) 10 β2 0.61 0.59 0.07 0.08 0.08 0.10 0.962 0.926

β3 1.02 0.92 0.24 1.58 0.27 2.08 0.946 0.886

β1 0.81 0.77 0.14 0.23 0.15 11.61 0.960 0.930

(200,2) 0.1 β2 0.60 0.57 0.08 0.13 0.08 11.79 0.956 0.904

β3 1.01 0.61 0.24 3.00 0.24 326.55 0.956 0.898

comparable to the estimators for the true parametric model. From Table 2, we see that the

first-order interactive model (5.1) gave very biased estimators of the parameters, but our

method had very little bias and gave reasonable variance estimation and covarage proba-

bility. It demonstrates that our method continues to work while the first-order interactive

model fails due to its mis-specification. Some values of SD(β̃) and se(β̃) in Table 2 are very

large because of the presence of outliers. This shows that our partly linear hazard model

can avoid possible model mis-specification errors.

To appreciate the sampling properties of the estimated coefficient functions, we present

in Figures 1 and 2 the 2.5th, 50th (median) and 97.5th percentiles of the estimated curves

for the coefficient function α(·) under different settings. The 2.5th and 97.5th percentiles

form a 95% pointwise confidence interval for the coefficient function. This assesses the

variability of the estimated functions at each point. It is evident that the estimator of

nonparametric component does not heavily depend on the correlation within each subject.

This is consistent with our claim in Remark 1.

By varying the bandwidths used above over the range of [ 23 ĥ, 3
2 ĥ], we found that the

results for the parametric part are very similar. This reflects that the estimation of finite

parameters is robust against the choice of the bandwidth over a reasonable range. The

results are omitted to save space.
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Fig. 2. Simulation Results for α(v) = 2 − 3 cos((v − 0.5)π/2). Estimated curves with confidence

intervals. Left panel: θ = 10; right panel: θ = 0.1. Dash-dotted: the 2.5th and 97.5th percentiles;

dashed: the mean; dotted: the median.

5.2. Applications to FHS dataset

In this section, we apply our proposed procedure to analyze data from the well-known

Framingham Heart Study (Dawber 1980). The Framingham Heart Study began in 1948.

The cohort consisted of 2,336 men and 2,873 women. At the first examination, the par-

ticipants were between 30 and 62 years of age, and they were recalled and examined every

two years after their entry into the study. Times until coronary heart disease (CHD) and

cerebrovascular accident (CVA) were recorded. Those times recorded from the same indi-

vidual might be correlated. The dataset used here included all participants in the study

who had an examination at age 44 or 45, which we refer to as the “age 45” exam, and were

disease-free at that examination in the sense that there existed no history of hypertension

or glucose intolerance and no previous experiences of a CHD or CVA. There were a total

of 1571 disease-free individuals. The percentage of censoring was about 90.42%. The risk

factors of interest were age, gender, systolic blood pressure (SBP), body mass index (BMI),

cholesterol level, and cigarette smoking. Clegg et al. (1999) previously analyzed the dataset

based on a marginal mixed baseline hazards model, where the effects of all of the covari-

ates were specified as linear in the marginal regression. To explore the possible interaction

among covariates (e.g. BMI and age), we used the proposed method to assess the asso-
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Table 3. Estimated Parameters for the Framingham Heart Study

data. β̂ - the estimated parameters, ŝe - the standard error of β̂.

Effect β̂ ŝe P-value

Age at the “age 45” exam 0.0312 0.1528 0.8383

Cholesterol, mg/dl 0.0041 0.0018 0.0217

Systolic blood pressure, mm Hg 0.0161 0.0065 0.0132

Smoking status: yes=1,no=0 0.3732 0.2856 0.1912

Gender: female=1, male=0 -0.5654 0.2342 0.0158

Waiting time, year 0.1687 0.0832 0.0425

ciation between these risk factors and the times to CHD and CVA. Specifically, times to

CHD and CVA were measured from the time at the “age 45” exam to the occurrences of

the corresponding diseases. We employed the following hazards model:

λij(t; Wij , Zij) = λ0j(t) exp[βτWij + α(Vij)Zij ],

where

Wij = (Age at the “age 45” exam, SBP,Cholesterol, Smoking status,Gender, Waiting Time)τ ,

Vij = Waiting time, Zij = BMI. The variables BMI, SBP, cholesterol level, and smoking

status were measured at the “age 45” exam. “Waiting time” was the time elapsed from the

initial entry into the FHS study to the “age 45” exam. It is included in the model to adjust

for birth cohort effect. Note that the year of birth equals to (1948 + waiting time - 45).

Table 3 reports the estimated parameters and their estimated standard errors along with

their P -values from the Wald test in (3.1). It is evident that all of the selected risk factors

are statistically significant at the 0.05 significance level except for Smoking status and Age

at the “age 45” exam. The nonsignificance result for Age at the “age 45” exam is expected

since, by definition, the values for Age at the “age 45” exam do not vary much among

subjects. Figure 5.2(a) shows the estimated coefficient function α(·) along with the 95%

confidence intervals. It reveals that the effect of BMI is smaller for participants who had

longer waiting time. Notice that age at the “age 45” exam equals age at the initial entry
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Fig. 3. Estimated coefficient function α(·) with confidence intervals for FHS Dataset.

Dashed: estimated coefficient functions; dotted: 95% pointwise confidence intervals.

into the FHS study plus waiting time, and waiting time of 0-15 years corresponds to the age

at the initial entry into the FHS study from 45 (born in 1903) to 30 (born in 1918) years

old. Figure 5.2(b) is a mirror image of Figure 5.2(a). The x-axis in the figure is the age at

the initial entry into the FHS study which was calculated as 45 minus waiting time, so the

x-axis now starts at 30 and goes on to 45. Therefore, Figure 5.2(b) demonstrates the birth

cohort effect of BMI: It is bigger for participants who were older at the initial entry into the

FHS study. It is interesting to note that there seems to be a turning point around waiting

time 7 for the estimated function α̂(v). On the left region [0, 7] of the turning point, the

slope of α̂(v) seems to be bigger than that on the right region. However, the 95% confidence

intervals for α̂(v) only excludes the zero point for v (waiting time) in region [0, 4], which

corresponds to age at the initial entry of [41, 45]. These results suggest that the effect of

BMI could increase at a higher rate with the age at the initial entry into the FHS study for

those participants who were older than 40 years old at the initial entry.
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6. Discussion

Marginal hazard models have been shown to be useful for analyzing multivariate survival

data. However, no formal work in the literature is available for Cox’s type of models with

linear and nonlinear interactions in the multivariate hazard regression. This paper fills

in the gap in this area. Without specifying the dependent structure among failure types

within each subject, we propose a profile pseudo-partial likelihood estimation approach

to fitting the partially linear hazard regression model. Our theory demonstrates that the

finite parameters can be estimated at the rate of root-n, while the coefficient functions

can be estimated with optimal rates independent of the parametric part. We also derive

consistent estimators for the covariance matrix of the estimators of the finite parameters,

which facilitate the inference for the parameters.

Variable selections based on the non-concave penalty likelihood can also be developed

for the partly linear hazard model along the framework of Fan and Li (2004). An ongoing

research will focus on testing whether the coefficient functions are constants or of certain

parametric forms. This together with our current work will provide a practical inference

tool for exploring possible interaction among risk factors in the analysis of multivariate

survival data by employing the marginal hazard model.
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Appendix I: Notations and Conditions

Let (Ω,F ,P) be a family of complete probability space with a history F for an increasing

right-continuous filtration Ft ⊂ F . Put N̄·j(u) = n−1
∑n

i=1 Nij(u) and nj(u) = P (X1j ≤

u, ∆1j = 1). Let Ft,ij = σ{Xij < u, Wij(u), Vij(u), Zij(u), Yij(u), 0 ≤ u ≤ t]} be the
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information received up to time t for each (i, j), and Mij(t) = Nij(t) −
∫ t

0
Yij(u)λij(u) du,

for i = 1, · · · , n; j = 1, · · · , J . Assume that Nij(u) is F-adapted, and the observation period

is [0, τ ], where τ is the study ending time. Then Mij(t) is a martingale with respect to the

marginal failure filtration Ft,ij and the σ-field generated by ∪n
i=1Ft,ij respectively, under

the independent censoring scheme.

The following notations are needed for our theoretical results. For any vector a, define

a⊗k = 1, a, and aaT , respectively, for k = 0, 1, 2. Let β0 be the true value of the parameter

β. Denote by s1j(β, u) the risk function for the jth failure type in the ith subject, i.e.

s1j(β, u) = Y1j(u) exp[βT W1j(u) + α(V1j)
T Z1j(u)]. Let

ρj(u, v, w, z) = E{s1j(β0, u)|V1j = v, W1j = w, Z1j = z},

be the conditional expectation of the risk function. For k = 0, 1, 2, set

ajk(u, v) = E[s1j(β0, u)(Z1j(u))⊗k|V1j = v],

bjk(u, v) = E[s1j(β0, u)(Z1j(u))⊗k ⊗ W1j(u)|V1j = v],

where ⊗ denotes the Kronecker product. It is seen that aj0 is a positive function, aj1 is a p×1

vector-valued function, and aj2 is a p×p matrix-valued function; bj0 is a q×1 vector-valued

function, bj1 is a p× q matrix-valued function, and bj2 is a p× p× q array-valued function.

Let Aj1(u, v) = aj2(u, v)/aj0(u, v)− (aj1(u, v)/aj0(u, v))⊗2, Aj2(u, v) = aj2(u, v)/aj0(u, v),

and Ãk(v0) =
∑J

j=1 fj(v0)
∫ τ

0 Ajk(u, v0)aj0(u, v0)λ0j(u) du (for k = 1, 2). We construct

matrices

Bj(u, v0) =
bj1(u, v0)

aj0(u, v0)
− aj1(u, v0)

aj0(u, v0)
⊗ bj0(u, v0)

aj0(u, v0)
,

and B̃(v0) =
∑J

j=1 fj(v0)
∫ τ

0
Bj(u, v0)aj0(u, v0)λ0j(u) du. Let

χ(v0) = −Ã−1
1 (v0)B̃(v0) and θij(u) = Wij(u) + χ(Vij)

T Zij(u).

For k = 0, 1, 2, let rjk(β, u) = E{s1j(β, u)(θ1j(u))⊗k} and rjk(u) = rjk(β0, u). For k = 0, 1,

put r̃jk(u, v) = E{s1j(β0, u)θ1j(u)⊗kZ1j(u)T
∣

∣V1j = v}. Let

ηj(u, v) = fj(v)[r̃j1(u, v) − [rj1(u)/rj0(u)]r̃j0(u, v)]Ã−1
1 (v),
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ξ(v) =
∑J

j=1

∫ τ

0
r−1
j0 (u)ηj(u, v) dnj(u), and

Σ = E
{

J
∑

j=1

∫ τ

0

[

θ1j(u) − rj1(u)

rj0(u)
− ξ(V1j)

(

Z1j(u) − aj1(u, V1j)

aj0(u, V1j)

)]

dM1j(u)
}⊗2

.

The following conditions are needed for the proofs of our theoretical results.

(i) The kernel function K(·) is a bounded and symmetric density with a compact support

[−1, 1], say.

(ii) The density fj(·) of Vj is of compact support and has a bounded second derivative

for j = 1, · · · , J.

(iii) nh → ∞ and h → 0, as n → ∞. Let µ2 =
∫

v2K(v) dv, ν0 =
∫

K2(v) dv, ν2 =
∫

v2K2(v) dv, and H be a p× p order diagonal matrix whose first p elements are ones

and others h’s.

(iv) The function α(·) has a continuous second derivative.

(v) The conditional probability

Pj(u, v, w, z) = E{Y1j(u)|V1j = v, W1j(u) = w, Z1j(u) = z}

is equi-continuous in the argument (u, v) on [0, τ ] × ∪J
j=1supp[fj(·)]. The conditional

expectations ajk(u, v) and bjk(u, v) are equi-continuous in v ∈ supp[fj(·)], for j =

1, · · · , J and k = 0, 1, 2.

(vi)
∫ τ

0
λ0j(t) dt < ∞ for each j ∈ {1, 2, · · · , J}.

(vii) There exists a neighborhood B of β0 such that for k = 0, 1, 2, 3

E
{

sup
(β,t)∈B×[0,τ ]

Yij(t)||Zij(t)||k exp[βT Wij(t) + α(V1j(t))
T Zij(t)]

}

< ∞.

(viii) The functions rj0(·, u), rj1(·, u) and rj2(·, u) are continuous in β ∈ B, uniformly in

u ∈ [0, τ ]; rj0(·, ·) is bounded away from zero on B × [0, τ ]; rj1 and rj2 are bounded
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on B × [0, τ ]; r̃jk(u, v) is equi-continuous in v ∈ supp[fj(·)]. The matrix I is finite

positive definite, where

I =

J
∑

j=1

∫ τ

0

[rj2(u)

rj0(u)
−

(rj1(u)

rj0(u)

)⊗2]

rj0(u)λ0j(u) du.

The above conditions are similar to those in Andersen and Gill (1982) and Fan et al.

(1997). Conditions (i)-(iv) are standard for nonparametric component estimation using

local partial likelihood (see Fan et al. (1997)); Conditions (v)-(viii) guarantee the local

asymptotic quadratic properties for the partial likelihood function, and hence the asymp-

totic normality of the estimators. See Andersen and Gill (1982) and Murphy and van der

Vaart (2000) for details.

To derive consistent estimator of the covariance matrix Ω of β̂, we need to consistently

estimate I and Σ. Let the empirical estimator of rjk(t) be

r̂jk(t) = n−1
n

∑

i=1

Yij(t)(θ̂ij(t))
⊗k exp

[

β̂
T
Wij(t) + α̂(Vij)

T Zij(t)
]

.

Then the empirical estimator of I,

Î = n−1
n

∑

i=1

J
∑

j=1

∆ij{r̂j2(Xij)/r̂j0(Xij) − [r̂j1(Xij)/r̂j0(Xij)]
⊗2},

and the empirical estimator of Σ, Σ̂ = n−1
∑n

i=1

∑J
j=1

∑J
k=1 ĜijĜ

T
ik, are consistent, where

Ĝij = ∆ij

{

θ̂ij(Xij) −
r̂j1(Xij)

r̂j0(Xij)
− ξ̂(Vij)

[

Zij(Xij) −
âj1(Xij , Vij)

âj0(Xij , Vij)

]

}

−n−1
n

∑

m=1

∆mjYij(Xmj) exp{β̂T
Wij(Xmj) + α̂(Vij)

T Zij(Xmj)}r̂−1
j0 (Xmj)

×
{

θ̂ij(Xmj) −
r̂j1(Xmj)

r̂j0(Xmj)
− ξ̂(Vij)

[

Zij(Xmj) −
âj1(Xmj , Vij)

âj0(Xmj , Vij)

]

}

,

is the natural substitution estimator of G.

Appendix II: Proofs of Theorems

The proofs will involve the martingale theory, the theory of empirical processes and the

techniques commonly used in nonparametric literature. For ease of exposition, we consider
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only the model with time-independent covariate V . The time-dependent covariate model

can similarly be developed.

Let γ∗ = Hγ and U∗
ij(u, v0) = H−1Uij(u, v0). Then the local partial likelihood in (2.3)

can be rewritten as

ℓ(β, γ∗) =

J
∑

j=1

n
∑

i=1

Kh(Vij − v0)∆ij

{

βτWij + γ∗T U∗
ij

− log
(

∑

ℓ∈Rj(Xij)

exp[βτWℓj + γ∗T U∗
ℓj ]Kh(Vℓj − v0)

)}

. (A.1)

Note that the global profile pseudo-partial likelihood in (2.4) is

ℓp(β) =

J
∑

j=1

n
∑

i=1

∫ τ

0

{

βτWij(u) + α̂(Vij , β)τZij(u)

− log
(

n
∑

ℓ=1

Yℓj(u) exp[βτWℓj(u) + α̂(Vℓj , β)τZℓj(u)]
)}

dNij(u). (A.2)

Denote by βj and β0j the j-th elements of β and β0 respectively. It follows from Taylor’s

expansion that for any β in a neighborhood of β0

ℓp(β) = ℓp(β0) + (β − β0)
τ Dβ{ℓp(β0)}

+
1

2
(β − β0)

τ D2
β{ℓp(β0)}(β − β0) + Rn(β∗), (A.3)

where β∗ is between β and β0, and

Rn(β∗) =
1

6

∑

j,k,ℓ

(βj − β0j)(βk − β0k)(βℓ − β0ℓ)
[ ∂3ℓp(β)

∂βj∂βk∂βℓ

∣

∣

∣

β=β∗

]

. (A.4)

It can be shown that n−1 ∂3ℓp(β)
∂βj∂βk∂βℓ

is bounded in probability, and hence n−1Rn(β) =

Op(||β − β0||3) for β ∈ B.

Let γ̂∗ = Hγ̂. Given β, γ̂∗(β) satisfies the equation Dγ∗{ℓ(β, γ∗)} = 0, that is

J
∑

j=1

n
∑

i=1

Kh(Vij − v0)∆ij

{

U∗
ij −

∑

ℓ∈Rj(Xij)
exp[βτWℓj + γ̂∗T U∗

ℓj]U
∗
ℓjKh(Vℓj − v0)

∑

ℓ∈Rj(Xij) exp[βτWℓj + γ̂∗T U∗
ℓj ]Kh(Vℓj − v0)

}

= 0,

which is equivalent to

J
∑

j=1

n
∑

i=1

∫ τ

0

Kh(Vij − v0)
{

U∗
ij −

Φnj1(u, v0, β, γ̂∗)

Φnj0(u, v0, β, γ̂∗)

}

dNij(u) = 0,
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where and thereafter for k = 0, 1, 2

Φnjk(u, v0, β, γ∗) = n−1
n

∑

ℓ=1

Yℓj(u) exp[βτWℓj(u) + γ∗τU∗
ℓj]U

∗⊗k
ℓj Kh(Vℓj − v0). (A.5)

Next, we introduce several technical lemmas. The profile pseudo-partial likelihood ℓp(β)

in (2.4) involves in α̂(Vij , β) which uses all observational information and leads to unpre-

dictability in the analysis of score function and hence results in the infeasibility of direct use

of the common martingale method. To overcome this difficulty, we introduce a leave-one-out

argument in the proofs of these lemmas. For details, one can refer to the technical report

of Cai, Fan, Jiang and Zhou (2005) at http://www.princeton.edu/∼jqfan/papers/06/PLVC/

????.

Lemma 1. Let νj(u, v0) = (aj1(u, v0)
τ/aj0(u, v0),0

τ
p)τ and cn = Op(h

2 + 1√
nh

), where

0p denotes a p × 1 vector whose elements are all zeros. Under Conditions (i)-(v),

(i) Φnj0(u, v0, β0, γ
∗) = fj(v0)aj0(u, v0)+cn, Φnj1(u, v0, β0, γ

∗) = fj(v0)(aj1(u, v0)
τ ,0τ

p)τ+

cn, and Φnj2(u, v0, β0, γ
∗) = blockdiag{aj2(u, v0), µ2aj2(u, v0)}fj(v0) + cn.

(ii) If ||β̂ − β0|| = Op(1/
√

n), then

sup
u∈[0,τ ]

||Φnjk(u, v0, β̂, γ̂∗) − Φnjk(u, v0, β0, γ̂
∗)|| = Op(1/

√
n).

(iii) supu∈[0,τ ]

∣

∣

∣

∣

∣

∣

Φnj1(u,v0,β
0
,γ∗)

Φnj0(u,v0,β
0
,γ∗)

− νj(u, v0)
∣

∣

∣

∣

∣

∣
= op(1).

(iv) supu∈[0,τ ]

∣

∣

∣

∣

∣

∣
Φnj(u, v0, β0, γ

∗) − Aj(u, v0)
∣

∣

∣

∣

∣

∣
= op(1),

where Aj(u, v0) = blockdiag{Aj1(u, v0), µ2Aj2(u, v0)}, and

Φnj(u, v0, β0, γ
∗) =

Φnj0(u, v0, β0γ
∗)Φnj2(u, v0, β0, γ

∗) − Φ⊗2
nj1(u, v0, β0, γ

∗)

Φ2
nj0(u, v0, β0, γ

∗)
.

Lemma 2. Assume Conditions (i)-(viii) hold. If nh2 → ∞ and nh4 → 0, then

1√
n

Dβ{ℓp(β0)} =
1√
n

n
∑

i=1

J
∑

j=1

∫ τ

0

{

θij(u) − rj1(β0, u)

rj0(β0, u)

−ξ(Vij)
[

Zij(u) − aj1(u, Vij

aj0(u, Vij)

]}

dMij(u) + op(1).
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Lemma 3. Suppose Conditions (i)-(x) hold. Then n−1D2
β{ℓp(β0)}

p→ −I.

Proof of Theorem 1. The proof is given under the framework of Fan et al. (1997). By

Lemma 2, n−1Dβ{ℓp(β0)} = Op(1/
√

n). Thus, for any small given ε > 0, if β ∈ Sε ≡ {β :

||β − β0|| ≤ ε},
∣

∣

∣
(β − β0)

τn−1Dβ{ℓp(β0)}
∣

∣

∣
≤ ε3, (A.6)

with probability tending to one. Let a be the minimum eigenvalue of positive definitive

matrix I(β0). By Lemma 3, we conclude that for all β ∈ Sε

(β − β0)
τn−1D2

β{ℓp(β0)}(β − β0) < −aε2, (A.7)

with probability tending to one. By (A.4), with probability tending to one that there is a

constant C > 0 such that

|n−1Rn(β)| ≤ Cε3. (A.8)

Then by (A.3), with probability tending to one that when ε is small enough,

n−1[ℓp(β) − ℓp(β0)] ≤ 0, for all β ∈ Sε. (A.9)

Therefore, ℓp(β) has a local maximum in the interior of Sε, and with probability tending

to one, there exists a consistent estimator sequence β̂ for β0 which maximizes the global

profile pseudo-partial likelihood ℓp(β).

Proof of Theorem 2. By Lemma 3, n−1D2
β{ℓp(β0)}

p→ −I. Note that β̂ is consistent.

Plugging the above expression into (A.3), we establish that

ℓp(β̂) = ℓp(β0) + (β̂ − β0)
τ Dβ{ℓp(β0)}

−n

2
(β̂ − β0)

τ I(β̂ − β0) + op{(1 +
√

n||β̂ − β0||)2}. (A.10)

Using Corollary 1 in Murphy and van der Vaart (2000) and Lemma 2, we obtain that

√
n(β̂ − β0) = I−1 1√

n
Dβ{ℓp(β0)} + op(1)

= I−1 1√
n

n
∑

i=1

J
∑

j=1

∫ τ

0

{

θij(u) − rj1(β0, u)

rj0(β0, u)

−ξ(Vij)
[

Zij(u) − aj1(u, Vij)

aj0(u, Vij)

]}

dMij(u) + op(1 +
√

n||β̂ − β0||).
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Then by the martingale central limit theorem and the Slutsky Theorem,

√
n(β̂ − β0)

D−→ N (0, I−1ΣI−1).

Proof of Theorem 4. It is easy to show that γ̂∗ is consistent and satisfies

n−1
J

∑

j=1

n
∑

i=1

∫ τ

0

Kh(Vij − v0)
{

U∗
ij −

Φnj1(u, v0, β0, γ̂
∗)

Φnj0(u, v0, β0, γ̂
∗)

}

dNij(u) = Op(n
−1/2).

Denote by Û(β0, γ̂
∗, v0) the left-hand side of the above equation. Then by Taylor’s expan-

sion, we have

Û(β0, γ
∗, v0) + Dγ∗{Û(β0, γ̃

∗, v0)}(γ̂∗ − γ∗) = op(1/
√

nh), (A.11)

where γ̃∗ is between γ̂∗ and γ∗, and hence γ̃∗ → γ∗ in probability. Using Lemma 1(iv), we

obtain that

−Dγ∗{Û(β0, γ
∗, v0)} = n−1

J
∑

j=1

n
∑

i=1

∫ τ

0

Kh(Vij − v0)Φnj(u, v0, β0, γ
∗) dNij(u)

= Ã(v0) + op(1), (A.12)

uniformly for v0 ∈ ∪J
j=1supp[fj(·)], where Ã(v0) = blockdiag{Ã1(v0), µ2Ã2(v0)}. We can

decompose Û(β0, γ
∗, v0) as

Û(β0, γ
∗, v0) ≡ dn(τ) + qn(τ), (A.13)

where

qn(τ) = n−1
J

∑

j=1

n
∑

i=1

∫ τ

0

Kh(Vij − v0)
{

U∗
ij −

Φnj1(u, v0, β0, γ
∗)

Φnj0(u, v0, β0, γ
∗)

}

Yij(u)λij(u)du

= −1

2
h2µ2Ã(v0)(α

′′(v0)
τ ,0τ

p)τ + op(h
2), (A.14)

and dn(τ) = n−1
∑J

j=1

∑n
i=1

∫ τ

0 Kh(Vij−v0)
{

U∗
ij−

Φnj1(u,v0,β
0
,γ∗)

Φnj0(u,v0,β
0
,γ∗)

}

dMij(u). Using Lemma

1, we can show that

dn(τ) = n−1
J

∑

j=1

n
∑

i=1

∫ τ

0

Kh(Vij − v0)[U
∗
ij − νj(u, v0)] dMij(u) + op(1/

√
nh),

which combined with (A.11)-(A.14) and the martingale central limit theorem (see Theorem

5.35 of Fleming and Harrington (1991)) leads to the result of the theorem.
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