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In the last ten years, there has been increasing interest and activity in the

general area of partially linear regression smoothing in statistics. Many methods

and techniques have been proposed and studied. This monograph hopes to bring

an up-to-date presentation of the state of the art of partially linear regression

techniques. The emphasis of this monograph is on methodologies rather than on

the theory, with a particular focus on applications of partially linear regression

techniques to various statistical problems. These problems include least squares

regression, asymptotically efficient estimation, bootstrap resampling, censored

data analysis, linear measurement error models, nonlinear measurement models,

nonlinear and nonparametric time series models.

We hope that this monograph will serve as a useful reference for theoretical

and applied statisticians and to graduate students and others who are interested

in the area of partially linear regression. While advanced mathematical ideas

have been valuable in some of the theoretical development, the methodological

power of partially linear regression can be demonstrated and discussed without

advanced mathematics.

This monograph can be divided into three parts: part one–Chapter 1 through

Chapter 4; part two–Chapter 5; and part three–Chapter 6. In the first part, we

discuss various estimators for partially linear regression models, establish theo-

retical results for the estimators, propose estimation procedures, and implement

the proposed estimation procedures through real and simulated examples.

The second part is of more theoretical interest. In this part, we construct

several adaptive and efficient estimates for the parametric component. We show

that the LS estimator of the parametric component can be modified to have both

Bahadur asymptotic efficiency and second order asymptotic efficiency.

In the third part, we consider partially linear time series models. First, we

propose a test procedure to determine whether a partially linear model can be

used to fit a given set of data. Asymptotic test criteria and power investigations

are presented. Second, we propose a Cross-Validation (CV) based criterion to

select the optimum linear subset from a partially linear regression and estab-

lish a CV selection criterion for the bandwidth involved in the nonparametric

v
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kernel estimation. The CV selection criterion can be applied to the case where

the observations fitted by the partially linear model (1.1.1) are independent and

identically distributed (i.i.d.). Due to this reason, we have not provided a sepa-

rate chapter to discuss the selection problem for the i.i.d. case. Third, we provide

recent developments in nonparametric and semiparametric time series regression.
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1

INTRODUCTION

1.1 Background, History and Practical Examples

A partially linear regression model of the form is defined by

Yi = XT
i β + g(Ti) + εi, i = 1, . . . , n (1.1.1)

where Xi = (xi1, . . . , xip)
T and Ti = (ti1, . . . , tid)

T are vectors of explanatory vari-

ables, (Xi, Ti) are either independent and identically distributed (i.i.d.) random

design points or fixed design points. β = (β1, . . . , βp)
T is a vector of unknown pa-

rameters, g is an unknown function from IRd to IR1, and ε1, . . . , εn are independent

random errors with mean zero and finite variances σ2
i = Eε2

i .

Partially linear models have many applications. Engle, Granger, Rice and

Weiss (1986) were among the first to consider the partially linear model

(1.1.1). They analyzed the relationship between temperature and electricity us-

age.

We first mention several examples from the existing literature. Most of the

examples are concerned with practical problems involving partially linear models.

Example 1.1.1 Engle, Granger, Rice and Weiss (1986) used data based on the

monthly electricity sales yi for four cities, the monthly price of electricity x1,

income x2, and average daily temperature t. They modeled the electricity demand

y as the sum of a smooth function g of monthly temperature t, and a linear

function of x1 and x2, as well as with 11 monthly dummy variables x3, . . . , x13.

That is, their model was

y =
13∑

j=1

βjxj + g(t)

= XTβ + g(t)

where g is a smooth function.

In Figure 1.1, the nonparametric estimates of the weather-sensitive load for

St. Louis is given by the solid curve and two sets of parametric estimates are

given by the dashed curves.
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FIGURE 1.1. Temperature response function for St. Louis. The nonparametric es-
timate is given by the solid curve, and the parametric estimates by the dashed
curves. From Engle, Granger, Rice and Weiss (1986), with permission from the
Journal of the American Statistical Association.

Example 1.1.2 Speckman (1988) gave an application of the partially linear model

to a mouthwash experiment. A control group (X = 0) used only a water rinse for

mouthwash, and an experimental group (X = 1) used a common brand of anal-

gesic. Figure 1.2 shows the raw data and the partially kernel regression estimates

for this data set.

Example 1.1.3 Schmalensee and Stoker (1999) used the partially linear model

to analyze household gasoline consumption in the United States. They summarized

the modelling framework as

LTGALS = G(LY,LAGE) + β1LDRVRS + β2LSIZE + βT
3 Residence

+βT
4 Region + β5Lifecycle + ε

where LTGALS is log gallons, LY and LAGE denote log(income) and log(age)

respectively, LDRVRS is log(numbers of drive), LSIZE is log(household size), and

E(ε|predictor variables) = 0.
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FIGURE 1.2. Raw data partially linear regression estimates for mouthwash data.
The predictor variable is T = baseline SBI, the response is Y = SBI index after
three weeks. The SBI index is a measurement indicating gum shrinkage. From
Speckman (1988), with the permission from the Royal Statistical Society.

Figures 1.3 and 1.4 depicts log-income profiles for different ages and log-

age profiles for different incomes. The income structure is quite clear from 1.3.

Similarly, 1.4 shows a clear age structure of household gasoline demand.

Example 1.1.4 Green and Silverman (1994) provided an example of the use of

partially linear models, and compared their results with a classical approach em-

ploying blocking. They considered the data, primarily discussed by Daniel and

Wood (1980), drawn from a marketing price-volume study carried out in the

petroleum distribution industry.

The response variable Y is the log volume of sales of gasoline, and the two

main explanatory variables of interest are x1, the price in cents per gallon of gaso-

line, and x2, the differential price to competition. The nonparametric component

t represents the day of the year.

Their analysis is displayed in Figure 1.5 1. Three separate plots against t are

1The postscript files of Figures 1.5-1.7 are provided by Professor Silverman.
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FIGURE 1.3. Income structure, 1991. From Schmalensee and Stoker (1999), with
the permission from the Journal of Econometrica.

shown. Upper plot: parametric component of the fit; middle plot: dependence on

nonparametric component; lower plot: residuals. All three plots are drown to the

same vertical scale, but the upper two plots are displaced upwards.

Example 1.1.5 Dinse and Lagakos (1983) reported on a logistic analysis of some

bioassay data from a US National Toxicology Program study of flame retardants.

Data on male and female rates exposed to various doses of a polybrominated

biphenyl mixture known as Firemaster FF-1 consist of a binary response vari-

able, Y , indicating presence or absence of a particular nonlethal lesion, bile duct

hyperplasia, at each animal’s death. There are four explanatory variables: log dose,

x1, initial weight, x2, cage position (height above the floor), x3, and age at death,

t. Our choice of this notation reflects the fact that Dinse and Lagakos commented

on various possible treatments of this fourth variable. As alternatives to the use

of step functions based on age intervals, they considered both a straightforward

linear dependence on t, and higher order polynomials. In all cases, they fitted

a conventional logistic regression model, the GLM data from male and female

rats separate in the final analysis, having observed interactions with gender in an
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FIGURE 1.4. Age structure, 1991. From Schmalensee and Stoker (1999), with the
permission from the Journal of Econometrica.

initial examination of the data.

Green and Yandell (1985) treated this as a semiparametric GLM regression

problem, regarding x1, x2 and x3 as linear variables, and t the nonlinear vari-

able. Decompositions of the fitted linear predictors for the male and female rats

are shown in Figures 1.6 and 1.7, based on the Dinse and Lagakos data sets,

consisting of 207 and 112 animals respectively.

Furthermore, let us now cite two examples of partially linear models that may

typically occur in microeconomics, constructed by Tripathi (1997). In these two

examples, we are interested in estimating the parametric component when we

only know that the unknown function belongs to a set of appropriate functions.

Example 1.1.6 A firm produces two different goods with production functions

F1 and F2. That is, y1 = F1(x) and y2 = F2(z), with (x×z) ∈ Rn×Rm. The firm
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FIGURE 1.5. Partially linear decomposition of the marketing data. Results taken
from Green and Silverman (1994) with permission of Chapman & Hall.

maximizes total profits p1y1 − wT
1 x = p2y2 − wT

2 z. The maximized profit can be

written as π1(u) + π2(v), where u = (p1, w1) and v = (p2, w2). Now suppose that

the econometrician has sufficient information about the first good to parameterize

the first profit function as π1(u) = uT θ0. Then the observed profit is πi = uT
i θ0 +

π2(vi) + εi, where π2 is monotone, convex, linearly homogeneous and continuous

in its arguments.

Example 1.1.7 Again, suppose we have n similar but geographically dispersed

firms with the same profit function. This could happen if, for instance, these firms

had access to similar technologies. Now suppose that the observed profit depends

not only upon the price vector, but also on a linear index of exogenous variables.

That is, πi = xT
i θ0+π∗(p′1, . . . , p

′
k)+εi, where the profit function π∗ is continuous,

monotone, convex, and homogeneous of degree one in its arguments.

Partially linear models are semiparametric models since they contain

both parametric and nonparametric components. It allows easier interpretation

of the effect of each variable and may be preferred to a completely nonparametric
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FIGURE 1.6. Semiparametric logistic regression analysis for male data. Results
taken from Green and Silverman (1994) with permission of Chapman & Hall.

regression because of the well-known “curse of dimensionality”. The parametric

components can be estimated at the rate of
√
n, while the estimation precision of

the nonparametric function decreases rapidly as the the dimension of the nonlin-

ear variable increases. Moreover, the partially linear models are more flexible than

the standard linear models, since they combine both parametric and nonparamet-

ric components when it is believed that the response depends on some variables

in linear relationship but is nonlinearly related to other particular independent

variables.

Following the work of Engle, Granger, Rice and Weiss (1986), much atten-

tion has been directed to estimating (1.1.1). See, for example, Heckman (1986),

Rice (1986), Chen (1988), Robinson (1988), Speckman (1988), Hong (1991), Gao

(1992), Liang (1992), Gao and Zhao (1993), Schick (1996a,b) and Bhattacharya

and Zhao (1993) and the references therein. For instance, Robinson (1988) con-

structed a feasible least squares estimator of β based on estimating the nonpara-

metric component by a Nadaraya-Waston kernel estimator. Under some regularity

conditions, he deduced the asymptotic distribution of the estimate.
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FIGURE 1.7. Semiparametric logistic regression analysis for female data. Results
taken from Green and Silverman (1994) with permission of Chapman & Hall.

Speckman (1988) argued that the nonparametric component can be charac-

terized by Wγ, where W is a (n × q)−matrix of full rank, γ is an additional

unknown parameter and q is unknown. The partially linear model (1.1.1)

can be rewritten in a matrix form

Y = Xβ +Wγ + ε. (1.1.2)

The estimator of β based on (1.1.2) is

β̂ = {XT (F − PW)X)}−1{XT (F − PW)Y)} (1.1.3)

where PW =W(WTW)−1WT is a projection matrix. Under some suitable condi-

tions, Speckman (1988) studied the asymptotic behavior of this estimator. This

estimator is asymptotically unbiased because β is calculated after removing the

influence of T from both the X and Y . (See (3.3a) and (3.3b) of Speckman (1988)

and his kernel estimator thereafter). Green, Jennison and Seheult (1985) proposed

to replace W in (1.1.3) by a smoothing operator for estimating β as follows:

β̂GJS = {XT (F −Wh)X)}−1{XT (F −Wh)Y)}. (1.1.4)
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Following Green, Jennison and Seheult (1985), Gao (1992) systematically

studied asymptotic behaviors of the least squares estimator given by (1.1.3) for

the case of non-random design points.

Engle, Granger, Rice and Weiss (1986), Heckman (1986), Rice (1986), Whaba

(1990), Green and Silverman (1994) and Eubank, Kambour, Kim, Klipple, Reese

and Schimek (1998) used the spline smoothing technique and defined the penal-

ized estimators of β and g as the solution of

argminβ,g

1

n

n∑

i=1

{Yi −XT
i β − g(Ti)}2 + λ

∫
{g′′(u)}2du (1.1.5)

where λ is a penalty parameter (see Whaba (1990)). The above estimators are

asymptotically biased (Rice, 1986, Schimek, 1997). Schimek (1999) demonstrated

in a simulation study that this bias is negligible apart from small sample sizes

(e.g. n = 50), even when the parametric and nonparametric components are

correlated.

The original motivation for Speckman’s algorithm was a result of Rice (1986),

who showed that within a certain asymptotic framework, the penalized least

squares (PLS) estimate of β could be susceptible to biases of the kind that are in-

evitable when estimating a curve. Heckman (1986) only considered the case where

Xi and Ti are independent and constructed an asymptotically normal estimator

for β. Indeed, Heckman (1986) proved that the PLS estimator of β is consistent

at parametric rates if small values of the smoothing parameter are used. Hamil-

ton and Truong (1997) used local linear regression in partially linear models

and established the asymptotic distributions of the estimators of the paramet-

ric and nonparametric components. More general theoretical results along with

these lines are provided by Cuzick (1992a), who considered the case where the

density of ε is known. See also Cuzick (1992b) for an extension to the case where

the density function of ε is unknown. Liang (1992) systematically studied the

Bahadur efficiency and the second order asymptotic efficiency for a num-

bers of cases. More recently, Golubev and Härdle (1997) derived the upper and

lower bounds for the second minimax order risk and showed that the second

order minimax estimator is a penalized maximum likelihood estimator. Simi-

larly, Mammen and van de Geer (1997) applied the theory of empirical processes

to derive the asymptotic properties of a penalized quasi likelihood estimator,

which generalizes the piecewise polynomial-based estimator of Chen (1988).
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In the case of heteroscedasticity, Schick (1996b) constructed root-n con-

sistent weighted least squares estimates and proposed an optimal weight function

for the case where the variance function is known up to a multiplicative constant.

More recently, Liang and Härdle (1997) further studied this issue for more general

variance functions.

Severini and Staniswalis (1994) and Härdle, Mammen and Müller (1998) stud-

ied a generalization of (1.1.1), which corresponds to

E(Y |X,T ) = H{XTβ + g(T )} (1.1.6)

where H (called link function) is a known function, and β and g are the same as

in (1.1.1). To estimate β and g, Severini and Staniswalis (1994) introduced the

quasi-likelihood estimation method, which has properties similar to those of the

likelihood function, but requires only specification of the second-moment proper-

ties of Y rather than the entire distribution. Based on the approach of Severini

and Staniswalis, Härdle, Mammen and Müller (1998) considered the problem of

testing the linearity of g. Their test indicates whether nonlinear shapes observed

in nonparametric fits of g are significant. Under the linear case, the test statistic

is shown to be asymptotically normal. In some sense, their test complements the

work of Severini and Staniswalis (1994). The practical performance of the tests is

shown in applications to data on East-West German migration and credit scor-

ing. Related discussions can also be found in Mammen and van de Geer (1997)

and Carroll, Fan, Gijbels and Wand (1997).

Example 1.1.8 Consider a model on East–West German migration in 1991

GSOEP (1991)data from the German Socio-Economic Panel for the state Meck-

lenburg-Vorpommern, a land of the Federal State of Germany. The dependent

variable is binary with Y = 1 (intention to move) or Y = 0 (stay). Let X denote

some socioeconomic factors such as age, sex, friends in west, city size and unem-

ployment, T do household income. Figure 1.8 shows a fit of the function g in the

semiparametric model (1.1.6). It is clearly nonlinear and shows a saturation in

the intention to migrate for higher income households. The question is, of course,

whether the observed nonlinearity is significant.

Example 1.1.9 Müller and Rönz (2000) discuss credit scoring methods which

aim to assess credit worthiness of potential borrowers to keep the risk of credit
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FIGURE 1.8. The influence of household income (function g(t)) on migration in-
tention. Sample from Mecklenburg–Vorpommern, n = 402.

loss low and to minimize the costs of failure over risk groups. One of the classical

parametric approaches, logit regression, assumes that the probability of belonging

to the group of “bad” clients is given by P (Y = 1) = F (βTX), with Y = 1 indi-

cating a “bad” client and X denoting the vector of explanatory variables, which

include eight continuous and thirteen categorical variables. X2 to X9 are the con-

tinuous variables. All of them have (left) skewed distributions. The variables X6

to X9 in particular have one realization which covers the majority of observations.

X10 to X24 are the categorical variables. Six of them are dichotomous. The others

have 3 to 11 categories which are not ordered. Hence, these variables have been

categorized into dummies for the estimation and validation.

The authors consider a special case of the generalized partially linear model

E(Y |X,T ) = G{βTX + g(T )} which allows to model the influence of a part T of

the explanatory variables in a nonparametric way. The model they study is

P (Y = 1) = F


g(x5) +

24∑

j=2,j 6=5

βjxj




where a possible constant is contained in the function g(·). This model is estimated

by semiparametric maximum–likelihood, a combination of ordinary and smoothed

maximum–likelihood. Figure 1.9 compares the performance of the parametric logit

fit and the semiparametric logit fit obtained by including X5 in a nonparametric

way. Their analysis indicated that this generalized partially linear model improves
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the previous performance. The detailed discussion can be found in Müller and

Rönz (2000).

Performance X5

0 0.5 1
P(S<s)

0
0.

5
1

P(
S<

s|
Y

=1
)

FIGURE 1.9. Performance curves, parametric logit (black dashed) and semipara-
metric logit (thick grey) with variable X5 included nonparametrically. Results
taken from Müller and Rönz (2000).

1.2 The Least Squares Estimators

If the nonparametric component of the partially linear model is assumed to be

known, then LS theory may be applied. In practice, the nonparametric compo-

nent g, regarded as a nuisance parameter, has to be estimated through smoothing

methods. Here we are mainly concerned with the nonparametric regression esti-

mation. For technical convenience, we focus only on the case of T ∈ [0, 1] in

Chapters 2-5. In Chapter 6, we extend model (1.1.1) to the multi-dimensional

time series case. Therefore some corresponding results for the multidimensional

independent case follow immediately, see for example, Sections 6.2 and 6.3.

For identifiability, we assume that the pair (β, g) of (1.1.1) satisfies

1

n

n∑

i=1

E{Yi −XT
i β − g(Ti)}2 = min

(α,f)

1

n

n∑

i=1

E{Yi −XT
i α− f(Ti)}2. (1.2.1)
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This implies that if XT
i β1 +g1(Ti) = XT

i β2 +g2(Ti) for all 1 ≤ i ≤ n, then β1 = β2

and g1 = g2 simultaneously. We will justify this separately for the random design

case and the fixed design case.

For the random design case, if we assume that E[Yi|(Xi, Ti)] = XT
i β1 +

g1(Ti) = XT
i β2 + g2(Ti) for all 1 ≤ i ≤ n, then it follows from E{Yi − XT

i β1 −
g1(Ti)}2 = E{Yi−XT

i β2−g2(Ti)}2+(β1−β2)
TE{(Xi−E[Xi|Ti])(Xi−E[Xi|Ti])

T}
(β1 − β2) that we have β1 = β2 due to the fact that the matrix E{(Xi −
E[Xi|Ti])(Xi − E[Xi|Ti])

T} is positive definite assumed in Assumption 1.3.1(i)

below. Thus g1 = g2 follows from the fact gj(Ti) = E[Yi|Ti] − E[XT
i βj|Ti] for all

1 ≤ i ≤ n and j = 1, 2.

For the fixed design case, we can justify the identifiability using several dif-

ferent methods. We here provide one of them. Suppose that g of (1.1.1) can be

parameterized as G = {g(T1), . . . , g(Tn)}T = Wγ used in (1.2.2), where γ is a

vector of unknown parameters.

Then submitting G = Wγ into (1.2.1), we have the normal equations

XTXβ = XT (Y −Wγ) and Wγ = P (Y −Xβ),

where P = W (W TW )−1W T , XT = (X1, . . . , Xn) and Y T = (Y1, . . . , Yn).

Similarly, if we assume that E[Yi] = XT
i β1 + g1(Ti) = XT

i β2 + g2(Ti) for all

1 ≤ i ≤ n, then it follows from Assumption 1.3.1(ii) below and the fact that

1/nE{(Y −Xβ1 −Wγ1)
T (Y −Xβ1 −Wγ1)} = 1/nE{(Y −Xβ2 −Wγ2)

T (Y −
Xβ2 −Wγ2)} + 1/n(β1 − β2)

TXT (I − P )X(β1 − β2) that we have β1 = β2 and

g1 = g2 simultaneously.

Assume that {(Xi, Ti, Yi); i = 1, . . . , n.} satisfies model (1.1.1). Let ωni(t){=
ωni(t; T1, . . . , Tn)} be positive weight functions depending on t and the design

points T1, . . . , Tn. For every given β, we define an estimator of g(·) by

gn(t; β) =
n∑

i=1

ωnj(t)(Yi −XT
i β).

We often drop the β for convenience. Replacing g(Ti) by gn(Ti) in model (1.1.1)

and using the LS criterion, we obtain the least squares estimator of β:

βLS = (X̃T X̃)−1X̃T Ỹ, (1.2.2)

which is just the estimator β̂GJS in (1.1.4) with a different smoothing operator.
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The nonparametric estimator of g(t) is then defined as follows:

ĝn(t) =
n∑

i=1

ωni(t)(Yi −XT
i βLS). (1.2.3)

where X̃T = (X̃1, . . . , X̃n) with X̃j = Xj−
∑n

i=1 ωni(Tj)Xi and ỸT = (Ỹ1, . . . , Ỹn)

with Ỹj = Yj −
∑n

i=1 ωni(Tj)Yi. Due to Lemma A.2 below, we have as n → ∞
n−1(X̃T X̃)→ Σ, where Σ is a positive matrix. Thus, we assume that n(X̃T X̃)−1

exists for large enough n throughout this monograph.

When ε1, . . . , εn are identically distributed, we denote their distribution func-

tion by ϕ(·) and the variance by σ2, and define the estimator of σ2 by

σ̂2
n =

1

n

n∑

i=1

(Ỹi − X̃T
i βLS)2 (1.2.4)

In this monograph, most of the estimation procedures are based on the estimators

(1.2.2), (1.2.3) and (1.2.4).

1.3 Assumptions and Remarks

This monograph considers the two cases: the fixed design and the i.i.d. random

design. When considering the random case, denote

hj(Ti) = E(xij|Ti) and uij = xij − E(xij|Ti).

Assumption 1.3.1 i) sup0≤t≤1E(‖X1‖3|T = t) < ∞ and Σ = Cov{X1 −
E(X1|T1)} is a positive definite matrix. The random errors εi are independent

of (Xi, Ti).

ii) When (Xi, Ti) are fixed design points, there exist continuous functions

hj(·) defined on [0, 1] such that each component of Xi satisfies

xij = hj(Ti) + uij 1 ≤ i ≤ n, 1 ≤ j ≤ p (1.3.1)

where {uij} is a sequence of real numbers satisfying

lim
n→∞

1

n

n∑

i=1

uiu
T
i = Σ (1.3.2)

and for m = 1, . . . , p,

lim sup
n→∞

1

an

max
1≤k≤n

∣∣∣∣∣

k∑

i=1

ujim

∣∣∣∣∣ <∞ (1.3.3)

for all permutations (j1, . . . , jn) of (1, 2, . . . , n), where ui = (ui1, . . . , uip)
T , an =

n1/2 log n, and Σ is a positive definite matrix.
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Throughout the monograph, we apply Assumption 1.3.1 i) to the case of

random design points and Assumption 1.3.1 ii) to the case where (Xi, Ti) are

fixed design points. Assumption 1.3.1 i) is a reasonable condition for the

random design case, while Assumption 1.3.1 ii) generalizes the corresponding

conditions of Heckman (1986) and Rice (1986), and simplifies the conditions of

Speckman (1988). See also Remark 2.1 (i) of Gao and Liang (1997).

Assumption 1.3.2 The first two derivatives of g(·) and hj(·) are Lipschitz

continuous of order one.

Assumption 1.3.3 When (Xi, Ti) are fixed design points, the positive weight

functions ωni(·) satisfy

(i) max
1≤i≤n

n∑

j=1

ωni(Tj) = O(1),

max
1≤j≤n

n∑

i=1

ωni(Tj) = O(1),

(ii) max
1≤i,j≤n

ωni(Tj) = O(bn),

(iii) max
1≤i≤n

n∑

j=1

ωnj(Ti)I(|Ti − Tj| > cn) = O(cn),

where bn and cn are two sequences satisfying lim sup
n→∞

nb2n log4 n <∞, lim inf
n→∞ nc2n >

0, lim sup
n→∞

nc4n log n <∞ and lim sup
n→∞

nb2nc
2
n <∞. When (Xi, Ti) are i.i.d. random

design points, (i), (ii) and (iii) hold with probability one.

Remark 1.3.1 There are many weight functions satisfying Assumption 1.3.3.

For examples,

W
(1)
ni (t) =

1

hn

∫ Si

Si−1

K
(t− s
Hn

)
ds, W

(2)
ni (t) = K

(t− Ti

Hn

)/ n∑

j=1

K
(t− Tj

Hn

)
,

where Si = 1
2
(T(i) + T(i−1)), i = 1, · · · , n − 1, S0 = 0, Sn = 1, and T(i) are the

order statistics of {Ti}. K(·) is a kernel function satisfying certain conditions,

and Hn is a positive number sequence. Here Hn = hn or rn, hn is a bandwidth

parameter, and rn = rn(t, T1, · · · , Tn) is the distance from t to the kn−th nearest

neighbor among the T ′
i s, and where kn is an integer sequence.

We can justify that both W
(1)
ni (t) and W

(2)
ni (t) satisfy Assumption 1.3.3. The

details of the justification are very lengthy and omitted. We also want to point
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out that when ωni is either W
(1)
ni or W

(2)
ni , Assumption 1.3.3 holds automatically

with Hn = λn−1/5 for some 0 < λ <∞. This is the same as the result established

by Speckman (1988) (see Theorem 2 with ν = 2), who pointed out that the usual

n−1/5 rate for the bandwidth is fast enough to establish that the LS estimate βLS

of β is
√
n-consistent. Sections 2.1.3 and 6.4 will discuss some practical selections

for the bandwidth.

Remark 1.3.2 Throughout this monograph, we are mostly using Assumption

1.3.1 ii) and 1.3.3 for the fixed design case. As a matter of fact, we can replace

Assumption 1.3.1 ii) and 1.3.3 by the following corresponding conditions.

Assumption 1.3.1 ii)’ When (Xi, Ti) are the fixed design points, equations

(1.3.1) and (1.3.2) hold.

Assumption 1.3.3’ When (Xi, Ti) are fixed design points, Assumption 1.3.3

(i)-(iii) holds. In addition, the weight functions ωni satisfy

(iv) max
1≤i≤n

n∑

j=1

ωnj(Ti)ujl = O(dn),

(v)
1

n

n∑

j=1

f̃jujl = O(dn),

(vi)
1

n

n∑

j=1

{ n∑

k=1

ωnk(Tj)uks

}
ujl = O(dn)

for all 1 ≤ l, s ≤ p, where dn is a sequence of real numbers satisfying lim sup
n→∞

nd4
n

log n <∞, f̂j = f(Tj)−
∑n

k=1 ωnk(Tj)f(Tk) for f = g or hj defined in (1.3.1).

Obviously, the three conditions (iv), (v) and (vi) follows from (1.3.3) and

Abel’s inequality.

When the weight functions ωni are chosen as W
(2)
ni defined in Remark 1.3.1,

Assumptions 1.3.1 ii)’ and 1.3.3’ are almost the same as Assumptions (a)-(f) of

Speckman (1988). As mentioned above, however, we prefer to use Assumptions

1.3.1 ii) and 1.3.3 for the fixed design case throughout this monograph.

Under the above assumptions, we provide bounds for hj(Ti)−
∑n

k=1 ωnk(Ti)

hj(Tk) and g(Ti)−
∑n

k=1 ωnk(Ti)g(Tk) in the appendix.

1.4 The Scope of the Monograph

The main objectives of this monograph are: (i) To present a number of theoreti-

cal results for the estimators of both parametric and nonparametric components,
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and (ii) To illustrate the proposed estimation and testing procedures by several

simulated and true data sets using XploRe-The Interactive Statistical Comput-

ing Environment (see Härdle, Klinke and Müller, 1999), available on website:

http://www.xplore-stat.de.

In addition, we generalize the existing approaches for homoscedasticity to

heteroscedastic models, introduce and study partially linear errors-in-variables

models, and discuss partially linear time series models.

1.5 The Structure of the Monograph

The monograph is organized as follows: Chapter 2 considers a simple partially

linear model. An estimation procedure for the parametric component of the par-

tially linear model is established based on the nonparametric weight sum. Section

2.1 mainly provides asymptotic theory and an estimation procedure for the para-

metric component with heteroscedastic errors. In this section, the least squares

estimator βLS of (1.2.2) is modified to the weighted least squares estimator βWLS.

For constructing βWLS, we employ the split-sample techniques. The asymp-

totic normality of βWLS is then derived. Three different variance functions are

discussed and estimated. The selection of smoothing parameters involved in the

nonparametric weight sum is also discussed in Subsection 2.1.3. Simulation com-

parison is also implemented in Subsection 2.1.4. A modified estimation procedure

for the case of censored data is given in Section 2.2. Based on a modification of

the Kaplan-Meier estimator, synthetic data and an estimator of β are con-

structed. We then establish the asymptotic normality for the resulting estimator

of β. We also examine the behaviors of the finite sample through a simulated

example. Bootstrap approximations are given in Section 2.3.

Chapter 3 discusses the estimation of the nonparametric component without

the restriction of constant variance. Convergence and asymptotic normality of the

nonparametric estimate are given in Sections 3.2 and 3.3. The estimation methods

proposed in this chapter are illustrated through examples in Section 3.4, in which

the estimator (1.2.3) is applied to the analysis of the logarithm of the earnings

to labour market experience.

In Chapter 4, we consider both linear and nonlinear variables with measure-

ment errors. An estimation procedure and asymptotic theory for the case where



18 1. INTRODUCTION

the linear variables are measured with measurement errors are given in Section

4.1. The common estimator given in (1.2.2) is modified by applying the so-called

“correction for attenuation”, and hence deletes the inconsistence caused by

measurement error. The modified estimator is still asymptotically normal as

(1.2.2) but with a more complicated form of the asymptotic variance. Section 4.2

discusses the case where the nonlinear variables are measured with measurement

errors. Our conclusion shows that asymptotic normality heavily depends on the

distribution of the measurement error when T is measured with error. Examples

and numerical discussions are presented to support the theoretical results.

Chapter 5 discusses several relatively theoretic topics. The laws of the

iterative logarithm (LIL) and the Berry-Esseen bounds for the parametric

component are established. Section 5.3 constructs a class of asymptotically

efficient estimators of β. Two classes of efficiency concepts are introduced.

The well-known Bahadur asymptotic efficiency, which considers the exponential

rate of the tail probability, and second order asymptotic efficiency are dis-

cussed in detail in Sections 5.4 and 5.5, respectively. The results of this chapter

show that the LS estimate can be modified to have both Bahadur asymptotic

efficiency and second order asymptotic efficiency even when the parametric and

nonparametric components are dependent. The estimation of the error distribu-

tion is also investigated in Section 5.6.

Chapter 6 generalizes the case studied in previous chapters to partially

linear time series models and establishes asymptotic results as well as small

sample studies. At first we present several data-based test statistics to deter-

mine which model should be chosen to model a partially linear dynamical system.

Secondly we propose a cross-validation (CV) based criterion to select the optimum

linear subset for a partially linear regression model. We investigate the problem

of selecting the optimum bandwidth for a partially linear autoregressive

model. Finally, we summarize recent developments in a general class of additive

stochastic regression models.
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ESTIMATION OF THE PARAMETRIC

COMPONENT

2.1 Estimation with Heteroscedastic Errors

2.1.1 Introduction

This section considers asymptotic normality for the estimator of β when ε is a

homoscedastic error. This aspect has been discussed by Chen (1988), Robinson

(1988), Speckman (1988), Hong (1991), Gao and Zhao (1993), Gao, Chen and

Zhao (1994) and Gao, Hong and Liang (1995). Here we state one of the main

results obtained by Gao, Hong and Liang (1995) for model (1.1.1).

Theorem 2.1.1 Under Assumptions 1.3.1-1.3.3, βLS is an asymptotically nor-

mal estimator of β, i.e.,

√
n(βLS − β) −→L N(0, σ2Σ−1). (2.1.1)

Furthermore, assume that the weight functions ωni(t) are Lipschitz continuous

of order one. Let supiE|εi|3 <∞, bn = n−4/5 log−1/5 n and cn = n−2/5 log2/5 n in

Assumption 1.3.3. Then with probability one

sup
0≤t≤1

|ĝn(t)− g(t)| = O(n−2/5 log2/5 n). (2.1.2)

The proof of this theorem has been given in several papers. The proof of

(2.1.1) is similar to that of Theorem 2.1.2 below. Similar to the proof of Theorem

5.1 of Müller and Stadtmüller (1987), the proof of (2.1.2) can be completed. The

details have been given in Gao, Hong and Liang (1995).

Example 2.1.1 Suppose the data are drawn from Yi = XT
i β0 + T 3

i + εi for

i = 1, . . . , 100, where β0 = (1.2, 1.3, 1.4)T , Ti ∼ U [0, 1], εi ∼ N(0, 0.01) and Xi ∼

N(0,Σx) with Σx =




0.81 0.1 0.2
0.1 2.25 0.1
0.2 0.1 1


 . In this simulation, we perform 20 repli-

cations and take bandwidth 0.05. The estimate βLS is (1.201167, 1.30077, 1.39774)T

with mean squared error (2.1 ∗ 10−5, 2.23 ∗ 10−5, 5.1 ∗ 10−5)T . The estimate of

g0(t)(= t3) is based on (1.2.3). For comparison, we also calculate a parametric
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fit for g0(t). Figure 2.1 shows the parametric estimate and nonparametric fitting

for g0(t). The true curve is given by grey line(in the left side), the nonparametric

estimate by thick curve(in the right side) and the parametric estimate by the black

straight line.
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FIGURE 2.1. Parametric and nonparametric estimates of the function g(T )

Schick (1996b) considered the problem of heteroscedasticity, i.e., non-

constant variance, for model (1.1.1). He constructed root-n consistent weighted

least squares estimates for the case where the variance is known up to a

multiplicative constant. In his discussion, he assumed that the nonconstant vari-

ance function of Y given (X,T ) is an unknown smooth function of an exogenous

random vector W .

In the remainder of this section, we mainly consider model (1.1.1) with

heteroscedastic error and focus on the following cases: (i) {σ2
i } is an unknown

function of independent exogenous variables; (ii) {σ2
i } is an unknown function of

Ti; and (iii) {σ2
i } is an unknown function of XT

i β+g(Ti). We establish asymptotic

results for the three cases. In relation to our results, we mention recent develop-

ments in linear and nonparametric regression models with heteroscedastic er-

rors. See for example, Bickel (1978), Box and Hill (1974), Carroll (1982), Carroll
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and Ruppert (1982), Carroll and Härdle (1989), Fuller and Rao (1978), Hall and

Carroll (1989), Jobson and Fuller (1980), Mak (1992) and Müller and Stadtmüller

(1987).

Let {(Yi, Xi, Ti), i = 1, . . . , n} denote a sequence of random samples from

Yi = XT
i β + g(Ti) + σiξi, i = 1, . . . , n, (2.1.3)

where (Xi, Ti) are i.i.d. random variables, ξi are i.i.d. with mean 0 and variance

1, and σ2
i are some functions of other variables. The concrete forms of σ2

i will be

discussed in later subsections.

When the errors are heteroscedastic, βLS is modified to a weighted least

squares estimator

βW =
( n∑

i=1

γiX̃iX̃
T
i

)−1( n∑

i=1

γiX̃iỸi

)
(2.1.4)

for some weights γi i = 1, . . . , n. In this section, we assume that {γi} is either a

sequence of random variables or a sequence of constants. In our model (2.1.3) we

take γi = 1/σ2
i .

In principle the weights γi (or σ2
i ) are unknown and must be estimated. Let

{γ̂i, i = 1, . . . , n} be a sequence of estimators of {γi}. We define an estimator of

β by substituting γi in (2.1.4) by γ̂i.

In order to develop the asymptotic theory conveniently, we use the tech-

nique of split-sample. Let kn(≤ n/2) be the largest integer part of n/2. γ̂
(1)
i

and γ̂
(2)
i are the estimators of γi based on the first kn observations (X1, T1, Y1),

. . . , (Xkn , Tkn , Ykn), and the later n − kn observations (Xkn+1, Tkn+1, Ykn+1), . . . ,

(Xn, Tn, Yn), respectively. Define

βWLS =
( n∑

i=1

γ̂iX̃iX̃
T
i

)−1( kn∑

i=1

γ̂
(2)
i X̃iỸi +

n∑

i=kn+1

γ̂
(1)
i X̃iỸi

)
(2.1.5)

as the estimator of β.

The next step is to prove that βWLS is asymptotically normal. We first prove

that βW is asymptotically normal, and then show that
√
n(βWLS−βW ) converges

to zero in probability.

Assumption 2.1.1 sup0≤t≤1E(‖X1‖3|T = t) < ∞. When {γi} is a sequence of

real numbers, then limn→∞ 1/n
∑n

i=1 γiuiu
T
i = B, where B is a positive definite

matrix, and limn→∞ 1/n
∑n

i=1 γi < ∞. When {γi} is a sequence of i.i.d. random

variables, then B = E(γ1u1u
T
1 ) is a positive definite matrix.
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Assumption 2.1.2 There exist constants C1 and C2 such that

0 < C1 ≤ min
i≤n

γi ≤ max
i≤n

γi < C2 <∞.

We suppose that the estimator {γ̂i} of {γi} satisfy

max
1≤i≤n

|γ̂i − γi| = oP (n−q) q ≥ 1/4. (2.1.6)

We shall construct estimators to satisfy (2.1.6) for three kinds of γi later. The

following theorems present general results for the estimators of the parametric

components in the partially linear heteroscedastic model (2.1.3).

Theorem 2.1.2 Assume that Assumptions 2.1.1, 2.1.2 and 1.3.2-1.3.3 hold. Then

βW is an asymptotically normal estimator of β, i.e.,

√
n(βW − β) −→L N(0, B−1ΣB−1).

Theorem 2.1.3 Under Assumptions 2.1.1, 2.1.2 and (2.1.6), βWLS is asymp-

totically equivalent to βW , i.e.,
√
n(βWLS − β) and

√
n(βW − β) have the same

asymptotically normal distribution.

Remark 2.1.1 In the case of constant error variance, i.e. σ2
i ≡ σ2, Theorem

2.1.2 has been obtained by many authors. See, for example, Theorem 2.1.1.

Remark 2.1.2 Theorem 2.1.3 not only assures that our estimator given in (2.1.5)

is asymptotically equivalent to the weighted LS estimator with known weights,

but also generalizes the results obtained previously.

Before proving Theorems 2.1.2 and 2.1.3, we discuss three different variance

functions and construct their corresponding estimates. Subsection 2.1.4 gives

small sample simulation results. The proofs of Theorems 2.1.2 and 2.1.3 are post-

poned to Subsection 2.1.5.

2.1.2 Estimation of the Non-constant Variance Functions

2.1.2.1 Variance is a Function of Exogenous Variables
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This subsection is devoted to the nonparametric heteroscedasticity structure

σ2
i = H(Wi),

where H is unknown and Lipschitz continuous, {Wi; i = 1, . . . , n} is a se-

quence of i.i.d. design points defined on [0, 1], which are assumed to be indepen-

dent of (ξi, Xi, Ti).

Define

Ĥn(w) =
n∑

j=1

ω̃nj(w){Yj −XT
j βLS − ĝn(Ti)}2

as the estimator of H(w), where {ω̃nj(t); j = 1, . . . , n} is a sequence of weight

functions satisfying Assumption 1.3.3 with ωnj replaced by ω̃nj.

Theorem 2.1.4 Assume that the conditions of Theorem 2.1.2 hold. Let cn =

n−1/3 log n in Assumption 1.3.3. Then

sup
1≤i≤n

|Ĥn(Wi)−H(Wi)| = OP (n−1/3 log n).

Proof. Note that

Ĥn(Wi) =
n∑

j=1

ω̃nj(Wi)(Ỹj − X̃T
j βLS)2

=
n∑

j=1

ω̃nj(Wi){X̃T
j (β − βLS) + g̃(Ti) + ε̃i}2

= (β − βLS)T
n∑

j=1

ω̃nj(Wi)X̃jX̃
T
j (β − βLS) +

n∑

j=1

ω̃nj(Wi)g̃
2(Ti)

+
n∑

j=1

ω̃nj(Wi)ε̃
2
i + 2

n∑

j=1

ω̃nj(Wi)X̃
T
j (β − βLS)g̃(Ti)

+2
n∑

j=1

ω̃nj(Wi)X̃
T
j (β − βLS)ε̃i + 2

n∑

j=1

ω̃nj(Wi)g̃(Ti)ε̃i. (2.1.7)

The first term of (2.1.7) is therefore OP (n−2/3) since
∑n

j=1 X̃jX̃
T
j is a symmetric

matrix, 0 < ω̃nj(Wi) ≤ Cn−2/3,

n∑

j=1

{ω̃nj(Wi)− Cn−2/3}X̃jX̃
T
j

is a p × p nonpositive matrix, and βLS − β = OP (n−1/2). The second term of

(2.1.7) is easily shown to be of order OP (n1/3c2n).
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Now we need to prove

sup
i

∣∣∣
n∑

j=1

ω̃nj(Wi)ε̃
2
i −H(Wi)

∣∣∣ = OP (n−1/3 log n), (2.1.8)

which is equivalent to proving the following three results

sup
i

∣∣∣
n∑

j=1

ω̃nj(Wi)
{ n∑

k=1

ωnk(Tj)εk

}2∣∣∣ = OP (n−1/3 log n), (2.1.9)

sup
i

∣∣∣
n∑

j=1

ω̃nj(Wi)ε
2
i −H(Wi)

∣∣∣ = OP (n−1/3 log n), (2.1.10)

sup
i

∣∣∣
n∑

j=1

ω̃nj(Wi)εj

{ n∑

k=1

ωnk(Tj)εk

}∣∣∣ = OP (n−1/3 log n). (2.1.11)

(A.3) below assures that (2.1.9) holds. Lipschitz continuity of H(·) and as-

sumptions on ω̃nj(·) imply that

sup
i

∣∣∣
n∑

j=1

ω̃nj(Wi)ε
2
i −H(Wi)

∣∣∣ = OP (n−1/3 log n). (2.1.12)

By taking aki = ω̃nk(Wi)H(Wk), Vk = ξ2
k − 1 r = 2, p1 = 2/3 and p2 = 0 in

Lemma A.3, we have

sup
i

∣∣∣
n∑

j=1

ω̃nj(Wi)H(Wj)(ξ
2
j − 1)

∣∣∣ = OP (n−1/3 log n). (2.1.13)

A combination of (2.1.13) and (2.1.12) implies (2.1.10). Cauchy-Schwarz inequal-

ity, (2.1.9) and (2.1.10) imply (2.1.11), and then (2.1.8). The last three terms of

(2.1.7) are all of order OP (n−1/3 log n) by Cauchy-Schwarz inequality. We there-

fore complete the proof of Theorem 2.1.4.

2.1.2.2 Variance is a Function of the Design Points Ti

In this subsection we consider the case where {σ2
i } is a function of {Ti}, i.e.,

σ2
i = H(Ti), H unknown Lipschitz continuous.

Similar to Subsection 2.1.2.1, we define our estimator of H(·) as

Ĥn(t) =
n∑

j=1

ω̃nj(t){Yj −XT
j βLS − ĝn(Ti)}2.
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Theorem 2.1.5 Under the conditions of Theorem 2.1.2, we have

sup
1≤i≤n

|Ĥn(Ti)−H(Ti)| = OP (n−1/3 log n).

Proof. The proof of Theorem 2.1.5 is similar to that of Theorem 2.1.4 and there-

fore omitted.

2.1.2.3 Variance is a Function of the Mean

Here we consider model (2.1.3) with

σ2
i = H{XT

i β + g(Ti)}, H unknown Lipschitz continuous.

This means that the variance is an unknown function of the mean response.

Several related situations in linear and nonlinear models have been discussed by

Box and Hill (1974), Bickel (1978), Jobson and Fuller (1980), Carroll (1982) and

Carroll and Ruppert (1982).

Since H(·) is assumed to be completely unknown, the standard method is

to get information about H(·) by replication, i.e., to consider the following

“improved” partially linear heteroscedastic model

Yij = XT
i β + g(Ti) + σiξij, j = 1, . . . ,mi; i = 1, . . . , n,

where {Yij} is the response of the j−th replicate at the design point (Xi, Ti), ξij

are i.i.d. with mean 0 and variance 1, β, g(·) and (Xi, Ti) are as defined in (2.1.3).

We here apply the idea of Fuller and Rao (1978) for linear heteroscedastic

model to construct an estimate of σ2
i . Based on the least squares estimate βLS

and the nonparametric estimate ĝn(Ti), we use Yij − {XT
i βLS + ĝn(Ti)} to define

σ̂2
i =

1

mi

mi∑

j=1

[Yij − {XT
i βLS + ĝn(Ti)}]2, (2.1.14)

with a positive sequence {mi; i = 1, · · · , n} determined later.

Theorem 2.1.6 Let mi = ann
2q def

= m(n) for some sequence an converging to

infinity. Suppose the conditions of Theorem 2.1.2 hold. Then

sup
1≤i≤n

|σ̂2
i −H{XT

i β + g(Ti)}| = oP (n−q) q ≥ 1/4.
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Proof. We provide only an outline for the proof of Theorem 2.1.6. Obviously

|σ̂2
i −H{XT

i β + g(Ti)}| ≤ 3{XT
i (β − βLS)}2 + 3{g(Ti)− ĝn(Ti)}2

+
3

mi

mi∑

j=1

σ2
i (ξ

2
ij − 1).

The first two items are obviously oP (n−q). Since ξij are i.i.d. with mean zero and

variance 1, by taking mi = ann
2q, using the law of the iterated logarithm and the

boundedness of H(·), we have

1

mi

mi∑

j=1

σ2
i (ξ

2
ij − 1) = O{m(n)−1/2 logm(n)} = oP (n−q).

Thus we derive the proof of Theorem 2.1.6.

2.1.3 Selection of Smoothing Parameters

In practice, an important problem is how to select the smoothing parameter

involved in the weight functions ωni. Currently, the results on bandwidth selec-

tion for completely nonparametric regression can be found in the monographs by

Eubank (1988), Härdle (1990, 1991), Wand and Jones (1994), Fan and Gijbels

(1996), and Bowman and Azzalini (1997).

More recently, Gao and Anh (1999) considered the selection of an optimum

truncation parameter for model (1.1.1) and established large and small sample

results for the case where the weight functions ωni are a sequence of orthogonal

series. See also Gao (1998), who discussed the time series case and provided both

theory and practical applications.

In this subsection, we briefly mention the selection procedure for bandwidth

for the case where the weight function is a kernel weight.

For 1 ≤ i ≤ n, define

ω̃i,n(t) = K
(t− Ti

h

)/ n∑

j=1,j 6=i

K
(t− Tj

h

)
,

g̃i,n(t, β) =
n∑

j=1,j 6=i

ω̃j,n(t)(Yj −XT
j β).

We now define the modified LS estimator β̃(h) of β by minimizing

n∑

i=1

{Yi −XT
i β − g̃i,n(Ti, β)}2.
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The Cross-Validation (CV) function can be defined as

CV (h) =
1

n

n∑

i=1

{Yi −XT
i β̃(h)− g̃i,n(Ti, β̃(h))}2.

Let ĥ denote the estimator of h, which is obtained by minimizing the CV function

CV(h) over h ∈ Θh, where Θh is an interval defined by

Θh = [λ1n
−1/5−η1 , λ2n

−1/5+η1 ],

where 0 < λ1 < λ2 < ∞ and 0 < η1 < 1/20 are constants. Under Assumptions

1.3.1-1.3.3, we can show that the CV function provides an optimum bandwidth

for estimating both β and g. Details for the i.i.d. case are similar to those in

Section 6.4.

2.1.4 Simulation Comparisons

We present a small simulation study to illustrate the properties of the theoretical

results in this chapter. We consider the following model with different variance

functions.

Yi = XT
i β + g(Ti) + σiεi, i = 1, . . . , n = 300,

where {εi} is a sequence of the standard normal random variables, {Xi} and {Ti}
are mutually independent uniform random variables on [0, 1], β = (1, 0.75)T and

g(t) = sin(t). The number of simulations for each situation is 500.

Three models for the variance functions are considered. LSE and WLSE rep-

resent the least squares estimator and the weighted least squares estimator

given in (1.1.1) and (2.1.5), respectively.

• Model 1: σ2
i = T 2

i ;

• Model 2: σ2
i = W 3

i ; where Wi are i.i.d. uniformly distributed random vari-

ables.

• Model 3: σ2
i = a1 exp[a2{XT

i β + g(Ti)}2], where (a1, a2) = (1/4, 1/3200).

The case where g ≡ 0 has been studied by Carroll (1982).

From Table 2.1, one can find that our estimator (WLSE) is better than LSE

in the sense of both bias and MSE for each of the models.
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TABLE 2.1. Simulation results (×10−3)

Estimator Variance β0 = 1 β1 = 0.75
Model Bias MSE Bias MSE

LSE 1 8.696 8.7291 23.401 9.1567
WLSE 1 4.230 2.2592 1.93 2.0011
LSE 2 12.882 7.2312 5.595 8.4213

WLSE 2 5.676 1.9235 0.357 1.3241
LSE 3 5.9 4.351 18.83 8.521

WLSE 3 1.87 1.762 3.94 2.642

By the way, we also study the behavior of the estimate for the nonparametric

part g(t)

n∑

i=1

ω∗
ni(t)(Ỹi − X̃T

i βWLS),

where ω∗
ni(·) are weight functions satisfying Assumption 1.3.3. In simulation,

we take Nadaraya-Watson weight function with quartic kernel(15/16)(1 −
u2)2I(|u| ≤ 1) and use the cross-validation criterion to select the bandwidth.

Figure 2.2 presents for the simulation results of the nonparametric parts of models

1–3, respectively. In the three pictures, thin dashed lines stand for true values and

thick solid lines for our estimate values. The figures indicate that our estimators

for the nonparametric part perform also well except in the neighborhoods of the

points 0 and 1.

2.1.5 Technical Details

We introduce the following notation,

Ân =
n∑

i=1

γ̂iX̃iX̃
T
i , An =

n∑

i=1

γiX̃iX̃
T
i .

Proof of Theorem 2.1.2. It follows from the definition of βW that

βW − β = A−1
n

{ n∑

i=1

γiX̃ig̃(Ti) +
n∑

i=1

γiX̃iε̃i

}
.

We will complete the proof by proving the following three facts for j = 1, . . . , p,

(i) H1j = 1/
√
n
∑n

i=1 γix̃ij g̃(Ti) = oP (1);

(ii) H2j = 1/
√
n
∑n

i=1 γix̃ij

{∑n
k=1 ωnk(Ti)ξk

}
= oP (1);
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FIGURE 2.2. Estimates of the function g(T ) for the three models

(iii) H3 = 1/
√
n
∑n

i=1 γiX̃iξi −→L N(0, B−1ΣB−1).

The proof of (i) is mainly based on Lemmas A.1 and A.3. Observe that

√
nH1j =

n∑

i=1

γiuij g̃i +
n∑

i=1

γihnij g̃i −
n∑

i=1

γi

n∑

q=1

ωnq(Ti)uqj g̃i, (2.1.15)

where hnij = hj(Ti)−
∑n

k=1 ωnk(Ti)hj(Tk). In Lemma A.3, we take r = 2, Vk = ukl,

aji = g̃j, 1/4 < p1 < 1/3 and p2 = 1− p1. Then, the first term of (2.1.15) is

OP (n−(2p1−1)/2) = oP (n1/2).

The second term of (2.1.15) can be easily shown to be order OP (nc2n) by using

Lemma A.1.

The proof of the third term of (2.1.15) follows from Lemmas A.1 and A.3,

and

∣∣∣
n∑

i=1

n∑

q=1

γiωnq(Ti)uqj g̃i

∣∣∣ ≤ C2nmax
i≤n
|g̃i|max

i≤n

∣∣∣
n∑

q=1

ωnq(Ti)uqj

∣∣∣

= O(n2/3cn log n) = op(n
1/2).

Thus we complete the proof of (i).
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We now show (ii), i.e.,
√
nH2j → 0. Notice that

√
nH2j =

n∑

i=1

γi

{ n∑

k=1

x̃kjωni(Tk)
}
ξi

=
n∑

i=1

γi

{ n∑

k=1

ukjωni(Tk)
}
ξi +

n∑

i=1

γi

{ n∑

k=1

hnkjωni(Tk)
}
ξi

−
n∑

i=1

γi

[ n∑

k=1

{ n∑

q=1

uqjωnq(Tk)
}
ωni(Tk)

]
ξi. (2.1.16)

The order of the first term of (2.1.16) is O(n−(2p1−1)/2 log n) by letting r = 2,

Vk = ξk, ali =
∑n

k=1 ukjωni(Tk), 1/4 < p1 < 1/3 and p2 = 1− p1 in Lemma A.3.

It follows from Lemma A.1 and (A.3) that the second term of (2.1.16) is

bounded by

∣∣∣
n∑

i=1

γi

{ n∑

k=1

hnkjωni(Tk)
}
ξi
∣∣∣ ≤ nmax

k≤n

∣∣∣
n∑

i=1

ωni(Tk)ξi
∣∣∣max

j,k≤n
|hnkj|

= O(n2/3cn log n) a.s. (2.1.17)

The same argument as that for (2.1.17) yields that the third term of (2.1.16) is

bounded by

∣∣∣
n∑

k=1

{ n∑

i=1

γiωni(Tk)ξi
}{ n∑

q=1

uqjωnq(Tk)
}∣∣∣

≤ nmax
k≤n

∣∣∣
n∑

i=1

ωni(Tk)ξi
∣∣∣×max

k≤n

∣∣∣
k∑

q=1

uqjωnq(Tj)
∣∣∣

= OP (n1/3 log2 n) = oP (n1/2). (2.1.18)

A combination (2.1.16)–(2.1.18) implies (ii).

Using the same procedure as in Lemma A.2, we deduce that

lim
n→∞

1

n

n∑

i=1

γiX̃
T
i X̃i = B. (2.1.19)

A central limit theorem shows that as n→∞

1√
n

n∑

i=1

γiX̃iξi −→L N(0,Σ).

We therefore show that as n→∞

1√
n
A−1

n

n∑

i=1

γiX̃iξi −→L N(0, B−1ΣB−1).

This completes the proof of Theorem 2.1.2.
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Proof of Theorem 2.1.3. In order to complete the proof of Theorem 2.1.3, we

only need to prove

√
n(βWLS − βW ) = oP (1).

First we state a fact, whose proof is immediately derived by (2.1.6) and (2.1.19),

1

n
|ân(j, l)− an(j, l)| = oP (n−q) (2.1.20)

for j, l = 1, . . . , p, where ân(j, l) and an(j, l) are the (j, l)−th elements of Ân and

An, respectively. The fact (2.1.20) will be often used later.

It follows that

βWLS − βW =
1

2

{
A−1

n (An − Ân)Â−1
n

n∑

i=1

γiX̃ig̃(Ti)

+Â−1
n

kn∑

i=1

(γi − γ̂(2)
i )X̃ig̃(Ti) + Â−1

n (An − Ân)Â−1
n

n∑

i=1

γiX̃iξ̃i

+Â−1
n

kn∑

i=1

(γi − γ̂(2)
i )X̃iξ̃i + Â−1

n

n∑

i=kn+1

(γi − γ̂(1)
i )X̃ig̃(Ti)

+Â−1
n

n∑

i=kn+1

(γi − γ̂(1)
i )X̃iξ̃i

}
. (2.1.21)

By Cauchy-Schwarz inequality, for any j = 1, . . . , p,

∣∣∣
n∑

i=1

γix̃ij g̃(Ti)
∣∣∣ ≤ C

√
nmax

i≤n
|g̃(Ti)|

( n∑

i=1

x̃2
ij

)1/2
,

which is oP (n3/4) by Lemma A.1 and (2.1.19). Thus each element of the first term

of (2.1.21) is oP (n−1/2) by using the fact that each element of A−1
n (An − Ân)Â−1

n

is oP (n−5/4). The similar argument demonstrates that each element of the second

and fifth terms is also oP (n−1/2).

Similar to the proof of H2j = oP (1), and using the fact that H3 converges

to the normal distribution, we conclude that the third term of (2.1.21) is also

oP (n−1/2). It suffices to show that the fourth and the last terms of (2.1.21) are

both oP (n−1/2). Since their proofs are the same, we only show that for j = 1, . . . , p,

{
Â−1

n

kn∑

i=1

(γi − γ̂(2)
i )X̃iξ̃i

}
j
= oP (n−1/2)

or equivalently

kn∑

i=1

(γi − γ̂(2)
i )x̃ij ξ̃i = oP (n1/2). (2.1.22)
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Let {δn} be a sequence of real numbers converging to zero but satisfying

δn > n−1/4. Then for any µ > 0 and j = 1, . . . , p,

P
{∣∣∣

kn∑

i=1

(γi − γ̂
(2)
i )x̃ijξiI(|γi − γ̂(2)

i | ≥ δn)
∣∣∣ > µn1/2

}

≤ P
{
max
i≤n
|γi − γ̂(2)

i | ≥ δn
}
→ 0. (2.1.23)

The last step is due to (2.1.6).

Next we deal with the term

P
{∣∣∣

kn∑

i=1

(γi − γ̂(2)
i )x̃ijξiI(|γi − γ̂(2)

i | ≤ δn)
∣∣∣ > µn1/2

}

using Chebyshev’s inequality. Since γ̂
(2)
i are independent of ξi for i = 1, . . . , kn,

we can easily derive

E
{ kn∑

i=1

(γi − γ̂(2)
i )x̃ijξi

}2
=

kn∑

i=1

E{(γi − γ̂(2)
i )x̃ijξi}2.

This is why we use the split-sample technique to estimate γi by γ̂
(2)
i and γ̂

(1)
i .

In fact,

P
{∣∣∣

kn∑

i=1

(γi − γ̂
(2)
i )x̃ijξiI(|γi − γ̂(2)

i | ≤ δn)
∣∣∣ > µn1/2

}

≤
∑kn

i=1E{(γi − γ̂(2)
i )I(|γi − γ̂(2)

i | ≤ δn)}2E‖X̃i‖2Eξ2
i

nµ2

≤ C
knδ

2
n

nµ2
→ 0. (2.1.24)

Thus, by (2.1.23) and (2.1.24),

kn∑

i=1

(γi − γ̂(2)
i )x̃ijξi = oP (n1/2).

Finally,

∣∣∣
kn∑

i=1

(γi − γ̂
(2)
i )x̃ij

{ n∑

k=1

ωnk(Ti)ξk
}∣∣∣

≤
√
n
( kn∑

i=1

X̃2
ij

)1/2
max
1≤i≤n

|γi − γ̂(2)
i | max

1≤i≤n

∣∣∣
n∑

k=1

ωnk(Ti)ξk
∣∣∣.

This is oP (n1/2) by using (2.1.20), (A.3), and (2.1.19). Therefore, we complete

the proof of Theorem 2.1.3.
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2.2 Estimation with Censored Data

2.2.1 Introduction

We are here interested in the estimation of β in model (1.1.1) when the response

Yi are incompletely observed and right-censored by random variables Zi. That

is, we observe

Qi = min(Zi, Yi), δi = I(Yi ≤ Zi), (2.2.1)

where Zi are i.i.d., and Zi and Yi are mutually independent. We assume that

Yi and Zi have a common distribution F and an unknown distribution G, re-

spectively. In this section, we also assume that εi are i.i.d. and that (Xi, Ti) are

random designs and that (Zi, X
T
i ) are independent random vectors and indepen-

dent of the sequence {εi}. The main results are based on the paper of Liang and

Zhou (1998).

When the Yi are observable, the estimator of β with the ordinary rate of con-

vergence is given in (1.2.2). In present situation, the least squares form of (1.2.2)

cannot be used any more since Yi are not observed completely. It is well-known

that in linear and nonlinear censored regression models, consistent estimators

are obtained by replacing incomplete observations with synthetic data. See,

for example, Buckley and James (1979), Koul, Susarla and Ryzin (1981), Lai and

Ying (1991, 1992) and Zhou (1992). In our context, these suggest that we use the

following estimator

β̂n =
[ n∑

i=1

{Xi − ĝx,h(Ti)}⊗2
]−1

n∑

i=1

{Xi − ĝx,h(Ti)}{Y ∗
i − ĝy∗,h(Ti)} (2.2.2)

for some synthetic data Y ∗
i , where A⊗2 def

= A× AT .

In this section, we analyze the estimate (2.2.2) and show that it is asymptot-

ically normal for appropriate synthetic data Y ∗
i .

2.2.2 Synthetic Data and Statement of the Main Results

We assume that G is known first. The unknown case is discussed in the second

part. The third part states the main results.

2.2.2.1 When G is Known
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Define synthetic data

Yi(1) = φ1(Qi, G)δi + φ2(Qi, G)(1− δi), (2.2.3)

where φ1 and φ2 are continuous functions which satisfy

(i). {1−G(Y )}φ1(Y,G) +
∫ Y
−∞ φ2(t, G)dG(t) = Y ;

(ii). φ1 and φ2 don’t depend on F.

The set containing all pairs (φ1, φ2) satisfying (i) and (ii) is denoted by K.

Remark 2.2.1 Equation (2.2.3) plays an important role in our case. Note that

E(Yi(1)|Ti, Xi) = E(Yi|Ti, Xi) by (i), which implies that the regressors of Yi(1) and

Yi on (W,X) are the same. In addition, if Z =∞, or Yi are completely observed,

then Yi(1) = Yi by taking φ1(u,G) = u/{1−G(u)} and φ2 = 0. So our synthetic

data are the same as the original ones.

Remark 2.2.2 We here list the variances of the synthetic data for the follow-

ing three pairs (φ1, φ2). Their calculations are direct and we therefore omit the

details.

• φ1(u,G) = u, φ2(u,G) = u+G(u)/G′(u),

Var(Yi(1)) = Var(Y ) +
∫ ∞

0

{
G(u)

G′(u)

}2

{1− F (u)}dG(u).

• φ1(u,G) = u/{1−G(u)}, φ2 = 0,

Var(Yi(1)) = Var(Y ) +
∫ ∞

0

u2G(u)

1−G(u)
dF (u).

• φ1(u,G) = φ2(u,G) =
∫ u
−∞{1−G(s)}−1ds,

Var(Yi(1)) = Var(Y ) + 2
∫ ∞

0
{1− F (u)}

∫ u

0

G(s)

1−G(s)
dsdG(u).

These arguments indicate that each of the variances of Yi(1) is greater than that of

Yi, which is pretty reasonable since we have modified Yi. We cannot compare the

variances for different (φ1, φ2), which depends on the behavior of G(u). Therefore,

it is difficult to recommend the choice of (φ1, φ2) absolutely.
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Equation (2.2.2) suggests that the generalized least squares estimator of β is

βn(1) = (X̃T X̃)−1(X̃T Ỹ(1)) (2.2.4)

where Ỹ(1) denotes (Ỹ1(1), . . . , Ỹn(1)) with Ỹi(1) = Yi(1) −
∑n

j=1 ωnj(Ti)Yj(1).

2.2.2.2 When G is Unknown

Generally, G(·) is unknown in practice and must be estimated. The usual estimate

of G(·) is a modification of its Kaplan-Meier estimator. In order to construct

our estimators, we need to assume G(sup(X,W ) TF(X,W )
) ≤ γ for some known 0 <

γ < 1, where TF(X,W )
= inf{y;F(X,W )(y) = 1} and F(X,W )(y) = P{Y ≤ y|X,W}.

Let 1/3 < ν < 1/2 and τn = sup{t : 1 − F (t) ≥ n−(1−ν)}. Then a simple

modification of the Kaplan-Meier estimator is

G∆
n (z) =





Ĝn(z), if Ĝn(z) ≤ γ,

γ, if z ≤ maxQi and Ĝn(z) > γ,

i = 1, . . . , n

where Ĝn(z) is the Kaplan-Meier estimator given by

Ĝn(z) = 1−
∏

Qi≤z

(
1− 1

n− i+ 1

)(1−δi)
.

Substituting G in (2.2.3) by G∆
n , we get the synthetic data for the case of

unknown G(u), that is,

Yi(2) = φ1(Qi, G
∆
n )δi + φ2(Qi, G

∆
n )(1− δi).

Replacing Yi(1) in (2.2.4) by Yi(2), we get an estimate of β for the case of un-

known G(·). For convenience, we make a modification of (2.2.4) by employing the

split-sample technique as follows. Let kn(≤ n/2) be the largest integer part of

n/2. Let G∆
n1(•) and G∆

n2(•) be the estimators of G based on the observations

(Q1, . . . , Qkn) and (Qkn+1, . . . , Qn), respectively. Denote

Y
(1)
i(2) = φ1(Qi, G

∆
n2)δi + φ2(Qi, G

∆
n2)(1− δi) for i = 1, . . . , kn

and

Y
(2)
i(2) = φ1(Qi, G

∆
n1)δi + φ2(Qi, G

∆
n1)(1− δi) for i = kn + 1, . . . , n.
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Finally, we define

βn(2) = (X̃T X̃)−1
{ kn∑

i=1

X̃
(1)
i Ỹ

(1)
i(2) +

n∑

i=kn+1

X̃
(2)
i Ỹ

(2)
i(2)

}

as the estimator of β and modify the estimator given in (2.2.4) as

βn(1) = (X̃T X̃)−1
{ kn∑

i=1

X̃
(1)
i Ỹ

(1)
i(1) +

n∑

i=kn+1

X̃
(2)
i Ỹ

(2)
i(1)

}
,

where

Ỹ
(1)
i(2) = Y

(1)
i(2) −

kn∑

j=1

ωnj(Ti)Y
(1)
j(2), Ỹ

(2)
i(2) = Y

(2)
i(2) −

n∑

j=kn+1

ωnj(Ti)Y
(2)
j(2)

Ỹ
(1)
i(1) = Yi(1) −

kn∑

j=1

ωnj(Ti)Yj(1), Ỹ
(2)
i(1) = Yi(1) −

n∑

j=kn+1

ωnj(Ti)Yj(1)

X̃
(1)
i = Xi −

kn∑

j=1

ωnj(Ti)Xj, X̃
(2)
i = Xi −

n∑

j=kn+1

ωnj(Ti)Xj.

2.2.2.3 Main Results

Theorem 2.2.1 Suppose that Assumptions 1.3.1-1.3.3 hold. Let (φ1, φ2) ∈ K
and E|X|4 <∞. Then βn(1) is an asymptotically normal estimator of β, that is,

n1/2(βn(1) − β) −→L N(0,Σ∗)

where Σ∗ = Σ−2E{ǫ21(1)u1u
T
1 } with ǫ1(1) = Y1(1) − E{Y1(1)|X,W}.

Let K∗ be a subset of K, consisting of all the elements (φ1, φ2) satisfying the

following: There exists a constant 0 < C <∞ such that

max
j=1,2,u≤s

|φj(u,G)| < C for all s with G(s) < 1

and there exist constants 0 < L = L(s) <∞ and η > 0 such that

max
j=1,2,u≤s

|φj(u,G
∗)− φj(u,G)| ≤ L sup

u≤s
|G∗(u)−G(u)|

for all distribution functions G∗ with supu≤s |G∗(u)−G(u)| ≤ η.

Assumption 2.2.1 Assume that F (w) and G(w) are continuous. Let
∫ TF

−∞

1

1− F (s)
dG(s) <∞.

Theorem 2.2.2 Under the conditions of Theorem 2.2.1 and Assumption 2.2.1,

βn(1) and βn(2) have the same normal limit distribution with mean β and covari-

ance matrix Σ∗.
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2.2.3 Estimation of the Asymptotic Variance

Subsection 2.2.2 gives asymptotic normal approximations to the estimators βn(1)

and βn(2) with asymptotic variance Σ∗. In principle, Σ∗ is unknown and must be

estimated. The usual method is to replace X−E(X|T ) by Xi−Γn(Xi) and define

Σn =
1

n

n∑

i=1

{Xi − Γn(Xi)}⊗2,

Vn(2) =
1

n

n∑

i=1

[
{Xi − Γn(Xi)}⊗2{Yi(2) −XT

i βn(2) − gn(Ti)}2
]

as the estimators of Σ and E{ǫ21(1)u1u
T
1 }, respectively, where

Γn(Xi) =
n∑

j=1

ωnj(Ti)Xj,

gn(Ti) =
n∑

j=1

ωnj(Ti)Yj(2) −
n∑

j=1

ωnj(Ti)X
T
j βn(2).

Using the same techniques as in the proof of Theorem 2.2.2, one can show that

Σn and Vn(2) are consistent estimators of Σ and E(ǫ21(1)u1u
T
1 ), respectively. Hence,

Σ−2
n En(2) is a consistent estimator of Σ−2E{ǫ21(1)u1u

T
1 }.

2.2.4 A Numerical Example

To illustrate the behavior of our estimator βn(2), we present some small sam-

ple simulations to study the sample bias and mean squares error (MSE) of the

estimate βn(2). We consider the model given by

Yi = XT
i β0 + T 3

i + εi, i = 1, . . . , n for n = 30, 50,

where Xi are i.i.d. with two-dimensional uniform distribution U [0, 100; 0, 100], Ti

are i.i.d. drawn from U [0, 1], and β0 = (2, 1.75)T . The right-censored random

variables Zi are i.i.d. with exp(−0.008z), the exponential distribution function

with freedom degree λ = 0.008, and εi are i.i.d. with commonN(0, 1) distribution.

Three pairs of (φ1, φ2) are considered:

• P1: φ1(u,G) = u, φ2(u,G) = u+G(u)/G′(u);

• P2: φ1(u,G) = u/{1−G(u)}, φ2 = 0;

• P3: φ1(u,G) = φ2(u,G) =
∫ u
−∞{1−G(u)}−1ds.
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The results in Table 2.2 are based on 500 replications. The simulation study

shows that our estimation procedure works very well numerically in small sample

case. It is worthwhile to mention that, after a direct calculation using Remark

2.2.2, the variance of the estimator based on the first pair (φ1, φ2) is the smallest

one in our context, while that based on the second pair (φ1, φ2) is the largest one,

with which the simulation results also coincide.

TABLE 2.2. Simulation results

n MODELS β1 = 2 β1 = 1.75
MSE MSE

P1 0.0166717 0.0170406
30 P2 0.0569963 0.0541931

P3 0.0191386 0.0180647
P1 0.0103607 0.0099157

50 P2 0.0277258 0.0268500
P3 0.0129026 0.0118281

2.2.5 Technical Details

Since TF(X,W )
< TG < ∞ for TG = inf{z;G(z) = 1} and P (Q > τn|X,W) =

n−(1−ν), we have P (Q > τn) = n−(1−ν), 1 − F (τn) ≥ n−(1−ν) and 1 − G(τn) ≥
n−(1−ν). These will be often used later.

The proof of Theorem 2.2.1. The proof of the fact that n1/2(βn(1) − β) con-

verges to N(0,Σ∗) in distribution can be completed by slightly modifying the

proof of Theorem 3.1 of Zhou (1992). We therefore omit the details.

Before proving Theorem 2.2.2, we state the following two lemmas.

Lemma 2.2.1 If E|X|4 <∞ and (φ1, φ2) ∈ K, then for some given positive inte-

ger m ≤ 4, E(|Yi(1)|m
∣∣∣X,W) ≤ C, E{ǫ21(1)u1u

T
1 }2 <∞ and E(|Yi(1)|mI(Qi>τ)

∣∣∣X,W

) ≤ CP (Qi > τ
∣∣∣X,W) for any τ ∈ R1.

Lemma 2.2.2 (See Gu and Lai, 1990) Assume that Assumption 2.2.1 holds.

Then

lim sup
n→∞

√
n

2 log2 n
sup
z≤τn

|Ĝn(z)−G(z)| = sup
z≤TF

√√√√S(z)

σ(z)
, a.s.,

where S(z) = 1− G(z), σ(z) =
∫ z
−∞ S−2(s){1− F (s)}−1dG(s), and log2 denotes

log log.
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The proof of Theorem 2.2.2. We shall show that
√
n(βn(2) − βn(1)) converges

to zero in probability. For the sake of simplicity of notation, we suppose k = 1

without loss of generality and denote h(t) = E(X1|T1 = t) and ui = Xi − h(Ti)

for i = 1, . . . , n.

Denote n(X̃T X̃)−1 by A(n). By a direct calculation,
√
n(βn(2)− βn(1)) can be

decomposed as follows:

A(n)n−1/2
kn∑

i=1

X̃
(1)
i (Ỹ

(1)
i(2) − Ỹ

(1)
i(1)) + A(n)n−1/2

n∑

i=kn+1

X̃
(2)
i (Ỹ

(2)
i(2) − Ỹ

(2)
i(1)).

It suffices to show that each of the above terms converges to zero in probability.

Since their proofs are the same, we only show this assertion for the first term,

which can be decomposed into

A(n)n−1/2
kn∑

i=1

h̃(Ti)(Ỹ
(1)
i(2) − Ỹ

(1)
i(1))I(Qi≤τn)

+A(n)n−1/2
kn∑

i=1

ũi(Ỹ
(1)
i(2) − Ỹ

(1)
i(1))I(Qi≤τn)

+A(n)n−1/2
kn∑

i=1

X̃i(Ỹ
(1)
i(2) − Ỹ

(1)
i(1))I(Qi>τn)

def
= A(n)n−1/2(Jn1 + Jn2 + Jn3).

Lemma A.2 implies that A(n) converges to Σ−1 in probability. Hence we only

need to prove that these three terms are of oP (n1/2).

Obviously, Lemma 2.2.2 implies that

sup
t≤τn

|Ĝn(t)−G(t)| = O(n−1/2 log2 n), a.s. (2.2.5)

Lemma A.1 implies that supi |h̃(Ti)| = O(cn). These arguments and a simple

calculation demonstrate that

|Jn1| ≤ C sup
i
|h̃(Ti)|

kn∑

i=1

{
1 +

kn∑

j=1

ωnj(Ti)
}

sup
t≤τn

|Ĝn(t)−G(t)|

≤ Ccnn
1/2(log2 n)1/2 = o(n1/2).

Analogously, Jn2 is bounded by

∣∣∣
kn∑

i=1

ui(Y
(1)
i(2) − Y

(1)
i(1))I(Qi≤τn)

∣∣∣+
kn∑

i=1

∣∣∣
kn∑

j=1

ωnj(Ti)uj(Y
(1)
i(2) − Y

(1)
i(1))

∣∣∣I(Qi≤τn)

= Jn21 + Jn22. (2.2.6)
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Taking Vi = ui and anj = ωnj(Ti) in Lemma A.3, we obtain

kn∑

k=1

ωnk(Ti)uk = O(n−1/4 log1/4 n), (2.2.7)

which implies that

Jn22 ≤ Cn−1/4 log1/4 n
n∑

i=1

|Y (1)
(i(2) − Y

(1)
i(1)|

≤ Cn1/4 log1/4 n = o(n1/2) a.s.

by the definitions of Y
(1)
i(2) and Y

(1)
i(1) and (2.2.5). We now show that

Jn21 = oP (n1/2). (2.2.8)

Since Y
(1)
i(2) depend only on the first kn−th samples, Jn21 is the sum of the

independent random variables given the last n− kn samples. From Chebyshev’s

inequality, for any given ζ > 0,

P
{∣∣∣

kn∑

i=1

ui

{
Y

(1)
i(2) − Y

(1)
i(1)

}
I(Qi≤τn)

∣∣∣ > ζn1/2
}
≤ 1

nζ2

kn∑

i=1

Eu2
iE(Y

(1)
i(2) − Y

(1)
i(1))

2

≤ kn

nζ2
Eu2

1 sup
t
|Ĝn(t)−G(t)|2,

which converges to zero as n tends to infinite. Thus Jn21 is oP (n1/2).A combination

of the above arguments yields that n−1/2Jn2 converges to zero in probability.

Next we show that n−1/2Jn3 converges to zero in probability, which is equiv-

alent to showing that the following sum converges to zero in probability,

n−1/2
kn∑

i=1

h̃(Ti)(Y
(1)
i(2) − Y

(1)
i(1))I(Qi>τn) + n−1/2

kn∑

i=1

ũi(Y
(1)
i(2) − Y

(1)
i(1))I(Qi>τn). (2.2.9)

The first term of (2.2.9) is bounded by

n−1/2cn
{
max

i
|Y (1)

i(2)| ·
kn∑

i=1

I(Qi>τn) +
kn∑

i=1

|Yn(1)|I(Qi>τn)

}
,

which is bounded by Cn−1/2cn{nP (Q1 > τn)+nE(|Y1(1)|I(Q1>τn))} and then oP (1)

by Lemma 2.2.1.

The second term of (2.2.9) equals

n−1/2
kn∑

i=1

ui(Y
(1)
i(2) − Y

(1)
i(1))I(Qi>τn)

− n−1/2
kn∑

j=1

{ kn∑

i=1

ωnj(Ti)(Y
(1)
i(2) − Y

(1)
i(1))I(Qi>τn)

}
uj.(2.2.10)
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By Lemma 2.2.1, the first term of (2.2.10) is smaller than

n−1/2
kn∑

j=1

|ujY
(1)
i(2)|I(Qj≥τn) + n−1/2

kn∑

j=1

|ujYn(1)|I(Qj>τn),

which is further bounded by

n−1/2
kn∑

j=1

|uj|I(Qj≥τn) + Cn1/2E{|u1Y1(1)|I(Q1>τn)}

≤ Cn1/2E|u1|I(Q1>τn)

= Cn1/2E{|u1|P (Q1 > τn|X1, T1)}

= O(n−1/2+ν) = oP (1). (2.2.11)

Similar to the proof of (2.2.11) and Lemma A.3, we can show that the second

term of (2.2.10) is oP (1). We therefore complete the proof of Theorem 2.2.2.

2.3 Bootstrap Approximations

2.3.1 Introduction

The technique of bootstrap is a useful tool for the approximation to an unknown

probability distribution as well as its characteristics like moments and confidence

regions. In this section, we use the empirical distribution function to approxi-

mate the underlying error distribution (for more details see subsection 2.3.2).

This classical bootstrap technique was introduced by Efron (for a review see

e.g. Efron and Tibshirani, 1993 and Davison and Hinkley, 1997). Note that for a

heteroscedastic error structure, a wild bootstrap procedure (see e.g. Wu (1986)

or Härdle and Mammen (1993)) would be more appropriate.

Hong and Cheng (1993) considered using bootstrap approximations to the

estimators of the parameters in model (1.1.1) for the case where {Xi, Ti, i =

1, . . . , n} is a sequence of i.i.d. random variables and g(·) is estimated by a kernel

smoother. The authors proved that their bootstrap approximations are the

same as the classic methods, but failed to explain the advantage of the boot-

strap method. We will construct bootstrap statistics of β and σ2, study their

asymptotic normality when εi are i.i.d. and (Xi, Ti) are known design points,

then show that the bootstrap techniques provide a reliable method to approxi-

mate the distributions of the estimates, and finally illustrate the method by a

simulated example.
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The effect of a smoothing parameter is discussed in a simulation study. Our

research shows that the estimators of the parametric part are quite robust against

the choice of the smoothing parameter. More details can be found in Subsection

2.3.3.

2.3.2 Bootstrap Approximations

In the partially linear model, the observable column n−vector ε̂ of residuals is

given by

ε̂ = Y −Gn −XβLS,

where Gn = {ĝn(T1), . . . , ĝn(Tn)}T . Denote µn = 1/n
∑n

i=1 ε̂i. Let F̂n be the

empirical distribution of ε̂, centered at the mean, so F̂n puts mass 1/n at ε̂i− µn

and
∫
xdF̂n(x) = 0. Given Y, let ε∗1, . . . , ε

∗
n be conditionally independent with the

common distribution F̂n, ε∗ be the n−vector whose i−th component is ε∗i , and

Y∗ = XβLS + Gn + ε∗,

where Y∗ is generated from the data, βLS is regarded as a vector of parameters.

We denote the distribution of the disturbance terms ε∗ by F̂n.

We now define the estimates of β and σ2 by, respectively,

β∗
LS = (X̃T X̃)−1X̃T Ỹ∗ and σ̂2∗

n =
1

n

n∑

i=1

(Ỹ ∗
i − X̃T

i β
∗
LS)2,

where Ỹ∗ = (Ỹ ∗
1 , . . . , Ỹ

∗
n )T with Ỹ ∗

i = Y ∗
i −

∑n
j=1 ωnj(Ti)Y

∗
j for i = 1, . . . , n.

The bootstrap principle asserts that the distributions of
√
n(β∗

LS − βLS) and
√
n(σ̂2∗

n − σ̂2
n), which can be computed directly from the data, can approximate

the distributions of
√
n(βLS − β) and

√
n(σ̂2

n − σ2), respectively. As shown later,

this approximation works very well as n→∞. The main result of this section is

given in the following theorem.

Theorem 2.3.1 Suppose that Assumptions 1.3.1-1.3.3 hold. If max1≤i≤n ‖ui‖ ≤
C0 <∞ and Eε4

1 <∞. Then

supx

∣∣∣P ∗{
√
n(β∗

LS − βLS) < x} − P{
√
n(βLS − β) < x}

∣∣∣→ 0 (2.3.1)

and

supx

∣∣∣P ∗{
√
n(σ̂2∗

n − σ̂2
n) < x} − P{

√
n(σ̂2

n − σ2) < x}
∣∣∣→ 0 (2.3.2)

where P ∗ denotes the conditional probability given Y.
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Recalling the decompositions for
√
n(βLS−β) and

√
n(σ̂2

n−σ2) in (5.1.3) and

(5.1.4) below, and applying these to
√
n(β∗

LS − βLS) and
√
n(σ̂2∗

n − σ̂2
n), we can

calculate the tail probability value of each term explicitly. The proof is similar

to those given in Sections 5.1 and 5.2. We refer the details to Liang, Härdle and

Sommerfeld (1999).

We have now shown that the bootstrap method performs at least as good as

the normal approximation with the error rate of op(1). It is natural to expect that

the bootstrap method should perform better than this in practice. As a matter

of fact, our numerical results support this conclusion. Furthermore, we have the

following theoretical result. Let Mjn(β) [Mjn(σ2)] and M∗
jn(β) [M∗

jn(σ2)] be the

j−th moments of
√
n(βLS−β) [

√
n(σ̂2

n−σ2)] and
√
n(β∗

LS−βLS) [
√
n(σ̂2∗

n − σ̂2
n)],

respectively.

Theorem 2.3.2 Assume that Assumptions 1.3.1-1.3.3 hold. Let Eε6
1 < ∞ and

max1≤i≤n ‖ui‖ ≤ C0 < ∞. Then M∗
jn(β) − Mjn(β) = OP (n−1/3 log n) and

M∗
jn(σ2)−Mjn(σ2) = OP (n−1/3 log n) for j = 1, 2, 3, 4.

The proof of Theorem 2.3.2 follows similarly from that of Theorem 2.3.1. We

omit the details here.

Theorem 2.3.2 shows that the bootstrap distributions have much better ap-

proximations for the first four moments of β∗
LS and σ̂2∗

n . The first four moments are

the most important quantities in characterizing distributions. In fact, Theorems

2.3.1 and 2.1.1 can only obtain

M∗
jn(β)−Mjn(β) = oP (1) and M∗

jn(σ2)−Mjn(σ2) = oP (1)

for j = 1, 2, 3, 4.

2.3.3 Numerical Results

In this subsection we present a small simulation study to illustrate the finite

sample behaviors of the estimators. We investigate the model given by

Yi = XT
i β + g(Ti) + εi (2.3.3)

where g(Ti) = sin(Ti), β = (1, 5)′ and εi ∼ Uniform(−0.3, 0.3). The mutually

independent variables Xi = (X
(1)
i , X

(2)
i ) and Ti are realizations of a Uniform(0, 1)

distributed random variable. We analyze (2.3.3) for the sample sizes of 30, 50, 100
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FIGURE 2.3. Plot of of the smoothed bootstrap density (dashed), the normal ap-
proximation (dotted) and the smoothed true density (solid).

and 300. For nonparametric fitting, we use a Nadaraya-Watson kernel weight

function with Epanechnikov kernel. We perform the smoothing with different

bandwidths using some grid search. Our simulations show that the results for

the parametric part are quite robust against the bandwidth chosen in the non-

parametric part. In the following we present only the simulation results for the

parameter β2. Those for β1 are similar.

We implement our small sample studies for the cases of sample sizes 30, 50,

100, 300. In Figure 2.3, we plot the smoothed densities of the estimated true

distribution of
√
n(β̂2 − β2)/σ̂ with σ̂2 = 1/n

∑n
i=1(Ỹi − X̃T

i βn)2. Additionally

we depict the corresponding bootstrap distributions and the asymptotic normal

distributions, in which we estimate σ2B−1 by σ̂2B̂−1 with B̂ = 1/n
∑n

i=1 X̃iX̃
T
i . It

turns out that the bootstrap distribution and the asymptotic normal distribution

approximate the true ones very well even when the sample size of n is only 30.
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ESTIMATION OF THE NONPARAMETRIC

COMPONENT

3.1 Introduction

In this chapter, we will focus on deriving the asymptotic properties of an estimator

of the unknown function g(·) for the case of fixed design points. We consider

its consistency, weak convergence rate and asymptotic normality. We also derive

these results for a specific version of (1.2.3) with nonstochastic regressors and

heteroscedastic errors.

Previous work in a heteroscedastic setting has focused on the nonpara-

metric regression model (i.e. β = 0). Müller and Stadtmüller (1987) proposed an

estimate of the variance function by using a kernel smoother, and then proved that

the estimate is uniformly consistent. Hall and Carroll (1989) considered the consis-

tency of estimates of g(·). Eubank and Whitney (1989) proposed trigonometric

series type estimators of g. They investigated asymptotic approximations of the

integrated mean squared error and the partial integrated mean squared error of

gλ.

Well-known applications in econometrics literature that can be put in the form

of (1.1.1) are the human capital earnings function (Willis (1986)) and the wage

curve (Blanchflower and Oswald, 1994). In both cases, log-earnings of an individ-

ual are related to personal characteristics (sex, marital status) and measures of

a person’s human capital like schooling and labor market experience. Economic

theory suggests a non-linear relationship between log-earnings and labor market

experience. The wage curve is obtained by including the local unemployment

rate as an additional regressor, with a possibly non-linear influence. Rendtel

and Schwarze (1995), for instance, estimated g(·) as a function of the local

unemployment rate using smoothing-splines and found a U-shaped relationship.

The organization of this chapter is as follows. Weak and strong consistency

results are given in Section 3.2. The asymptotic normality of the nonparametric

estimator of g is given in Section 3.3. In Section 3.4, we illustrate our estimation

procedure by a small-scale Monte Carlo study and an empirical illustration.
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3.2 Consistency Results

In order to establish some consistency results, we introduce the following assump-

tions.

Assumption 3.2.1 Assume that the following equations hold uniformly over

[0, 1] and n ≥ 1:

(a)
∑n

i=1 |ωni(t)| ≤ C1 for all t and some constant C1;

(b)
∑n

i=1 ωni(t)− 1 = O(µn) for some µn > 0;

(c)
∑n

i=1 |ωni(t)|I(|t− Ti| > µn) = O(µn);

(d) supi≤n |ωni(t)| = O(ν−1
n );

(e)
∑n

i=1 ω
2
ni(t)Eε

2
i = σ2

0/νn + o(1/νn) for some σ2
0 > 0.

where both µn and νn are positive sequences satisfying lim
n→∞

µn = 0, lim
n→∞

νn/n = 0,

lim
n→∞n

1/2 log n/νn = 0, and lim sup
n→∞

µnν
2
n <∞.

Assumption 3.2.2 The weight functions ωni satisfy

max
i≥1
|ωni(s)− ωni(t)| ≤ C2|s− t|

uniformly over n ≥ 1 and s, t ∈ [0, 1], where C2 is a bounded constant.

We now have the following result.

Theorem 3.2.1 Assume that Assumptions 1.3.1 and 3.2.1 hold. Then at every

continuity point of the function g,

E{ĝn(t)− g(t)}2 =
σ2

0

νn

+O(µ2
n) + o(ν−1

n ) + o(µ2
n).

Proof. Observe the following decomposition:

ĝn(t)− g(t) =
n∑

j=1

ωnj(t)εj +
n∑

j=1

ωnj(t)X
T
j (β − βLS)

+
n∑

j=1

ωnj(t)g(Tj)− g(t). (3.2.1)

Similar to Lemma A.1, we have

n∑

j=1

ωnj(t)g(Tj)− g(t) = O(µn)
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at every continuity point of g.

Similar to the proof of Lemma A.2, we have for 1 ≤ j ≤ p,

∣∣∣
n∑

i=1

ωni(t)xij

∣∣∣ =
∣∣∣

n∑

i=1

ωni(t){uij + hj(Ti)}
∣∣∣

= O(1) +
∣∣∣

n∑

i=1

ωni(t)uij

∣∣∣

≤ O(1) + 6 sup
1≤i≤n

|ωni(t)| max
1≤k≤n

∣∣∣∣∣

k∑

i=1

ujim

∣∣∣∣∣

= O(1) +O(n1/2 log nν−1
n ) = O(1). (3.2.2)

On the other hand, it follows from the definition of βLS that

E(βLS − β)2 = E(βLS − EβLS)2 + (EβLS − β)2 = O(n−1), (3.2.3)

which is a direct calculation.

Similarly, we have

E
{ n∑

i=1

ωni(t)εi

}2
=

n∑

i=1

ω2
ni(t)Eε

2
i =

σ2
0

νn

+ o(ν−1
n ) (3.2.4)

using Assumptions 3.2.1 (e).

Therefore, (3.2.1)-(3.2.4) imply

E{ĝn(t)− g(t)}2 =
σ2

0

νn

+O(µ2
n) + o(ν−1

n ) + o(µ2
n). (3.2.5)

Remark 3.2.1 Equation (3.2.5) not only provides an optimum convergence rate,

but proposes a theoretical selection for the smoothing parameter involved in the

weight functions ωni as well. For example, when considering ω
(1)
ni or ω

(2)
ni defined

in Remark 1.3.1 as ωni, νn = nhn, and µn = h2
n, under Assumptions 1.3.1, 3.2.1

and 3.2.2, we have

E{ĝn(t)− g(t)}2 =
σ2

0

nhn

+O(h4
n) + o(n−1h−1

n ) + o(h4
n). (3.2.6)

This suggests that the theoretical selection of hn is proportional to n−1/5. Details

about the practical selection of hn are similar to those in Section 6.4.

Remark 3.2.2 In the proof of (3.2.2), we can assume that for all 1 ≤ j ≤ p,

n∑

i=1

ωni(t)uij = O(sn) (3.2.7)
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uniformly over t ∈ [0, 1], where sn → 0 as n → ∞. Since the real sequences uij

behave like i.i.d. random variables with mean zero, equation (3.2.7) is reasonable.

Actually, both Assumption 1.3.1 and equation (3.2.7) hold with probability one

when (Xi, Ti) are independent random designs.

We now establish the strong rate of convergence of ĝn.

Theorem 3.2.2 Assume that Assumptions 1.3.1, 1.3.2, 3.2.1 and 3.2.2 hold. Let

E|ε1|3 <∞. Then

sup
t
|ĝn(t)− g(t)| = OP (ν−1/2

n log1/2 n) +O(µn) +OP (n−1/2). (3.2.8)

Proof. It follows from Assumption 3.2.1 that

sup
t

∣∣∣
n∑

j=1

ωnj(t)g(Tj)− g(t)
∣∣∣ = O(µn). (3.2.9)

Similar to the proof of Lemma 5.1 of Müller and Stadtmüller (1987), we have

sup
t

∣∣∣
n∑

j=1

ωnj(t)εi

∣∣∣ = OP (ν−1
n log1/2 n). (3.2.10)

The details are similar to those of Lemma A.3 below and have been given in

Gao, Chen and Zhao (1994). Therefore, the proof of (3.2.8) follows from (3.2.1),

(3.2.2), (3.2.9), (3.2.10) and the fact βLS − β = OP (n−1/2).

Remark 3.2.3 Theorem 3.2.2 shows that the estimator of the nonparametric

component in (1.1.1) can achieve the optimum rate of convergence for the com-

pletely nonparametric regression.

Theorem 3.2.3 Assume that Assumptions 1.3.1, 3.2.1 and 3.2.2 hold. Then

νnV ar{ĝn(t)} → σ2
0 as n→∞.

Proof.

νnV ar{ĝn(t)} = νnE
{ n∑

i=1

ωni(t)εi

}2
+ νnE

{ n∑

i=1

ωni(t)X
T
i (X̃T X̃)−1X̃T ε̃

}2

−2νnE
{ n∑

i=1

ωni(t)εi

}
·
{ n∑

i=1

ωni(t)X
T
i (X̃T X̃)−1X̃T ε̃

}
.

The first term converges to σ2
0. The second term tends to zero, since

E
{ n∑

i=1

ωni(t)X
T
i (X̃T X̃)−1X̃T ε̃

}2
= O(n−1).

Using Cauchy-Schwarz inequality, the third term is shown to tend to zero.
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3.3 Asymptotic Normality

In the nonparametric regression model, Liang (1995c) proved asymptotic nor-

mality for independent εi’s under some mild conditions. In this section, we shall

consider the asymptotic normality of ĝn(t) under the Assumptions 1.3.1, 3.2.1

and 3.2.2.

Theorem 3.3.1 Assume that ε1, ε2, . . . , εn are independent random variables with

Eεi = 0 and infiEε
2
i > cσ > 0 for some cσ. There exists a function G(u) satisfy-

ing

∫ ∞

0
uG(u)du <∞ (3.3.1)

such that

P (|εi| > u) ≤ G(u), for i = 1, . . . , n and large enough u. (3.3.2)

If

max1≤i≤n ω
2
ni(t)∑n

i=1 ω
2
ni(t)

→ 0 as n→∞, (3.3.3)

then

ĝn(t)− Eĝn(t)√
V ar{ĝn(t)}

−→L N(0, 1) as n→∞.

Remark 3.3.1 The conditions (3.3.1) and (3.3.2) guarantee supiEε
2
i <∞.

The proof of Theorem 3.3.1. It follow from the proof of Theorem 3.2.3 that

V ar{ĝn(t)} =
n∑

i=1

ω2
ni(t)σ

2
i + o

{ n∑

i=1

ω2
ni(t)σ

2
i

}
.

Furthermore

ĝn(t)− Eĝn(t)−
n∑

i=1

ωni(t)εi =
n∑

i=1

ωni(t)X
T
i (X̃T X̃)−1X̃T ε̃ = OP (n−1/2),

which yields

∑n
i=1 ωni(t)X

T
i (X̃T X̃)−1X̃T ε̃√

V ar{ĝn(t)}
= OP (n−1/2ν1/2

n ) = oP (1).
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It follows that

ĝn(t)− Eĝn(t)√
V ar{ĝn(t)}

=

∑n
i=1 ωni(t)εi√∑n
i=1 ω

2
ni(t)σ

2
i

+ oP (1)
def
=

n∑

i=1

a∗niεi + oP (1),

where a∗ni = ωni(t)√∑n

i=1
ω2

ni(t)σ
∗
i

. Let ani = a∗niσi. Obviously, this means that supi σi <

∞, due to
∫∞
0 vG(v)dv <∞. The proof of the theorem immediately follows from

(3.3.1)–(3.3.3) and Lemma 3.5.3 below.

Remark 3.3.2 If ε1, . . . , εn are i.i.d., then E|ε1|2 <∞ and the condition (3.3.3)

of Theorem 3.3.1 can yield the result of Theorem 3.3.1.

Remark 3.3.3 (a) Let ωni be either ω
(1)
ni or ω

(2)
ni defined in Remark 1.3.1, νn =

nhn, and µn = h2
n. Assume that the probability kernel function K satisfies: (i)

K has compact support; (ii) the first two derivatives of K are bounded on the

compact support of K. Then Theorem 3.3.1 implies that as n→∞,

√
nhn{ĝn(t)− Eĝn(t)} −→L N(0, σ2

0).

This is the classical conclusion in nonparametric regression. See Härdle (1990).

(b) If we replace the condition lim sup
n→∞

νnµ
2
n <∞ by lim

n→∞
νnµ

2
n = 0 in Assump-

tion 3.2.1, then as n→∞,

ĝn(t)− g(t)√
V ar{ĝn(t)}

−→L N(0, 1).

Obviously, the selection of bandwidth in the kernel regression case is not asymp-

totically optimal since the bandwidth satisfies lim
n→∞nh

5
n = 0. In general, asymptot-

ically optimal estimate in the kernel regression case always has a nontrivial bias.

See Härdle (1990).

3.4 Simulated and Real Examples

In this section, we illustrate the finite-sample behavior of the estimator by ap-

plying it to real data and by performing a small simulation study.

Example 3.4.1 In the introduction, we mentioned the human capital earnings

function as a well-known econometric application that can be put into the form

of a partially linear model. It typically relates the logarithm of earnings to a set
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of explanatory variables describing an individual’s skills, personal characteristics

and labour market conditions. Specifically, we estimate β and g(·) in the model

lnYi = XT
i β + g(Ti) + εi, (3.4.1)

where X contains two dummy variables indicating that the level of secondary

schooling a person has completed, and T is a measure of labour market experience

(defined as the number of years spent in the labour market and approximated by

subtracting (years of schooling + 6) from a person’s age).

Under certain assumptions, the estimate of β can be interpreted as the rate

of return from obtaining the respective level of secondary schooling. Regarding

g(T ), human capital theory suggests a concave form: Rapid human capital

accumulation in the early stage of one’s labor market career is associated with

rising earnings that peak somewhere during midlife and decline thereafter as

hours worked and the incentive to invest in human capital decreases. To allow

for concavity, parametric specifications of the earnings-function typically include

T and T 2 in the model and obtain a positive estimate for the coefficient of T and

a negative estimate for the coefficient of T 2.

For nonparametric fitting, we use a Nadaraya-Watson weight functionwith

quartic kernel

(15/16)(1− u2)2I(|u| ≤ 1)

and choose the bandwidth using cross-validation. The estimate of g(T ) is

given in Figure 3.1. When a sample size is smaller than that used in most em-

pirical investigations of the human capital earnings function, we obtain a non-

parametric estimate that nicely agrees with the concave relationship envisioned

by economic theory.

Remark 3.4.1 Figure 3.1 shows that the relation between predicted earnings and

the level of experience is nonlinear. This conclusion is the same as that reached

by using the classical parametric fitting. Empirical economics suggests using a

second-order polynomial to fit the relationship between the predicted earnings and

the level experience. Our nonparametric approach provides a better fitting between

the two.
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Nonparametric part fit
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FIGURE 3.1. Relationship between log-earnings and labour-market experience

Remark 3.4.2 The above Example 3.4.1 demonstrates that partially linear re-

gression is better than the classical linear regression for fitting some economic

data. Recently, Anglin and Gencay (1996) considered another application of par-

tially linear regression to a hedonic price function. They estimated a benchmark

parametric model which passes several common specification tests before showing

that a partially linear model outperforms it significantly. Their research suggests

that the partially linear model provides more accurate mean predictions than the

benchmark parametric model. See also Liang and Huang (1996), who discussed

some applications of partially linear regression to economic data.

Example 3.4.2 We also conduct a small simulation study to get further small-

sample properties of the estimator of g(·). We consider the model

Yi = XT
i β + sin(πTi) + sin(XT

i β + Ti)ξi, i = 1, . . . , n = 300

where {ξi} is sequence of i.i.d. standard normal errors, Xi = (Xi1, Xi2)
T , and

Xi1 = Xi2 = Ti = i/n. We set β = (1, 0.75)T and perform 100 replications of

generating samples of size n = 300. Figure 3.2 presents the “true” curve g(T ) =
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sin(πT ) (solid-line) and an average of the 100 estimates of g(·) (dashed-line). The

average estimate nicely captures the shape of g(·).

Simulation comparison
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FIGURE 3.2. Estimates of the function g(T ).

3.5 Appendix

In this section we state some useful lemmas.

Lemma 3.5.1 Suppose that Assumptions 3.2.1 and 3.2.2 hold and that g(·) and

hj(·) are continuous. Then

(i) max
1≤i≤n

∣∣∣Gj(Ti)−
n∑

k=1

ωnk(Ti)Gj(Tk)
∣∣∣ = o(1).

Furthermore, suppose that g(·) and hj(·) are Lipschitz continuous of order 1.

Then

(ii) max
1≤i≤n

∣∣∣Gj(Ti)−
n∑

k=1

ωnk(Ti)Gj(Tk)
∣∣∣ = O(cn)

for j = 0, . . . , p, where G0(·) = g(·) and Gl(·) = hl(·) for l = 1, . . . , p.
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Proof. The proofs are similar to Lemma A.1. We omit the details.

The following Lemma is a slightly modified version of Theorem 9.1.1 of Chow

and Teicher (1988). We therefore do not give its proof.

Lemma 3.5.2 Let ξnk, k = 1, . . . , kn, be independent random variables with mean

zero and finite variance σ2
nk. Assume that lim

n→∞

∑kn

k=1
σ2

nk = 1 and max1≤k≤kn σ
2
nk →

0. Then
∑kn

k=1 ξnk →L N(0, 1) if and only if

kn∑

k=1

Eξ2
nkI(|ξnk| > δ)→ 0 for any δ > 0 as n→∞.

Lemma 3.5.3 Let V1, . . . , Vn be independent random variables with EVi = 0 and

infiEV
2
i > C > 0 for some constant number C. There exists a function H(v)

satisfying
∫∞
0 vH(v)dv <∞ such that

P{|Vk| > v} ≤ H(v) for large enough v > 0 and k = 1, . . . , n. (3.5.1)

Also assume that {ani, i = 1, . . . , n, n ≥ 1} is a sequence of real numbers satisfying
∑n

i=1 a
2
ni = 1. If max1≤i≤n |ani| → 0, then for a′ni = ani/σi(V ),

n∑

i=1

a′niVi −→L N(0, 1) as n→∞.

where {σi(V )} is the variance of {Vi}.

Proof. Denote ξnk = a′nkVk, k = 1, . . . , n. We have
∑n

k=1Eξ
2
nk = 1. Moreover, it

follows that

n∑

k=1

E{ξ2
nkI(|ξnk| > δ)} =

n∑

k=1

a′nk
2
E{V 2

k I(|ankVk| > δ)}

=
n∑

k=1

a2
nk

σ2
k

E{V 2
k I(|ankVk| > δ)}

≤ (inf
k
σ2

k)
−1 sup

k
E{V 2

k I(|ankVk| > δ)}.

It follows from the condition (3.5.1) that

sup
k
E{V 2

k I(|ankVk| > δ)} → 0 as n→∞.

Therefore Lemma 3.5.3 follows from Lemma 3.5.2.



4

ESTIMATION WITH MEASUREMENT

ERRORS

4.1 Linear Variables with Measurement Errors

4.1.1 Introduction and Motivation

In this section, we are interested in the estimation of the unknown parameter

β and the unknown function g(·) in model (1.1.1) when the covariates Xi are

measured with errors. Instead of observing Xi, we observe

Wi = Xi + Ui, (4.1.1)

where the measurement errors Ui are i.i.d., independent of (Yi, Xi, Ti), with

mean zero and covariance matrix Σuu. We will assume that Σuu is known, taking

up the case that it is estimated in subsection 4.1.4. The measurement error lit-

erature has been surveyed by Fuller (1987) and Carroll, Ruppert and Stefanski

(1995).

It is well known that in linear regression, by applying the so–called correction

for attenuation, inconsistency caused by measurement error can be overcome.

In our context, this suggests that we use the estimator

β̂n = (W̃TW̃ − nΣuu)
−1W̃T Ỹ. (4.1.2)

The estimator (4.1.2) can be derived in much the same way as the Severini–

Staniswalis estimator. For every β, let ĝ(T, β) maximize the weighted likelihood

ignoring measurement error, and then form an estimator of β via a negatively

penalized operation:

minimize
n∑

i=1

{
Yi −W T

i β − ĝ(Ti, β)
}2 − βT Σuuβ. (4.1.3)

The fact that g(t) = E(Yi −W T
i β|T = t) suggests

ĝnw(t) =
n∑

j=1

ωnj(t)(Yj −W T
j β̂n) (4.1.4)

as the estimator of g(t).
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In some cases, it may be reasonable to assume that the model errors εi are

homoscedastic with common variance σ2. In this event, since E{Yi − XT
i β −

g(Ti)}2 = σ2 and E{Yi −W T
i β − g(Ti)}2 = E{Yi −XT

i β − g(Ti)}2 + βT Σuuβ, we

define

σ̂2
n = n−1

n∑

i=1

(Ỹi − W̃ T
i β̂n)2 − β̂T

n Σuuβ̂n (4.1.5)

as the estimator of σ2. The negative sign in the second term in (4.1.3) looks odd

until one remembers that the effect of measurement error is attenuation, i.e., to

underestimate β in absolute value when it is scalar, and thus one must correct

for attenuation by making β larger, not by shrinking it further towards zero.

In this chapter, we analyze the estimate (4.1.2) and show that it is consistent,

asymptotically normally distributed with a variance different from (2.1.1). Just

as in the Severini–Staniswalis algorithm, a kernel weighting ordinary bandwidth

of order h ∼ n−1/5 may be used.

Subsection 4.1.2 is the statement of the main results for β, while the results

for g(·) are stated in Subsection 4.1.3. Subsection 4.1.4 states the corresponding

results for the measurement error variance Σuu estimated. Subsection 4.1.5 gives

a numerical illustration. Several remarks are given in Subsection 4.1.6. All proofs

are delayed until the last subsection.

4.1.2 Asymptotic Normality for the Parameters

Our two main results are concerned with the limit distributions of the estimates

of β and σ2.

Theorem 4.1.1 Suppose that Assumptions 1.3.1-1.3.3 hold and that E(ε4 +

‖U‖4) <∞. Then β̂n is an asymptotically normal estimator, i.e.

n1/2(β̂n − β) −→L N(0,Σ−1ΓΣ−1),

where Γ = E[(ε − UTβ){X − E(X|T )}]⊗2 + E{(UUT − Σuu)β}⊗2 + E(UUT ε2).

Note that Γ = E(ε−UTβ)2Σ+E{(UUT−Σuu)β}⊗2+Σuuσ
2 if ε is homoscedastic

and independent of (X,T ).

Theorem 4.1.2 Suppose that the conditions of Theorem 4.1.1 hold. In addition,

we assume that the ε’s are homoscedastic with variance σ2, and independent of
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(X,T ). Then

n1/2(σ̂2
n − σ2) −→L N(0, σ2

∗),

where σ2
∗ = E{(ε− UTβ)2 − (βT Σuuβ + σ2)}2.

Remarks

• As described in the introduction, an important aspect of the results of

Severini and Staniswalis is that their methods lead to asymptotically normal

parameter estimates in kernel regression, even with the bandwidth of the

usual order hn ≈ n−1/5. The same holds for our estimators in general. For

example, suppose that the design points Ti satisfy that there exist constants

M1 and M2 such that

M1/n ≤ min
i≤n
|Ti − Ti−1| ≤ max

i≤n
|Ti − Ti−1| ≤M2/n.

Then Assumptions 1.3.3(i)-(iii) are satisfied by a simple verification.

• It is relatively easy to estimate the covariance matrix of β̂n. Let dim(X) be

the number of the components of X. A consistent estimate of Σ is just

{n− dim(X)}−1
n∑

i=1

{Wi − ĝw,h(Ti)}⊗2 − Σuu(
def
= Σ̂n).

In the general case, one can use (4.1.15) to construct a consistent sandwich-

-type estimate of Γ, namely

n−1
n∑

i=1

{
W̃i(Ỹi − W̃ T

i β̂n) + Σuuβ̂n

}⊗2
.

In the homoscedastic case, namely that ε is independent of (X,T, U) with

variance σ2, and with U being normally distributed, a different formula can

be used. Let C(β) = E{(UUT −Σuu)β}⊗2. Then a consistent estimate of Γ

is

(σ̂2
n + β̂T

n Σuuβ̂n)Σ̂n + σ̂2
nΣuu + C(β̂n).

• In the classical functional model, instead of obtaining an estimate of Σuu

through replication, it is instead assumed that the ratio of Σuu to σ2 is

known. Without loss of generality, we set this ratio equal to the identity
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matrix. The resulting analogue of the parametric estimators to the partially

linear model is to solve the following minimization problem:

n∑

i=1

∣∣∣∣∣∣
Ỹi − W̃ T

i β√
1 + ‖β‖2

∣∣∣∣∣∣

2

= min!,

where ‖ · ‖ denotes the Euclidean norm. One can use the techniques of

this section to show that this estimator is consistent and asymptotically

normally distributed. The asymptotic variance of the estimate of β for the

case where ε is independent of (X,T ) can be shown to be

Σ−1

[
(1 + ‖β‖2)2σ2Σ +

E{(ε− UTβ)2Γ1Γ
T
1 }

1 + ‖β‖2
]

Σ−1,

where Γ1 = (1 + ‖β‖2)U + (ε− UTβ)β.

4.1.3 Asymptotic Results for the Nonparametric Part

Theorem 4.1.3 Suppose that Assumptions 1.3.1-1.3.3 hold and that ωni(t) are

Lipschitz continuous of order 1 for all i = 1, . . . , n. If E(ε4 + ‖U‖4) < ∞,

then for fixed Ti, the asymptotic bias and asymptotic variance of ĝnw(t) are
∑n

i=1 ωni(t)g(Ti)− g(t) and
∑n

i=1 ω
2
ni(t)(β

T Σuuβ + σ2), respectively.

If (Xi, Ti) are random, then the bias and variance formulas are the usual ones

for nonparametric kernel regression.

4.1.4 Estimation of Error Variance

Although in some cases, the measurement error covariance matrix Σuu has been

established by independent experiments, in others it is unknown and must be

estimated. The usual method of doing so is by partial replication, so that we

observe Wij = Xi + Uij, j = 1, ...mi.

We consider here only the usual case that mi ≤ 2, and assume that a fraction

δ of the data has such replicates. Let W i be the sample mean of the replicates.

Then a consistent, unbiased method of moments estimate for Σuu is

Σ̂uu =

∑n
i=1

∑mi
j=1(Wij −W i)

⊗2

∑n
i=1(mi − 1)

.

The estimator changes only slightly to accommodate the replicates, becoming

β̂n =

[
n∑

i=1

{
W i − ĝw,h(Ti)

}⊗2 − n(1− δ/2)Σ̂uu

]−1

×
n∑

i=1

{
W i − ĝw,h(Ti)

}
{Yi − ĝy,h(Ti)} , (4.1.6)
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where ĝw,h(·) is the kernel regression of the W i’s on Ti.

Using the techniques in Subsection 4.1.7, one can show that the limit distri-

bution of (4.1.6) is N(0,Σ−1Γ2Σ
−1) with

Γ2 = (1− δ)E
[
(ε− UTβ){X − E(X|T )}

]⊗2

+δE
[
(ε− UT

β){X − E(X|T )}
]⊗2

+(1− δ)E
(
[{UUT − (1− δ/2)Σuu}β]⊗2 + UUT ε2

)

+δE
(
[{UUT − (1− δ/2)Σuu}β]⊗2 + UU

T
ε2
)
. (4.1.7)

In (4.1.7), U refers to the mean of two U ’s. In the case that ε is independent of

(X,T ), the sum of the first two terms simplifies to {σ2 + βT (1− δ/2)Σuuβ}Σ.

Standard error estimates can also be derived. A consistent estimate of Σ is

Σ̂n = {n− dim(X)}−1
n∑

i=1

{
W i − ĝw,h(Ti)

}⊗2 − (1− δ/2)Σ̂uu.

Estimates of Γ2 are also easily developed. In the case where ε is homoscedastic

and normal error, the sum of first two terms can be estimated by (σ̂2
n + (1 −

δ/2)β̂T
n Σ̂uuβ̂n)Σ̂n. The sum of the last two terms is a deterministic function of

(β, σ2,Σuu), and these estimates can be simply substituted into the formula.

A general sandwich-type estimator is developed as follows.

Ri = W̃ i(Ỹi − W̃
T

i β̂n) + Σ̂uuβ̂n/mi +
κ

δ(mi − 1)

{1

2
(Wi1 −Wi2)

⊗2 − Σ̂uu

}
,

where κ = n−1∑n
i=1m

−1
i . Then a consistent estimate of Γ2 is the sample covari-

ance matrix of the Ri’s.

4.1.5 Numerical Example

To illustrate the method, we consider data from the Framingham Heart Study.

We considered n = 1615 males with Y being their average blood pressure in a

fixed 2–year period, T being their age and W being the logarithm of the observed

cholesterol level, for which there are two replicates.

We did two analyses. In the first, we used both cholesterol measurements,

so that in the notation of Subsection 4.1.4, δ = 1. In this analysis, there is not

a great deal of measurement error. Thus, in our second analysis, which is given

for illustrative purposes, we used only the first cholesterol measurement, but

fixed the measurement error variance at the value obtained in the first analysis,



60 4. ESTIMATION WITH MEASUREMENT ERRORS
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FIGURE 4.1. Estimate of the function g(T ) in the Framingham data ignoring mea-
surement error.

in which δ = 0. For nonparametric fitting, we chose the bandwidth using cross-

validation to predict the response. Precisely we computed the squared error using

a geometric sequence of 191 bandwidths ranging in [1, 20]. The optimal band-

width was selected to minimize the square error among these 191 candidates. An

analysis ignoring measurement error found some curvature in T , see Figure 4.1

for the estimate of g(T ).

As mentioned below, we will consider four cases and use XploRe (Härdle,

Klinke and Müller, 1999) to calculate each case. Our results are as follows.

We first consider the case in which the measurement error is estimated, and

both cholesterol values are used to estimate Σuu. The estimator of β, ignoring

measurement error was 9.438, with an estimated standard error 0.187. When

we accounted for measurement error, the estimate increased to β̂ = 12.540, and

the standard error increased to 0.195.

In the second analysis, we fixed the measurement error variance and used

only the first cholesterol value. The estimator of β, ignoring measurement

error, was 10.744, with an estimated standard error 0.492. When we accounted

for measurement error, the estimate increased to β̂ = 13.690, and the standard

error increased to 0.495.
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4.1.6 Discussions

Our results have been phrased as if the X’s were fixed constants. If they are

random variables, the proofs can be simplified and the same results are obtained,

now with ui = Xi − E(Xi|Ti).

The nonparametric regression estimator (4.1.4) is based on locally weighted

averages. In the random X context, the same results apply if (4.1.4) is replaced

by a locally linear kernel regression estimator.

If we ignore measurement error, the estimator of β is given by (1.2.2) but

with the unobserved X replaced by the observed W . This differs from the correc-

tion for the attenuation estimator (4.1.2) by a simple factor which is the inverse

of the reliability matrix (Gleser, 1992). In other words, the estimator which ig-

nores measurement error is multiplied by the inverse of the reliability matrix to

produce a consistent estimator of β. This same algorithm is widely employed in

parametric measurement error problems for generalized linear models, where it

is often known as an example of regression calibration (see Carroll, et al., 1995, for

discussion and references). The use of regression calibration in our semiparametric

context thus appears to be promising when (1.1.1) is replaced by a semiparametric

generalized linear model.

We have treated the case in which the parametric part X of the model has

measurement error and the nonparametric part T is measured exactly. An in-

teresting problem is to interchange the roles of X and T , so that the parametric

part is measured exactly and the nonparametric part is measured with error, i.e.,

E(Y |X,T ) = θT + g(X). Fan and Truong (1993) have discussed the case where

the measurement error is normally distributed, and shown that the nonpara-

metric function g(·) can be estimated only at logarithmic rates, but not with rate

n−2/5. The next section will study this problem in detail.

4.1.7 Technical Details

We first point out two facts, which will be used in the proofs.

Lemma 4.1.1 Assume that Assumption 1.3.3 holds and that E(|ε1|4 + ‖U‖4) <
∞. Then

n−1
n∑

i=1

εi





n∑

j=1

ωnj(Ti)εj



 = oP (n−1/2),
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n−1
n∑

i=1

Uis





n∑

j=1

ωnj(Ti)Ujm



 = oP (n−1/2), (4.1.8)

for 1 ≤ s,m ≤ p.

Its proof can be completed in the same way as Lemma 5.2.3 (5.2.7). We refer the

details to Liang, Härdle and Carroll (1999).

Lemma 4.1.2 Assume that Assumptions 1.3.1-1.3.3 hold and that E(ε4 +‖U‖4)
<∞. Then the following equations

lim
n→∞

n−1W̃TW̃ = Σ + Σuu (4.1.9)

lim
n→∞

n−1W̃T Ỹ = Σβ (4.1.10)

lim
n→∞

n−1ỸT Ỹ = βT Σβ + σ2 (4.1.11)

hold in probability.

Proof. Since Wi = Xi + Ui and W̃i = X̃i + Ũi, we have

(W̃TW̃)sm = (X̃T X̃)sm + (ŨT X̃)sm + (X̃T Ũ)sm + (ŨT Ũ)sm. (4.1.12)

It follows from the strong law of large numbers and Lemma A.2 that

n−1
n∑

j=1

XjsUjm → 0 a.s. (4.1.13)

Observe that

n−1
n∑

j=1

X̃jsŨjm = n−1
[ n∑

j=1

XjsUjm −
n∑

j=1

{ n∑

k=1

ωnk(Tj)Xks

}
Ujm

−
n∑

j=1

{ n∑

k=1

ωnk(Tj)Ukm

}
Xjs

+
n∑

j=1

{ n∑

k=1

ωnk(Tj)Xks

}{ n∑

k=1

ωnk(Tj)Ukm

}]
.

Similar to the proof of Lemma A.3, we can prove that supj≤n |
∑n

k=1 ωnk(Tj)Ukm| =
oP (1), which together with (4.1.13) and Assumptions 1.3.3 (ii) deduce that the

above each term tends to zero. For the same reason, n−1(ŨT X̃)sm also converges

to zero.

We now prove

n−1(ŨT Ũ)sm → σ2
sm, (4.1.14)
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where σ2
sm is the (s,m)−th element of Σuu. Obviously

n−1(ŨT Ũ)sm =
1

n

[ n∑

j=1

UjsUjm −
n∑

j=1

{ n∑

k=1

ωnk(Tj)Uks

}
Ujm

−
n∑

j=1

{ n∑

k=1

ωnk(Tj)Ukm

}
Ujs

+
n∑

j=1

{ n∑

k=1

ωnk(Tj)Uks

}{ n∑

k=1

ωnk(Tj)Ukm

}]
.

Noting that n−1∑n
j=1 UjsUjm → σ2

sm, equation (4.1.14) follows from Lemma A.3

and (4.1.8). Combining (4.1.12), (4.1.14) with the arguments for 1/n(ŨT X̃)sm →
0 and 1/n(X̃T Ũ)sm → 0, we complete the proof of (4.1.9).

Next we prove (4.1.10). It is easy to see that

∣∣∣
n∑

j=1

Xjsg̃j

∣∣∣ ≤



n∑

j=1

X2
js

n∑

j=1

g̃2
j




1/2

≤ cnn
1/2




n∑

j=1

X2
js




1/2

≤ Cncn,

1

n
(W̃T ε̃)s → 0 and

1

n

n∑

j=1

Ũjsg̃j → 0

as n→∞. Thus,

1

n
(W̃T G̃)s =

1

n

n∑

j=1

X̃jsg̃j +
1

n

n∑

j=1

Ũjsg̃j

=
1

n

n∑

j=1

{
Xjs −

n∑

k=1

ωnk(Tj)Xks

}
g̃j +

1

n

n∑

j=1

Ũjsg̃j → 0

as n→∞. Combining the above arguments with (4.1.9), we complete the proof

(4.1.10). The proof of (4.1.11) can be completed by the similar arguments. The

details are omitted.

Proof of Theorem 4.1.1. Denote ∆n = (W̃TW̃ − nΣuu)/n. By Lemma 4.1.2

and direct calculations,

n1/2(β̂n − β) = n−1/2∆−1
n (W̃T Ỹ − W̃TW̃β + nΣuuβ)

= n−1/2∆−1
n (X̃T G̃ + X̃T ε̃+ ŨT G̃ + ŨT ε̃

−X̃T Ũβ − ŨT Ũβ + nΣuuβ).

By Lemmas A.2, A.3 and 4.1.1, we conclude that

n1/2(β̂n − β) = n−1/2∆−1
n

n∑

i=1

(
uiεi − uiU

T
i β + Uiεi − UiU

T
i β + Σuuβ

)
+ oP (1)

def
= n−1/2

n∑

i=1

ζin + oP (1). (4.1.15)



64 4. ESTIMATION WITH MEASUREMENT ERRORS

Since

lim
n→∞n

−1
n∑

i=1

ui = 0, lim
n→∞n

−1
n∑

i=1

uiu
T
i = Σ (4.1.16)

and E(ε4 + ‖U‖4) < ∞, it follows that the k−th element {ζ(k)
in } of {ζin} (k =

1, . . . , p) satisfies that for any given ζ > 0,

1

n

n∑

i=1

E{ζ(k)
in

2
I(|ζ(k)

in | > ζn1/2)} → 0 as n→∞.

This means that Lindeberg’s condition for the central limit theorem holds.

Moreover,

Cov(ζni) = E
{
ui(εi − UT

i β)2uT
i

}
+ E

{
(UiU

T
i − Σuu)β

}⊗2
+ E(UiU

T
i ε

2
i )

+uiE(UT
i ββ

TUiU
T
i ) + E(UiU

T
i ββ

TUi)ui,

which and (4.1.16) imply that

lim
n→∞

n−1
n∑

i=1

Cov(ζni) = E(ε− UTβ)2Σ + E{(U · UT − Σuu)β}⊗2 + E(UUT ε2).

Theorem 4.1.1 now follows.

Proof of Theorem 4.1.2. Denote

An = n−1
[

ỸT Ỹ ỸTW̃

W̃T Ỹ W̃TW̃

]
, A =

[
βT Σβ + σ2 βT Σ

Σβ Σ + Σuu

]
,

Ãn = n−1
[
(ε+ Uβ)T (ε+ Uβ) (ε+ Uβ)T (U + u)
(U + u)T (ε+ Uβ) (U + u)T (U + u)

]
.

According to the definition of σ̂2
n, a direct calculation and Lemma 4.1.1 yield that

n1/2(σ̂2
n − σ2) = n1/2

5∑

j=1

Sjn +
1

n1/2
(ε− Ũβ)T (ε− Ũβ)

− n1/2(β̂T
n Σuuβ̂n + σ2) + oP (1),

where S1n = (1,−β̂T
n )(An− Ãn)(1,−β̂T

n )T , S2n = (1,−β̂T
n )(Ãn−A)(0, βT − β̂T

n )T ,

S3n = (0, βT − β̂T
n )A(0, βT − β̂T

n )T , S4n = (0, βT − β̂T
n )(Ãn − A)(1,−βT )T and

S5n = −(β − β̂n)T (β − β̂n). It follows from Theorem 4.1.1 and Lemma 4.1.2 that

n1/2∑5
j=1 Sjn → 0 in probability and

n1/2(σ̂2
n − σ2) = n−1/2

n∑

i=1

{
(εi − UT

i β)2 − (βT Σuuβ + σ2)
}

+ oP (1).



4. ESTIMATION WITH MEASUREMENT ERRORS 65

Theorem 4.1.2 now follows immediately.

Proof of Theorem 4.1.3. Since β̂n is a consistent estimator of β, its asymptotic

bias and variance equal the relative ones of
∑n

j=1 ωnj(t)(Yj − W T
j β), which is

denoted by ĝ∗n(t). By simple calculations,

Eĝ∗n(t)− g(t) =
n∑

i=1

ωni(t)g(Ti)− g(t),

E{ĝ∗n(t)− Eĝ∗n(t)}2 =
n∑

i=1

ω2
ni(t)(β

T Σuuβ + σ2).

Theorem 4.1.3 is immediately proved.

4.2 Nonlinear Variables with Measurement Errors

4.2.1 Introduction

The previous section concerns the case where X is measured with error and T is

measured exactly. In this section, we interchange the roles of X and T so that the

parametric part is measured exactly and the nonparametric part is measured with

error, i.e., E(Y |X,T ) = XTβ+ g(T ) and W = T +U , where U is a measurement

error.

The following theorem shows that in the case of a large sample, there is no

cost due to the measurement error of T when the measurement error is ordinary

smooth or super smooth and X and T are independent. That is, the estimator

of β given in (4.2.4), under our assumptions, is equivalent to the estimator given

by (4.2.2) below when we suppose that Ti are known. This phenomenon looks

unsurprising since the related work on the partially linear model suggests that a

rate of at least n−1/4 is generally needed, and since Fan and Truong (1993) proved

that the nonparametric function estimate can reach the rate of OP (n−k/(2k+2α+1))

{< o(n−1/4)} in the case of ordinary smooth error. In the case of ordinary

smooth error, the proof of the theorem indicates that g(T ) seldomly affects our

estimate β̂∗
n for the case where X and T are independent.

Fan and Truong (1993) have treated the case where β = 0 and T is observed

with measurement error. They proposed a new class of kernel estimators using

deconvolution and found that optimal local and global rates of convergence of

these estimators depend heavily on the tail behavior of the characteristic function

of the error distribution; the smoother, the slower.
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In model (1.1.1), we assume that εi are i.i.d. and that the covariates Ti are

measured with errors, and we can only observe their surrogates Wi, i.e.,

Wi = Ti + Ui, (4.2.1)

where the measurement errors Ui are i.i.d., independent of (Yi, Xi, Ti), with

mean zero and covariance matrix Σuu. We will assume that U has a known distri-

bution, which was proposed by Fan and Truong (1993) to assure that the model

is identifiable. The model (1.1.1) with (4.2.1) can be seen as a mixture of linear

and nonlinear errors-in-variables models.

Recalling the argument for (1.2.2), it can be obtained as follows. Let ĝy,h(·)
and ĝx,h(·) be the kernel regression estimators of E(Y |T ) and E(X|T ), respec-

tively. Then

βLS =
[ n∑

i=1

{Xi − ĝx,h(Ti)}⊗2
]−1

n∑

i=1

{Xi − ĝx,h(Ti)}{Yi − ĝy,h(Ti)}. (4.2.2)

Due to the disturbance of measurement error U and the fact that ĝx,h(Ti)

and ĝy,h(Ti) are no longer statistics, the least squares form of (4.2.2) must be

modified. In the next subsection, we will redefine an estimator of β. More exactly,

we have to find a new estimator of g(·) and then perform the regression of Y and

X on W . The asymptotic normality of the resulting estimator of β depends on

the smoothness of the error distribution.

4.2.2 Construction of Estimators

As pointed out in the former subsection, our first objective is to estimate the non-

parametric function g(·) when T is observed with error. This can be overcome

by using the ideas of Fan and Truong (1993). By using the deconvolution tech-

nique, one can construct consistent nonparametric estimates of g(·) with some

convergence rate under appropriate assumptions. First, we briefly describe the

deconvolution method, which has been studied by Stefanski and Carroll (1990),

and Fan and Truong (1993). Denote the densities of W and T by fW (·) and fT (·),
respectively. As pointed out in the literature, fT (·) can be estimated by

f̂n(t) =
1

nhn

n∑

j=1

Kn

(
t−Wj

hn

)

with

Kn(t) =
1

2π

∫

R1
exp(−ist) φK(s)

φU(s/hn)
ds, (4.2.3)
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where φK(·) is the Fourier transform of K(·), a kernel function and φU(·) is the

characteristic function of the error variable U . For a detailed discussion, see Fan

and Truong (1993). Denote

ω∗
ni(·) = Kn

( · −Wi

hn

)/∑

j

Kn

( · −Wj

hn

)
def
=

1

nhn

Kn

( · −Wi

hn

)/
f̂n(·).

Now let us return to our goal. Replacing the gn(t) in Section 1.2 by

g∗n(t) =
n∑

i=1

ω∗
ni(t)(Yi −XT

i β),

then the least squares estimator β̂∗
n of β can be explicitly expressed as

β̂∗
n = (X̃T X̃)−1(X̃T Ỹ), (4.2.4)

where Ỹ denotes (Ỹ1, . . . , Ỹn) with Ỹi = Yi −
∑n

j=1 ω
∗
nj(Wi)Yj and X̃ denotes

(X̃1, . . . , X̃n) with X̃i = Xi −
∑n

j=1 ω
∗
nj(Wi)Xj. The estimator β̂∗

n will be shown

to possess asymptotic normality under appropriate conditions.

4.2.3 Asymptotic Normality

Assumption 4.2.1 (i) The marginal density fT (·) of the unobserved covariate

T is bounded away from 0 on [0, 1], and has a bounded k−th derivative, where

k is a positive integer. (ii) The characteristic function of the error distribution

φU(·) does not vanish. (iii) The distribution of the error U is ordinary smooth

or super smooth.

The definitions of super smooth and ordinary smooth distributions were given

by Fan and Truong (1993). We also state them here for easy reference.

1. Super smooth of order α: If the characteristic function of the error distri-

bution φU(·) satisfies

d0|t|α0 exp(−|t|α/ζ) ≤ |φU(t)| ≤ d1|t|α1 exp(−|t|α/ζ) as t→∞, (4.2.5)

where d0, d1, α and ζ are positive constants, and α0 and α1 are constants.

2. Ordinary smooth of order α: If the characteristic function of the error

distribution φU(·) satisfies

d0|t|−α ≤ |φU(t)| ≤ d1|t|−α as t→∞, (4.2.6)

for positive constants d0, d1 and α.
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For example, standard normal and Cauchy distributions are super smooth with

α = 2 and α = 1 respectively. The gamma distribution of degree p and the

double exponential distribution are ordinary smooth with α = p and α = 2,

respectively. We should note that an error cannot be both ordinary smooth and

super smooth.

Assumption 4.2.2 (i) The regression functions g(·) and hj(·) have continuous

kth derivatives on [0, 1].

(ii) The kernel K(·) is a k−th order kernel function, that is

∫ ∞

−∞
K(u)du = 1,

∫ ∞

−∞
ulK(u)du

{
= 0 l = 1, . . . , k − 1,
6= 0 l = k.

Assumption 4.2.2 (i) modifies Assumption 1.3.2 to meet the condition 1 of Fan

and Truong (1993).

Our main result is concerned with the limit distribution of the estimate of β

stated as follows.

Theorem 4.2.1 Suppose that Assumptions 1.3.1, 4.2.1 and 4.2.2 hold and that

E(|ε|3 + ‖U‖3) < ∞. If either of the following conditions holds, then β̂∗
n is an

asymptotically normal estimator, i.e., n1/2(β̂n − β) −→L N(0, σ2Σ−1).

(i) The error distribution is super smooth. X and T are mutually independent.

φK(t) has a bounded support on |t| ≤ M0. We take the bandwidth hn =

c(log n)−1/α with c > M0(2/ζ)
1/α;

(ii) The error distribution is ordinary smooth. We take hn = dn−1/(2k+2α+1)

with d > 0 and 2k > 2α+ 1.

tαφU(t)→ c, tα+1φ′
U(t) = O(1) as t→∞

for some constant c 6= 0,
∫ ∞

−∞
|t|α+1{φK(t) + φ′

K(t)}dt <∞,
∫ ∞

−∞
|tα+1φK(t)|2dt <∞.

4.2.4 Simulation Investigations

We conduct a moderate sample Monte-Carlo simulation to show the behavior

of the estimator β̂∗
n. A generalization of the model studied by Fan and Truong

(1993) is considered.

Y = XTβ + g(T ) + ε and W = T + U with β = 0.75,
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where X ∼ N(0, 1), T ∼ N(0.5, 0.252), ε ∼ N(0, 0.00152) and g(t) = t3+(1− t)3
+.

Two kinds of error distributions are examined to study the effect of them on the

mean squared error (MSE) of the estimator β̂∗
n: one is normal and the other is

double exponential.

1. (Double exponential error). U has a double exponential distribution:

fU(u) = (
√

2σ0)
−1 exp(−

√
2|u|/σ0) for σ2

0 = (3/7)Var(T ).

Let K(·) be the Gaussian kernel

K(x) = (
√

2π)−1 exp(−x2/2),

then

Kn(x) = (
√

2π)−1 exp(−x2/2)
{
1− σ2

0

2h2
n

(x2 − 1)
}
. (4.2.7)

2. (Normal error). U ∼ N(0, 0.1252). Suppose the function K(·) has a Fourier

transform by φK(t) = (1− t2)2
+. By (4.2.3),

Kn(t) =
1

π

∫ 1

0
cos(st)(1− s2)3 exp

(0.1252s2

2h2
n

)
ds. (4.2.8)

For the above model, we use three different kernels: (4.2.7), (4.2.8) and

quartic kernel (15/16)(1−u2)2I(|u| ≤ 1) (ignoring measurement error). Our

aim is to compare the results in the cases of considering measurement error and

ignoring measurement error. The results for different sample numbers are pre-

sented in N = 2000 replications. The mean square errors (MSE) are calculated

based on 100, 500, 1000 and 2000 observations with three kinds of kernels. Table

4.1 gives the final detailed simulation results. The simulations reported show that

the behavior of MSE with double exponential error model is the best one, while

the behavior of MSE with quartic kernel is the worst one.

In the simulation procedure, we also fit the nonparametric part using

ĝ∗n(t) =
n∑

i=1

ω∗
ni(t)(Yi −XT

i β̂
∗
n), (4.2.9)

where β̂∗
n is the resulting estimator given in (4.2.4).

An analysis ignoring measurement error (with quartic kernel) finds some

curvature in T . See Figure 4.2 for the comparison of g(T ) with its estimator
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TABLE 4.1. MSE(×10−3) of the estimator β̂∗
n

Kernel n = 100 n = 500 n = 1000 n = 2000
MSE MSE MSE MSE

(4.2.7) 3.095000 0.578765 0.280809 0.151008
(4.2.8) 7.950000 1.486650 0.721303 0.387888
quartic 15.52743 10.36125 8.274210 4.166037

(4.2.9) using the different-size samples. Each curve represents the mean of 2000

realizations of these true curves and estimating curves. The solid lines stand for

true values and the dashed lines stand for the values of the resulting estimator

given by (4.2.9).

The bandwidth used in our simulation is selected using cross-validation to

predict the response. More precisely, we compute the average squared error using a

geometric sequence of 41 bandwidths ranging in [0.1, 0.5]. The optimal bandwidth

is selected to minimize the average squared error among 41 candidates. The results

reported here support our theoretical procedure, and illustrate that our estimators

for both the parametric and nonparametric parts work very well numerically.
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FIGURE 4.2. Estimates of the function g(T ).

4.2.5 Technical Details

Lemma 4.2.1 provides bounds for hj(Ti)−
∑n

k=1 ω
∗
nk(Wi)hj(Tk) and g(Ti)−

∑n
k=1 ω

∗
nk

(Wi)g(Tk). The proof is partly based upon the conclusion of Fan and Truong
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(1993).

Lemma 4.2.1 Suppose that Assumptions 1.3.1 and 4.2.2 hold. Then for all 1 ≤
l ≤ p and 1 ≤ i, j ≤ p

E(g̃∗i g̃
∗
j h̃

∗
ilh̃

∗
jl) = O(h4k),

where

g̃∗i =
1

fT (Wi)

n∑

k=1

{g(Ti)− g(Tk)}
1

nhn

Kn

(Wi −Wk

hn

)
,

h̃∗il =
1

fT (Wi)

n∑

k=1

{hl(Ti)− hl(Tk)}
1

nhn

Kn

(Wi −Wk

hn

)
.

Proof. Similar to the proof of Lemma 1 of Fan and Truong (1993), we have

E(g̃∗i g̃
∗
j h̃

∗
ilh̃

∗
jl) =

1

h4
n

∫ ∞

−∞
· · ·

∫ ∞

−∞︸ ︷︷ ︸
8

{g(u1)− g(u2)}{g(u3)− g(u4)}{hl(v1)− hl(v2)}

{hl(v3) − hl(v4)} ×Kn

(u1 − u2

hn

)
Kn

(u3 − u4

hn

)
Kn

(v1 − v2

hn

)
Kn

(v3 − v4

hn

)

fT (u2)fT (u4)fT (v2)fT (v4)
4∏

q=1

duq dvq

= O(h4k
n )

by applying Assumption 4.2.2.

Proof of Theorem 4.2.1. We first outline the proof of the theorem. We decom-

pose
√
n(βn−β) into three terms. Then we calculate the tail probability value of

each term. By the definition of β̂∗
n,

√
n(β̂∗

n − β) =
√
n(X̃T X̃)−1

[ n∑

i=1

X̃ig̃i −
n∑

i=1

X̃i

{ n∑

j=1

ω∗
nj(Wi)εj

}
+

n∑

i=1

X̃iεi

]

def
= A(n)

[ 1√
n

n∑

i=1

X̃ig̃i −
1√
n

n∑

i=1

X̃i

{ n∑

j=1

ω∗
nj(Wi)εj

}

+
1√
n

n∑

i=1

X̃iεi

]
, (4.2.10)

where A(n) = n−1X̃T X̃ and g̃i = g(Ti) −
∑n

k=1 ω
∗
nk(Wi)g(Tk). Similar to Lemma

A.2 below, we can show that A(n) converges to Σ−1 in probability.

In view of (4.2.10), in order to prove Theorem 4.2.1, it suffices to show that
n∑

k=1

X̃ig̃i = oP (
√
n), (4.2.11)

n∑

i=1

X̃i

{ n∑

j=1

ω∗
nj(Wi)εj

}
= oP (

√
n), (4.2.12)
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and

1√
n

n∑

i=1

X̃iεi −→L N(0, σ2Σ). (4.2.13)

Obviously for all 1 ≤ j ≤ p

n∑

i=1

X̃ij g̃i =
n∑

i=1

uij g̃i +
n∑

i=1

h̃nj(Ti)g̃i −
n∑

i=1

n∑

q=1

ω∗
nq(Wi)uqj g̃i, (4.2.14)

where h̃nj(Ti) = hj(Ti)−
∑n

k=1 ω
∗
nk(Wi)hj(Tk).

Similar to the proof of Lemma A.3, we can prove that for 1 ≤ j ≤ p,

max
1≤i≤n

∣∣∣
n∑

k=1

ω∗
nk(Wi)εk

∣∣∣ = oP (n−1/4) (4.2.15)

max
1≤i≤n

∣∣∣
n∑

k=1

ω∗
nk(Wi)ukj

∣∣∣ = oP (n−1/4). (4.2.16)

Equations (4.2.15) and (4.2.16) will be used repeatedly in the following proof.

Taking r = 3, Vk = ukl of ukj, aji = ω∗
ni(Wi), p1 = 2/3, and p2 = 0 in Lemma A.3

below, we can prove both (4.2.15) and (4.2.16).

For the case where U is ordinary smooth error. Analogous to the proof of

Lemma A.3, we can prove that

n∑

i=1

uij g̃i = oP (n1/2). (4.2.17)

Similarly,

∣∣∣
n∑

i=1

{ n∑

q=1

ω∗
nq(Wi)uqj

}
g̃i

∣∣∣ ≤ nmax
i≤n
|g̃i|max

i≤n

∣∣∣
n∑

q=1

ω∗
nq(Wi)uqj

∣∣∣ = oP (n1/2). (4.2.18)

In view of (4.2.14), (4.2.17) and (4.2.18), in order to prove (4.2.11), it suffices to

show

n∑

i=1

h̃nj(Ti)g̃i = oP (n1/2)

which is equivalent to

n∑

k=1

n∑

l=1

n∑

i=1

{g(Ti)− g(Tk)}{hj(Ti)− hj(Tl)}ωnk(Ti)ωnl(Ti) = oP (n1/2). (4.2.19)

In order to prove (4.2.19), noting that

sup
t
|f̂n(t)− fT (t)| = oP (1)
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which is similar to Lemma 2 of Fan and Truong (1993), it suffices to show
n∑

i=1

n∑

k=1

n∑

l=1

{g(Ti)− g(Tk)}{hj(Ti)− hj(Tl)}
1

f 2
T (Wi)

1

n2h2
n

Kn

(Wi −Wk

hn

)
Kn

(Wi −Wl

hn

)

=
n∑

i=1

g̃∗i h̃
∗
ij = oP (

√
n),

which follows from for any given δ > 0

P
(∣∣∣

n∑

i=1

g̃∗i h̃
∗
ij

∣∣∣ > δ
√
n
)
≤ 1

nδ2
E
( n∑

i=1

g̃∗i h̃
∗
ij

)2

=
1

nδ2

{ n∑

i=1

E(g̃∗i h̃
∗
ij)

2 +
n∑

i=1

n∑

k=1,k 6=i

E(g̃∗i g̃
∗
kh̃

∗
ijh̃

∗
kj)
}

=
1

nδ2
{O(nh4k

n ) +O(n2h4k
n )} = o(1). (4.2.20)

The last step uses Lemma 4.2.1 and the fact that hn = dn−1/(2k+2α+1) with d > 0

and 2k > 2α+ 1.

Thus, equations (4.2.17), (4.2.18) and (4.2.20) imply (4.2.11).

Observe that
n∑

i=1

{ n∑

k=1

X̃kjω
∗
ni(Wk)

}
εi =

n∑

i=1

{ n∑

k=1

ukjω
∗
ni(Wk)

}
εi

+
n∑

i=1

{ n∑

k=1

h̃nj(Tk)ω
∗
ni(Wk)

}
εi

−
n∑

i=1

[ n∑

k=1

{ n∑

q=1

uqjω
∗
nq(Wk)

}
ω∗

ni(Wk)
]
εi.(4.2.21)

In order to prove (4.2.12), it suffices to show
n∑

i=1

{ n∑

k=1

ukjω
∗
ni(Wk)

}
εi = op(n

1/2) (4.2.22)

n∑

i=1

{ n∑

k=1

h̃nk(Tj)ω
∗
ni(Wk)

}
εi = op(n

1/2) (4.2.23)

n∑

i=1

[ n∑

k=1

{ n∑

q=1

uqjω
∗
nq(Wk)

}
ω∗

ni(Wk)
]
εi = op(n

1/2) (4.2.24)

Applying (4.2.15) and (4.2.16), equation (4.2.24) follows from

∣∣∣
n∑

i=1




n∑

k=1

{ n∑

q=1

uqjω
∗
nq(Wk)

}
ω∗

ni(Wk)


 εi

∣∣∣ ≤ nmax
k≤n

∣∣∣
n∑

i=1

ω∗
ni(Wk)εi

∣∣∣

×max
k≤n

∣∣∣
k∑

q=1

uqjω
∗
nq(Wj)

∣∣∣

= op(n
1/2).
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Similar to the proof of Lemma A.3 below, we finish the proof of (4.2.22).

Analogous to (4.2.19)-(4.2.20), in order to prove (4.2.23), it suffices to show

that

1

nhn

n∑

i=1

{ n∑

k=1

1

fT (Wi)
Kn

(Wk −Wi

hn

)
h̃∗kj

}
εi = oP (n1/2),

which follows from

1

n2h2
n

n∑

i=1

E
{ n∑

k=1

1

fT (Wi)
Kn

(Wk −Wi

hn

)
h̃∗kj

}2
Eε2

i = o(n).

Thus, the proof of (4.2.12) follows from (4.2.22)-(4.2.24.)

The proof of (4.2.13) follows from CLT and the fact that 1/nX̃T X̃→ Σ holds

in probability as n→∞.

When U is a super smooth error. By checking the above proofs, we find that

the proof of (4.2.11) is required to be modified due to the fact that both (4.2.17)

and (4.2.20) are no longer true when U is a super smooth error.

Similar to (4.2.19)-(4.2.20), in order to prove (4.2.11), it suffices to show that

1

n2h2
n

n∑

i=1

{ n∑

k=1

(Xij −Xkj)
1

fT (Wi)
Kn

(Wi −Wk

hn

)}

{ n∑

k=1

{g(Ti)− g(Tk)}
1

fT (Wi)
Kn

(Wi −Wk

hn

)}

= oP (
√
n).

Let

X̃∗
ij =

1

nhn

n∑

k=1

(Xij −Xkj)
1

fT (Wi)
Kn

(Wi −Wk

hn

)

g̃∗i =
1

nhn

n∑

k=1

{g(Ti)− g(Tk)}
1

fT (Wi)
Kn

(Wi −Wk

hn

)
.

Observe that

E
( n∑

i=1

X̃∗
ij g̃

∗
i

)2
=

n∑

i=1

E(X̃∗
ij g̃

∗
i )

2 +
n∑

i=1

n∑

k=1,k 6=i

E(X̃∗
ij g̃

∗
i X̃

∗
kj g̃

∗
k).

Since Xi and (Ti,Wi) are independent, we have for j = 1, T̃ = (T1, · · · , Tn) and

W̃ = (W1, · · · ,Wn),

E(X̃∗
i1X̃

∗
k1|T̃,W̃) = E{(X11 −X21)(X31 −X21)}

1

n2h2
n

∑

l=1,l 6=i,k
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Kn

(Wi −Wl

hn

)
Kn

(Wk −Wl

hn

)

+E(X11 −X21)
2 1

n2h2
n

Kn

(Wi −Wk

hn

)
Kn

(Wk −Wi

hn

)

+E{(X11 −X21)(X31 −X11)}
1

n2h2
n

∑

l=1,l 6=i,k

Kn

(Wi −Wl

hn

)
Kn

(Wk −Wi

hn

)

+E{(X11 −X21)(X21 −X31)}
1

n2h2
n

∑

l=1,l 6=i,k

Kn

(Wi −Wk

hn

)
Kn

(Wk −Wl

hn

)

for all 1 ≤ i, k ≤ n.

Similar to the proof of Lemma 4.2.1, we can show that for all 1 ≤ j ≤ p

E
( n∑

i=1

X̃∗
ij g̃

∗
i

)2
= O(nhn).

Finally, for any given η > 0

P
{∣∣∣

n∑

i=1

X̃∗
ij g̃

∗
i

∣∣∣ >
√
nη
}
≤ 1

nη2
E
( n∑

i=1

X̃∗
ij g̃

∗
i

)2
= O(hn)→ 0

as n → ∞, which implies (4.2.23) and therefore the proof of Theorem 4.2.1 is

completed.
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5

SOME RELATED THEORETIC TOPICS

5.1 The Laws of the Iterated Logarithm

5.1.1 Introduction

The CLT states that the estimator given in (1.2.2) converges to normal distribu-

tion, but does not provide information about the fluctuations of this estimator

about the true value. The laws of iterative logarithm (LIL) complement

the CLT by describing the precise extremes of the fluctuations of the estimator

(1.2.2). This forms the key of this section. The following studies assert that the

extreme fluctuations of the estimators (1.2.2) and (1.2.4) are essentially the same

order of magnitude (2 log log n)1/2 as classical LIL for the i.i.d. case.

The aim of this section is concerned with the case where εi are i.i.d. and

(Xi, Ti) are fixed design points. Similar results for the random design case

can be found in Hong and Cheng (1992a) and Gao (1995a, b). The version of the

LIL for the estimators is stated as follows:

Theorem 5.1.1 Suppose that Assumptions 1.3.1-1.3.3 hold. If E|ε1|3 <∞, then

lim sup
n→∞

(
n

2 log log n

)1/2

|βLSj − βj| = (σ2σjj)1/2, a.s. (5.1.1)

Furthermore, let bn = Cn−3/4(log n)−1 in Assumption 1.3.3 and if Eε4
1 <∞, then

lim sup
n→∞

(
n

2 log log n

)1/2

|σ̂2
n − σ2| = (V arε2

1)
1/2, a.s. (5.1.2)

where βLSj, βj and σjj denote the j−th element of βLS, β and the (j, j)−th

element of Σ−1 respectively.

We outline the proof of the theorem. First we decompose
√
n(βLS − β) and

√
n(σ̂2

n − σ2) into three terms and five terms respectively. Then we calculate the

tail probability value of each term. We have, from the definitions of βLS and

σ̂2
n, that

√
n(βLS − β) =

√
n(X̃T X̃)−1

{ n∑

i=1

X̃ig̃i −
n∑

i=1

X̃i

n∑

j=1

ωnj(Ti)εj +
n∑

i=1

X̃iεi

}

def
= n(X̃T X̃)−1(H1 −H2 +H3); (5.1.3)
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√
n(σ̂2

n − σ2) =
1√
n
ỸT{F − X̃(X̃T X̃)−1X̃T}Ỹ −

√
nσ2

=
1√
n
εT ε−

√
nσ2 − 1√

n
εT X̃(X̃T X̃)−1X̃T ε

+
1√
n
ĜT{F − X̃(X̃T X̃)−1X̃T}Ĝ

− 2√
n
ĜT X̃(X̃T X̃)−1X̃T ε+

2√
n
ĜT ε

def
=
√
n{(I1 − σ2)− I2 + I3 − 2I4 + 2I5}, (5.1.4)

where Ĝ = {g(T1)− ĝn(T1), . . . , g(Tn)− ĝn(Tn)}T and ĝn(·) is given by (1.2.3).

In the following steps we prove that each element of H1 and H2 converges

almost surely to zero, and
√
nIi also converge almost surely to zero for i =

2, 3, 4, 5. The proof of the first half assertion will be finished in steps 1 and 2. The

proof of the second half assertion will be arranged in Subsection 5.1.3 after we

complete the proof of (5.1.1). Finally, we apply Corollary 5.2.3 of Stout (1974) to

complete the proof of the theorem.

5.1.2 Preliminary Processes

Step 1.

√
nH1j =

√
n

n∑

i=1

x̃ij g̃i = O(n1/2 log−1/2 n) for j = 1, . . . , p. (5.1.5)

Proof. Recalling the definition of hnij given on the page 29,
√
nH1j can be de-

composed into
n∑

i=1

uij g̃i +
n∑

i=1

hnij g̃i −
n∑

i=1

n∑

q=1

ωnq(Ti)uqj g̃i.

By Lemma A.1,
∣∣∣

n∑

i=1

hnij g̃i

∣∣∣ ≤ nmax
i≤n
|g̃i|max

i≤n
|hnij| = O(nc2n).

Applying Abel’s inequality, and using (1.3.1) and Lemma A.1 below, we have for

all 1 ≤ j ≤ p,
n∑

i=1

uij g̃i = O(n1/2 log ncn)

and
∣∣∣

n∑

i=1

n∑

q=1

ωnq(Ti)uqj g̃i

∣∣∣ ≤ nmax
i≤n
|g̃i|max

i≤n

∣∣∣
n∑

q=1

ωnq(Ti)uqj

∣∣∣

= O(n2/3cn log n).
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The above arguments imply that

√
nH1j = O(n1/2 log−1/2 n) for j = 1, . . . , p.

We complete the proof of (5.1.5).

Step 2.

√
nH2j = o(n1/2) for j = 1, . . . , p, a.s. (5.1.6)

Proof. Observe that

√
nH2j =

n∑

i=1

{ n∑

k=1

x̃kjωni(Tk)
}
εi

=
n∑

i=1

{ n∑

k=1

ukjωni(Tk)
}
εi +

n∑

i=1

{ n∑

k=1

hnkjωni(Tk)
}
εi

−
n∑

i=1

[ n∑

k=1

{ n∑

q=1

uqjωnq(Tk)
}
ωni(Tk)

]
εi.

We now handle these three terms separately. Applying Lemma A.3 with aji =
∑n

k=1 ukjωni(Tk), r = 2, Vk = εk, 1/4 < p1 < 1/3 and p2 = 1− p1, we obtain that

n∑

i=1

{ n∑

k=1

ukjωni(Tk)
}
εi = O(n−(2p1−1)/2 log n), a.s. (5.1.7)

Similarly, by Lemma A.1 and (A.3), we get

∣∣∣
n∑

i=1

{ n∑

k=1

hnkjωni(Tk)
}
εi

∣∣∣ ≤ nmax
k≤n

∣∣∣
n∑

i=1

ωni(Tk)εi

∣∣∣max
k≤n
|hnkj|

= O(n2/3cn log n), a.s. (5.1.8)

Analogously, applying (A.3) and Abel’s inequality we have

∣∣∣
n∑

i=1

[ n∑

k=1

{ n∑

q=1

uqjωnq(Tk)
}
ωni(Tk)

]
εi

∣∣∣ ≤ nmax
k≤n

∣∣∣
n∑

i=1

ωni(Tk)εi

∣∣∣max
k≤n

∣∣∣
n∑

q=1

uqjωnq(Tk)
∣∣∣

= O(n1/3 log2 n) = o(n1/2), a.s. (5.1.9)

A combination of (5.1.7)–(5.1.9) yields (5.1.6).

5.1.3 Appendix

In this subsection we complete the proof of the main result. At first, we state a

conclusion, Corollary 5.2.3 of Stout (1974), which will play an elementary role in

our proof.
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Conclusion S. Let V1, . . . , Vn be independent random variables with mean zero.

There exists a δ0 > 0 such that

max
1≤i≤n

E|Vi|2+δ0 <∞ and lim inf
n→∞

1

n

n∑

i=1

V ar(Vi) > 0.

Then

lim sup
n→∞

|Sn|√
2s2

n log log s2
n

= 1, a.s.,

where Sn =
∑n

i=1 Vi and s2
n =

∑n
i=1EV

2
i .

Recalling that (5.1.3) and (5.1.5) and (5.1.6), in order to complete the proof

of (5.1.1), it suffices to prove

lim sup
n→∞

{
|(Σ−1X̃ε)j|
2n log log n

}1/2

= (σ2σjj)1/2, a.s. (5.1.10)

By a calculation, we get

1√
n

(Σ−1X̃ε)j =
p∑

k=1

σjk
[
Wk +

1√
n

n∑

q=1

{xqk − hk(Tq)}εq

]

=
p∑

k=1

σjkWk +
1√
n

n∑

q=1

( p∑

k=1

σjkuqk

)
εq,

where

Wk =
1√
n

n∑

i=1

{
hk(Ti)−

n∑

q=1

ωnq(Ti)xqk

}
εi for 1 ≤ k ≤ p.

Analogous to the proof of (A.4), by Lemma A.1 we can prove for all 1 ≤ k ≤ p

|Wk| ≤
1√
n

∣∣∣
n∑

i=1

εi

{
hk(Ti)−

n∑

q=1

ωnq(Ti)xqk

}∣∣∣

+
1√
n

∣∣∣
n∑

i=1

{ n∑

q=1

ωnq(Ti)uqk

}∣∣∣

= O(log n) · o(log−1 n) = o(1) a.s.

using the fact that {εi} is independent of (Xi, Ti).

Denote Wij =
∑p

k=1 σ
jkuikεi. Then EWij = 0 for i = 1, . . . , n, and

E|Wij|2+δ0 ≤ C max
1≤i≤n

E|εi|2+δ0 <∞,

and

lim inf
n→∞

1

n

n∑

i=1

EW 2
ij = σ2(σj1, . . . , σjp)

( 1

n
lim

n→∞

n∑

i=1

uiu
T
i

)
(σj1, . . . , σjp)T

= σ2(σj1, . . . , σjp)Σ(σj1, . . . , σjp)T = σ2σjj > 0.
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It follows from Conclusion S that (5.1.10) holds. This completes the proof of

(5.1.1).

Next, we prove the second part of Theorem 5.1.1, i.e., (5.1.2). We show that
√
nIi = o(1) (i = 2, 3, 4, 5) hold with probability one, and then deal with

√
n(I1−

σ2).

It follows from Lemma A.1 and (A.3) that

|
√
nI3| ≤ C

√
n max

1≤i≤n

{∣∣∣g(Ti)−
n∑

k=1

ωnk(Ti)g(Tk)
∣∣∣
2
+
∣∣∣

n∑

k=1

ωnk(Ti)εk

∣∣∣
2}

= o(1), a.s.

It follows from Lemma A.1 and (5.1.5) and (5.1.10) that

√
nI2 = o(1),

√
nI4 = o(1), a.s.

We now consider I5. We decompose I5 into three terms and then prove that each

term is o(n−1/2) with probability one. Precisely,

I5 =
1

n

{ n∑

i=1

g̃iεi −
n∑

k=1

ωni(Tk)ε
2
k −

n∑

i=1

n∑

k 6=i

ωni(Tk)εiεk

}

def
= I51 + I52 + I53.

From Lemma A.1, we know that

√
nI51 = o(1) and

√
nI52 ≤ bnn

−1/2
n∑

i=1

ε2
i = O(log−2 n) = o(1) a.s. (5.1.11)

Observe that

√
n|I53| ≤

1√
n

∣∣∣
n∑

i=1

∑

k 6=i

ωnk(Ti)εiεk − In
∣∣∣+ In

def
=

1√
n

(J1n + In),

where In =
∑n

i=1

∑n
j 6=i ωnj(ti)(ε

′
j −Eε′j)(ε′i −Eε′i). Similar arguments used in the

proof of Lemma A.3 imply that

J1n ≤ max
1≤j≤n

∣∣∣
n∑

i=1

ωnj(Ti)εi

∣∣∣
{ n∑

i=1

|ε′′i |+ E|εi|′′
}

+ max
1≤j≤n

∣∣∣
n∑

i=1

ωnj(Ti)(ε
′
i − Eε′i)

∣∣∣
{ n∑

i=1

|ε′′i |+ E|ε′′i |
}

= o(1), a.s. (5.1.12)

It follows from Lemma A.4 and (5.1.12) that

√
nI53 = o(1) a.s. (5.1.13)
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A combination of (5.1.11)–(5.1.13) leads that
√
nI5 = o(1) a.s.

To this end, using Hartman-Winter theorem, we have

lim sup
n→∞

(
n

2 log log n

)1/2

|I1 − σ2| = (V arε2
1)

1/2 a.s.

This completes the proof of Theorem 5.1.1.

5.2 The Berry-Esseen Bounds

5.2.1 Introduction and Results

It is of theoretical and practical interest to characterize the error of approximation

in the CLT. This section is concerned with establishing the Berry-Esseen bounds

for the estimators defined in (1.2.2) and (1.2.4). Our results focus only on the

case where εi are i.i.d. and (Xi, Ti) are fixed design points. Similar discussions for

the random design case can be found in Hong and Cheng (1992b), Gao (1992),

Gao, Hong and Liang (1995) and Liang (1994b).

In order to state the main results of this section, we need the following addi-

tional assumption.

Assumption 5.2.1

max
1≤i≤n

‖ui‖ ≤ B0 <∞, (5.2.1)

lim sup
n→∞

n1/2|vjk − σjk| <∞ (5.2.2)

for all 1 ≤ j, k ≤ p, where 1/n
∑n

i=1 uiu
T
i = (vjk)1≤j,k≤p and Σ = (σjk)1≤j,k≤p.

Let βLSj and βj denote the j−th components of βLS and β respectively.

Theorem 5.2.1 Assume that Assumptions 5.2.1 and 1.3.1-1.3.3 hold. Let E|ε1|3

<∞. Then for all 1 ≤ j ≤ p and large enough n

sup
x

∣∣∣P{
√
n(βLSj − βj)/(σ

2σjj)1/2 < x} − Φ(x)
∣∣∣ = O(n1/2c2n), (5.2.3)

Furthermore, for cn = Cn−1/2 we have for all 1 ≤ j ≤ p and large enough n

sup
x

∣∣∣P{
√
n(βLSj − βj)/(σ

2σjj)1/2 < x} − Φ(x)
∣∣∣ = O(n−1/2). (5.2.4)

Theorem 5.2.2 Suppose that Assumptions 5.2.1 and 1.3.1-1.3.3 hold and that

Eε6
1 <∞. Let bn = Cn−2/3 in Assumption 1.3.3. Then

sup
x

∣∣∣∣P{
√
n(σ̂2

n − σ2)/
√
varε2

1 < x} − Φ(x)
∣∣∣∣ = O(n−1/2). (5.2.5)
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Remark 5.2.1 This section mainly establishes the Berry-Esseen bounds for the

LS estimator βLS and the error estimate σ̂2
n. In order to ensure that the two

estimators can achieve the optimal Berry-Esseen bound n−1/2, we assume that the

nonparametric weight functions ωni satisfy Assumption 1.3.3 with cn = cn−1/2.

The restriction of cn is equivalent to selecting hn = cn−1/4 in the kernel regression

case since EβLS−β = O(h4
n)+O(h3/2

n n−1/2) under Assumptions 1.3.2 and 1.3.3.

See also Theorem 2 of Speckman (1988). As mentioned above, the n−1/5 rate

for the bandwidth is required for establishing that the LS estimate βLS is
√
n-

consistent. For this rate of bandwidth, the Berry-Esseen bounds are only of order
√
nh4

n = n−3/10. In order to establish the optimal Berry-Esseen rate n−1/2, the

faster n−1/4 rate for the bandwidth is required. This is reasonable.

5.2.2 Basic Facts

Lemma 5.2.1 (i) Let Wn = Un + Vn be a sequence of random variables and let

Fn and Gn be the distributions of Wn and Un, respectively. Assume that

‖Gn − Φ‖ ≤ Cn−1/2 and P{|Vn| ≥ Cn−1/2} ≤ Cn−1/2.

Then ‖Fn − Φ‖ ≤ Cn−1/2, where ‖Fn − Φ‖ = supx |Fn(x)− Φ(x)|.
(ii) Let Wn = AnUn + Bn, where An and Bn are real number sequences such

that |An − 1| < Cn−1/2 and |Bn| < Cn−1/2. Assume that ‖Gn − Φ‖ ≤ Cn−1/2.

Then ‖Fn − Φ‖ ≤ Cn−1/2.

Proof. See Lemma 1 of Zhao (1984).

Lemma 5.2.2 Let V1, · · · , Vn be i.i.d. random variables. Let Zni be the functions

of Vi and Znjk be the symmetric functions of Vj and Vk. Assume that EZni = 0 for

i = 1, · · ·n, and E(Znjk|Vj) = 0 for 1 ≤ j 6= k ≤ n. Furthermore |Cn| ≤ Cn−3/2,

D2
n =

1

n

n∑

i=1

EZ2
ni ≤ C > 0, max

1≤i≤n
E|Zni|3 ≤ C <∞,

E|Znjk|2 ≤ d2
nj + d2

nk, and
n∑

k=1

d2
nk ≤ Cn.

Putting

Ln =
1√
nDn

n∑

i=1

Zni + Cn

∑

1≤i<k≤n

Znjk.
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Then

sup
x
|P{Ln ≤ x} − Φ(x)| ≤ Cn−1/2.

Proof. See Theorem 2 of Zhao (1984).

Lemma 5.2.3 Assume that Assumption 1.3.3 holds. Let Eε6
1 <∞. Then

P
{

max
1≤i≤n

∣∣∣
n∑

k=1

ωnk(Ti)εk

∣∣∣ > C1n
−1/4 log n

}
≤ Cn−1/2. (5.2.6)

P
{∣∣∣

n∑

i=1

n∑

j 6=i

ωnj(Ti)εjεi

∣∣∣ > C1(n/ log n)1/2
}
≤ Cn−1/2. (5.2.7)

P
{

max
1≤k≤n

∣∣∣
n∑

i=1

( n∑

j=1

ωnk(Tj)ωni(Tj)
)
εi

∣∣∣ > C1n
−1/4 log n

}
≤ Cn−1/2. (5.2.8)

P
{∣∣∣

n∑

i=1

n∑

j 6=i

( n∑

k=1

ωni(Tk)ωnj(Tk)
)
εjεi

∣∣∣ > C1(n/ log n)1/2
}
≤ Cn−1/2.(5.2.9)

Proof. a) Firstly, let ε′j = εjI(|εj |≤n1/4) and ε′′j = εj − εj for j = 1, · · · , n. By

Assumption 1.3.3(ii) and Eε6
1 <∞,

P
{

max
1≤i≤n

∣∣∣
n∑

j=1

ωnj(Ti)(ε
′′
j − Eε′′j )

∣∣∣ > C1n
−1/4

}

≤ P
{ n∑

j=1

bn(|ε′′j |+ E|ε′′j |) > C1n
−1/4

}

≤ Cbnn
1/4
( n∑

j=1

E|ε′′j |
)
≤ CbnEε

6
1

≤ Cn−1/2. (5.2.10)

By Bernstein’s inequality and Assumption 1.3.3(i)(ii), we have

P
{

max
1≤i≤n

∣∣∣
n∑

j=1

ωnj(Ti)(ε
′
j − Eε′j)

∣∣∣ > C1n
−1/4 log n

}

≤
n∑

i=1

P
{∣∣∣

n∑

j=1

ωnj(Ti)(ε
′
j − Eε′j)

∣∣∣ > C1n
−1/4 log n

}

≤ 2
n∑

i=1

exp
{
− C1n

−1/2 log2 n

2
∑n

j=1 ω
2
nj(Ti)Eε2

1 + 2C1bn log n

}

≤ 2n exp{−C2
1C log n} ≤ Cn−1/2 (5.2.11)

for large enough C1. Combining (5.2.10) with (5.2.11), we finish the proof of

(5.2.6).
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b) Secondly, let

In =
n∑

i=1

n∑

j 6=i

ωnj(Ti)(ε
′
j − Eε′j)(ε′i − Eε′i).

Note that

∣∣∣
n∑

i=1

n∑

j 6=i

ωni(Ti)εiεj − In
∣∣∣ ≤ max

1≤i≤n

∣∣∣
n∑

j=1

ωnj(Ti)εj

∣∣∣ ·
n∑

j=1

(|ε′′j |+ E|ε′′j |)

+ max
1≤j≤n

∣∣∣
n∑

i=1

ωnj(Ti)(ε
′
i − Eε′i)

∣∣∣ ·
n∑

j=1

(|ε′′j |+ E|ε′′j |)

def
= Jn. (5.2.12)

By the same reason as (5.2.11),

P
{

max
1≤j≤n

∣∣∣
n∑

i=1

ωnj(Ti)(ε
′
i − Eε′i)

∣∣∣ > C1n
−1/4 log n

}
≤ Cn−1/2. (5.2.13)

Next, by Eε6
1 <∞ we have

P
{ n∑

i=1

(|ε′′i |+ E|ε′′i |) > C1n
3/4(log n)−3/2

}
≤ Cn−3/4(log n)3/2

n∑

i=1

E|ε′′i |

≤ Cn1/4(log n)3/2E|ε1|I(|ε1|≥n1/4)

≤ C · n−1/2. (5.2.14)

Thus, by (5.2.6) and (5.2.14) we get

P{Jn ≥ C1(n/log n)1/2} ≤ Cn−1/2. (5.2.15)

On the other hand, by the similar way as for (5.2.11)

max
1≤i≤n

∣∣∣
n∑

j=1

ωnj(Ti)(ε
′
j − Eε′j)

∣∣∣ = O(n−1/4(log n)−1/2) a.s. (5.2.16)

In view of (5.2.12)-(5.2.15), in order to prove (5.2.7), it suffices to show that for

some suitable C1

P{|In| > C1(n/log n)1/2} < Cn−1/2 (5.2.17)

whose proof is similar to that of Lemma A.4.

c) The proofs of (5.2.8) and (5.2.9) can be completed by the similar reason

as (5.2.6) and (5.2.7).



86 5. SOME RELATED THEORETIC TOPICS

Lemma 5.2.4 Assume that Assumptions 1.3.1-1.3.3 and that Eε6
1 < ∞ hold.

Let (a1, · · · , an)j denote the j-th element of (a1, · · · , an). Then for all 1 ≤ j ≤ p

P{|(X̃T ε)j| > cn3/4(log n)−1/4} ≤ Cn−1/2, (5.2.18)

P{|(X̃T Ĝ)j| > cn3/4(log n)−1/4} ≤ Cn−1/2. (5.2.19)

Proof. a) Firstly, observe that

(X̃T ε)j =
n∑

i=1

uijεi +
n∑

i=1

hnijεi −
n∑

i=1

{ n∑

k=1

ωnk(Ti)ukj

}
εi.

Using max1≤i≤n |uij| ≤ C and Assumption 1.3.1, and applying Bernstein’s

inequality for all 1 ≤ j ≤ p,

P
{∣∣∣

n∑

i=1

uij(ε
′
i − Eε′i)

∣∣∣ > Cn3/4(log n)−1/4
}

≤ 2 exp

{
−Cn3/2(log n)−1/2

∑n
i=1 u

2
ijVar(εi) + n1/2(log n)−1/4 max1≤i≤n |uij|

}

≤ Cn−1/2. (5.2.20)

Similarly by Assumption 1.3.1,

P
{∣∣∣

n∑

i=1

uij(ε
′′
i − Eε′′i )

∣∣∣ > Cn3/4(log n)−1/4
}

≤ 2n−3/2(log n)1/2
n∑

i=1

u2
ijE(ε′′i − Eε′′i )2

≤ Cn−2(log n)1/2
n∑

i=1

u2
ijEε

4
1 ≤ Cn−1/2. (5.2.21)

Thus, by (5.2.20) and (5.2.21) we get

P
{∣∣∣

n∑

i=1

uijεi

∣∣∣ > Cn3/4(log n)−1/4
}
≤ Cn−1/2. (5.2.22)

Analogous to the proof of (5.2.22), using Assumption 1.3.3(i) and max1≤i≤n ‖ui‖ ≤
C,

P
{∣∣∣

n∑

i=1

n∑

k=1

ωnk(Ti)ukjεi

∣∣∣ > Cn3/4(log n)−1/4
}
≤ Cn−1/2. (5.2.23)

On the other hand, applying Lemma A.3 we have

P
{∣∣∣

n∑

i=1

hnijεi

∣∣∣ > Cn3/4(log n)−1/4
}
≤ Cn−1/2. (5.2.24)
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Therefore, by (5.2.22)-(5.2.24) we complete the proof of (5.2.18).

b) Secondly, observe that

(X̃T Ĝ)j =
n∑

i=1

{
xij −

n∑

k=1

ωnk(Ti)xkj

}
{g(Ti)− ĝn(Ti)}

=
n∑

i=1

g̃iuij +
n∑

i=1

g̃ihnij −
n∑

k=1

{ n∑

i=1

ωnk(Ti)g̃i

}
ukj

−
n∑

k=1

{ n∑

i=1

ωnk(Ti)hnij

}
εk −

n∑

k=1

{ n∑

i=1

ωnk(Ti)uij

}
εk

+
n∑

k=1

[ n∑

i=1

ωnk(Ti)
{ n∑

q=1

ωnq(Ti)uqj

}]
εk

def
=

6∑

k=1

Jkj. (5.2.25)

Applying Abel’s inequality and using Assumption 1.3.1 and Lemma A.1,

Jkj = O(ancn) for k = 1, 3 and J2j = O(nc2n). (5.2.26)

Similar to the proof of (5.2.23), for k = 5, 6

P{|Jkj| > Cn3/4(log n)−1/4} ≤ Cn−1/2. (5.2.27)

On the other hand, applying Lemma A.3 we have

P{|J4j| > Cn3/4(log n)−1/4} ≤ Cn−1/2. (5.2.28)

Combining (5.2.25)-(5.2.28), we complete the proof of (5.2.19).

5.2.3 Technical Details

The proof of Theorem 5.2.1

Here we prove only the case of j = 1, and the others follow by the same reason.

Denote n−1X̃T X̃ = (ajk)1≤j,k≤p, n(X̃T X̃)−1 = (ajk)1≤j,k≤p,

pni =
p∑

j=1

a1j
{
xij −

n∑

k=1

ωnk(Ti)xkj

}
=

p∑

j=1

a1jx̃ij,

qni = pni −
n∑

k=1

ωnk(Ti)pnk. (5.2.29)

Then, by Assumption 1.3.1 we have

n1/2(β̂n1 − β1) = n−1/2
n∑

i=1

qniεi + n1/2
n∑

i=1

pnig̃i. (5.2.30)
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Noting that Assumptions 1.3.1, 1.3.2 and 1.3.3(i) and

max
1≤i≤n

|xij| ≤ max
1≤i≤n

|hj(Ti)|+ max
1≤i≤n

|uij| ≤ C <∞,

we obtain for large enough n

max
1≤i≤n

|pni| ≤ C and max
1≤i≤n

|qni| ≤ C.

Let Zni = qniεi, then EZni = 0, and

D2
n = n−1

n∑

i=1

EZ2
ni = n−1σ2

n∑

i=1

q2
ni ≥ C > 0,

max
1≤i≤n

E|Zni|3 = max
1≤i≤n

|qni|3E|ε1|3 ≤ C <∞.

It follows from (5.2.39) that

D2
n = n−1σ2

n∑

i=1

q2
ni ≥ C > 0 for large enough n

Therefore, by Lemma 5.2.2 we obtain

sup
x

∣∣∣P
{
n−1/2D−1

n

n∑

i=1

Zni < x
}
− Φ(x)

∣∣∣ ≤ Cn−1/2. (5.2.31)

In the following, we need to determine the order of D2
n.

Let aj = (aj1, · · · , ajp)T and σj = (σj1, · · · , σjp)T for 1 ≤ j ≤ p. By Lemma

A.2(i) we get

lim
n→∞

n−1
n∑

i=1

p2
ni = lim

n→∞
n−1(a1)T

n∑

i=1

x̃ix̃
T
i · (a1)

= (σ1)T · Σ · (σ1) = σ11. (5.2.32)

We now prove

n∑

i=1

{ n∑

j=1

ωni(Tj)pnj

}2
= O(n1/2). (5.2.33)

Denote

mks =
n∑

i=1

ωni(Tk)ωni(Ts), 1 ≤ k 6= s ≤ n, ms =
n∑

k=1

mkspnk.

By Abel’s inequality, we obtain

∣∣∣
n∑

i=1

pnimi

∣∣∣ ≤ 6 max
1≤k≤n

∣∣∣
k∑

i=1

pni

∣∣∣ · max
1≤i≤n

|mi|, (5.2.34)

|ms| =
∣∣∣

n∑

i=1

pnimis

∣∣∣ ≤ 6 max
1≤k≤n

∣∣∣
k∑

i=1

pni

∣∣∣ · max
1≤k,s≤n

ωnk(Ts) (5.2.35)
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and

max
1≤k≤n

∣∣∣
n∑

s=1

{ k∑

i=1

ωns(Ti)
}
usj

∣∣∣ = O(an). (5.2.36)

Also, by Assumption 1.3.1 and Lemma A.1, we have

max
1≤k≤n

∣∣∣
k∑

i=1

pni

∣∣∣ ≤ max
1≤k≤n

∣∣∣
p∑

j=1

k∑

i=1

x̃ija
1j
∣∣∣ ≤ max

1≤k≤n

∣∣∣
p∑

j=1

k∑

i=1

uija
1j
∣∣∣

+ max
1≤k≤n

∣∣∣
p∑

j=1

[ k∑

i=1

n∑

s=1

ωns(Ti){hj(Ts)− hj(Ti)}
]
a1j
∣∣∣

+ max
1≤k≤n

∣∣∣
p∑

j=1

{ k∑

i=1

n∑

s=1

ωns(Ti)usj

}
a1j
∣∣∣

= O(an) +O(ncn). (5.2.37)

Thus, by Assumption 1.3.3, (5.2.32) and (5.2.34)-(5.2.37), we obtain

n∑

s=1

[ n∑

k 6=s

{ n∑

i=1

ωni(Tk)ωni(Ts)
}
pnk

]
pns = O(a2

nbn) +O(n2bnc
2
n)

and

n∑

i=1

{ n∑

k=1

ωni(Tk)pnk

}2
=

n∑

s=1

n∑

k=1

ω2
ni(Tk)p

2
nk +

n∑

i=1

n∑

k 6=s

ωni(Tk)ωni(Ts)pnkpns

= O(nbn) +O(a2
nbn) +O(n2bnc

2
n)

= O(n3/2cn). (5.2.38)

On the other hand, by (5.2.32), (5.2.38) and the definition of qni, we obtain

lim
n→∞

n−1
n∑

i=1

q2
ni = lim

n→∞
n−1

n∑

i=1

p2
ni = σ11 > 0. (5.2.39)

Furthermore, by (5.2.29) and Lemma A.2(ii) we have for all (j, k)

|ajk − σjk| ≤ Cn−1/2 and
∣∣∣n−1

∑

i=1

p2
ni − σ11

∣∣∣ ≤ Cn−1/2.

Also, by (5.2.35), (5.2.38), and Assumption 1.3.3(ii) and using the similar reason

as (5.2.34),

∣∣∣n−1
n∑

i=1

q2
ni − σ11

∣∣∣ ≤
∣∣∣n−1

n∑

i=1

p2
ni − σ11

∣∣∣+ n−1
n∑

i=1

{ n∑

k=1

ωni(Tk)pnk

}2

+12n−1 max
1≤k≤n

∣∣∣
k∑

i=1

pni

∣∣∣ · max
1≤i≤n

∣∣∣
n∑

k=1

ωni(Tk)pnk

∣∣∣

≤ Cn1/2c2n. (5.2.40)
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By the similar reason as in the proof of (5.2.34), using (5.2.37), Lemma A.1, and

Assumption 1.3.3, we obtain

∣∣∣
n∑

i=1

pnig̃i

∣∣∣ ≤ 6 max
1≤k≤n

∣∣∣
k∑

i=1

pni

∣∣∣ max
1≤i≤n

|g̃i| ≤ Cnc2n. (5.2.41)

Therefore, by (5.2.30), (5.2.31), (5.2.40) and (5.2.41), and using the conditions of

Theorem 5.2.1, we have

sup
x

∣∣∣P{
√
n(β̂LS1 − β1)/(σ

2σ11)1/2 < x} − Φ(x)
∣∣∣ = O(n1/2c2n).

Thus, we complete the proof of (5.2.3). The proof of (5.2.4) follows similarly.

The proof of Theorem 5.2.2

In view of Lemmas 5.2.1 and 5.2.2 and the expression given in (5.1.4), in order

to prove Theorem 5.2.2, we only need to prove P{√n|Ik| > Cn−1/2} < Cn−1/2

for k = 2, 3, 4, 5 and large enough C > 0, which are arranged in the following

lemmas.

Lemma 5.2.5 Assume that Assumptions 1.3.1-1.3.3 hold. Let Eε6
1 <∞. Then

P{|
√
nI2| > Cn−1/2} ≤ Cn−1/2.

Proof. According to the definition of I2, it suffices to show that

P

{
1√
n
εTU(UTU)−1UT ε| > C1n

−1/2

}
≤ C2√

n

for some constants C1 > pEε2
1 and C2 > 0. Let {pij} denote the (i, j) element of

the matrix U(UTU)−1UT . We now have

P
{
εTU(UTU)−1UT ε > C1

}
= P





n∑

i=1

piiε
2
i +

n∑

i=1

∑

j 6=i

pijεiεj > C1





= P

{
n∑

i=1

pii(ε
2
i − Eε2

i )

+
n∑

i=1

∑

j 6=i

pijεiεj > C1 − pEε2
1





≤ P

{∣∣∣∣∣

n∑

i=1

pii(ε
2
i − Eε2

i )

∣∣∣∣∣ >
1

2
(C1 − pEε2

1)

}

+P





∣∣∣∣∣∣

n∑

i=1

∑

j 6=i

pijεiεj

∣∣∣∣∣∣
>

1

2
(C1 − pEε2

1)





def
= I21 + I22.
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Using (5.2.1) we have

I21 ≤
1

C2
2

E

{
n∑

i=1

pii(ε
2
i − Eε2

i )

}2

≤ max
1≤i≤n

pii
p

C2
2

E(ε2
i − Eε2

i )
2 ≤ C3

n
,

where C2 = 1
2
(C1 − pEε2

1) and C3 > 0 is a constant.

Similarly, we can show that I22 ≤ C/
√
n.

Lemma 5.2.6 Assume that Assumptions 1.3.1 and 1.3.3 hold. Let Eε6
1 < ∞.

Then P{|√nI3| > Cn−1/2} ≤ Cn−1/2.

Proof. In view of Lemma A.1 and the definition of Ĝ, in order to prove Lemma

5.2.6, it suffices to show that

P





n∑

i=1

(
n∑

k=1

Wnk(Ti)εk

)2

> C1



 ≤

C2√
n

for some positive constant C1 and C2. Observe that

n∑

i=1

(
n∑

k=1

Wnk(Ti)εk

)2

=
n∑

k=1

(
n∑

i=1

W 2
nk(Ti)

)
(εk − Eε2

k)

+
n∑

i=1

n∑

k=1

n∑

l 6=k

Wnk(Ti)Wnl(Ti)εkεl + Eε2
1

n∑

k=1

n∑

i=1

W 2
nk(Ti).

Thus we can finish the proof of Lemma 5.2.6 by using the similar reason as the

proofs of Lemmas 5.2.3 and 5.2.5.

Lemma 5.2.7 Assume that Assumptions 1.3.1-1.3.3 hold. Let Eε6
1 <∞. Then

P{|
√
nI4| > Cn−1/2} ≤ Cn−1/2. (5.2.42)

Proof. The proof is similar to that of Lemma 5.2.5. We omit the details.

We now handle I5. Observe the following decomposition

1

n

{ n∑

i=1

g̃iεi −
n∑

k=1

ωnk(Tk)ε
2
k −

n∑

i=1

n∑

k 6=i

ωni(Tk)εiεk

}
def
= I51 + I52 + I53. (5.2.43)

For q = 1/4, we have

P{
√
n|I51| > Cn−1/2} ≤ P

{∣∣∣
n∑

i=1

g̃iεiI(|εi|≤nq)

∣∣∣ > C
}

+ P
{∣∣∣

n∑

i=1

g̃iεiI(|εi|>nq)

∣∣∣ > C
}

def
= R1n +R2n.

It follows from Bernstein inequality and Lemma A.1 that

R1n ≤ 2 exp{−Cn1/2−q} < Cn−1/2
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and

R2n ≤ C
n∑

i=1

|g̃i| · E|εiI(|εi|>nq)|

≤ C max
1≤i≤n

|g̃i|
n∑

i=1

Eε6
in

−6q < Cn−1/2.

Combining the conclusions for R1n and R2n, we obtain

P{
√
n|I51| > Cn−1/2} < Cn−1/2. (5.2.44)

By Assumptions 1.3.3 (ii) (iii), we have for any constant C > C0Eε
2
1

P
{√

n|I52| > Cn−1/2
}

= P
{∣∣∣

n∑

i=1

ωni(Ti)(ε
2
i − Eε2

i ) +
n∑

i=1

ωni(Ti)Eε
2
i

∣∣∣ > C
}

≤ P
{∣∣∣

n∑

i=1

ωni(Ti)(ε
2
i − Eε2

i )
∣∣∣ > C − C0Eε

2
1

}

≤ C1E
{ n∑

i=1

ωni(Ti)(ε
2
i − Eε2

i )
}2

≤ C1 max
1≤i≤n

ωni(Ti)
n∑

i=1

ωni(Ti)E(ε2
i − Eε2

i )
2

< C1n
−1/2, (5.2.45)

where C0 satisfies maxn≥1
∑n

i=1 ωni(Ti) ≤ C0, C1 = (C − C0Eε
2
1)

−2 and C2 is a

positive constant.

Calculate the tail probability of I53.

P
{√

n|I53| > Cn−1/2
}
≤ P

{∣∣∣
n∑

i=1

∑

k 6=i

ωnk(Ti)εiεk − In
∣∣∣ > C

}
+ P{|In| > C}

def
= J1n + J2n,

where In =
∑n

i=1

∑n
j 6=i ωnj(Ti)(ε

′
j − Eε′j)(ε′i − Eε′i) and ε′i = εiI(|εi|≤nq).

By a direct calculation, we have

J1n ≤ P

{
max
1≤j≤n

∣∣∣
n∑

i=1

ωnj(Ti)εi

∣∣∣(
n∑

i=1

|ε′′i |+ E|εi|′′) > C

}

+P

{
max
1≤j≤n

∣∣∣
n∑

i=1

ωnj(Ti)(ε
′
i − Eε′i)

∣∣∣(
n∑

i=1

|ε′′i |+ E|ε′′i |) > C

}

def
= J1n1 + J1n2.

Similar to the proof of (5.2.11), we have

P
{

max
1≤j≤n

∣∣∣
n∑

i=1

ωnj(Ti)(ε
′
i − Eε′i)

∣∣∣ > Cn−1/4
}
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≤ 2
n∑

j=1

P
{∣∣∣

n∑

i=1

ωnj(Ti)(ε
′
i − Eε′i)

∣∣∣ > Cn−1/4
}

≤ 2
n∑

j=1

exp
(
− cn−1/2

2
∑n

i=1 ω
2
nj(Ti)Eε2

1 + 2Cbn

)

≤ 2n exp(−Cn−1/2b−1
n ) ≤ Cn−1/2. (5.2.46)

On the other hand, applying Chebyshev’s inequality,

P
{ n∑

i=1

|ε′′i |+ E|ε′′i | > Cn1/4
}
≤ Cn−1/4E

n∑

i=1

|ε′′i |

≤ Cn−1/4
n∑

i=1

Eε6
in

−5/4 < Cn−1/2. (5.2.47)

Hence, (5.2.46) and (5.2.47) imply

J1n2 < Cn−1/2. (5.2.48)

Similar to (5.2.46) and (5.2.47) we have

J1n1 < Cn−1/2. (5.2.49)

Combining (5.2.48) with (5.2.49), we obtain

J1n < Cn−1/2. (5.2.50)

Thus, from (5.2.50) and Lemma A.4, we get

P{
√
n|I53| > Cn−1/2} < Cn−1/2. (5.2.51)

It follows from (5.2.43), (5.2.44), (5.2.45) and (5.2.51) that

P{
√
n|I5| > Cn−1/2} < Cn−1/2. (5.2.52)

The proof of Theorem 5.2.2. From Lemmas 5.2.5, 5.2.6, 5.2.7 and (5.2.52),

we have

P

{√
n

Var(ε2
1)

∣∣∣−I2 + I3 − 2I4 + 2I5
∣∣∣ > Cn−1/2

}
< Cn−1/2. (5.2.53)

Let Zni = ε2
i − σ2 and Znij = 0. Then D2

n = 1/n
∑n

i=1EZ
2
ni = V ar(ε2

1) and

E|Zni|3 ≤ E|ε2
1 − σ2|3 <∞, which and Lemma 5.2.2 imply that

sup
x
|P{
√
nD−1

n (I1 − σ2) < x} − Φ(x)| < Cn−1/2. (5.2.54)

Applying Lemma 5.2.1, (5.2.53) and (5.2.54), we complete the proof of Theorem

5.2.2.
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5.3 Asymptotically Efficient Estimation

5.3.1 Motivation

Recently, Cuzick (1992a) constructed asymptotically efficient estimators for

β for the case where the error density is known. The problem was extended later

to the case of unknown error distribution by Cuzick (1992b) and Schick (1993).

Golubev and Härdle (1997), under the assumption that X and T are mutually

independent, investigated the second order risk, and calculated it exactly up

to constant. Their further study shows that the spline estimator (Heckman (1986)

and Rice (1986)) is not a second order minimax estimator.

In this section, we shall consider the case where εi are i.i.d. and (Xi, Ti) are

random design points, and construct asymptotically efficient estimators in the

sense of normality, i.e., their asymptotically variance reaches an optimum value.

Our construction approach is essentially based on the following fact (Cheng,

Chen, Chen and Wu 1985, p256): Let W1, . . . ,Wn be i.i.d. random variables drawn

from the density function s(w, θ). Set

Z(w, θ) =
∂

∂θ
log s(w, θ) and Bn(θ) =

1

n

n∑

i=1

∂Z(Wi, θ)

∂θ

If θn is a nα(α > 1/4)-order consistent estimator of θ, then under appropriate

regularity conditions,

θMn = θn −
1

n
B−1

n (θn)
n∑

i=1

Z(Wi, θn)

is an asymptotically efficient estimator of θ. See also Stone (1975) and

Schick (1986).

5.3.2 Construction of Asymptotically Efficient Estimators

The efficiency criterion we shall be using in this section is a least dispersed

regular estimator as elaborated in Begun, Hall, Huang and Wellner (1983). See

Bickel, Klaasen, Ritov and Wellner (1993).

In order to derive asymptotically efficient estimators of β, we assume

that there exist a root-n rate estimator β̂ of β and a n−1/3 log n-nonparametric

estimator ĝ(t) of g(t). See, for example, the estimators given in (1.2.2) and (1.2.3).

We assume that the random error ε has a density function ϕ(·) which has finite
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Fisher information

I =
∫ ϕ′2

ϕ
(y) dy <∞.

The covariance of the asymptotically efficient estimator of β is Σ−1I−1.

See Cuzick (1992b) and Golubev and Härdle (1997). The common root-n rate

estimator is asymptotically normal with covariance matrix Σ−1σ2. Liang (1994a)

showed that a root-n asymptotically normal estimator of β is asymptotically

efficient if and only if ε is Gaussian.

In constructing our estimation procedure, we smooth the density function ϕ

to ensure that it is continuously differentiable, and truncate the integration and

use the split-sample technique.

Let L(y) be the likelihood function of ϕ(y), i.e., L(y) = ϕ′/ϕ(y). Let ψr(z, r)

be the density function of the normal distribution N(0, r−2). Take rn = log n and

f(z, r) =
∫
ψr(z − y, r)ϕ(y) dy. Obviously f(z, r) is continuously differentiable of

all orders and converges to ϕ(z) as r tends to infinity. Let f ′(z, r) denote the first

derivative of f(z, r) on z. L(z, r) = [f ′(z, r)/f(z, r)]r, where [a]r = a if |a| ≤ r,

−r if a ≤ −r and r if a > r. L(z, r) is also smoothed as

Ln(y, rn) =
∫ rn

−rn

L(z, rn)ψrn(y − z, rn) dz.

Assume that β̂1, ĝ1(t) are the estimators of β, g(t) based on the first-half

samples (Y1, X1, T1), · · · , (Ykn , Xkn , Tkn), respectively, while β̂2, ĝ2(t) are the ones

based on the second-half samples (Ykn+1, Xkn+1, Tkn+1), · · · , (Yn, Xn, Tn), respec-

tively, where kn(≤ n/2) is the largest integer part of n/2. For the sake of simplicity

in notation, we denote Λj = Yj −XT
j β − g(Tj), Λn1j = Yj −XT

j β̂1 − ĝ1(Tj), and

Λn2j = Yj −XT
j β̂2 − ĝ2(Tj).

5.3.2.1 When the Error Density Function ϕ Known

We construct an estimator of β as follows:

β∗
n =

¯̂
β − 1

n
Σ−1I−1

{ kn∑

j=1

XjLn(Λn2j, rn) +
n∑

j=kn+1

XjLn(Λn1j, rn)
}
,

where
¯̂
β, β̂1, β̂2 are discretized forms of β̂, β̂1, β̂2 respectively.
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Theorem 5.3.1 Suppose that Σ is a positive definite matrix and that β̂, β̂1, β̂2;

ĝ(t), ĝ1(t) and ĝ2(t) are root-n rate and n−1/3 log n estimators of β and g(t),

respectively. Then as n→∞

√
n(β∗

n − β) −→L N(0, I−1Σ−1).

5.3.2.2 When the Error Density Function ϕ Unknown

In this case, β∗
n is not a statistic any more since L(z, rn) contains the unknown

function ϕ and I is also unknown. We estimate them as follows. Set

f̃n(z, r) =
1

n

{ kn∑

j=1

ψrn(z − Λn2j, r) +
n∑

j=kn+1

ψrn(z − Λn1j, r)
}
,

f̃ ′
n(z, r) =

∂f̃n(z, r)

∂z
,

L̃n(z, rn) =
[
f̃ ′

n(z, rn)

f̃n(z, rn)

]

rn

, Ãn(rn) =
∫ rn

−rn

L̃2
n(z, rn)f̃n(z, rn) dz.

Define

β̃n =
¯̂
β − Σ−1

nÃn(rn)

∫ rn

−rn

L̃n(z, rn)
{ kn∑

j=1

Xjψrn(z − Λn2j, rn)

+
n∑

j=kn+1

Xjψrn(z − Λn1j, rn)
}
dz

as the estimator of β.

Theorem 5.3.2 Under the condition of Theorem 5.3.1, we have as n→∞

√
n(β̃n − β) −→L N(0, I−1Σ−1).

Remark 5.3.1 Theorems 5.3.1 and 5.3.2 show us that the estimators β∗
n and β̃n

are both asymptotically efficient.

Remark 5.3.2 Generally Σ is unknown and must be estimated. To do so, let

ĝx,h(·) be the kernel regression estimator of E(X|T ). Then

1

n

n∑

i=1

{Xi − ĝx,h(Ti)}{Xi − ĝx,h(Ti)}T

is a consistent estimator of Σ.
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5.3.3 Four Lemmas

In the following Lemmas 5.3.1 and 5.3.2, a1 and ν are constants satisfying 0 <

a1 < 1/12 and ν = 0, 1, 2.

Lemma 5.3.1 As n sufficiently large,

|ψ(ν)
rn

(x, rn)| < Cνr
2+2ν
n {ψrn(x, rn) + ψ1−a1

rn
(x, rn)}

uniformly on x, where Cν is a positive constant depending only on a1 and ν.

Proof. Let n be large enough such that a1r
2
n > 1. Then exp(x2a1r

2
n/2) > |x|ν if

|x|ν > ra1
n , and |x|ν exp(−x2r2

n/2) ≤ exp {−(1− a1)x
2r2

n/2} holds. If |x|ν ≤ ra1
n ,

then |x|ν exp(−x2r2
n/2) ≤ ra1

n exp(−x2r2
n/2). These arguments deduce that

|x|ν exp(−x2r2
n/2) ≤ ra1

n

[
exp {−(1− a1)x

2r2
n/2}+ exp(−x2r2

n/2)
]

holds uniformly on x. The proof of this lemma immediately follows.

Lemma 5.3.2 Let M be a given positive constant. Then

sup
|t|≤Mn−1/4

ψrn(x+ t, rn) ≤ 3{ψrn(x, rn) + ψ1−a1
rn

(x, rn)}

holds uniformly on x as n sufficiently large.

Proof. Let n be large enough such that

n1/4r4
n > 2Ma1 log rn. (5.3.1)

Denote an = r−2
n n1/4M−1. |x| < an implies |xr2

nt| < 1, and so

∣∣∣∣∣
ψrn(x+ t, rn)

ψrn(x, rn)

∣∣∣∣∣ = exp{−(2xt+ t2)rn/2} = exp(−xtr2
n) ≤ e.

When |x| ≥ an, it follows from (5.3.1) that |x| > 2r2
na1 log rn. A direct calculation

implies

ψrn(x+ t, rn)

ψ1−a1
rn

(x, rn)
< 1 < e.

The proof of the lemma is immediately derived.
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Lemma 5.3.3

(i) sup
y
|L(ν)

n (y, rn)| = O(rν+1
n );

(ii) lim
n→∞

∫ 1

0

∫
{Ln(y − vn(t), rn)− Ln(y, rn)}2ϕ(y)h(t) dy dt = 0 (5.3.2)

if
∫ 1

0
v2

n(t)h(t) dt = O(n−2/3 log2/3 n).

Proof. By the definition of L(ν)
n (y, rn), we obtain

rn

∫ rn

−rn

|ψ(ν)
rn

(y − z, rn)| dz ≤ rn

∫ ∞

−∞
|ψ(ν)

rn
(y − z, rn)| dz = O(rν+1

n ).

We complete the proof of (i).

Applying the Taylor expansion, Ln(y−vn(t), rn)−Ln(y, rn) = L′
n(ỹn, rn)vn(t),

where ỹn is between y and y − vn(t). The left-hand side of (5.3.2) equals

lim
n→∞

∫ 1

0

∫
{L′

n(ỹn, rn)vn(t)}2ϕ(y)h(t) dy dt,

which is bounded by

lim
n→∞

∫ 1

0

∫
sup

y
|L′

n(y, rn)|2v2
n(t)ϕ(y)h(t) dy dt.

The proof of (ii) is derived by (i) and the assumption.

Lemma 5.3.4
∫ rn

−rn

{f̃ (ν)
n (z, rn)− f (ν)(z, rn)}2

f(z, rn)
dz = Op(n

−2/3 log2 n)r4ν+2a1+6
n . (5.3.3)

∫ rn

−rn

{f̃ (ν)
n (z, rn)− f (ν)(z, rn)}2 dz = Op(n

−2/3 log2 n)r4ν+2a1+5
n . (5.3.4)

Proof. The proofs of (5.3.3) and (5.3.4) are the same. We only prove the first one.

The left-hand side of (5.3.3) is bounded by

2
∫ rn

−rn

{ 1

n

kn∑

j=1

ψ(ν)
rn

(z − Λn2j, rn)− f (ν)(z, rn)

f 1/2(z, rn)

}2
dz

+2
∫ rn

−rn

{ 1

n

n∑

j=1+kn

ψ(ν)
rn

(z − Λn1j, rn)− f (ν)(z, rn)

f 1/2(z, rn)

}2
dz

def
= 2(W1n +W2n).

Similarly,

W1n ≤ 2
∫ rn

−rn

{ 1

n

kn∑

j=1

ψ(ν)
rn

(z − Λn2j, rn)− ψ(ν)
rn

(z − Λj, rn)

f 1/2(z, rn)

}2
dz

+2
∫ rn

−rn

{ 1

n

kn∑

j=1

ψ(ν)
rn

(z − Λj, rn)− f (ν)(z, rn)

f 1/2(z, rn)

}2
dz

def
= (W

(1)
1n +W

(2)
1n ).
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By the Taylor expansion,

W
(1)
1n =

∫ rn

−rn

{ 1

n

kn∑

j=1

ψ(ν+1)
rn

(z − Λj + µnjtn2j, rn)

f 1/2(z, rn)
tn2j

}2
dz,

where tn2j = Λn2j − Λj for j = 1, · · · , kn and µnj ∈ (0, 1). It follows from the

assumptions on β̂2 and ĝ2(t) that tn2j = Op(n
−1/3 log n). It follows from Lemma

5.3.2 that W
(1)
1n is smaller than

Op(n
−2/3 log2 n)r4ν+2a1+5

n ·
∫ rn

−rn

1

n

kn∑

j=1

ψrn(z − Λj, rn)

f(z, rn)
dz. (5.3.5)

Noting that the mean of the latter integrity of (5.3.5) is smaller than 2rn, we

conclude that

W
(1)
1n = Op(n

−2/3 log2 n)r4ν+2a1+6
n . (5.3.6)

Similar to (5.3.5), we have

EW
(2)
1n =

∫ rn

−rn

kn∑

j=1

E{ψ(ν)
rn

(z − Λj, rn)− f (ν)(z, rn)}2
n2f(z, rn)

dz

≤
∫ rn

−rn

kn∑

j=1

E{ψ(ν)
rn

(z − Λj, rn)}2
n2f(z, rn)

dz

≤ Cn−1r4ν+2a1+2
n .

Thus, we obtain that W1n = Op(n
−2/3 log2 n)r4ν+2a1+6

n .

The same conclusion is true for W2n. We therefore complete the proof of

Lemma 5.3.4.

5.3.4 Appendix

Proof of Theorem 5.3.1. To prove Theorem 5.3.1 is equivalent to checking As-

sumptions A.1-A.3 of Schick (1986). The verifications of A.3.1 and A.3.2 are

obvious. Lemma 5.3.3 can be applied to finish the verifications of Assumptions

A.3.4 and A.3.5 in Schick (1986). We omit the details.

Proof of Theorem 5.3.2. We now provide an outline of the proof of Theorem

5.3.2 as follows. Denote

A(rn) =
∫ rn

−rn

L2
n(y, rn)f(y, rn) dy,

βn =
¯̂
β − 1

nA(rn)
Σ−1

{ kn∑

j=1

XjLn(Λn2j, rn) +
n∑

j=kn+1

XjLn(Λn1j, rn)
}
.
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It is easily shown that A(rn)→ I, which means that βn is also an asymptotically

efficient estimator of β when ϕ is known. If we can show that
√
n(β̃n − βn)

converges to zero, then the proof of Theorem 5.3.2 is completed.

Note that

β̃n − βn =
1

Ãn(rn)
(S1n + S2n) +

1

Ãn(rn)A(rn)
(S3n + S4n),

where

S1n =
1

n

kn∑

j=1

Xj

{∫ rn

−rn

L̃n(z, rn)ψrn(z − Λn2j, rn) dz − Ln(Λj, rn)
}
,

S2n =
1

n

n∑

j=kn+1

Xj

{∫ rn

−rn

L̃n(z, rn)ψrn(z − Λn1j, rn) dz − Ln(Λj, rn)
}
,

S3n =
1

n
{Ãn(rn)− A(rn)}

kn∑

j=1

XjLn(Λn2j, rn),

S4n =
1

n
{Ãn(rn)− A(rn)}

n∑

j=kn+1

XjLn(Λn1j, rn).

To prove Theorem 5.3.2 is equivalent to proving ‖Sln‖ = o(n−1/2) for l = 1, 2, 3, 4.

We shall complete these proofs in three steps. Step 1 shows ‖S1n‖ = o(n−1/2) and

‖S2n‖ = o(n−1/2). Step 2 analyzes the first part of S3n, Ãn(rn)−A(rn), and derives

its convergence rate. Step 3 handles the second part of S3n, and then completes

the proof of ‖S3n‖ = o(n−1/2). The same arguments may be used for proving

‖S4n‖ = o(n−1/2). We omit the details.

STEP 1 ‖S1n‖ = op(n
−1/2) and ‖S2n‖ = op(n

−1/2).

Proof. It is easy to see that

S1n =
∫ rn

−rn

{L̃n(z, rn)− L(z, rn)}
{ 1

n

kn∑

j=1

Xjψrn(z − Λn2j, rn)
}
dz

=
∫ rn

−rn

{L̃n(z, rn)− L(z, rn)} 1
n

kn∑

j=1

Xj{ψrn(z − Λn2j, rn)− f(z, rn)] dz.

(i) When n2fn(z, rn) ≤ 1, it follows from Lemma 5.3.1 that

‖S1n‖ =
∥∥∥
∫ rn

−rn

{L̃n(z, rn)− L(z, rn)} 1
n

kn∑

j=1

Xjψrn(z − Λn2j, rn) dz
∥∥∥

≤ 2rn

∫ rn

−rn

1

n

kn∑

j=1

‖Xj‖ψrn(z − Λn2j, rn) dz

≤ 2rn

∫ rn

−rn

1

n2

kn∑

j=1

‖Xj‖ dz

= Op(n
−1r2

n).
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(ii) When n2f(z, rn) ≤ 1, ‖S1n‖ is bounded by

2rn

√√√√√
∫ rn

−rn

1

n

kn∑

j=1

‖Xj‖2
√√√√√
∫ rn

−rn

kn∑

j=1

ψ2
rn

(z − Λn2j, rn) dz.

It follows from Lemmas 5.3.2 and 5.3.1 that

kn∑

j=1

ψ2
rn

(z − Λn2j, rn) = Op(1)
kn∑

j=1

{ψ2
rn

(z − Λj, rn) + ψ2−2a1
rn

(z − Λj, rn)}

= Op(rn)
kn∑

j=1

ψrn(z − Λj, rn),

and so ‖S1n‖ = Op(r
2
n)
√∫ rn

−rn
f(z, rn) dz = Op(n

−1r5/2
n ).

(iii) When n2f(z, rn) > 1 and n2fn(z, rn) > 1,

‖S1n‖ ≤
∫ rn

−rn

∣∣∣∣∣
f̃ ′

n(z, rn)

f̃n(z, rn)
− f ′(z, rn)

f(z, rn)

∣∣∣∣∣

∥∥∥∥∥
1

n

kn∑

j=1

Xj{ψrn(z − Λn2j, rn)− f(z, rn)}
∥∥∥∥∥dz

≤

√√√√√ 1

n

kn∑

j=1

‖Xj‖2
∫ rn

−rn

∣∣∣∣∣
f̃ ′

n(z, rn)

f̃n(z, rn)
− f ′(z, rn)

f(z, rn)

∣∣∣∣∣

×

√√√√√

∣∣∣∣∣∣
1

n

kn∑

j=1

{ψrn(z − Λn2j, rn)− f(z, rn)}2
∣∣∣∣∣∣
dz. (5.3.7)

Denote

Q1n =
1

n

kn∑

j=1

{ψrn(z − Λn2j, rn)− f(z, rn)}2.

The integration part of (5.3.7) is bounded by

∫ rn

−rn

∣∣∣∣∣
f̃ ′

n(z, rn)− f ′(z, rn)

f(z, rn)

∣∣∣∣∣Q
1/2
1n dz

+
∫ rn

−rn

∣∣∣∣∣
f̃ ′

n(z, rn)

f̃n(z, rn)

∣∣∣∣∣

∣∣∣∣∣
f̃n(z, rn)− f(z, rn)

f(z, rn)

∣∣∣∣∣Q
1/2
1n dz

≤
{∫ rn

−rn

|f̃ ′
n(z, rn)− f ′(z, rn)|2

f(z, rn)
dz
∫ rn

−rn

Q1n

f(z, rn)
dz

}1/2

+r1+a1
n n2a1

{∫ rn

−rn

|f̃n(z, rn)− f(z, rn)|2
f(z, rn)

∫ rn

−rn

Q1n

f(z, rn)
dz

}1/2

.

Similar to (5.3.3), we deduce

∫ rn

−rn

Q1n

f(z, rn)
dz = Op(n

−2/3 log2 n)r2a1+6
n .
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This fact and Lemma 5.3.4 deduce

‖S1n‖ = op(n
−1/2).

A combination of the results in (i), (ii) and (iii) completes the proof of the first

part of Step 1. Similarly we can prove the second part. We omit the details.

STEP 2.

Ãn(rn)− A(rn) = Op(n
−2/3+2a1 log2 n)r3a1+4

n . (5.3.8)

Proof. Ãn(rn)− A(rn) can be rewritten as

∫ rn

−rn

L̃2
n(z, rn)f̃n(z, rn) dz −

∫ rn

−rn

L2(z, rn)f(z, rn) dz

=
∫ rn

−rn

{L̃2
n(z, rn)− L2(z, rn)}f̃n(z, rn) dz

+
∫ rn

−rn

L2(z, rn){f̃n(z, rn)− f(z, rn)} dz
def
= I1n + I2n.

It follows from Lemma 5.3.4 that I2n = Op(n
−2/3 log2 n)ra1+5

n . We next consider

I1n.

(i) When n2fn(z, rn) < 1, |I1n| ≤ 2r2
n

∫ rn
−rn

f̃n(z, rn) dz = O(n−2r3
n).

(ii) When n2f(z, rn) < 1, it follows from Lemma 5.3.4 that

|I1n| ≤ 2r2
n

{√∫ rn

−rn

|f̃n(z, rn)− f(z, rn)|2 dzr1/2
n +

∫ rn

−rn

f(z, rn) dz
}

= Op(n
−1/3 log n)ra1+5

n .

(iii) When n2fn(z, rn) ≥ 1 and n2f(z, rn) ≥ 1,

|I1n| ≤
∫ rn

−rn

|L̃n(z, rn)− L(z, rn)||L̃n(z, rn) + L(z, rn)|f̃n(z, rn) dz

≤ 2rn

∫ rn

−rn

∣∣∣∣∣
f̃ ′

n(z, rn)

f̃n(z, rn)
− f ′(z, rn)

f(z, rn)

∣∣∣∣∣ f̃n(z, rn) dz

≤ 2rn

[∫ rn

−rn

|f̃ ′
n(z, rn)− f ′(z, rn)| dz

+
∫ rn

−rn

∣∣∣∣∣
f ′(z, rn)

f(z, rn)

∣∣∣∣∣ |f̃n(z, rn)− f(z, rn)| dz
]
.

It follows from Lemma 5.3.4 and Cauchy-Schwarz inequality that

I1n = Op(n
−1/3 log n)ra1+5

n +Op(n
−1/3+2a1 log n)r3a1+4

n .



5. SOME RELATED THEORETIC TOPICS 103

The conclusions in (i), (ii) and (iii) finish the proof of Step 2.

STEP 3. Obviously, we have that, for l = 1, · · · , p,
∣∣∣

kn∑

j=1

xjlLn(Λn2j, rn)
∣∣∣ =

∣∣∣
∫ rn

−rn

L(z, rn)
kn∑

j=1

xjlψrn(z − Λn2j, rn) dz
∣∣∣

=
∣∣∣
∫ rn

−rn

L(z, rn)
kn∑

j=1

xjl{ψrn(z − Λn2j, rn)− f(z, rn)} dz
∣∣∣,

which is bounded by

rn

∫ rn

−rn

∣∣∣∣∣

kn∑

j=1

xjl{ψrn(z − Λn2j, rn)− ψrn(z − Λj, rn)}
∣∣∣∣∣ dz

+rn

∫ rn

−rn

∣∣∣
kn∑

j=1

xjl{ψrn(z − Λj, rn)− f(z, rn)}
∣∣∣ dz

def
= Q

(l)
2n +Q

(l)
3n.

Q
(l)
2n is bounded by

rn

∫ rn

−rn

√√√√√
kn∑

j=1

x2
jl

√√√√√
kn∑

j=1

{ψrn(z − Λn2j, rn)− ψrn(z − Λj, rn)}2 dz.

The term in the second integration part is just n
∫ rn
−rn

Q1n dz. We conclude from

the discussion for Q1n that Q
(l)
2n = Op(n

2/3 log n)ra1+4
n .

We now analyze the term Q
(l)
3n. The same way as for Q

(l)
2n leads that

Q
(l)
3n ≤ r3/2

n

{∫ rn

−rn

∣∣∣
kn∑

j=1

xjl{ψrn(z − Λj, rn)− f(z, rn)}
∣∣∣
2
dz

}1/2

.

Note that the expectation value of the integration equals
∫ rn

−rn

kn∑

j=1

E |xjl{ψrn(z − Λj, rn)− f(z, rn)}|2 dz,

which is bounded by
∫ rn

−rn

kn∑

j=1

E |xjlψrn(z − Λj, rn)|2 dz ≤
∫ rn

−rn

kn∑

j=1

E |xjl|2rnf(z, rn) dz

= O(nrn).

We thus conclude that
∥∥∥
1

n

kn∑

j=1

XjLn(Λn2j, rn)
∥∥∥ = Op(n

−1/3+2a1 log n)ra1+4
n . (5.3.9)

A combination of (5.3.8) and (5.3.9) implies

‖S3n‖ = op(n
−1/2).

We finally complete the proof of Theorem 5.3.2.
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5.4 Bahadur Asymptotic Efficiency

5.4.1 Definition

This section is concerned with large deviations of estimation. Bahadur asymptotic

efficiency, which measures the rate of tail probability, is considered here.

It can be stated (under certain regularity conditions) that, for any consistent

estimator Tn(Q),

lim inf
ζ→0

lim inf
n→∞

1

nζ2
logPβ{|Tn(Q)− β| ≥ ζ} ≥ −I(β)/2,

and that the maximum likelihood estimator (MLE) βn can achieve the lower

bound, that is,

lim
ζ→0

lim
n→∞

1

nζ2
logPβ{|βn − β| ≥ ζ} = −I(β)/2,

where I(β) is Fisher’s information. In other words, for any consistent estima-

tor Tn, Pβ{|Tn(Q) − β| ≥ ζ} cannot tend to zero faster than the exponential

rate given by exp{−n/2ζ2I(β)}, and for MLE βn, Pβ{|βn − β| ≥ ζ} achieves

this optimal exponential rate. The βn is called Bahadur asymptotically

efficient (BAE).

Fu (1973) showed, under regularity conditions which differ partly from Ba-

hadur’s, that a large class of consistent estimators β∗
n are asymptotically efficient

in Bahadur’s sense. The author also gave a simple and direct method to verify

Bahadur (1967) conditions. Cheng (1980) proved, under weaker conditions than

Bahadur’s, that the MLE in both single-parameter and multi-parameter cases is

BAE. Lu (1983) studied the Bahadur efficiency of MLE for the linear models.

In this section, we investigate BAE of the estimator of the parameter β in the

model (1.1.1). It is shown that a quasi-maximum likelihood estimator (QMLE)

is BAE under suitable assumptions. Similar results for generalized semiparametric

models have been established by Liang (1995a).

In Sections 5.4 and 5.5 below, we always suppose that g is an unknown Hölder

continuous function of known order of m+ r (Chen, 1988) in R1. When approx-

imating g, we use a piecewise polynomial approximation ĝP studied by Stone

(1985) and Chen (1988), which satisfies

|g(Ti)− ĝP (Ti)| ≤ B2M
−(m+r)
n i = 1, · · · , n, (5.4.1)
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where Mn satisfies lim
n→∞nM

−2(m+r)
n = 0 and lim

n→∞n
−qMn = 0 for some q ∈ (0, 1).

The MLE β̂ML of β is defined based on {Yi = XT
i β+ĝP (Ti)+εi i = 1, · · · , n}.

Let {Xi, Ti, Yi, i = 1, · · · , n} be a sequence of i.i.d. observations drawn from

the model (1.1.1). Throughout the remainder of this section we denote a vector

by a boldface letter, a matrix by a calligraphic letter, R∗
n = XTX, I = I(ϕ) =

∫
(ψ′(x))2ϕ(x)dx < ∞, and ψ(x) = ϕ′(x)/ϕ(x). We assume that ϕ(x) is positive

and twice differentiable in R1 and that the limit values of ϕ(x) and ϕ′(x) are zero

as x→∞. For a ∈ Rp and B1 = (bij)n1×n2 , denote

‖a‖ =
( p∑

i=1

a2
i

)1/2
, |a| = max

1≤i≤p
|ai|;

|B1|∗ = max
i,j
|bij|, ‖B1‖∗ = max

a∈Rn2 ,‖a‖=1
‖B1a‖,

where ‖ · ‖ denotes L2−norm and ‖ · ‖∗ does matrix norm.

We now state the following definitions.

Definition 5.4.1 The estimator h̃n(Y1, · · · , Yn) of β is called locally uniformly

consistent estimator of β, if for every β0 ∈ Rp, there exists a δ > 0 such that

for each ζ > 0,

lim
n→∞

sup
|β−β0|<δ

Pβ{‖h̃n − β‖ > ζ} = 0.

Definition 5.4.2 Assume that R∗
n
−1 exists. The consistent estimator h̃n of β is

said to be BAE, if for each β0 ∈ Rp,

lim sup
ζ→0

lim sup
n→∞

1

ζ2
‖R∗

n
−1‖∗ logPβ0{‖h̃n − β0‖ > ζ} ≤ −I

2
.

5.4.2 Tail Probability

We make the following assumptions for our main result.

Assumption 5.4.1 There exist constants C1, C2 > 0 such that C1 ≤ µ1 ≤
µ2 ≤ · · · ≤ µp ≤ C2, where µ1, µ2, · · · , µp are the eigenvalues of n−1R∗

n. Denote

R = C2/C1.

Assumption 5.4.2 There exists a C0 such that E‖X‖ ≤ C0 <∞.

Assumption 5.4.3 lim
δ→0

∫
sup|h|≤δ |ψ′(y + h)− ψ′(y)|ϕ(y) dy = 0.
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Assumption 5.4.4 There exists a t0 > 0 such that

∫
exp{t0|ψ(x)|}ϕ(x) dx <∞ and

∫
exp{t0|ψ′(x)|}ϕ(x) dx <∞.

Assumption 5.4.5 There exist a measurable function h(x) > 0 and a nonde-

creasing function γ(t) satisfying γ(t) > 0 for t > 0 and limt→0+ γ(t) = 0 such that
∫

exp{h(x)}ϕ(x) dx <∞ and |ψ′(x+ t)− ψ′(x)| ≤ h(x)γ(t) whenever |t| ≤ |t0|.

Assumption 5.4.6 The MLE β̂ML exists, and for each δ > 0, β0 ∈ Rp, there

exist constants K = K(δ, β0) and ρ = ρ(δ, β0) > 0 such that

Pβ0

{
|β̂ML − β0| > δ

}
≤ K exp(−ρ‖R∗

n‖∗δ2).

The following theorem gives our main result which shows that β̂ML is a BAE

estimator of β.

Theorem 5.4.1 h̃n is a locally uniformly consistent estimator. Suppose

that Assumptions 5.4.1-5.4.3 hold. Then for each β0 ∈ Rp

lim inf
ζ→0

lim inf
n→∞

1

ζ2
‖R∗

n
−1‖∗ logPβ0{‖h̃n − β0‖ > ζ} ≥ −I

2
. (5.4.2)

If Assumptions 5.4.1-5.4.6 hold, then for each β0 ∈ Rp

lim sup
ζ→0

lim sup
n→∞

‖R∗
n
−1‖∗
ζ2

logPβ0

{
‖β̂ML − β0‖ > ζ

}
≤ −I

2
. (5.4.3)

The result (5.4.3) implies that β̂ML is BAE.

5.4.3 Technical Details

The proof of the theorem is partly based on the following lemma, which was

proven by Lu (1983).

Lemma 5.4.1 Assume that W1, · · · ,Wn are i.i.d. with mean zero and finite vari-

ance σ2
1. There exists a t0 > 0 such that E{exp(t0|W1|)} < ∞. For known con-

stants a1n, a2n, · · · , ann, there exist constants An and Â such that
∑n

i=1 a
2
in ≤ An

and max1≤i≤n |ain|/An ≤ Â. Then for small enough ζ > 0,

P
{∣∣∣

n∑

i=1

ainWi

∣∣∣ > ζ
}
≤ 2 exp

{
− ζ2

2σ1
2A2

n

(1 + o(ζ))
}
,

where |o(ζ)| ≤ ÂC1ζ and C1 only depends on W1.



5. SOME RELATED THEORETIC TOPICS 107

We first prove the result (5.4.2). The proof is divided into three steps. In

the first step, we get a uniformly most powerful (UMP) test Φ∗
n whose power is

1/2 for the hypothesis H0 : β = β0 ⇐⇒ H1 : β = βn. In the second step, by

constructing a test Φn(Y) corresponding to h̃n, we show that the power of the

constructed test is larger than 1/2. In the last step, by using Neyman-Pearson

Lemma, we show that Eβ0Φn, the level of Φn, is larger than Eβ0Φ
∗
n.

Proof of (5.4.2). For each ζ > 0, set

βn = β0 +
R∗

n
−1an

‖R∗
n
−1‖∗ ζ,

where an ∈ Rp, aT
nR∗

n
−1an = ‖R∗

n
−1‖∗ and ‖an‖ = 1. Let li = (0, · · · , 1, · · · , 0)T ∈

Rp, it is easy to get

‖R∗
n
−1‖∗ ≥ aTR∗

n
−1a ≥ 1

‖R∗
n‖∗

and

|βn − β0| ≤ ‖R∗
n‖ · ‖R∗

n
−1‖∗ζ ≤ Rζ.

Denote

Γn(Y) =
n∏

i=1

ϕ(Yi −XT
i βn − g(Ti))

ϕ(Yi −XT
i β0 − g(Ti))

,

∆i = XT
i (βn − β0), dn = exp

{
I(1 + µ)ζ2

2‖R∗
n
−1‖∗

}
(µ > 0).

By Neyman-Pearson Lemma, there exists a test Φ∗
n(Y) such that

Eβn{Φ∗
n(Y)} =

1

2
.

Under H0, we have the following inequality:

Eβ0{Φ∗
n(Y)} ≥

∫

Γn≤dn

Φ∗
n(Y) dPnβ0

≥ 1

dn

{1

2
−
∫

Γn(Y)>dn

Φ∗
n(Y) dPnβn

}
.

If

lim sup
n→∞

Pβn{Γn(Y) > dn} ≤
1

4
, (5.4.4)

then for n large enough

Eβ0{Φ∗
n(Y)} ≥ 1

4dn

. (5.4.5)
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Define

Φn(Y ) =





1, |aT
n (h̃n − β0)| ≥ λ′ζ

0, otherwise,
(5.4.6)

where λ′ ∈ (0, 1). Since aT
n (βn − β0) = ζ and h̃n is a locally uniformly

consistent estimator, we have

lim inf
n→∞

Eβn{Φn(Y)} ≥ lim inf
n→∞

Pβn{‖h̃n − βn‖ ≤ (1− λ′)ζ} = 1.

It follows from Neyman-Pearson Lemma that for n large enough

Eβ0{Φn(Y)} ≥ Eβ0{Φ∗
n(Y)}. (5.4.7)

It follows from (5.4.5), (5.4.6) and (5.4.7) that

Pβ0{‖h̃n − β0‖ ≥ λ′ζ} ≥ Pβ0{|aT
n (h̃n − β0)| ≥ λ′ζ}

= Eβ0{Φn(Y)} ≥ 1

4dn

.

By letting µ→ 0 and λ′ → 1, this completes the proof of (5.4.2).

Now we return to prove the inequality (5.4.4). It follows from Assumption

5.4.2 that ‖∆i‖ ≤ RCζ and

n∑

i=1

∆i
2 ≤ 2aT

nR∗
n
−1an

‖R∗
n
−1‖∗2 ζ2 =

2ζ2

‖R∗
n
−1‖∗ . (5.4.8)

A Taylor expansion implies that for sufficiently small ζ
n∑

i=1

log
ϕ(Yi)

ϕ(Yi + ∆i)
= −

n∑

i=1

{
ψ(Yi)∆i +

1

2
(ψ′(Yi) +Ri(Yi))∆

2
i

}
,

where Ri(Yi) = ψ′(Yi + θi∆i)− ψ′(Yi) and 0 < θi < 1. Thus

Pβn{Γn(Y ) > dn} = P0

{
n∏

i=1

ϕ(Yi)

ϕ(Yi + ∆i)
> dn

}

= P0

{
n∑

i=1

log
ϕ(Yi)

ϕ(Yi + ∆i)
>
I(1 + µ)ζ2

2‖R∗
n
−1‖∗

}

≤ P0

{
1

2

n∑

i=1

I(ϕ)∆2
i >

I(1 + µ
2
)ζ2

2‖R∗
n
−1‖∗

}

+P0

{
−

n∑

i=1

ψ(Yi)∆i >
Iµζ2

12‖R∗
n
−1‖∗

}

+P0

{
−

n∑

i=1

1

2
[ψ′(Yi) + I(ϕ)]∆2

i >
Iµζ2

12‖R∗
n
−1‖∗

}

+P0

{
−1

2

n∑

i=1

Ri(Yi)∆
2
i >

Iµζ2

12‖R∗
n
−1‖∗

}

def
= P1 + P2 + P3 + P4.



5. SOME RELATED THEORETIC TOPICS 109

We now estimate the four probabilities P1, P2, P3 and P4, respectively.

P1 = P0

{
I(ϕ)

1

‖R∗
n
−1‖∗ >

I(1 + µ
2
)

‖R∗
n
−1‖∗

}
= 0. (5.4.9)

It follows from Chebyshev’s inequality, Assumption 5.4.1 and (5.4.8) that

P2 = PT

[
P0

{
−

n∑

i=1

ψ(Yi)∆i >
Iµζ2

12‖R∗
n
−1‖∗

∣∣∣∣∣T
}]

≤ PT

(
144‖R∗

n
−1‖∗

Iµ2ζ2

)
→ 0 as n→∞. (5.4.10)

P3 ≤ PT

[(6‖R∗
n
−1‖∗

Iµζ2

)2
(CRζ)2 ζ2

‖R∗
n
−1‖∗E0{ψ′(Y1) + I(ϕ)}2

]
→ 0 as n→∞.

P4 ≤ PT

[
6‖R∗

n
−1‖∗

Iµζ2
· 1

‖R∗
n
−1‖∗ ζ

2E0{max
1≤i≤n

|Ri(Yi)|
∣∣∣T}

]
.

By Assumption 5.4.3 and letting ζ be sufficiently small such that |∆i| < δ, we

have

E0{max
1≤i≤n

|Ri(Yi)|
∣∣∣T} ≤

∫
sup
|h|<δ
|ψ′(y + h)− ψ′(y)|ϕ(y) dy ≤ µ

24
. (5.4.11)

Combining the results (5.4.9) to (5.4.11), we finally complete the proof of (5.4.4).

We outline the proof of the formula (5.4.3). Firstly, by using the Taylor expan-

sion and Assumption 5.4.2, we get the expansion of the projection, aT (β̂ML−β), of

β̂ML−β on the unit sphere ‖a‖ = 1. Secondly we decompose Pβ0{|aT (β̂ML−β0)| >
ζ} into five terms. Finally, we calculate the value of each term.

It follows from the definition of β̂ML and Assumption 5.4.2 that

aT (β̂ML − β) = −{(FI)−1 + W̃}
n∑

i=1

ψ(Yi −XT
i β − g(Ti))a

TR∗
n
−1

−
n∑

i=1

ψ′(Yi −XT
i β

∗ − g∗(Ti))a
TR∗

n
−1Xi{ĝP (Ti)− g(Ti)},

where XT
i β

∗ lies between XT
i β̂ML and XT

i β and g∗(Ti) lies between g(Ti) and

ĝP (Ti).

Denote

Ri(Yi, Xi, Ti) = ψ′(Yi −XT
i β

∗ − g∗(Ti))− ψ′(Yi −XT
i β − g(Ti)),

R∗
1 =

n∑

i=1

{I + ψ′(Yi −XT
i β − g(Ti))}R∗

n
−1XiX

T
i ,

R∗
2 =

n∑

i=1

Ri(Yi, Xi, Ti)R∗
n
−1XiX

T
i .
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Let α be sufficiently small such that det(−FI+R∗
1+R

∗
2) 6= 0 when |R∗

1+R
∗
2| <

α. Hence (−FI+R∗
1+R

∗
2)

−1 exists and we denote it by−{(FI)−1+W̃}.Moreover,

according to continuity, there is a nondecreasing and positive function η(α) such

that |W̃ | < η(α) and limα→0 η(α) = 0 when |R∗
1 + R∗

2| < α. Hence, we obtain,

for every 0 < λ < 1/4, a ∈ Rp and ‖a‖ = 1, that Pβ0{|aT (β̂ML − β0)| > ζ} is

bounded by

Pβ0

{∣∣∣
n∑

i=1

ψ(Yi −XT
i β0 − g(Ti))a

TR∗
n
−1Xi

∣∣∣ > (1− 2λ)Iζ
}

+Pβ0

{∣∣∣
n∑

i=1

aTψ(Yi −XT
i β0 − g(Ti))R∗

n
−1Xi

∣∣∣ >
λζ

η(2α)

}

+Pβ0

{
|R∗

1| > α}+ Pβ0{|R∗
2| > α}

+Pβ0

{ n∑

i=1

|ĝP (Ti)− g(Ti)||ψ′(Yi −XT
i β

∗ − g∗(Ti))a
TR∗

n
−1Xi| > λζ

}

def
= P5 + P6 + P7 + P8 + P9.

In the following we use Lemma 5.4.1 to calculate {Pi; 5 ≤ i ≤ 9}. We calculate

only the probability P8 and the others can be obtained similarly. We omit the

details.

It follows from Assumption 5.4.5 that

|Ri(Yi, Xi, Ti)| = |ψ′(Yi −XT
i β

∗ − g∗(Ti)− ψ′(Yi −XT
i β0 − g(Ti))|

≤ h(Yi −XT
i β0 − g(Ti))γ(X

T
i (β̂ML − β0)− (g∗(Ti)− g(Ti))).

Denote h0 = Eβ0h(Yi −XT
i β0 − g(Ti)). We now have

P8 ≤
p∑

j=1

p∑

s=1

Pβ0

{∣∣∣
n∑

i=1

h(Yi −XT
i β0 − g(Ti))γ(X

T
i (β̂ML − β0)

−(g∗(Ti)− g(Ti)))l
T
j R∗

n
−1XiX

T
i ls
∣∣∣ ≥ α

}

≤
p∑

j=1

p∑

s=1

[
Pβ0{ ∪n

i=1 |ĝP (Ti)− g(Ti)| > δ}+ Pβ0{|β̂ML − β0| ≥ δ}

+Pβ0

{∣∣∣
n∑

i=1

h(Yi −XT
i β0 − g(Ti))γ(Cδ + δ)lTj R∗

n
−1XiX

T
i ls
∣∣∣ ≥ α

}]

def
= P

(1)
8 + P

(2)
8 + P

(3)
8 .

Let ζ ≤
( 2ρ

(1− 2λ)2I

)1/2
. It follows from Assumption 5.4.6 and |aTR∗

n
−1a| ≥

(‖R∗
n‖∗)−1 that

ρ(δ, β0)‖R∗
n‖∗ ≥

(1− 2λ)2I

2aTR∗
n
−1a

ζ2



5. SOME RELATED THEORETIC TOPICS 111

and

P
(2)
8 ≤ K(δ, β0) exp

{
−(1− 2λ)2I

2aTR∗
n
−1a

ζ2
}
. (5.4.12)

Let σ2
h = Eβ0{h(Yi −XT

i β0 − g(Ti))− h0}2. It follows from Lemma 5.4.1 that

P
(3)
8 ≤ Pβ0

[∣∣∣
n∑

i=1

{h(Yi −XT
i β0 − g(Ti))− h0}lTj R∗

n
−1XiX

T
i ls
∣∣∣ ≥ α

2γ(Cδ + δ)

]

≤ 2 exp

{
− α2

8γ2(Cδ + δ)C2Rσ2
ha

TR∗
n
−1a

(
1 +O4(

α

2γ(Cδ + δ)
)
)}

,

where
∣∣∣O4(

α

2γ(Cδ + δ)
)
∣∣∣ ≤ B4

α

2γ(Cδ + δ)
and B4 depends only on h(ε1). Fur-

thermore, for ζ small enough, we obtain

P
(3)
8 ≤ 2 exp

{
−(1− 2λ)2Iζ2

2aTR∗
n
−1a

}
.

It follows from (5.4.1) that

P
(1)
8 = Pβ0{ ∪n

i=1 |(ĝP (Ti)− g(Ti))| > δ} = 0. (5.4.13)

Combining (5.4.12) with (5.4.13), we have

P8 ≤ (2 +K) exp
{
−(1− 2λ)2Iζ2

2aTR∗
n
−1a

}
.

Therefore

Pβ0

{
|aT (β̂ML − β0)| > ζ

}
≤ (Kp2 + K + 4p2 + 2p)

× exp
{
−(1− 2λ)2Iζ2

2aTR∗
n
−1a

(1 +O(ζ))
}
,

where O(ζ) = min{O1(ζ), O2(ζ), O3(ζ), O4(ζ), O5(ζ)}, |O(ζ)| ≤ CRB(η−1(2α) +

1), which implies

lim sup
ζ→0

lim sup
n→∞

aTR∗
n
−1a

ζ2
logPβ0

{
|aT (β̂ML − β0)| > ζ

}
≤ −(1− 2λ)2I

2
.

Since a is arbitrary, the result (5.4.3) follows from λ → 0. This completes the

proof of (5.4.3).

5.5 Second Order Asymptotic Efficiency

5.5.1 Asymptotic Efficiency

In Section 5.3, we constructed a class of asymptotically efficient estimators of the

parameter β, that is, their asymptotic variances reach the asymptotically efficient
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bound, the inverse of the Fisher information matrix. There is plenty of evi-

dence that there exist many asymptotic efficient estimators. The comparison of

their strength and weakness is an interesting issue in both theoretical and prac-

tical aspects (Liang, 1995b, Linton, 1995). This section introduces a basic result

for the partially linear model (1.1.1) with p = 1. The basic results are related

to the second order asymptotic efficiency. The context of this section is

influenced by the idea proposed by Akahira and Takeuchi (1981) for the linear

model.

This section consider only the case where εi are i.i.d. and (Xi, Ti) in model

(1.1.1) are random design points. Assume that X is a covariate variable with

finite second moment. For easy reference, we introduce some basic concepts on

asymptotic efficiency. We refer the details to Akahira and Takeuchi (1981).

Suppose that Θ is an open set of R1. A {Cn}-consistent estimator βn is

called second order asymptotically median unbiased (or second order AMU )

estimator if for any v ∈ Θ, there exists a positive number δ such that

lim sup
n→∞β:|β−v|<δ

Cn

∣∣∣Pβ,n{βn ≤ β} − 1

2

∣∣∣ = 0

and

lim sup
n→∞β:|β−v|<δ

Cn

∣∣∣Pβ,n{βn ≥ β} − 1

2

∣∣∣ = 0.

Suppose that βn is a second order AMU estimator. G0(t, β) +C−1
n G1(t, β) is

called the second order asymptotic distribution of Cn(βn − β) if

lim
n→∞

Cn

∣∣∣Pβ,n{Cn(βn − β) ≤ t} −G0(t, β)− C−1
n G1(t, β)

∣∣∣ = 0.

Let Cn =
√
n and β0(∈ Θ) be arbitrary but fixed. We consider the problem

of testing hypothesis

H+ : β = β1 = β0 +
u√
n

(u > 0)←→ K : β = β0.

Denote Φ1/2 =
{
φn : Eβ0+u/

√
n,nφn = 1/2 + o(1/

√
n)
}

and Aβn,β0 = {√n(βn −
β0) ≤ u}. It follows that

lim
n→∞

Pβ0+ u√
n

,n(Aβn,β0) = lim
n→∞

Pβ0+ u√
n

,n

{
βn ≤ β0 +

u√
n

}
=

1

2
.
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Obviously, the indicator functions {XAβn,β0
} of the sets Aβn,β0(n = 1, 2, · · ·) belong

to Φ1/2. By Neyman-Pearson Lemma, if

sup
φn∈Φ1/2

lim sup
n→∞

√
n
{
Eβ0,n(φn)−H+

0 (t, β0)−
1√
n
H+

1 (t, β0)
}
= 0,

thenG0(t, β0) ≤ H+
0 (t, β0). Furthermore, ifG0(t, β0) = H+

0 (t, β0), thenG1(t, β0) ≤
H+

1 (t, β0).

Similarly, we consider the problem of testing hypothesis

H− : β = β0 +
u√
n

(u < 0)←→ K : β = β0.

We conclude that if

inf
φn∈Φ1/2

lim inf
n→∞

√
n
{
Eβ0,n(φn)−H−

0 (t, β0)−
1√
n
H−

1 (t, β0)
}

= 0,

then G0(t, β0) ≤ H−
0 (t, β0); if G0(t, β0) = H−

0 (t, β0), then G1(t, β0) ≤ H−
1 (t, β0).

These arguments indicate that even the second order asymptotic distribution

of second AMU estimator cannot certainly reach the asymptotic distribution

bound. We first introduce the following definition. Its detailed discussions can be

found in Akahira and Takeuchi (1981).

Definition 5.5.1 βn is said to be second order asymptotically efficient if

its second order asymptotic distribution uniformly attains the bound of the second

order asymptotic distribution of second order AMU estimators, that is for each

β ∈ Θ

Gi(u, β) =

{
H+

i (u, β) for u > 0
H−

i (u, β) for u < 0.

The goal of this section is to consider second order asymptotic efficiency for

estimator of β.

5.5.2 Asymptotic Distribution Bounds

In this subsection we deduce the asymptotic distribution bound. The procedure

is based on Neyman-Pearson Lemma and Edgeworth expansion, which is given

in the following lemma.

Lemma 5.5.1 (Zhao and Bai, 1985) Suppose that W1, · · · ,Wn are independent

with mean zero and EW 2
j > 0 and E|Wj|3 < ∞ for each j. Let Gn(w) be the



114 5. SOME RELATED THEORETIC TOPICS

distribution function of the standardization of
∑n

i=1Wi. Then

Gn(w) = Φ(w) +
1

6
φ(w)(1− w2)µ3µ

−3/2
2 + o(

1√
n

)

uniformly on w ∈ R1, where µ2 =
∑n

i=1EW
2
i and µ3 =

∑n
i=1EW

3
i .

In the remainder of this subsection, we denote J =
∫
ψ′′(u)ψ′(u)ϕ(u) du and

K =
∫ {ψ′(u)}3ϕ(u) du. Let Pβ′ and Eβ′ denote probability and expectation cor-

responding to the parameter β′, respectively.

We introduce the following assumptions.

Assumption 5.5.1 ϕ(·) is three times continuously differentiable and ϕ(3)(·) is

a bounded function.

Assumption 5.5.2 J and K are well-defined, and
∫
ψ′′′(u)ϕ(u) du = −3J −K.

Assumption 5.5.3

lim
u→±∞

ψ(u) = lim
u→±∞

ψ′(u) = lim
u→±∞

ψ′′(u) = 0, and Eε4 <∞.

It will be obtained that the bound of the second order asymptotic distribution of

second order AMU estimators of β.

Let β0 be arbitrary but fixed point in R1. Consider the problem of testing

hypothesis

H+ : β = β1 = β0 +
u√
n

(u > 0)←→ K : β = β0.

Set

β1 = β0 + ∆ with ∆ =
u√
n
, and Zni = log

ϕ(Yi −Xiβ0 − g(Ti))

ϕ(Yi −Xiβ1 − g(Ti))
.

It follows from Eψ′′(εi) = −I and Eψ′(εi) = 0 that if β = β1,

Zni = log
ϕ(εi + ∆Xi)

ϕ(εi)

= ∆Xiψ
′(εi) +

∆2X2
i

2
ψ′′(εi) +

∆3X3
i

6
ψ′′′(εi) +

∆4X4
i

24
ψ(3)(ε∗i ),

where ε∗i lies between εi and εi + ∆Xi, and if β = β0,

Zni = log
ϕ(εi)

ϕ(εi −∆Xi)

= ∆Xiψ
′(εi)−

∆2X2
i

2
ψ′′(εi) +

∆3X3
i

6
ψ′′′(εi)−

∆4X4
i

24
ψ(3)(ε∗∗i ),
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where ε∗∗i lies between εi and εi −∆Xi.

We here calculate the first three moments of
∑n

i=1 Zni at the points β0 and

β1, respectively. Direct calculations derive the following expressions,

Eβ0

( n∑

i=1

Zni

)
=

∆2I

2
nEX2 − ∆3(3J +K)

6
nEX3 + o(

1√
n

)

def
= µ1(β0),

V arβ0

( n∑

i=1

Zni

)
= ∆2InEX2 − J∆3nEX3 + o(n∆3)

def
= µ2(β0),

Eβ0

n∑

i=1

(Zni − Eβ0Zni)
3 = Eβ0

n∑

i=1

Z3
ni − 3

n∑

i=1

Eβ0Z
2
niEβ0Zni + 2

n∑

i=1

(Eβ0Zni)
3

= ∆3KnEX3 + o(n∆3)

def
= µ3(β0),

Eβ1

( n∑

i=1

Zni

)
= −∆2I

2
nEX2 − ∆3(3J +K)

6
nEX3 + o(

1√
n

)

def
= µ1(β1),

V arβ1

( n∑

i=1

Zni

)
= ∆2InEX2 − J∆3nEX3 + o(n∆3)

def
= µ2(β1),

and

Eβ1

n∑

i=1

(Zni − Eβ1Zni)
3 = Eβ1

n∑

i=1

Z3
ni − 3

n∑

i=1

Eβ1Z
2
niEβ1Zni + 2

n∑

i=1

(Eβ1Zni)
3

= ∆3KnEX3 + o(n∆3)

def
= µ3(β1).

First we choose an an such that

Pβ1

{ n∑

i=1

Zni < an

}
=

1

2
+ o(

1√
n

). (5.5.1)

Denote

cn =
an −

∑n
i=1Eβ1Zni√
µ2(β1)

, dn =
an −

∑n
i=1Eβ0Zni√
µ2(β0)

.
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It follows from Lemma 5.5.1 that the left-hand side of (5.5.1) can be decomposed

into

Φ(cn) + φ(cn)
1− c2n

6

µ3(β1)

µ
3/2
2 (β1)

+ o(
1√
n

). (5.5.2)

This means that (5.5.1) holds if and only if cn = O(1/
√
n) and Φ(cn) = 1/2 +

cnφ(cn), which imply that

cn = − µ3(β1)

6µ
3/2
2 (β1)

+ o(
1√
n

)

and therefore

an = − µ3(β1)

6µ2(β1)
+

n∑

i=1

Eβ1(Zni) + o(
1√
n

).

Second, we calculate Pβ0,n{
∑n

i=1 Zni ≥ an}. It follows from Lemma 5.5.1 that

Pβ0,n

{ n∑

i=1

Zni ≥ an

}
= 1− Φ(dn)− φ(dn)

(1− d2
n)µ3(β0)

6µ
3/2
2 (β0)

+ o(
1√
n

). (5.5.3)

On the other hand, a simple calculation deduces that

d2
n = ∆2InEX2 +O(

1√
n

). (5.5.4)

Substituting (5.5.4) into (5.5.3), we conclude that

Pβ0,n

{ n∑

i=1

Zni ≥ an

}
= Φ

(√
∆2InEX2

)
+ φ

(√
∆2InEX2

)

∆2(3J +K)nEX3

6
√
InEX2

+ o(
1√
n

). (5.5.5)

So far, we establish the asymptotic distribution bound, which can be summarized

in the following theorem.

Theorem 5.5.1 Assume that EX4 <∞ and that Assumptions 5.5.1-5.5.3 hold.

If some estimator {βn} satisfies

Pβ,n

{√
nIEX2(βn − β) ≤ u

}
= Φ(u) + φ(u) · (3J +K)EX3

6
√
nI3E3X2

u2

+o(
1√
n

), (5.5.6)

then {βn} is second order asymptotically efficient.
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5.5.3 Construction of 2nd Order Asymptotic Efficient Estimator

In this subsection we shall construct a second order asymptotic efficient

estimator of β. The primary estimator used here is PMLE β̂ML given in section

5.4. First of all, we study the asymptotic normality of β̂ML.

Via the Taylor expansion,

n∑

i=1

ψ(Yi −Xiβ̂ML − ĝP (Ti))Xi =
n∑

i=1

ψ(Yi −Xiβ − g(Ti))Xi

−
n∑

i=1

ψ′(Yi −Xiβ
∗ − g∗(Ti))[X

2
i (β̂ML − β)

+Xi{ĝP (Ti)− g(Ti)}], (5.5.7)

where β∗ lies between β̂ML and β and g∗(Ti) lies between g(Ti) and ĝP (Ti).

Recalling the fact given in (5.4.1), we deduce that

1

n

n∑

i=1

|ψ′(Yi −Xiβ
∗ − g∗(Ti))Xi{ĝP (Ti)− g(Ti)}| → 0.

The definition of β̂ML implies

1√
n

n∑

i=1

ψ(Yi −Xiβ − g(Ti))Xi =
1

n

n∑

i=1

ψ′(Yi −Xiβ
∗ − g∗(Ti))X

2
i

√
n(β̂ML − β) + o(1).

The asymptotic normality of
√
n(β̂ML−β) is immediately derived and its asymp-

totic variance is (IEX2)−1.

Although we have obtained the first order asymptotic distribution of
√
n

(β̂ML − β), it is not enough for us to consider a higher order approximation. A

key step is to expand the left-hand side of (5.5.7) to the second order terms. That

is,

n∑

i=1

ψ(Yi −Xiβ̂ML − ĝP (Ti))Xi =
n∑

i=1

ψ(Yi −Xiβ − g(Ti))Xi

−
n∑

i=1

ψ′(Yi −Xiβ − g(Ti))[X
2
i (β̂ML − β) +Xi{ĝP (Ti)− g(Ti)}]

+
1

2

n∑

i=1

ψ′′(Yi −Xiβ̃
∗ − g̃∗(Ti))Xi{Xi(β̂ML − β)

+ĝP (Ti)− g(Ti)}2, (5.5.8)

where β̃∗ lies between β̂ML and β and g̃∗(Ti) lies between g(Ti) and ĝP (Ti).
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We introduce some notation here.

Z1(β) =
1√
n

n∑

i=1

ψ(Yi −Xiβ − g(Ti))Xi,

Z2(β) =
1√
n

n∑

i=1

{ψ′(Yi −Xiβ − g(Ti))X
2
i + EX2I},

W (β) =
1

n

n∑

i=1

ψ′′(Yi −Xiβ̃
∗ − g̃∗(Ti))X

3
i .

Elementary calculations deduce that

EZ1(β) = EZ2(β) = 0,

EZ2
1(β) = IEX2 def

= I(β),

EZ2(β) = E{ψ′(ε)X2 + EX2I}2,

EZ1(β)Z2(β) = Eψ(ε)ψ′(ε)EX3 = JEX3.

A central limit theorem implies that Z1(β) and Z2(β) have asymptotically normal

distributions with mean zero, variances I(β) and E{ψ′(ε)X2 +EX2I}2(def
= L(β)),

respectively and covariance J(β) = JEX3, while the law of large numbers im-

plies that W (β) converges to Eψ′′(ε)EX3 = −(3J + K)EX3. Combining these

arguments with (5.5.8), we obtain an asymptotic expansion of
√
n(β̂ML−β). That

is,

√
n(β̂ML − β) =

Z1(β)

I(β)
+
Z1(β)Z2(β)√

nI2(β)
− (3J +K)EX3

2
√
nI3(β)

Z2
1(β)

+op(
1√
n

). (5.5.9)

Further study indicates that β̂ML is not second order asymptotic efficient.

However, we have the following result.

Theorem 5.5.2 Suppose that the m-th(m ≥ 4) cumulants of
√
nβ̂ML are less

than order 1/
√
n and that Assumptions 5.5.1- 5.5.3 hold. Then

β̂∗
ML = β̂ML +

KEX3

3nI2(β)

is second order asymptotically efficient.

Proof. Denote T̂n =
√
n(β̂ML − β). We obtain from (5.5.9) and Assumptions

5.5.1-5.5.3 that

EβT̂n = −(J +K)EX3

2
√
nI2(β)

+ o(
1√
n

),
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V arβT̂n =
1

I(β)
+ o(

1√
n

),

Eβ(T̂n − EβT̂n)3 = −(3J +K)EX3

√
nI3(β)

+ o(
1√
n

).

Denote u(β) = −KEX
3

3I2(β)
. The cumulants of the asymptotic distribution of

√
nI(β)(β̂∗

ML − β) can be approximated as follows:

√
nI(β)Eβ(β̂∗

ML − β) = −
√
I(β)

n

{(J +K)EX3

2I2(β)
+ u(β)

}
+ o(

1√
n

),

nI(β)V arβ(β̂∗
ML) = 1 + o(

1√
n

),

Eβ{
√
nI(β)(β̂∗

ML − Eββ̂
∗
ML)}3 = −(3J +K)EX3

√
nI3/2(β)

+ o(
1√
n

).

Obviously β̂∗
ML is an AMU estimator. Moreover, using Lemma 5.5.1 again and

the same technique as in the proof of Theorem 5.5.1, we deduce that

Pβ,n{
√
nI(β)(β̂∗

ML − β) ≤ t} = Φ(t) + φ(t)
(3J +K)EX3

6
√
nI3(β)

t2 + o(
1√
n

).(5.5.10)

The proof of Theorem 5.5.2 is finished by combining (5.5.6) and (5.5.10).

5.6 Estimation of the Error Distribution

5.6.1 Introduction

This section discusses asymptotic behaviors of the estimator of the error density

function ϕ(u), ϕ̂n(u), which is defined by using the estimators given in (1.2.2)

and (1.2.3). Under appropriate conditions, we first show that ϕ̂n(u) converges in

probability, almost surely converges and uniformly almost surely converges. Then

we consider the asymptotic normality and the convergence rates of ϕ̂n(u). Finally

we establish the LIL for ϕ̂n(u).

Set ε̂i = Yi − XT
i βLS − ĝn(Ti) for i = 1, . . . , n. Define the estimator of ϕ(u)

as follows,

ϕ̂n(u) =
1

2nan

n∑

i=1

I(u−an≤ε̂i≤u+an), u ∈ R1 (5.6.1)

where an(> 0) is a bandwidth and IA denotes the indicator function of the set A.

Estimator ϕ̂n is a special form of the general nonparametric density estimation.
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5.6.2 Consistency Results

In this subsection we shall consider the case where εi are i.i.d. and (Xi, Ti) are

fixed design points, and prove that ϕ̂n(u) converges in probability, almost surely

converges and uniformly almost surely converges. In the following, we always

denote

ϕn(u) =
1

2nan

n∑

i=1

I(u−a≤εi≤u+an)

for fixed point u ∈ C(ϕ), where C(ϕ) is the set of the continuous points of ϕ.

Theorem 5.6.1 There exists a constant M > 0 such that ‖Xi‖ ≤ M for i =

1, · · · , n. Assume that Assumptions 1.3.1-1.3.3 hold. Let

0 < an → 0 and n1/3an log−1 n→∞.

Then ϕ̂n(u)→ ϕ(u) in probability as n→∞.

Proof. A simple calculation shows that the mean of ϕn(u) converges to ϕ(u) and

its variance converges to 0. This implies that ϕn(u) → ϕ(u) in probability as

n→∞.
Now, we prove ϕ̂n(u)− ϕn(u)→ 0 in probability.

If εi < u − an, then ε̂i ∈ (u − an, u + an) implies u − an + XT
i (βLS − β) +

ĝn(Ti) − g(Ti) < εi < u − an. If εi > u + an, then ε̂i ∈ (u − an, u + an) implies

u+ an < εi < u+ an +XT
i (βLS − β) + ĝn(Ti)− g(Ti). Write

Cni = XT
i (βLS − β) + ĝn(Ti)− g(Ti) for i = 1, . . . , n.

It follows from (2.1.2) that, for any ζ > 0, there exists a η0 > 0 such that

P{n1/3 log−1 n sup
i
|Cni| > η0} ≤ ζ.

The above arguments yield that

|ϕ̂n(u)− ϕn(u)| ≤ 1

2nan

I(u±an−|Cni|≤εi≤u±an) +
1

2nan

I(u±an≤εi≤u±an+|Cni|)

def
= I1n + I2n,

where I(u±an−|Cni|≤εi≤u±an) denotes I(u+an−|Cni|≤εi≤u+an)∪(u−an−|Cni|≤εi≤u−an).
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We shall complete the proof of the theorem by dealing with I1n and I2n. For

any ζ ′ > 0 and large enough n,

P{I1n > ζ ′} ≤ ζ + P{I1n > ζ ′, sup
i
|Cni| ≤ η0}

≤ ζ + P
{ n∑

i=1

I(u±an−Cη0n−1/3 log n≤εi≤u±an) ≥ 2nanζ
′
}
.

Using the continuity of ϕ on u and applying Chebyshev’s inequality we know

that the second term is smaller than

1

2anζ ′
P
(
u± an − Cη0n

−1/3 log n ≤ εi ≤ u± an

)

=
Cη0 log n

2ζ ′n1/3an

{ϕ(u) + o(1)}.

It follows from ann
1/3 log−1 n→∞ that

lim sup
n→∞

P{I1n > ζ ′} ≤ ζ.

Since ζ is arbitrary, we obtain I1n → 0 in probability as n→∞. We can similarly

prove that I2n tends to zero in probability as n → ∞. Thus, we complete the

proof of Theorem 5.6.1.

Theorem 5.6.2 Assume that the conditions of Theorem 5.6.1 hold. Further-

more,

n1/3an log−2 n→∞. (5.6.2)

Then ϕ̂n(u)→ ϕ(u) for u ∈ C(ϕ) a.s. as n→∞.

Proof. Set ϕE
n (u) = Eϕn(u) for u ∈ C(ϕ). Using the continuity of ϕ on u and

an → 0, it can be shown that

ϕE
n (u)→ ϕ(u) as n→∞. (5.6.3)

Consider ϕn(u)− ϕE
n (u), which can be represented as

ϕn(u)− ϕE
n (u) =

1

2nan

n∑

i=1

{
I(u−an≤εi≤u+an) − EI(u−an≤εi≤u+an)

}

def
=

1

2nan

n∑

i=1

Uni.
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Un1, . . . , Unn are then independent with mean zero and |Uni| ≤ 1, and Var(Uni) ≤
P (u − an ≤ εi ≤ u + an) = 2anϕ(u)(1 + o(1)) ≤ 4anϕ(u) for large enough n. It

follows from Bernstein’s inequality that for any ζ > 0,

P{|ϕn(u)− ϕE
n (u)| ≥ ζ} = P

(∣∣∣
n∑

i=1

Uni

∣∣∣ ≥ 2nanζ
)

≤ 2 exp
{
− 4n2a2

nζ
2

8nanϕ(u) + 4/3nanζ

}

= 2 exp
{
− 3nanζ

2

6ϕ(u) + ζ

}
. (5.6.4)

Condition (5.6.2) and Borel-Cantelli Lemma imply

ϕn(u)− ϕE
n (u)→ 0 a.s. (5.6.5)

In the following, we shall prove

ϕ̂n(u)− ϕn(u)→ 0 a.s. (5.6.6)

According to (2.1.2), we have with probability one that

|ϕ̂n(u)− ϕn(u)| ≤ 1

2nan

I(u±an−Cn−1/3 log n≤εi≤u±an)

+
1

2nan

I(u±an≤εi≤u±an+Cn−1/3 log n)

def
= J1n + J2n. (5.6.7)

Denote

ϕn1(u) =
1

2an

P (u± an − Cn−1/3 log n ≤ εi ≤ u± an). (5.6.8)

Then ϕn1(u) ≤ Cϕ(u)(n1/3an)−1 log n for large enough n. By Condition (5.6.2),

we obtain

ϕn1(u)→ 0 as n→∞. (5.6.9)

Now let us deal with Jn1 − ϕn1(u). Set

Qni = I(u±an−Cn−1/3 log n≤εi≤u±an) − P (u± an − Cn−1/3 log n ≤ εi ≤ u± an),

for i = 1, . . . , n. Then Qn1, . . . , Qnn are independent with mean zero and |Qni| ≤
1, and Var(Qni) ≤ 2Cn−1/3 log nϕ(u). By Bernstein’s inequality, we have

P{|Jn1 − ϕn1(u)| > ζ} = P
{∣∣∣

n∑

i=1

Qni

∣∣∣ > ζ
}

≤ 2 exp
{
− Cnanζ

2

n−1/3a−1
n ϕ(u) log−1 n+ ζ

}

≤ 2 exp(−Cnanζ). (5.6.10)
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Equation (5.6.10) and Borel-Cantelli Lemma imply that

Jn1 − ϕn1(u)→ 0, a.s.

Combining (5.6.9) with the above conclusion, we obtain Jn1 → 0 a.s. Similar

arguments yield Jn2 → 0 a.s. From (5.6.3), (5.6.5) and (5.6.6), we complete the

proof of Theorem 5.6.2.

Theorem 5.6.3 Assume that the conditions of Theorem 5.6.2 hold. In addition,

ϕ is uniformly continuous on R1. Then supu |ϕ̂n(u)− ϕ(u)| → 0, a.s.

We need the following conclusion to prove Theorem 5.6.3.

Conclusion D. (See Devroye and Wagner, 1980) Let µn and µ be 1-dimensional

empirical distribution and theoretical distribution, respectively, a > 0 and Ia be an

interval with length a. Then for any ζ > 0, 0 < b ≤ 1/4 and n ≥ max{1/b, 8b/ζ2},

P
(
sup{|µn(Ia)− µ(Ia)| : 0 < µ(Ia) ≤ b} ≥ ζ

)
≤ 16n2 exp{−nζ2/(64b+ 4ζ)}

+8n exp{−nb/10}.

Proof of Theorem 5.6.3. We still use the notation in the proof of Theorem

5.6.2 to denote the empirical distribution of ε1, . . . , εn by µn and the distribution

of ε by µ. Since ϕ is uniformly continuous, we have supu ϕ(u) = ϕ0 < ∞. It is

easy to show that

sup
u
|ϕ(u)− fE

n (u)| → 0 as n→∞. (5.6.11)

Write

ϕn(u)− fE
n (u) =

1

2an

{µn([u− an, u+ an])− µ([u− an, u+ an])}.

and denote b∗n = 2ϕ0an and ζn = 2anζ for any ζ > 0. Then for large enough n,

0 < b∗n < 1/4 and supu µ([u− an, u+ an]) ≤ b∗n for all n. From Conclusion D, we

have for large enough n

P{sup
u
|ϕn(u)− ϕE

n (u)| ≥ ζ} = P{sup
u
|µn([u− an, u+ an])

−µ([u− an, u+ an])| ≥ 2anζ}

≤ 16n2 exp
{
− na2

nζ
2

32ϕ0an + 2anζ

}

+8n exp
{
−na

2
nϕ0

5

}
.
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It follows from (5.6.2) and Borel-Cantelli Lemma that

sup
u
|ϕn(u)− ϕE

n (u)| → 0 a.s. (5.6.12)

Combining (5.6.12) with (5.6.11), we obtain

sup
u
|ϕn(u)− ϕ(u)| → 0 a.s. (5.6.13)

In the following we shall prove that

sup
u
|ϕ̂n(u)− ϕn(u)| → 0 a.s. (5.6.14)

It is obvious that supu |ϕn1(u)| → 0 as n→∞. Set dn = ϕ0n
−1/3 log n. For large

enough n, we have 0 < dn < 1/4 and

sup
u
µ{(u± an − Cn−1/3 log n, u± an)} ≤ Cdn for all n.

It follows from Conclusion D that

P (sup
u
|Jn1 − ϕn1(u)| > ζ) ≤ P

(
|µn{(u± an − Cn−1/3 log n, u± an)}

−µ{(u± an − Cn−1/3 log n, u± an)}| ≥ 2anζ
)

≤ 16n2 exp
(
− na2

nζ
2

16ϕ0n−1/3 log n+ 2anζ

)

+8n exp
(
−n

2/3 log n

10

)
,

which and (5.6.2) imply that supu |Jn1−ϕn1(u)| → 0 a.s. and hence supu |Jn1| → 0

a.s. We can prove supu |Jn2| → 0 similarly. Recalling the proof of Theorem 5.6.2,

we can show that for large enough n

sup
u
|ϕ̂n(u)− ϕn(u)| ≤ sup

u
|Jn1|+ sup

u
|Jn2|

with probability one, which implies (5.6.14) and the conclusion of Theorem 5.6.3

follows.

5.6.3 Convergence Rates

Theorem 5.6.4 Assume that the conditions of Theorem 5.6.2 hold. If ϕ is locally

Lipschitz continuous of order 1 on u. Then taking an = n−1/6 log1/2 n, we have

ϕ̂n(u)− ϕ(u) = O(n−1/6 log1/2 n), a.s. (5.6.15)
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Proof. The proof is analogous to that of Theorem 5.6.2. By the conditions of

Theorem 5.6.4, there exist c0 > 0 and δ1 = δ1(u) > 0 such that |ϕ(u′)− ϕ(u)| ≤
c0|u′ − u| for u′ ∈ (u− δ1, u+ δ1). Hence for large enough n

|ϕE
n (u)− ϕ(u)| ≤ 1

2an

∫ u+an

u−an

|ϕ(u)− ϕ(u′)|du′

≤ c0an/2 = O(n−1/6 log1/2 n). (5.6.16)

Since ϕ is bounded on (u− δ1, u+ δ1), we have for large enough n

ϕn1(u) =
1

2an

P (u± an − Cn−1/3 log n ≤ εi ≤ u± an)

≤ Cn−1/3a−1
n log n sup

u′∈(u−δ1,u+δ1)
ϕ(u′)

= O(n−1/6 log1/2 n).

Replacing ζ by ζn = ζn−1/6 log1/2 n in (5.6.4), then for large enough n

P{|ϕn(u)− ϕE
n (u)| ≥ 2ζn−1/6 log1/2 n} ≤ 2 exp

{
−3n1/2 log3/2 nζ

6ϕ0 + ζ

}
,

here ϕ0 = supu′∈(u−δ1,u+δ1) ϕ(u′). Instead of (5.6.12), we have

ϕn(u)− ϕE
n (u) = O(n−1/6 log1/2 n), a.s. (5.6.17)

The same argument as (5.6.10) yields

P{|Jn1 − ϕn1(u)| > ζn−1/6 log1/2 n} ≤ 2 exp(−Cn2/3 log1/2 n).

Hence, Jn1−ϕn1(u) = O(n−1/6 log1/2 n) a.s. Equations (5.6.16) and (5.6.17) imply

ϕn(u)− ϕ(u) = O(n−1/6 log1/2 n), a.s.

This completes the proof of Theorem 5.6.4.

5.6.4 Asymptotic Normality and LIL

Theorem 5.6.5 Assume that the conditions of Theorem 5.6.2 hold. In addition,

ϕ is locally Lipschitz continuous of order 1 on u. Let limn→∞ na3
n = 0. Then

√
2nan/ϕ(u){ϕ̂n(u)− ϕ(u)} −→L N(0, 1).

Theorem 5.6.6 Assume that the conditions of Theorem 5.6.2 hold. In addition,

ϕ is locally Lipschitz continuous of order 1 on u, Let limn→∞ na3
n/ log log n =

0. Then

lim sup
n→∞

±
{ nan

ϕ(u) log log n

}1/2{ϕ̂n(u)− ϕ(u)} = 1, a.s.
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The proofs of the above two theorems can be completed by slightly modifying

the proofs of Theorems 2 and 3 of Chai and Li (1993). Here we omit the details.



6

PARTIALLY LINEAR TIME SERIES MODELS

6.1 Introduction

Previous chapters considered the partially linear models in the framework of inde-

pendent observations. The independence assumption can be reasonable when data

are collected from a human population or certain measurements. However, there

are classical data sets such as the sunspot, lynx and the Australian blowfly data

where the independence assumption is far from being fulfilled. In addition, re-

cent developments in semiparametric regression have provided a solid foundation

for partially time series analysis. In this chapter, we pay attention to partially

linear time series models and establish asymptotic results as well as small

sample studies.

The organization of this chapter is as follows. Section 6.2 presents several

data-based test statistics to determine which model should be chosen to

model a partially linear dynamical system. Section 6.3 proposes a cross-validation

(CV) based criterion to select the optimum linear subset for a partially linear

regression model. In Section 6.4, we investigate the problem of selecting optimum

smoothing parameter for a partially linear autoregressive model. Section

6.5 summarizes recent developments in a general class of additive stochastic

regression models.

6.2 Adaptive Parametric and Nonparametric Tests

6.2.1 Asymptotic Distributions of Test Statistics

Consider a partially linear dynamical model of the form

Yt = UT
t β + g(Vt) + et, 1 ≤ t ≤ T (6.2.1)

where T is the number of observations, β = (β1, . . . , βp)
T is a vector of unknown

parameters, g is an unknown and nonlinear function over Rd, Ut = (Ut1, . . . , Utp)
T

and Vt = (Vt1, . . . , Vtd)
T are random processes, Xt = (UT

t , V
T
t )T , (Xt, Yt) are

strictly stationary processes, {et} is i.i.d. error processes with Eet = 0 and

0 < Ee2t = σ2
0 <∞, and the {es} is independent of {Xt} for all s ≥ t.
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For identifiability, we assume that the (β, g) satisfies

E{Yt − UT
t β − g(Vt)}2 = min

(α,f)
E{Yt − UT

t α− f(Vt)}2

For the case where {Xt} is a sequence of i.i.d. random variables, model (6.2.1) with

d = 1 has been discussed in the previous chapters. For Yt = yt+p+d, Uti = yt+p+d−i

(1 ≤ i ≤ p) and Vtj = yt+p+d−j (1 ≤ j ≤ d), model (6.2.1) is a semiparametric

AR model of the form

yt+p+d =
p∑

i=1

yt+p+d−iβi + g(yt+p+d−1, . . . , yt+p) + et. (6.2.2)

This model was first discussed by Robinson (1988). Recently, Gao and Liang

(1995) established the asymptotic normality of the least squares estimator of β.

See also Gao (1998) and Liang (1996) for some other results. For Yt = yt+p+d,

Uti = yt+p+d−i (1 ≤ i ≤ p) and {Vt} is a vector of exogenous variables, model

(6.2.1) is an additive ARX model of the form

yt+p+d =
p∑

i=1

yt+p+d−iβi + g(Vt) + et. (6.2.3)

See Chapter 48 of Teräsvirta, Tjøstheim and Granger (1994) for more details. For

the case where both Ut and Vt are stationary AR time series, model (6.2.1) is an

additive state-space model of the form

Yt = UT
t β + g(Vt) + et,

Ut = f(Ut−1) + δt,
Vt = h(Vt−1) + ηt,





(6.2.4)

where the functions f and h are smooth functions, and the δt and ηt are error

processes.

In this section, we consider the case where p is a finite integer or p = pT →
∞ as T → ∞. By approximating g(·) by an orthogonal series of the form
∑q

i=1 zi(·)γi, where q = qT is the number of summands, {zi(·) : i = 1, 2, . . .} is a

prespecified family of orthogonal functions and γ = (γ1, . . . , γq)
T is a vector of

unknown parameters, we define the least squares estimator (β̂, γ̂) of (β, γ) as the

solution of

T∑

t=1

{Yt − UT
t β̂ − Z(Vt)

T γ̂}2 = min !, (6.2.5)

where Z(·) = Zq(·) = {z1(·), . . . , zq(·)}T .
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It follows from (6.2.5) that

β̂ = (ÛT Û)+ÛTY, (6.2.6)

γ̂ = (ZTZ)+ZT{F − U(ÛT Û)+ÛT}Y, (6.2.7)

where Y = (Y1, . . . , YT )T , U = (U1, . . . , UT )T , Z = {Z(V1), . . . , Z(VT )}T , P =

Z(ZTZ)+ZT , Û = (F − P )U , and (·)+ denotes the Moore-Penrose inverse.

Thus, the corresponding nonparametric estimator can be defined by

ĝ(v) = Z(v)T γ̂. (6.2.8)

Given the data {(Ut, Vt, Yt) : 1 ≤ t ≤ T}, our objective is to test whether a

partially linear model of the form

Yt = UT
t β + g(Vt) + et

is better than either Yt = UT
t β + et or Yt = g(Vt) + et. which is equivalent to

testing the hypothesis H0g : g = 0 or H0β : β = 0. This suggests using a statistic

of the form

L1T = (2q)−1/2σ−2
0 {γ̂TZTZγ̂ − qσ2

0} (6.2.9)

for testing H0g or a statistic of the form

L2T = (2p)−1/2σ−2
0 {β̂TUTUβ̂ − pσ2

0},

for testing H0β.

Now, we have the main results of this section.

Theorem 6.2.1 (i) Assume that Assumptions 6.6.1-6.6.4 listed in Section 6.6

hold. If g(Vt) = q1/4/
√
Tg0(Vt) with g0(Vt) satisfying 0 < E{g0(Vt)

2} < ∞, then

as T →∞

L1T −→L N(L10, 1) (6.2.10)

where L10 = (
√

2σ2
0)

−1E{g0(Vt)
2}. Furthermore, under H1g : g 6= 0, we have

limT→∞ P (L1T ≥ C1T ) = 1, where C1T is any positive, nonstochastic sequence

with C1T = o(Tq−1/2).
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(ii) Assume that Assumptions 6.6.1-6.6.4 listed in Section 6.6 hold. If β =

p1/4/
√
Tβ0 with 0 < E(UT

t β0)
2 <∞, then as T →∞

L2T −→L N(L20, 1) (6.2.11)

where L20 = (
√

2σ2
0)

−1E(UT
t β0)

2. Furthermore, under H1β : β 6= 0, we have

limT→∞ P (L2T ≥ C2T ) = 1, where C2T is any positive, nonstochastic sequence

with C2T = o(Tp−1/2).

Let LT = L1T or L2T and H0 denote H0g or H0β. It follows from (6.2.10) or

(6.2.11) that LT has an asymptotic normality distribution under the null hypoth-

esis H0. In general, H0 should be rejected if LT exceeds a critical value, L∗
0, of

normal distribution. The proof of Theorem 6.2.1 is given in Section 6.6. Power

investigations of the test statistics are reported in Subsection 6.2.2.

Remark 6.2.1 Theorem 6.2.1 provides the test statistics for testing the partially

linear dynamical model (6.2.1). The test procedures can be applied to determine a

number of models including (6.2.2)–(6.2.4) (see Examples 6.2.1 and 6.2.2 below).

Similar discussions for the case where the observations in (6.2.1) are i.i.d. have

already been given by several authors (see Eubank and Spiegelman (1990), Fan and

Li (1996), Jayasuriva (1996), Gao and Shi (1995) and Gao and Liang (1997)).

Theorem 6.2.1 complements and generalizes the existing discussions for the i.i.d.

case.

Remark 6.2.2 In this section, we consider model (6.2.1). For the sake of iden-

tifiability, we need only to consider the following transformed model

Yt = β0 +
p∑

i=1

Ũtiβi + g̃(Vt) + et,

where β0 =
∑p

i=1E(Uti)βi + Eg(Vt) is an unknown parameter, Ũti = Uti − EUti

and g̃(Vt) = g(Vt) − Eg(Vt). It is obvious from the proof in Section 6.6 that

the conclusion of Theorem 6.2.1 remains unchanged when Yt is replaced by Ỹt =

Yt − β̂0, where β̂0 = 1/T
∑T

t=1 Yt is defined as the estimator of β0.

Remark 6.2.3 In this chapter, we choose the traditional LS estimation method.

However, it is well known that the estimators based on the LS method are sen-

sitive to outliers and that the error distribution may be heavy-tailed. Thus, a
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more robust estimation procedure for the nonparametric component g(·) might be

worthwhile to study in order to achieve desirable robustness properties. A recent

paper by Gao and Shi (1995) on M–type smoothing splines for nonparametric

and semiparametric regression can be used to construct a test statistic based

on the following M–type estimator ĝ(·) = Z(·)T γ̂M ,

T∑

t=1

ρ{Yt − UT
t β̂M − Z(Vt)

T γ̂M} = min!,

where ρ(·) is a convex function.

Remark 6.2.4 The construction of the test statistic (6.2.9) is based on

the fact that g is approximated by the orthogonal series. The inverse matrix

(ZTZ)−1 involved in the test statistic (6.2.9) is just a random matrix of q×q
order. We can estimate g by a kernel estimator and construct a kernel-based test

statistic for testing H0g : g = 0. The proof of the asymptotic normality of the

kernel-based statistic is much more complicated than that of Theorem 6.2.1(i) due

to the fact that a random inverse matrix of T ×T order is involved in the kernel-

based statistic. More recently, Kreiss, Neumann and Yao (1997) avoided using

this kind of test statistic by adopting an alternative version.

Remark 6.2.5 Consider the case where {et} is a sequence of long-range depen-

dent error processes given by

et =
∞∑

s=0

bsεt−s

with
∑∞

s=0 b
2
s <∞, where {εs} is a sequence of i.i.d. random processes with mean

zero and variance one. More recently, Gao and Anh (1999) have established a

result similar to Theorem 6.2.1.

6.2.2 Power Investigations of the Test Statistics

In this section, we illustrate Theorem 6.2.1 by a number of simulated and real

examples. Rejection rates of the test statistics to test linearity and additivity

are detailed in Examples 6.2.1 and 6.2.2 respectively. Both linearity and additivity

are also demonstrated by a real example.
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Example 6.2.1 Consider an ARX model of the form

yt = 0.25yt−1 + δx2
t + et,

xt = 0.5xt−1 + εt,

}
1 ≤ t ≤ T, (6.2.12)

where 0 ≤ δ ≤ 1 is a constant, et and εt are mutually independent and identically

distributed random errors, et ∼ N(0, σ2
0), εt ∼ U(−0.5, 0.5), x0 is independent of

y0, x0 ∼ U(−1/3, 1/3), y0 ∼ N(µ1, σ
2
1), es and εt are independent for all s and t,

(εt, et) are independent of (x0, y0), and the parameters σ0, µ1 and σ1 are chosen

such that (xt, yt) are stationary.

Example 6.2.2 Consider a state-space model of the form

yt = φut + 0.75v2
t + et,

ut = 0.5ut−1 + εt, 1 ≤ t ≤ T,

vt = 0.5
vt−1

1 + v2
t−1

+ ηt,

where 0 ≤ φ ≤ 1 is a constant, both {εt : t ≥ 1} and {ηt : t ≥ 1} are mutually

independent and identically distributed, {εt : t ≥ 1} is independent of u0, {vt : t ≥
1} is independent of v0, εt ∼ U(−0.5, 0.5), u0 ∼ U(−1/3, 1/3), ηt ∼ U(−0.5, 0.5),

v0 ∼ U(−1, 1), ut and vt are mutually independent, et are i.i.d. random errors,

et ∼ N(0, σ2
0), and {et : t ≥ 1} is independent of {(ut, vt) : t ≥ 1}.

Firstly, it is clear that Assumption 6.6.1 holds. See, for example, Lemma 3.1 of

Masry and Tjøstheim (1997), Tong (1990) and §2.4 of Doukhan (1995). Secondly,

using (6.2.12) and applying the property of trigonometric functions, we have

E{x2
t sin(iπxt)} = 0 and E{sin(jπxt) sin(kπxt)} = 0

for all i ≥ 1 and j 6= k. Therefore Assumption 6.6.3 holds. Finally, it follows

that there exists a sequence of constants {γj : j ≥ 1} such that the even function

g(v) = δv2 can be approximated by a special form of the Gallant’s flexible Fourier

form (see Gallant (1981))

{v2, sin(πv), . . . , sin((q − 1)πv), . . .}.

Thus, Assumption 6.6.2 holds. We refer the asymptotic property of trigonometric

polynomials to Gallant (1981), Chapter IV of Kashin and Saakyan (1989) and
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Chapter 7 of DeVore and Lorentz (1993). Thus, Assumptions 6.6.1-6.6.4 hold for

Example 6.2.1. Also, Assumptions 6.6.1-6.6.4 can be justified for Example 6.2.2 .

For Example 6.2.1, define the approximation of g1(x) = δx2 by

g∗1(x) = x2γ11 +
q∑

j=2

sin(π(j − 1)x)γ1j,

where x ∈ [−1, 1], Zx(xt) = {x2
t , sin(πxt), . . . , sin((q − 1)πxt)}T , q = 2[T 1/5], and

γx = (γ11, . . . , γ1q)
T .

For Example 6.2.2, define the approximation of g2(v) = 0.75v2 by

g∗2(v) = v2γ21 +
q∑

l=2

sin(π(l − 1)v)γ2l,

where v ∈ [−1, 1], Zv(vt) = {v2
t , sin(πvt), . . . , sin(π(q − 1)vt)}T , q = 2[T 1/5], and

γv = (γ21, . . . , γ2q)
T .

For Example 6.2.1, compute

L1T = (2q)−1/2σ−2
0 (γ̂T

x Z
T
x Zxγ̂x − qσ2

0),

where γ̂x = (ZT
x Zx)

−1ZT
x {F − Uy(Û

T
y Ûy)

−1ÛT
y }Y with Y = (y1, . . . , yT )T and

Uy = (y0, y1, . . . , yT−1)
T , Zx = {Zx(x1), . . . , Zx(xT )}T , Px = Zx(Z

T
x Zx)

−1ZT
x , and

Ûy = (F − Px)Uy.

For Example 6.2.2, compute

L2T = 2−1/2σ−2
0 (β̂T

uU
T
u Uuβ̂u − σ2

0),

where β̂u = (UT
u Uu)

−1UT
u {F − Zv(Ẑ

T
v Ẑv)

−1ẐT
v }Y with Y = (y1, . . . , yT )T and

Uu = (u1, . . . , uT )T , Zv = {Zv(v1), . . . , Zv(vT )}T , Pu = Uu(U
T
u Uu)

−1UT
u , and Ẑv =

(F − Pu)Zv.

For Examples 6.2.1 and 6.2.2, we need to find L∗
0, an approximation to the

95-th percentile of LT . Using the same arguments as in the discussion of Buckley

and Eagleson (1988), we can show that a reasonable approximation to the 95th

percentile is

X 2
τ,0.05 − T√

2T
,

where X 2
τ,0.05 is the 95th percentile of the chi-squared distribution with τ degrees

of freedom. For this example, the critical values L∗
0 at α = 0.05 were equal to

1.77, 1.74, and 1.72 for T equal to 30, 60, and 100 respectively.
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TABLE 6.1. Rejection rates for example 6.2.1

T q σ0 δ = 0 δ = 0.1 δ = 0.3 δ = 0.6
30 3 0.1 0.083 0.158 0.55 0.966
60 4 0.1 0.025 0.175 0.766 1.000
100 5 0.1 0.033 0.166 0.941 1.000
30 3 0.2 0.091 0.1 0.191 0.55
60 4 0.2 0.025 0.066 0.291 0.791
100 5 0.2 0.041 0.075 0.35 0.941
30 3 0.25 0.1 0.1 0.183 0.408
60 4 0.25 0.025 0.05 0.2 0.591
100 5 0.25 0.041 0.066 0.233 0.825

TABLE 6.2. Rejection rates for example 6.2.2

T q σ0 φ = 0 φ = 0.05 φ = 0.15 φ = 0.25
30 3 0.1 0.05 0.158 0.733 1.000
60 4 0.1 0.083 0.233 0.941 1.000
100 5 0.1 0.05 0.391 1.000 1.000
30 3 0.2 0.05 0.083 0.233 0.566
60 4 0.2 0.083 0.108 0.491 0.833
100 5 0.2 0.041 0.125 0.716 0.975
30 3 0.3 0.05 0.058 0.158 0.308
60 4 0.3 0.075 0.116 0.233 0.541
100 5 0.3 0.05 0.083 0.391 0.8
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The simulation results below were performed 1200 times and the rejection

rates are tabulated in Tables 6.1 and 6.2 below.

Both Tables 6.1 and 6.2 support Theorem 6.2.1. Tables 6.1 and 6.2 also show

that the rejection rates seem relatively insensitive to the choice of q, but are

sensitive to the values of δ, φ and σ0. The power increased as δ or φ increased

while the power decreased as σ0 increased. Similarly, we compute the rejection

rates for the case where both the distributions of et and y0 in Example 6.2.1 are

replaced by U(−0.5, 0.5) and U(−1, 1) respectively. Our simulation results show

that the performance of LT under the normal errors is better than that under the

uniform errors.

Example 6.2.3 In this example, we consider the Canadian lynx data. This data

set is the annual record of the number of Canadian lynx trapped in the MacKenzie

River district of North-West Canada for the years 1821 to 1934. Tong (1977) fit-

ted an eleven th-order linear Gaussian autoregressive model to yt = log10(number

of lynx trapped in the year (1820 + t)) − 2.9036 for t = 1, 2, ..., 114 (T = 114),

where the average of log10(trapped lynx) is 2.9036.

In the following, we choose yn+1 and yn as the candidates of the regressors

and apply Theorem 6.2.1 to test whether the real data set should be fitted by the

second-order linear autoregressive model of the form

yn+2 = β1yn+1 + β2yn + e1n, 1 ≤ n ≤ T (6.2.13)

or the second-order additive autoregressive model of the form

yn+2 = β3yn+1 + g(yn) + e2n, 1 ≤ n ≤ T,

where β1, β2 and β3 are unknown parameters, g is an unknown function, and e1n

and e2n are assumed to be i.i.d. random errors with mean zero and finite variance.

For Example 6.2.3, we choose the series functions z1(v) = v and {zj(v) =

cos((j − 1)πv) : 2 ≤ j ≤ q}. Our previous research (see Gao, Tong and Wolff

(1998a)) on selecting the truncation parameter q suggests using q = 2 for this

example. Similar to Example 6.2.1, the critical value at α = 0.05 for L1T with

T = 114 was 0.6214. With σ2
0 in (6.2.9) replaced by its estimator σ̂2

0 = 0.0419, the

value of L1T was 3.121. Thus the linear model (6.2.13) does not seem appropriate

for the lynx data. This is the same as the conclusion reached by Wong and Kohn

(1996) through a Bayesian approach.
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6.3 Optimum Linear Subset Selection

In Section 6.2, we discussed model (6.2.1). In applications, we need to determine

which subset of Xt should become the Ut before using the model (6.2.1) to fit a

given set of data. In this section, we construct a CV criterion to select the Ut. In

the meantime, we apply this CV criterion to estimate semiparametric regression

functions and to model nonlinear time series data. Additionally, we illustrate

the consistent CV criterion by simulated and real examples.

6.3.1 A Consistent CV Criterion

Let (Yt, Xt) be (r + 1)-dimensional strictly stationary processes with Xt =

(Xt1, . . . , Xtr)
T and r = p+ d. We write

Yt = m(Xt) + et,

where m(x) = E(Yt|Xt = x) and et = Yt − E(Yt|Xt). For any A ⊂ A ≡
{1, 2, . . . , r}, we partition Xt into two subvectors UtA and VtA, where UtA consists

of {Xti, i ∈ A} and VtA consists of {Xti, i ∈ A − A}. We use p = #A to denote

the cardinality of A and d = r−p. We call a d-dimensional function φ(x1, . . . , xd)

completely nonlinear if for any 1 ≤ i ≤ d, φ is a nonlinear function of xi with all

other x’s fixed.

Before proposing our consistency criterion, we need to make the following

assumption.

Assumption 6.3.1 Suppose that the true unknown regression function is

m(Xt) = UT
tA0
βA0 + gA0(VtA0)

for some A0 ⊂ A with #A0 ≥ 1, where βA0 is a constant vector and gA0 is a

non-stochastic and completely nonlinear function.

Following Assumption 6.3.1, we have

gA0(v) = g1A0(v)− g2A0(v)
TβA0 ,

where g1A0(v) = E(Yt|VtA0 = v) and g2A0(v) = E(UtA0|VtA0 = v).
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First, for any given β and A ⊂ A, we define the following leave-one-out

estimators by

ĝ1t(VtA, h) =
T∑

s=1,s 6=t

WsA(VtA, h)Ys,

ĝ2t(VtA, h) =
T∑

s=1,s 6=t

WsA(VtA, h)UsA,

and

ĝt(VtA, β) = ĝ1t(VtA, h)− ĝ2t(VtA, h)
Tβ, (6.3.1)

where

WsA(VtA, h) = Kd

(VtA − VsA

h

)/{ T∑

l=1,l 6=t

Kd

(VtA − VlA

h

)}
,

in which Kd is a multivariate kernel function and h is a bandwidth parameter.

Then, we define the kernel-based least squares (LS) estimator β̂(h,A) by

minimizing

T∑

t=1

{Yt − UT
tAβ̂(h,A)− ĝt(VtA, β̂(h,A))}2.

For any given A ⊂ A with |A| ≥ 1, the LS estimator β̂(h,A) is

β̂(h,A) = {Σ̃(h,A)}+
T∑

t=1

ŨtA(h){Yt − ĝ1t(VtA, h)},

where ŨtA(h) = UtA − ĝ2t(VtA, h) and Σ̃(h,A) =
∑T

t=1 ŨtA(h)ŨtA(h)T .

For any given A ⊂ A, we define the following CV function by

CV (h,A) =
1

T

T∑

t=1

{Yt − UT
tAβ̂(h,A)− ĝt(VtA, β̂(h,A))}2. (6.3.2)

Remark 6.3.1 Analogous to Yao and Tong (1994), we avoid using a weight

function by assuming that the density of Xt satisfies Assumption 6.6.5(ii) in

Section 6.6.

Let Â0 and ĥ denote the estimators of A0 and h, respectively, which are

obtained by minimizing the CV function CV (h,A) over h ∈ HT and A ⊂ A,

where HT = HTd = {hmin(T, d), hmax(T, d)} with 0 < hmin(T, d) < hmax(T, d) < 1

for all T and d ≥ 1.

The main result of this section is as follows.
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Theorem 6.3.1 Assume that Assumptions 6.3.1, 6.6.1, and 6.6.4- 6.6.7 listed

in Section 6.6 hold. Then

lim
T→∞

Pr(Â0 = A0) = 1.

Remark 6.3.2 This theorem shows that if some partially linear model within the

context tried is the truth, then the CV function will asymptotically find it. Re-

cently, Chen and Chen (1991) considered using a smoothing spline to approximate

the nonparametric component and obtained a similar result for the i.i.d. case. See

their Proposition 1.

The proof of Theorem 6.3.1 is postponed to Section 6.6.

Similar to (6.3.1), we define the following estimators of g1A0(·), g2A0(·), and

gA0(·) by

ĝ1(v; ĥ, Â0) =
1

T ĥd̂0

T∑

s=1

K
d̂0

((v − V
sÂ0

)/ĥ)Ys

f̂(v; ĥ, Â0)
,

ĝ2(v; ĥ, Â0) =
1

T ĥd̂0

T∑

s=1

K
d̂0

((v − V
sÂ0

)/ĥ)U
sÂ0

f̂(v; ĥ, Â0)
, (6.3.3)

and

ĝ(v; ĥ, Â0) = ĝ1(v; ĥ, Â0)− ĝ2(v; ĥ, Â0)
T β̂(ĥ, Â0),

where d̂0 = r − |Â0| and

f̂(v; ĥ, Â0) =
1

T ĥd̂0

T∑

s=1

K
d̂0

((v − V
sÂ0

)/ĥ). (6.3.4)

We now define the estimator of m(Xt) by

m̂(Xt; ĥ, Â0) = UT
tÂ0
β̂(ĥ, Â0) + ĝ(V

tÂ0
; ĥ, Â0).

The following result ensures that the prediction error σ̂2(ĥ, Â0) converges to

the true variance σ2
0 = E{Yt −m(Xt)}2 in large sample case.

Theorem 6.3.2 Under the conditions of Theorem 6.3.1, we have as T →∞

σ̂2(ĥ, Â0) =
1

T

T∑

t=1

{Yt − m̂(Xt; ĥ, Â0)}2 −→P σ2
0.
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The proof of Theorem 6.3.2 is mentioned in Section 6.6.

In the following, we briefly mention the application of Theorem 6.3.1 to semi-

parametric regression and nonlinear time series models.

Consider the partially linear model (6.2.1) given by

Yt = UT
t β + g(Vt) + et, (6.3.5)

For a sequence of independent observations {(Ut, Vt) : t ≥ 1}, model (6.3.5) is

a semiparametric regression model. For Yt = yt, Ut = (yt−c1 , . . . , yt−cp)
T and

Vt = (yt−d1 , . . . , yt−dq), model (6.3.5) is a partially linear autoregressive

model. In applications, we need to find the linear regressor Ut before applying

the model (6.3.5) to fit real data sets. Obviously, Theorem 6.3.1 can be applied

to the two cases.

6.3.2 Simulated and Real Examples

In this section, we apply Theorems 6.3.1 to determine a partially linear ARX

model and to fit some real data sets.

Example 6.3.1 Consider the model given by

yt = 0.2yt−1 + 0.1yt−2 + 0.2 sin(πxt) + et, t = 2, 3, ..., T, (6.3.6)

where xt = 0.5xt−1 + εt, et and εt are mutually independent and identically dis-

tributed over uniform (−0.5, 0.5), x1, y0 and y1 are mutually independent and

identically distributed over uniform (−1, 1), and both εt and et are independent

of (x1, y0, y1).

In this example, we consider using the following kernel function

Kd(u1, u2, . . . , ud) =
d∏

i=1

K(ui),

where d = 1, 2, 3,

K(u) =

{
(15/16)(1− u2)2 if |u| ≤ 1
0 otherwise

and HT = [T−7/30, 1.1T−1/6].

Select yt−1, yt−2 and xt as the candidates of the regressors. In this example,

A = {1, 2, 3}. Let A be the linear subset of A. Through computing the CV

function given in (6.3.2), we obtain the results listed in Table 6.3.
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TABLE 6.3. Frequencies of selected linear subsets in 100 replications for example
6.2.3

Linear subsets T=51 T=101 T=201
A={1,2} 86 90 95
A={1,3} 7 5 3
A={2,3} 5 4 2

A={1,2,3} 2 1

In Table 6.3, A = {1, 2} means that yt−1 and yt−2 are the linear regressors,

A = {1, 3} means that yt−1 and xt are the linear regressors, A = {2, 3} means

that yt−2 and xt are the linear regressors, and A = {1, 2, 3} means that (6.3.6) is

a linear ARX model.

In Example 6.3.2, we select yn+2 as the present observation and both yn+1

and yn as the candidates of the regressors, n = 1, 2, . . . , T.

Example 6.3.2 In this example, we consider using Theorem 6.3.1 to fit the

sunspots data (Data I) and the Australian blowfly data (Data II). For Data I,

first normalize the data X by X∗ = {X−mean(X)}/{var(X)}1/2 and define

yt = the normalized sunspot number in the year (1699 + t), where 1 ≤ t ≤ 289

(T = 289), mean(X) denotes the sample mean and var(X) denotes the sam-

ple standard deviation. For Data II, we take a log transformation of the data by

defining y = log10(blowfly population) first and define yt = log10(blowfly popula-

tion number at time t) for t = 1, 2, . . . , 361 (T = 361).

In the following, we only consider the case where A = {1, 2} and apply the

consistent CV criterion to determine which model among the following possible

models (6.3.7)–(6.3.8) should be selected to fit the real data sets,

(I) yn+2 = β1yn + g2(yn+1) + e1n, (6.3.7)

(II) yn+2 = β2yn+1 + g1(yn) + e2n, (6.3.8)

where β1 and β2 are unknown parameters, g1 and g2 are unknown and nonlinear

functions, and e1n and e2n are assumed to be i.i.d. random errors with zero mean

and finite variance.

Our experience suggests that the choice of the kernel function is much less

critical than that of the bandwidth. In the following, we choose the kernel function

K(x) = (2π)−1/2 exp(−x2/2) and h ∈ HT = [T−7/30, 1.1T−1/6].
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TABLE 6.4. The minimum CV values for example 6.3.1

Models CV–Data I CV–Data II
I 0.1914147 0.04251451
II 0.1718859 0.03136296

Through computing the CV function defined by (6.3.2) for Example 6.3.2, we

can obtain the following minimum CV values listed in Table 6.4.

For the two data sets, when selecting yn+1 and yn as the candidates of the

regressors, Table 6.4 suggests using the prediction equation

ŷn+2 = β̂2(ĥ2C)yn+1 + g̃1(yn), n = 1, 2, . . . , (6.3.9)

where g̃1(yn) = ĝ2(yn, ĥ2C)− β̂2(ĥ2C)ĝ1(yn, ĥ2C) appears to be nonlinear,

ĝi(yn, h) =
{ N∑

m=1

K(
yn − ym

h
)ym+i

}/{ N∑

m=1

K(
yn − ym

h
)
}
, i = 1, 2,

and ĥ2C = 0.2666303 and 0.3366639, respectively.

In the following, we consider the case where A = {1, 2, 3} and apply the

consistent CV criterion to determine which model among the following possi-

ble models (6.3.10)–(6.3.15) should be selected to fit the real data sets given in

Examples 6.3.3 and 6.3.4 below,

(M1) Yt = β1Xt1 + β2Xt2 + g3(Xt3) + e1t, (6.3.10)

(M2) Yt = β3Xt1 + g2(Xt2) + β4Xt3 + e2t, (6.3.11)

(M3) Yt = g1(Xt1) + β5Xt2 + β6Xt3 + e3t, (6.3.12)

(M4) Yt = β7Xt1 +G1(X1t) + e4t, (6.3.13)

(M5) Yt = β8Xt2 +G2(X2t) + e5t, (6.3.14)

(M6) Yt = β9Xt3 +G3(X3t) + e6t, (6.3.15)

where X1t = (Xt2, Xt3)
T , X2t = (Xt1, Xt3)

T , X3t = (Xt1, Xt2)
T , βi are unknown

parameters, (gj, Gj) are unknown and nonlinear functions, and eit are assumed

to be i.i.d. random errors with zero mean and finite variance.

Analogously, we can compute the corresponding CV functions with K and h

chosen as before for the following examples.
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TABLE 6.5. The minimum CV values for examples 6.3.2 and 6.3.3

Models CV–Example 6.3.2 CV–Example 6.3.3
(M1) 0.008509526 0.06171114
(M2) 0.005639502 0.05933659
(M3) 0.005863942 0.07886344
(M4) 0.007840915 0.06240574
(M5) 0.007216028 0.08344121
(M6) 0.01063646 0.07372809

Example 6.3.3 In this example, we consider the data, given in Table 5.1 of

Daniel and Wood (1971), representing 21 successive days of operation of a plant

oxidizing ammonia to nitric acid. Factor x1 is the flow of air to the plant. Factor

x2 is the temperature of the cooling water entering the countercurrent nitric oxide

absorption tower. Factor x3 is the concentration of nitric acid in the absorbing

liquid. The response, y, is 10 times the percentage of the ingoing ammonia that

is lost as unabsorbed nitric oxides; it is an indirect measure of the yield of nitric

acid. From the research of Daniel and Wood (1971), we know that the transformed

response log10(y) depends nonlinearly on some subset of (x1, x2, x3). In the follow-

ing, we apply the above Theorem 6.3.1 to determine what is the true relationship

between log10(y) and (x1, x2, x3).

Example 6.3.4 We analyze the transformed Canadian lynx data yt = log10(num-

ber of lynx trapped in the year (1820 + t)) for 1 ≤ t ≤ T = 114. The research of

Yao and Tong (1994) has suggested that the subset (yt−1, yt−3, yt−6) should be se-

lected as the candidates of the regressors when estimating the relationship between

the present observation yt and (yt−1, yt−2, . . . , yt−6). In this example, we apply the

consistent CV criterion to determine whether yt depends linearly on a subset of

(yt−1, yt−3, yt−6).

For Example 6.3.3, let Yt = log10(yt), Xt1 = xt1, Xt2 = xt2, and Xt3 = xt3

for t = 1, 2, . . . , T . For Example 6.3.4, let Yt = yt+6, Xt1 = yt+5, Xt2 = yt+3,

and Xt3 = yt for t = 1, 2, . . . , T − 6. Through minimizing the corresponding CV

functions, we obtain the following minimum CV and the CV-based β̂(ĥC) values

listed in Tables 6.5 and 6.6, respectively.

For Example 6.3.3, when selecting (6.3.11), (6.3.12) or (6.3.15) to fit the

data, Table 6.6 shows that the factor x3’s influence can be negligible since the
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TABLE 6.6. The CV-based β̂(ĥC) values for examples 6.3.2 and 6.3.3

β̂(ĥC)-Value Example 6.3.2 Example 6.3.4

β̂1(ĥ1C) 0.01590177 0.9824141

β̂2(ĥ1C) 0.0273703 -0.4658888

β̂3(ĥ2C) 0.01744958 0.9403801

β̂4(ĥ2C) -0.003478075 0.03612305

β̂5(ĥ3C) 0.04129525 -0.4313919

β̂6(ĥ3C) -0.001771901 0.02788928

β̂7(ĥ4C) 0.01964107 0.9376097

β̂8(ĥ5C) 0.04329919 -0.423475

β̂9(ĥ6C) -0.003640449 0.03451025

CV-based coefficients β̂4(ĥ2C), β̂6(ĥ3C) and β̂9(ĥ6C) are relatively smaller than

the other coefficients. This conclusion is the same as that of Daniel and Wood

(1971), who analyzed the data by using classical linear regression models. Table

6.5 suggests using the following prediction equation

ŷt = β̂3(ĥ2C)xt1 + g̃2(xt2) + β̂4(ĥ2C)xt3, t = 1, 2, . . . , 21,

where g̃2(xt2) = ĝ2(xt2, ĥ2C)−{β̂3(ĥ2C), β̂4(ĥ2C)}T ĝ1(xt2, ĥ2C) appears to be non-

linear,

ĝi(xt2, h) =
{ 21∑

s=1

K(
xt2 − xs2

h
)Zis

}/{ 21∑

s=1

K(
xt2 − xs2

h
)
}
, i = 1, 2,

Z2s = Ys, Z1s = (xs1, xs2)
T , and ĥ2C = 0.6621739.

For the Canadian lynx data, when selecting yn+5, yn+3, and yn as the candi-

dates of the regressors, Tables 6.5 and 6.6 suggest using the following prediction

equation

ŷn+6 = β̂3(ĥ2C)yn+5 + g̃2(yn+3) + β̂4(ĥ2C)yn, n = 1, 2, . . . , 108, (6.3.16)

where g̃2(yn+3) = ĝ2(yn+3, ĥ2C)− {β̂3(ĥ2C), β̂4(ĥ2C)}T ĝ1(yn+3, ĥ2C) appears to be

nonlinear,

ĝi(yn+3, h) =
{ 108∑

m=1

K(
ym+3 − yn+3

h
)zim

}/{ 108∑

m=1

K(
ym+3 − yn+3

h
)
}
, i = 1, 2,

z2m = ym+6, z1m = (ym+5, ym)T , and ĥ2C = 0.3312498.

The research by Tong (1990) and Chen and Tsay (1993) has suggested that

the fully nonparametric autoregressive model of the form yt = g̃(yt−1, . . . , yt−r)+et
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is easier to understand than the threshold autoregressive approach proposed by

Tong (1977). It follows from equations (6.3.9) and (6.3.16) that for the Cana-

dian lynx data, the sunspots data and the Australian blowfly data, the above

partially linear autoregressive model of the form (6.3.5) is more appro-

priate than the fully nonparametric autoregressive model.

6.4 Optimum Bandwidth Selection

6.4.1 Asymptotic Theory

As mentioned in Tong (1990), some nonlinear phenomena cannot be fitted by

linear ARMA models and therefore the fully nonparametric autoregressive func-

tion approach is recommended to use in practice. But in some cases, the fully

nonparametric autoregressive function approach will lose too much information

on the relationship between {yt} and {yt−i, i ≥ 1} and neglect some existing lin-

ear dependencies among them. A reasonable approach to modelling the nonlinear

time series data is to use the partially linear additive autoregressive model

yt =
p∑

i=1

βiyt−ci
+

q∑

j=1

gj(yt−dj
) + et,

where t > max(cp, dq), 1 ≤ c1 < . . . < cp ≤ r, 1 ≤ d1 < . . . < dq ≤ r, and ci 6= dj

for all 1 ≤ i ≤ p and 1 ≤ j ≤ q.

There are a number of practical motivations for the study of the above model.

These include the research of population biology model and the Mackey-Glass sys-

tem (Glass and Mackey, 1988). Recently, Nychka, Elliner, Gallant and McCaffrey

(1992) suggested studying the model

yt = ayt−1 + b
yt−d

1 + yk
t−d

+ et.

For k = 10 this is a discretized version of the Mackey-Glass delay differential

equation, originally developed to model the production and loss of white blood

cells. It can also be interpreted as a model for population dynamics. If 0 < a < 1

and b > 0 and if {yt} denotes the number of adults, then a is the survival rate

of adults and d is the time delay between birth and maturation. The {byt−d(1 +

yk
t−d)

−1} accounts for the recruitment of new adults due to births d years in

the past, which is non-linear because of decreased fecundity at higher population
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levels. In addition, the development in partially linear (semiparametric) regression

has established a solid foundation for partially linear time series analysis.

For simplicity, we only consider a partially linear autoregressive model of the

form

yt = βyt−1 + g(yt−2) + et, t = 3, 4, . . . , T (6.4.1)

where β is an unknown parameter-of-interest, g is an unknown function over

R1 = (−∞,∞), {et : t ≥ 3} is a sequence of i.i.d. random errors with Ee1 = 0

and Ee2
1 = σ2 <∞, and {et : t ≥ 3} is independent of (y1, y2).

For identifiability, we assume that the (β, g) satisfies

E{yt − βyt−1 − g(yt−2)}2 = min
(α,f)

E{yt − αyt−1 − f(yt−2)}2.

It follows from (6.4.1) that

g(yt−2) = E{(yt − βyt−1)|yt−2}

= E(yt|yt−2)− βE(yt−1|yt−2) = g1(yt−2)− βg2(yt−2).

The natural estimates of gi (i = 1, 2) and g can be defined by

ĝ1,h(yt−2) =
T∑

s=3

Ws,h(yt−2)ys,

ĝ2,h(yt−2) =
T∑

s=3

Ws,h(yt−2)ys−1,

and

ĝh(yt−2) = ĝ1,h(yt−2)− βĝ2,h(yt−2),

where {Ws,h(·)} is a probability weight function depending on y1, y2, ..., yT−2 and

the number T of observations.

Based on the model yt = βyt−1 + ĝh(yt−2) + et, the kernel-weighted least

squares (LS) estimator β̂(h) of β can be defined by minimizing

T∑

t=3

{yt − βyt−1 − ĝh(yt−2)}2.

We now obtain

β̂(h)− β =
( T∑

t=3

u2
t

)−1{ T∑

t=3

utet +
T∑

t=3

utḡh(yt−2)
}
, (6.4.2)
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where ut = yt−1 − ĝ2,h(yt−2) and ḡh(yt−2) = g(yt−2)− ĝh(yt−2).

In this section, we only consider the case where the {Ws,h(·)} is a kernel

weight function

Ws,h(x) = Kh(x− ys−2)
/ T∑

t=3

Kh(x− yt−2),

where Kh(·) = h−1K(·/h), K : R→ R is a kernel function satisfying Assumption

6.6.8 below and

h = hT ∈ HT = [a1T
−1/5−c1 , b1T

−1/5+c1 ],

in which the absolute constants a1, b1 and c1 satisfy 0 < a1 < b1 < ∞ and

0 < c1 < 1/20.

A mathematical measurement of the proposed estimators can be obtained by

considering the average squared error (ASE)

D(h) =
1

T − 2

T∑

t=3

[{β̂(h)yt−1 + ĝ∗h(yt−2)} − {βyt−1 + g(yt−2)}]2w(yt−2),

where ĝ∗h(·) = ĝ1,h(·)− β̂(h)ĝ2,h(·) and w is a weight function. It follows from the

ASE (see Lemma 6.6.7 (i) below) that the theoretically optimum bandwidth is

proportional to n−1/5. Unfortunately, this optimization procedure has the draw-

back that it involves functionals of the underlying distribution. In this section, we

will propose a practical selection procedure and then discuss adaptive estimates.

We now have the main results of this section.

Theorem 6.4.1 Assume that Assumption 6.6.8 holds. Let Ee1 = 0 and Ee2
1 =

σ2 <∞. Then the following holds uniformly over h ∈ HT

√
T{β̂(h)− β} −→L N(0, σ2σ−2

2 ),

where σ2
2 = E{yt−1 − E(yt−1|yt−2)}2.

Theorem 6.4.2 Assume that Assumption 6.6.8 holds. Let Ee1 = 0 and Ee4
1 <

∞. Then the following holds uniformly over h ∈ HT

√
T{σ̂(h)2 − σ2} −→L N(0, V ar(e21)),

where σ̂(h)2 = 1/T
∑T

t=3{ŷt − β̂(h)ŷt−1}2, ŷt−1 = yt−1 − ĝ2,h(yt−2), and ŷt =

yt − ĝ1,h(yt−2).
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Remark 6.4.1 (i) Theorem 6.4.1 shows that the kernel-based estimator of β

is asymptotically normal with the smallest possible asymptotic variance (Chen

(1988)).

(ii) Theorems 6.4.1 and 6.4.2 only consider the case where {et} is a sequence

of i.i.d. random errors with Eet = 0 and Ee2
t = σ2 < ∞. As a matter of fact,

both Theorems 6.4.1 and 6.4.2 can be modified to the case where Eet = 0 and

Ee2
t = f(yt−1) with some unknown function f > 0. For this case, we need to

construct an estimator for f . For example,

f̂T (y) =
T∑

t=3

W̃T,t(y){yt − β̂(h)yt−1 − ĝ∗h(yt−2)}2,

where {W̃T,t(y)} is a kernel weight function, β̂(h) is as defined in (6.4.2) and

ĝ∗h(yt−2) = ĝ1,h(yt−2) − β̂(h)ĝ2,h(yt−2). Similar to the proof of Theorem 6.4.1, we

can show that f̂T (y) is a consistent estimator of f . Then, we define a weighted

LS estimator β̄(h) of β by minimizing

T∑

t=3

f̂T (yt−1)
−1{yt − βyt−1 − ĝh(yt−2)}2,

where ĝh(yt−2) is as defined in (6.4.2).

Some additional conditions on f are required to establish the corresponding

results of Theorems 6.4.1 and 6.4.2.

Remark 6.4.2 A generalization of model (6.4.1) is

yt =
p∑

s=1

βsyt−s + g(yt−p−1) + et = xT
t β + g(yt−p−1) + et, t ≥ p+ 2, (6.4.3)

where xt = (yt−1, . . . , yt−p)
T , β = (β1, · · · , βp)

T is a vector of unknown parameters,

and the g and {et} are as defined in (6.4.1). For this case, we need to modify the

above equations (see §4.2 of Chapter III of Györfi, Härdle, Sarda and Vieu (1989)

) and the kernel-weighted LS estimator of β can be defined as

β̂ =
( T∑

t=p+2

UtU
T
t

)+
T∑

t=p+2

UtVt,

where

Vt = yt − ĝ0(yt−p−1), Ut = xt −G(yt−p−1),

G(·) = {ĝ1(·), . . . , ĝp(·)}T , ĝi(·) =
T∑

s=p+2

Ws,h(·)ys−i
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for i = 0, 1, . . . , p, in which

Ws,h(·) = Kh(· − ys−p−1)
/{ T∑

l=p+2

Kh(· − yl−p−1)
}
.

Under similar conditions, the corresponding results of Theorems 6.4.1 and 6.4.2

can be established.

Remark 6.4.3 Theorems 6.4.1 and 6.4.2 only establish the asymptotic results

for the partially linear model (6.4.1). In practice, we need to determine whether

model (6.4.1) is more appropriate than

yt = f1(yt−1) + αyt−2 + ǫt, (6.4.4)

where f1 is an unknown function over R1, α is an unknown parameter and {ǫt} is

a sequence of i.i.d. random errors with mean zero and finite variance. In this case,

we need to modify the above estimation equations and to estimate the regression

function of E(yt−2|yt−1), which has been discussed in §5.2.4 of Tong (1990) and

Robinson (1983). They both have discussed the estimators of E(yt|yt±j) for j ≥ 1.

Therefore, similar results for (6.4.4) can also be obtained. Section 6.4.2 below

provides estimation procedures for both (6.4.1) and (6.4.4).

In the following section, we apply a cross-validation (CV) criterion to con-

struct an asymptotically optimal data-driven bandwidth and adaptive data-driven

estimates.

Let us define N = T − 2,

D(h) =
1

T − 2

T∑

t=3

[{β̂(h)yt−1 + ĝ∗h(yt−2)} − {βyt−1 + g(yt−2)}]2w(yt−2)

=
1

N

N∑

n=1

[{β̂(h)yn+1 + ĝ∗h(yn)} − {βyn+1 + g(yn)}]2w(yn), (6.4.5)

and

CV (h) =
1

N

N∑

n=1

[yn+2 − {β̃(h)yn+1 + ĝ1,n(yn)− β̃(h)ĝ2,n(yn)}]2w(yn), (6.4.6)

where β̃(h) is as defined in (6.4.2) with ĝh(·) replaced by ĝh,n(·) = ĝ1,n(·)−βĝ2,n(·),
in which

ĝi,n(·) = ĝi,n(·, h) =
1

N − 1

∑

m6=n

Kh(· − ym)ym+3−i/f̂h,n(·)
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and

f̂h,n(·) =
1

N − 1

∑

m6=n

Kh(· − ym). (6.4.7)

Definition 6.4.1 A data-driven bandwidth ĥ is asymptotically optimal if

D(ĥ)

infh∈HT
D(h)

→p 1.

CROSS–VALIDATION (CV): Select h, denoted by ĥC , that achieves

CV (ĥC) = inf
h∈HN+2

CV (h). (6.4.8)

Theorem 6.4.3 Assume that the conditions of Theorem 6.4.1 hold. Then the

data-driven bandwidth ĥC is asymptotically optimal.

Theorem 6.4.4 Assume that the conditions of Theorem 6.4.1 hold. Then under

the null hypothesis H0 : β = 0

F̂1(ĥC) = T{β̂(ĥC)}2σ2
2σ

−2 −→L χ2(1), (6.4.9)

as T →∞. Furthermore, under H1 : β 6= 0, we have F̂ (ĥC)→∞ as T →∞.

Theorem 6.4.5 Assume that the conditions of Theorem 6.4.1 hold. Then under

the null hypothesis H ′
0 : σ2 = σ2

0

F̂2(ĥC) = T{σ̂(ĥC)2 − σ2
0}2{V ar(e21)}−1 → χ2(1), (6.4.10)

as T →∞. Furthermore, under H ′
1 : σ2 6= σ2

0, we have F̂ (ĥC)→∞ as T →∞.

Remark 6.4.4 Theorems 6.4.3-6.4.5 show that the optimum data-driven band-

width ĥC is asymptotically optimal and the conclusions of Theorems 6.4.1 and

6.4.2 remain unchanged with h replaced by ĥC. It follows from Theorems 6.4.4

and 6.4.5 that when h is proportional to n−1/5, both β̂ and σ̂2 are
√
n–consistent.

In addition, it follows from Lemma 6.6.7(i) that the nonparametric estimate ĝ∗h

is of n−4/5 rate of mean squared error (MSE) when h is proportional to n−1/5.
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6.4.2 Computational Aspects

In this subsection, we demonstrate how well the above estimation procedure works

numerically and practically.

Example 6.4.1 Consider model (6.4.1) given by

yt = βyt−1 + g(yt−2) + et, t = 3, 4, ..., T, (6.4.11)

where {et : t ≥ 3} is independent and uniformly distributed over (−0.5, 0.5), y1

and y2 are mutually independent and identically distributed over (−1, 1), (y1, y2)

is independent of {et : t ≥ 3}, and (β, g) is chosen from one of the following

models.

Model 1. β = 0.25 and g(y) = y/2(1 + y2)−1.

Model 2. β = 0.25 and g(y) = 1/4 sin(πy).

In this section, we conduct a small sample study for the two models.

Choose the quartic kernel function

K(u) =

{
(15/16)(1− u2)2 if |u| ≤ 1
0 otherwise

and the weight function

w(x) =

{
1 if |x| ≤ 1
0 otherwise

First, because of the form of g, the fact that the process {yt} is strictly

stationary follows from §2.4 of Tjøstheim (1994) (also Theorem 3.1 of An and

Huang (1996)). Second, by using Lemma 3.4.4 and Theorem 3.4.10 of Györfi,

Härdle, Sarda and Vieu (1989). (also Theorem 7 of §2.4 of Doukhan (1995)), we

obtain that the {yt} is β-mixing and therefore α-mixing. Thus, Assumption 6.6.1

holds. Third, it follows from the definition of K and w that Assumption 6.6.8

holds.

(i). Based on the simulated data set {yt : 1 ≤ t ≤ T}, compute the following

estimators

ĝ1,h(yn) =
{ N∑

m=1

Kh(yn − ym)ym+2

}/{ N∑

m=1

Kh(yn − ym)
}
,

ĝ2,h(yn) =
{ N∑

m=1

Kh(yn − ym)ym+1

}/{ N∑

m=1

Kh(yn − ym)
}
,
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ĝh(yn) = ĝ1,h(yn)− 1

4
ĝ2,h(yn),

ĝ1,n(yn) =
{ N∑

m6=n

Kh(yn − ym)ym+2

}/{ N∑

m6=n

Kh(yn − ym)
}
,

ĝ2,n(yn) =
{ N∑

m6=n

Kh(yn − ym)ym+1

}/{ N∑

m6=n

Kh(yn − ym)
}
,

and

ĝn(yn) = ĝ1,n(yn)− 1

4
ĝ2,n(yn), (6.4.12)

where Kh(·) = h−1K(·/h), h ∈ HN+2 = [(N + 2)−7/30, 1.1(N + 2)−1/6], and

1 ≤ n ≤ N .

(ii). Compute the LS estimates β̂(h) of (6.4.2) and β̃(h) of (6.4.6)

β̂(h)− β =
( N∑

n=1

u2
n+2

)−1{ N∑

n=1

un+2en+2 +
N∑

n=1

un+2ḡh(yn)
}

(6.4.13)

and

β̃(h)− β =
( N∑

n=1

v2
n+2

)−1{ N∑

n=1

vn+2en+2 +
N∑

n=1

vn+2ḡn(yn)
}

(6.4.14)

where un+2 = yn+1 − ĝ2,h(yn), ḡh(yn) = g(yn) − ĝh(yn), vn+2 = yn+1 − ĝ2,n(yn),

and ḡn(yn) = g(yn)− ĝn(yn).

(iii). Compute

D(h) =
1

N

N∑

n=1

{m̂h(zn)−m(zn)}2

=
1

N

N∑

n=1

[{β̂(h)un+2 + ĝ1,h(yn)} − {βyn+1 + g(yn)}]2

=
1

N

N∑

n=1

{β̂(h)un+2 + ĝ1,h(yn)}2

− 2

N

N∑

n=1

{β̂(h)un+2 + ĝ1,h(yn)}{βyn+1 + g(yn)}

+
1

N

N∑

n=1

{βyn+1 + g(yn)}2

≡ D1h +D2h +D3h, (6.4.15)

where the symbol “≡” indicates that the terms of the left-hand side can be

represented by those of the right-hand side correspondingly.
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TABLE 6.7. Simulation results for model 1 in example 6.4.1

N | ĥC − ĥD | | β̂(ĥC)− 0.25 | | β̃(ĥC)− 0.25 | ASE(ĥC)
100 0.08267 0.09821 0.09517 0.00451
200 0.07478 0.07229 0.07138 0.00229
300 0.08606 0.05748 0.05715 0.00108
400 0.05582 0.05526 0.05504 0.00117
500 0.07963 0.05025 0.05013 0.00076

Thus,D1h andD2h can be computed from (6.4.6)–(6.4.15).D3h is independent

of h. Therefore the problem of minimizing D(h) over HN+2 is the same as that

of minimizing D1h +D2h. That is

ĥD = arg min
h∈HN+2

(D1h +D2h). (6.4.16)

(iv). Compute

CV (h) =
1

N

N∑

n=1

{yn+2 − m̂h,n(zn)}2

=
1

N

N∑

n=1

m̂h,n(zn)2 − 2

N

N∑

n=1

m̂h,n(zn)yn+2 +
1

N

N∑

n=1

y2
n+2

≡ CV (h)1 + CV (h)2 + CV (h)3. (6.4.17)

Hence, CV (h)1 and CV (h)2 can be computed by the similar reason as those

of D1h and D2h. Therefore the problem of minimizing CV (h) over HN+2 is the

same as that of minimizing CV (h)1 + CV (h)2. That is

ĥC = arg min
h∈HN+2

{CV (h)1 + CV (h)2}. (6.4.18)

(v). Under the cases of T = 102, 202, 302, 402, and 502, compute

|ĥC − ĥD|, |β̂(ĥC)− β|, |β̃(ĥC)− β|, (6.4.19)

and

ASE(ĥC) =
1

N

N∑

n=1

{ĝ∗
ĥC ,n

(yn)− g(yn)}2. (6.4.20)

The following simulation results were performed 1000 times using the Splus

functions (Chambers and Hastie (1992)) and the means are tabulated in Tables

6.7 and 6.8.
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TABLE 6.8. Simulation results for model 2 in example 6.4.1

N | ĥC − ĥD | | β̂(ĥC)− 0.25 | | β̃(ĥC)− 0.25 | ASE(ĥC)
100 0.08952 0.07481 0.07367 0.05246
200 0.08746 0.06215 0.06189 0.02635
300 0.09123 0.05243 0.05221 0.01573
400 0.09245 0.05138 0.05093 0.01437
500 0.09561 0.05042 0.05012 0.01108

Remark 6.4.5 Table 6.7 gives the small sample results for the Mackey-Glass

system with (a, b, d, k) = (1/4, 1/2, 2, 2) (§4 of Nychka, Elliner, Gallant and Mc-

Caffrey (1992)). Table 6.8 provides the small sample results for Model 2 which

contains a sin function at lag 2. Trigonometric functions have been used in the

time series literature to describe periodic series. Both Tables 6.7 and 6.8 show that

when the bandwidth parameter was proportional to the reasonable candidate T−1/5,

the absolute errors of the data-driven estimates β̂(ĥC), β̃(ĥC) and ASE(ĥC) de-

creased as the sample size T increased, and |β̃(ĥC)−0.25| < |β̂(ĥC)−0.25| for all

the sample sizes. Thus, the CV -based ĥC and the adaptive data-driven estimator

β̃(ĥC) are recommended to use in practice.

Example 6.4.2 In this example, we consider the Canadian lynx data. This data

set is the annual record of the number of Canadian lynx trapped in the MacKenzie

River district of North-West Canada for the years 1821 to 1934. Tong (1977)

fitted an eleventh-order Gaussian autoregressive model to yt = log10(number of

lynx trapped in the year (1820+ t)) for t = 1, 2, ..., 114 (T = 114). It follows from

the definition of (yt, 1 ≤ t ≤ 114) that all the transformed values yt are bounded

by one.

Several models have already been used to fit the lynx data. Tong (1977)

proposed the eleventh-order Gaussian autoregressive model to fit the data. See

also Tong (1990). More recently, Wong and Kohn (1996) used a second-order

additive autoregressive model of the form

yt = g1(yt−1) + g2(yt−2) + et (6.4.21)

to fit the data, where g1 and g2 are smooth functions. The authors estimated

both g1 and g2 through using a Bayesian approach and their conclusion is that
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the estimate of g1 is almost linear while the estimate of g2 is nonlinear. Their

research suggests that if we choose either model (6.4.22) or model (6.4.23) below

to fit the lynx data, model (6.4.22) will be more appropriate.

yt = β1yt−1 + g2(yt−2) + e1t, (6.4.22)

yt = g1(yt−1) + β2yt−2 + e2t, (6.4.23)

(6.4.24)

where β1 and β2 are unknown parameters, g1 and g2 are unknown functions, and

e1t and e2t are assumed to be i.i.d. random errors with zero mean and finite

variance.

Our experience suggests that the choice of the kernel function is much less

critical than that of the bandwidth . For Example 6.4.1, we choose the kernel

function K(x) = (2π)−1/2 exp(−x2/2), the weight function w(x) = I[1,4](x), h ∈
H114 = [0.3·114−7/30, 1.1·114−1/6]. For model (6.4.22), similar to (6.4.6), we define

the following CV function (N = T − 2) by

CV1(h) =
1

N

N∑

n=1

(
yn+2 − [β̃1(h)yn+1 + {ĝ1,n(yn)− β̃1(h)ĝ2,n(yn)}]

)2
,

where

β̃1(h) =
{ N∑

n=1

v1,nw1,n

}/{ N∑

n=1

v2
1,n

}
, v1,n = yn+1 − ĝ2,n(yn),

w1,n = yn+2 − ĝ1,n(yn),

ĝi,n(yn) =
{ N∑

m=1, 6=n

Kh(yn − ym)ym+3−i

}/{ N∑

m=1, 6=n

Kh(yn − ym)
}
,

for i = 1, 2, and Kh(·) = 1/hK(·/h).
For model (6.4.23), we have

CV2(h) =
1

N

N∑

n=1

[yn+2 − {ĝn,1(yn+1)− β̃2(h)ĝn,2(yn+1) + β̃2(h)yn}]2,

where

β̃2(h) =
{ N∑

n=1

v2,nw2,n

}/{ N∑

n=1

v2
2,n

}
, v2,n = yn − ĝn,2(yn+1),

w2,n = yn+2 − ĝn,1(yn+1),

ĝn,i(yn+1) =
{ N∑

m=1, 6=n

Kh(yn+1 − ym+1)ym+2i(2−i)

}/{ N∑

m=1, 6=n

Kh(yn+1 − ym+1)
}
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for i = 1, 2.

Through minimizing the CV functions CV1(h) and CV2(h), we obtain

CV1(ĥ1C) = inf
h∈H114

CV1(h) = 0.0468 and CV2(ĥ2C) = inf
h∈H114

CV2(h) = 0.0559

respectively. The estimates of the error variance of {e1t} and {e2t} were 0.04119

and 0.04643 respectively. The estimate of the error variance of the model of Tong

(1977) was 0.0437, while the estimate of the error variance of the model of Wong

and Kohn (1996) was 0.0421 which is comparable with our variance estimate

of 0.04119. Obviously, the approach of Wong and Kohn cannot provide explicit

estimates for f1 and f2 since their approach depends heavily on the Gibbs sampler.

Our CPU time for Example 6.4.2 took about 30 minutes on a Digital workstation.

Time plot of the common-log-transformed lynx data (part (a)), full plot of fitted

values (solid) and the observations (dashed) for model (6.4.22) (part (b)), partial

plot of the LS estimator (1.354yn+1) against yn+1 (part (c)), partial plot of the

nonparametric estimate (g̃2) of g2 in model (6.4.22) against yn (part (d)), partial

plot of the nonparametric estimate of g1 in model (6.4.23) against yn+1 (part (e)),

and partial plot of the LS estimator (−0.591yn) against yn (part (f)) are given

in Figure 6.1 on page 181. For the Canadian lynx data, when selecting yt−1 and

yt−2 as the candidates of the regressors, our research suggests using the following

prediction equation

ŷn+2 = 1.354yn+1 + g̃2(yn), n = 1, 2, . . . , (6.4.25)

where

g̃2(yn) = ĝ1(yn, ĥ1C)− 1.354ĝ2(yn, ĥ1C)

and

ĝi(yn, h) =
{ N∑

m=1

Kh(yn − ym)ym+3−i

}/{ N∑

m=1

Kh(yn − ym)
}
,

in which i = 1, 2 and ĥ1C = 0.1266. Part (d) of Figure 6.1 shows that g̃2 appears

to be nonlinear.

We now compare the methods of Tong (1977), Wong and Kohn (1996) and

our approach. The research of Wong and Kohn (1996) suggests that for the lynx

data, the second-order additive autoregressive model (6.4.25) is more reasonable
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than the threshold autoregressive method proposed by Tong (1977). It follows

from (6.4.25) that for the lynx data the partially linear autoregressive model of

the form (6.4.1) is easier to implement in practice than the second-order additive

autoregressive model of Wong and Kohn (1996).

Remark 6.4.6 This section mainly establishes the estimation procedure for model

(6.4.1). As mentioned in Remarks 6.4.2 and 6.4.3, however, the estimation proce-

dure can be extended to cover a broad class of models. Section 6.4.2 demonstrates

that the estimation procedure can be applied to both simulated and real data ex-

amples. A software for the estimation procedure is available upon request. This

section shows that semiparametric methods can not only retain the beauty of lin-

ear regression methods but provide ’models’ with better predictive power than is

available from nonparametric methods.

6.5 Other Related Developments

In Sections 6.2–6.4, we have discussed the parametric and nonparametric tests,

the optimum linear subset selection and the optimal bandwidth parameter se-

lection for model (6.4.1). In this section, we summarize recent developments in a

general class of additive stochastic regression models including model (6.2.1).

Consider the following additive stochastic regression model

Yt = m(Xt) + et =
p∑

i=1

gi(Uti) + g(Vt) + et, (6.5.1)

where Xt = (UT
t , V

T
t )T , Ut = (Ut1, . . . , Utp)

T , Vt = (Vt1, . . . , Vtd)
T , and gi are un-

known functions on R1. For Yt = yt+r, Uti = Vti = yt+r−i and gi(Uti) = βiUti,

model (6.5.1) is a semiparametric AR model discussed in Section 6.2. For Yt =

yt+r, Uti = yt+r−i and g ≡ 0, model (6.5.1) is an additive autoregressive

model discussed extensively by Chen and Tsay (1993). Recently, Masry and

Tjøstheim (1995, 1997) discussed nonlinear ARCH time series and an additive

nonlinear bivariate ARX model, and proposed several consistent estimators. See

Tjøstheim (1994), Tong (1995) and Härdle, Lütkepohl and Chen (1997) for recent

developments in nonlinear and nonparametric time series models. Recently, Gao,

Tong and Wolff (1998a) considered the case where g ≡ 0 in (6.5.1) and discussed

the lag selection and order determination problem. See Tjøstheim and Auestad

(1994a, 1994b) for the nonparametric autoregression case and Cheng and Tong
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(1992, 1993) for the stochastic dynamical systems case. More recently, Gao, Tong

and Wolff (1998b) proposed an adaptive test statistic for testing additivity

for the case where each gi in (6.5.1) is an unknown function in R1. Asymptotic

theory and power investigations of the test statistic have been discussed

under some mild conditions. This research generalizes the discussion of Chen, Liu

and Tsay (1995) and Hjellvik and Tjøstheim (1995) for testing additivity and

linearity in nonlinear autoregressive models. See also Kreiss, Neumann and

Yao (1997) for Bootstrap tests in nonparametric time series regression.

Further investigation of (6.5.1) is beyond the scope of this monograph. Recent

developments can be found in Gao, Tong and Wolff (1998a, b).

6.6 The Assumptions and the Proofs of Theorems

6.6.1 Mathematical Assumptions

Assumption 6.6.1 (i) Assume that {et} is a sequence of i.i.d. random pro-

cesses with Eet = 0 and Ee2
t = σ2

0 <∞, and that es are independent of Xt

for all s ≥ t.

(ii) Assume that Xt are strictly stationary and satisfy the Rosenblatt mixing

condition

sup{|P (A ∩B)− P (A)P (B)| : A ∈ Ωl
1, B ∈ Ω∞

l+k} ≤ C1 exp(−C2k)

for all l, k ≥ 1 and for constants {Ci > 0 : i = 1, 2}, where {Ωj
i} denotes

the σ-field generated by {Xt : i ≤ t ≤ j}.

Let g(m) be the m-order derivative of the function g and M be a constant,

Gm(S) = {g : |g(m)(s)− g(m)(s′)| ≤M ||s− s′||},

where m is an integer, s, s′ ∈ S, a compact subset of Rd, 0 < M <∞, and || · ||
denotes the Euclidean norm.

Assumption 6.6.2 For g ∈ Gm(S) and {zj(·) : j = 1, 2, . . .} given above, there

exists a vector of unknown parameters γ = (γ1, . . . , γq)
T such that for a constant

C0 (0 < C0 <∞) independent of T

q2(m+1)E
{ q∑

j=1

zj(Vt)γj − g(Vt)
}2 ∼ C0
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where the symbol “∼” indicates that the ratio of the left-hand side and the right-

hand side tends to one as T → ∞, q = [l0T
1

2(m+1)+1 ], in which 0 < l0 < ∞ is a

constant.

Assumption 6.6.3 (i) Z is of full column rank q, {zi(·) : 1 ≤ i ≤ q} is a

sequence of continuous functions with supv supi≥1 |zi(v)| <∞.

(ii) Assume that d2
i = E{zi(Vt)

2} exist with the absolute constants d2
i satisfying

0 < d2
1 ≤ · · · ≤ d2

q <∞ and that

E{zi(Vt)zj(Vt)} = 0 and E{zk(Vs)zk(Vt)} = 0

for all i 6= j, k ≥ 1 and s 6= t.

(iii) Assume that c2i = E{U2
ti} exist with the constants c2i satisfying 0 < c21 ≤

· · · ≤ c2p <∞ and that the random processes {Ut : t ≥ 1} and {zk(Vt) : k ≥
1} satisfy the following orthogonality conditions

E{UtiUtj} = 0 and E{UsiUtjzk(Vs)zk(Vt)} = 0

for all i 6= j, k ≥ 1 and s 6= t.

Assumption 6.6.4 There exists an absolute constant M0 ≥ 4 such that for all

t ≥ 1

sup
x
E{|Yt − E(Yt|Xt)|2M0|Xt = x} <∞.

Assumption 6.6.5 (i) Kd is a d–dimensional symmetric, Lipschitz continuous

probability kernel function with
∫ ||u||2Kd(u)du <∞, and has an absolutely

integrable Fourier transform, where || · || denotes the Euclidean norm.

(ii) The distribution of Xt is absolutely continuous, and its density fX is bounded

below by cf and above by df on the compact support of fX .

(iii) The density function fV,A of random vector VtA has a compact support on

which all the second derivatives of fV,A, g1A and g2A are continuous, where

g1A(v) = E(Yt|VtA = v) and g2A(v) = E(UtA|VtA = v).
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Assumption 6.6.6 The true regression function UT
tA0
βA0 +gA0(VtA0) is unknown

and nonlinear.

Assumption 6.6.7 Assume that the lower and the upper bands of HT satisfy

lim
T→∞

hmin(T, d)T
1/(4+d0)+c1 = a1 and lim

T→∞
hmax(T, d)T

1/(4+d0)−c1 = b1,

where d0 = r−|A0|, the constants a1, b1 and c1 only depend on (d, d0) and satisfy

0 < a1 < b1 <∞ and 0 < c1 < 1/{4(4 + d0)}.

Assumption 6.6.8 (i) Assume that yt are strictly stationary and satisfy the

Rosenblatt mixing condition.

(ii) K is symmetric, Lipschitz continuous and has an absolutely integrable Fourier

transform.

(iii) K is a bounded probability kernel function with
∫∞
−∞ u2K(u)du <∞.

(iv) Assume that the weight function w is bounded and that its support S is

compact.

(v) Assume that {yt} has a common marginal density f(·), f(·) has a compact

support containing S, and gi(·) (i = 1, 2) and f(·) have two continuous

derivatives on the interior of S.

(vi) For any integer k ≥ 1, E|yt|k <∞.

Remark 6.6.1 (i) Assumption 6.6.1(i) can be replaced by a more complicated

condition that includes the conditional heteroscedasticity case. Details can

be found in Gao, Tong and Wolff (1998b).

(ii) Assumption 6.6.1(ii) is quite common in such problems. See, for example,

(C.8) in Härdle and Vieu (1992). However, it would be possible, but with

more tedious proofs, to obtain the above Theorems under less restrictive

assumptions that include some algebraically decaying rates.

(iii) As mentioned before, Assumptions 6.6.2 and 6.6.3 provide some smooth

and orthogonality conditions. In almost all cases, they hold if g(·) satis-

fies some smoothness conditions. In particular, they hold when Assumption
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6.6.1 holds and the series functions are either the family of trigonometric

series or the Gallant’s (1981) flexible Fourier form. Recent developments

in nonparametric series regression for the i.i.d. case are given in Andrews

(1991) and Hong and White (1995)

Remark 6.6.2 (i) Assumption 6.6.5(ii) guarantees that the model we consider

is identifiable, which implies that the unknown parameter vector βA0 and

the true nonparametric component gA0(VtA0) are uniquely determined up to

a set of measure zero.

(ii) Assumption 6.6.6 is imposed to exclude the case where gA0(·) is also a linear

function of a subset of Xt = (Xt1, . . . , Xtr)
T .

(iii) Assumption 6.6.8 is similar to Assumptions 6.6.1 and 6.6.5. For the sake

of convenience, we list all the necessary conditions for Section 6.4 in the

separate assumption–Assumption 6.6.8.

6.6.2 Technical Details

Proof of Theorem 6.2.1

For simplicity, let Ci (0 < |Ci| < ∞) denote positive constants which may have

different values at each appearance throughout this section. Before proving The-

orem 6.2.1, we state a lemma, whose proof can be found in Lemma A.1 of Gao,

Tong and Wolff (1998a).

Lemma 6.6.1 Assume that the conditions of Theorem 6.2.1 hold. Then

c21 + oP (δ1(p)) ≤ λmin(
1

T
UTU) ≤ λmax(

1

T
UTU) ≤ c2p + oP (δ1(p))

d2
1 + oP (λ2(q)) ≤ λmin(

1

T
ZTZ) ≤ λmax(

1

T
ZTZ) ≤ d2

q + oP (λ2(q))

where c2i = EU2
ti, and for all i = 1, 2, . . . , p and j = 1, 2, . . . , q

λi

{ 1

T
UTU − I1(p)

}
= oP (δ1(p)),

λj

{ 1

T
ZTZ − I2(q)

}
= oP (λ2(q)),

where

I1(p) = diag(c21, . . . , c
2
p) and I2(q) = diag(d2

1, . . . , d
2
q)
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are p×p and q×q diagonal matrices respectively, λmin(B) and λmax(B) denote the

smallest and largest eigenvalues of matrix B, {λi(D)} denotes the i–th eigenvalue

of matrix D, and δ1(p) > 0 and λ2(q) > 0 satisfy as T →∞, max{δ1(p), λ2(q)} ·
max{p, q} → 0 as T →∞.

The Proof of Theorem 6.2.1. Here we prove only Theorem 6.2.1(i) and the

second part follows similarly. Without loss of generality, we assume that the

inverse matrices (ZTZ)−1, (UTU)−1 and (ÛT Û)−1 exist and that d2
1 = d2

2 = · · · =
d2

q = 1 and σ2
0 = 1.

By (6.2.7) and Assumption 6.6.2, we have

(ZTZ)1/2(γ̂ − γ) = (ZTZ)−1/2ZT{F − U(ÛT Û)−1ÛT}(e+ δ)

= (ZTZ)−1/2ZT e+ (ZTZ)−1/2ZT δ − (ZTZ)−1/2ZTU(ÛT Û)−1ÛT e

−(ZTZ)−1/2ZTU(ÛT Û)−1ÛT δ

≡ I1T + I2T + I3T + I4T , (6.6.1)

where e = (e1, . . . , eT )T , δ = (δ1, . . . , δT )T , and δt = g(Vt)− Z(Vt)
Tγ.

In view of (6.6.1), in order to prove Theorem 6.2.1, it suffices to show that

(2q)−1/2(eTPe− q) −→L N(0, 1) (6.6.2)

and for i = 2, 3, 4

IT
1T IiT = oP (q1/2) and IT

iT IiT = oP (q1/2). (6.6.3)

Before proving (6.6.2), we need to prove

eTPe =
∑

1≤s,t≤T

asteset + oP (q1/2), (6.6.4)

where ast = 1/T
∑q

i=1 zi(Vs)zi(Vt).

In order to prove (6.6.4), it suffices to show that

q−1/2|eT (P − P0)e| = oP (1), (6.6.5)

where P0 = {ast}1≤s,t≤T is a matrix of order T × T .

Noting that Lemma 6.6.1 holds and
∣∣∣eTZ(ZTZ)−1{I2(q) −

1

T
ZTZ}I2(q)−1ZT e

∣∣∣∣
2

≤ eTZ(ZTZ)−1ZT e

× eTZ{I2(q)−
1

T
ZTZ}(ZTZ)−1{I2(q)−

1

T
ZTZ}ZT e

≤ C

T 2
λmax{(I2(q)−

1

T
ZTZ)2}(eTZZT e)2,
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in order to prove (6.6.5), it suffices to show that

λ2(q)T
−1q−1/2(ZT e)T (ZT e) = oP (1), (6.6.6)

which follows from Markov inequality and

P{λ2(q)T
−1q−1/2(ZT e)T (ZT e) > ε} ≤ ε−1λ2(q)T

−1q−1/2E
q∑

i=1

{ T∑

t=1

zi(Vt)et

}2

≤ Cλ2(q)T
−1q−1/2qT

= Cλ2(q)q
1/2 = o(1)

using Assumptions 6.6.1 and 6.6.3. Thus, the proof of (6.6.4) is completed.

Noting (6.6.4), in order to prove (6.6.2), it suffices to show that as T →∞

q−1/2
( T∑

t=1

atte
2
t − q

)
−→P 0 (6.6.7)

and

T∑

t=2

WTt −→L N(0, 1), (6.6.8)

where WTt = (2/q)1/2∑t−1
s=1 asteset forms a zero mean martingale difference.

Now applying a central limit theorem for martingale sequences (see Theorem

1 of Chapter VIII of Pollard (1984)), we can deduce

T∑

t=2

WTt −→L N(0, 1)

if

T∑

t=2

E(W 2
Tt|Ωt−1) −→P 1 (6.6.9)

and

T∑

t=2

E{W 2
TtI(|WTt| > c)|Ωt−1} −→P 0 (6.6.10)

for all c > 0.

It is obvious that in order to prove (6.6.9) and (6.6.10), it suffices to show

that as T →∞
2

q

T∑

t=2

t−1∑

s=1

a2
ste

2
s − 1 −→P 0, (6.6.11)

2

q

T∑

t=1

∑

r 6=s

astarteser −→P 0, (6.6.12)
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and

4

q2

T∑

t=2

E

(
t−1∑

s=1

astes

)4

→ 0. (6.6.13)

The left-hand side of (6.6.11) is

2

q

T∑

t=2

t−1∑

s=1

a2
st(e

2
s − 1) +

(
2

q

T∑

t=2

t−1∑

s=1

a2
st − 1

)
. (6.6.14)

Also, the first term in (6.6.14) is

2

q

q∑

i=1

1

T

{ T∑

t=2

zi(Vt)
2 × 1

T

t−1∑

s=1

zi(Vs)
2(e2s − 1)

}

+
2

q

q∑

i6=j=1

{ 1

T 2

T∑

t=2

t−1∑

s=1

fij(Vs, Vt)(e
2
s − 1)

}

≡ 2

q

q∑

i=1

{ 1

T

T∑

t=2

zi(Vt)
2 ·M1t(i)

}
+

2

q

q∑

i=1

q∑

j=1, 6=i

M1ij, (6.6.15)

where fij(Vs, Vt) = zi(Vs)zj(Vs)zi(Vt)zj(Vt).

The second term in (6.6.14) is

1

q

q∑

i=1

[{ 1

T

T∑

t=1

zi(Vt)
2 − 1

}2
+ 2

{ 1

T

T∑

t=1

zi(Vt)
2 − 1

}]

+
1

q

q∑

i=1

q∑

j=1, 6=i

1

T 2

T∑

t=1

T∑

s=1

zi(Vs)zj(Vs)zi(Vt)zj(Vt)

≡ 1

q

q∑

i=1

Mi +
1

q

q∑

i=1

q∑

j=1, 6=i

M2ij. (6.6.16)

Analogously, the left-hand side of (6.6.12) is

4

q

q∑

i=1

1

T

T∑

t=2

zi(Vt)
2 × 1

T

t−1∑

r=2

r−1∑

s=1

zi(Vs)zi(Vr)eser

+
4

q

q∑

i=1

q∑

j=1, 6=i

1

T 2

T∑

t=2

t−1∑

r=2

r−1∑

s=1

gij(Vs, Vr, Vt)

≡ 4

q

q∑

i=1

1

T

T∑

t=2

zi(Vt)
2 ·M2t(i) +

4

q

q∑

i=1

q∑

j=1, 6=i

M3ij, (6.6.17)

where gij(Vs, Vr, Vt) = zi(Vs)eszj(Vr)erzi(Vt)zj(Vt).

Using Assumptions 6.6.1-6.6.3 and applying the martingale limit results of

Chapters 1 and 2 of Hall and Heyde (1980), we can deduce for i = 1, 2, j = 1, 2, 3

and s, r ≥ 1

Ms = oP (1), Mjsr = oP (q−1),
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and

max
1≤t≤T

|Mit(s)| = oP (1). (6.6.18)

Thus, equations (6.6.11) and (6.6.12) follows from (6.6.14)–(6.6.18). Now, we

begin to prove (6.6.13). Obviously,

(t−1∑

s=1

astes

)4
=

1

T 4

{ q∑

i=1

t−1∑

s=1

zi(Vs)eszi(Vt)
}4 ≤ Cq3

T 4

q∑

i=1

{t−1∑

s=1

zi(Vs)es

}4
(6.6.19)

using Assumption 6.6.3(i).

For any fixed i ≥ 1

T∑

t=2

E
{t−1∑

s=1

zi(Vs)es

}4
= C1

T∑

t=2

t−1∑

s=1

E{zi(Vs)es}4

+C2

T∑

t=2

t−1∑

s1=1

t−1∑

s2=1, 6=s1

E{zi(Vs1)
2e2s1

zi(Vs2)
2e2s2
}

≡ Ji1T + Ji2T .

Applying Assumptions 6.6.1(i) and 6.6.3(iii) again, we have for j = 1, 2

JijT ≤ C3T
3. (6.6.20)

Thus, (6.6.19)–(6.6.20) imply (6.6.13). We have therefore proved equations (6.6.11)

–(6.6.13). As a result, equation (6.6.8) holds. In the following, we begin to prove

(6.6.7).

For any 1 ≤ i ≤ q, define

φii =
1

T

T∑

t=1

{zi(Vt)
2 − 1}.

Using Assumptions 6.6.1 and 6.6.3, and applying Lemma 3.2 of Boente and

Fraiman (1988), we have for any given ε > 0

P (max
1≤i≤q

|φii| > εq−1/2) ≤
q∑

i=1

P (|φii| > εq−1/2)

≤ C1q exp(−C2T
1/2q−1/2)→ 0

as T →∞, where Ci are constants.

Thus

max
1≤i≤q

|φii| = oP (q−1/2).
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Therefore, using Assumptions 6.6.1 and 6.6.3, and applying Cauchy-Schwarz in-

equality, we obtain

T∑

t=1

atte
2
t − q =

T∑

t=1

att(e
2
t − 1) + tr[Z{1/TI2(q)−1}ZT − P ]

=
T∑

t=1

att(e
2
t − 1) + tr[I2(q)

−1{1/TZTZ − I2(q)}]

=
T∑

t=1

att(e
2
t − 1) +

q∑

i=1

φii = oP (q1/2),

where tr(B) denotes the trace of matrix B.

The proof of (6.6.2) is consequently completed. Before proving (6.6.3), we

need to prove for T large enough

λmax(
1

T
ZZT ) = oP (q−1/2),

which follows from

P
{∣∣∣

T∑

t=1

T∑

s=1

q∑

i=1

zi(Vs)zi(Vt)lslt
∣∣∣ > εTq−1/2

}

≤ q1/2

Tε
E
∣∣∣

T∑

t=1

T∑

s=1

q∑

i=1

zi(Vs)zi(Vt)lslt
∣∣∣

≤ C
q1/2

T

q∑

i=1

E
∣∣∣

T∑

t=1

T∑

s=1

zi(Vs)zi(Vt)lslt
∣∣∣

= C
q1/2

T

q∑

i=1

E
{ T∑

t=1

zi(Vt)lt
}2 ≤ C

q3/2

T
→ 0

using Assumption 6.6.3(ii) and the fact that l = (l1, . . . , lT )T is any identical

vector satisfying
∑T

t=1 l
2
t = 1. Thus

δTPδ ≤ λmax{(ZTZ)−1}δTZZT δ ≤ C

T
λmax(ZZ

T )δT δ = oP (q1/2).

We now begin to prove

IT
3T I3T = oP (q1/2).

It is obvious that

IT
3T I3T = eT Û(ÛT Û)−1UTPU(ÛT Û)−1ÛT e

≤ λmax(U
TPU) · λmax{(ÛT Û)−1} · eT Û(ÛT Û)−1ÛT e

≤ C

T
λmax{(ZTZ)−1}λmax(U

TZZTU)eT Û(ÛT Û)−1ÛT e. (6.6.21)
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Similar to the proof of (6.6.4), we can prove

eT Û(ÛT Û)−1ÛT e = C1p+ oP (p1/2) (6.6.22)

using Assumptions 6.6.2 and 6.6.3.

In order to estimate the order of (6.6.21), it suffices to estimate

λmax

{ 1

T
(ZTU)T (ZTU)

}
.

Analogous to the proof of Lemma 6.6.1, we have for 1 ≤ i ≤ p

λi

{ 1

T
(ZTU)T (ZTU)

}
≤ 2p max

1≤i6=j≤p
|dij| = oP (ε(p)Tq), (6.6.23)

where

dij =
1

T

q∑

l=1

{ T∑

s=1

Usizl(Vs)
}{ T∑

t=1

Utjzl(Vt)
}

denote the (i, j) elements of the matrix 1/T (ZTU)T (ZTU) and ε(p) satisfies

ε(p)→ 0

as T →∞.

Therefore, equations (6.6.21), (6.6.22) and (6.6.23) imply

IT
3T I3T ≤ oP (ε(p)qp) = oP (q1/2)

when ε(p) = (p
√
q)−1.

Analogously, we can prove the rest of (6.6.2) similarly and therefore we finish

the proof of Theorem 6.2.1(i).

Proofs of Theorems 6.3.1 and 6.3.2

Technical lemmas

Lemma 6.6.2 Assume that Assupmtions 6.3.1, 6.6.1, and 6.6.4-6.6.6 hold,

lim
T→∞

max
d
hmin(T, d) = 0 and lim

T→∞
min

d
hmax(T, d)T

1/(4+d) =∞.

Then

lim
T→∞

Pr(Â0 ⊂ A0) = 1.
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Lemma 6.6.3 Under the conditions of Theorem 6.3.1, we have for every given

A

CV (A) = inf
h∈HT

CV (h,A) = σ̂2
T + C1(A)T−4/(4+d) + oP (T−4/(4+d)), (6.6.24)

where σ̂2
T = 1/T

∑T
t=1 e

2
t and C1(A) is a positive constant depending on A.

The following lemmas are needed to complete the proof of Lemmas 6.6.2 and

6.6.3.

Lemma 6.6.4 Under the conditions of Lemma 6.6.2, we have for every given A

and any given compact subset G of Rd

sup
h∈HT

sup
v∈G
||ĝ1(v;h,A)− g1A0(v)|| = oP (T−1/4),

sup
h∈HT

sup
v∈G
|ĝ2(v;h,A)− g2A0(v)| = oP (T−1/4),

sup
h∈HT

sup
v∈G
|f̂(v;h,A)− fA0(v)| = oP (T−1/4).

where ĝi and f̂ are defined in (6.3.3) and (6.3.4).

Proof. The proof of Lemma 6.6.4 follows similarly from that of Lemma 1 of

Härdle and Vieu (1992).

Lemma 6.6.5 Under the conditions of Lemma 6.6.2, for every given A, the fol-

lowing holds uniformly over h ∈ HT

β̂(h,A)− βA0 = OP (T−1/2). (6.6.25)

Proof. The proof of (6.6.25) follows directly from the definition of β̂(h,A) and

the conditions of Lemma 6.6.5.

Proofs of Lemmas 6.6.2 and 6.6.3

Let

D̄1(h,A) =
1

T

T∑

t=1

{ĝ1t(VtA, h)− g1A0(VtA0)}2,

D̄2(h,A) =
1

T

T∑

t=1

{ĝ2t(VtA, h)− g2A0(VtA0)}{ĝ2t(VtA, h)− g2A0(VtA0)}T ,

where g1A0(VtA0) = E(Yt|VtA0) and g2A0(VtA0) = E(UtA0|VtA0).
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Obviously,

D(h,A) =
1

T

T∑

t=1

{UT
tAβ̂(h,A)− UT

tA0
βA0}2+

1

T

T∑

t=1

{ĝt(VtA, β̂(h,A))− gA0(VtA0)}2

− 2

T

T∑

t=1

{UT
tAβ̂(h,A)− UT

tA0
βA0}{ĝt(VtA, β̂(h,A))− gA0(VtA0)}

≡ D1(h,A) +D2(h,A) +D3(h,A).

Similarly, we can prove

D2(h,A) = D̄1(h,A) + βT
A0
D̄2(h,A)βA0 + oP (D2(h,A)).

and for i = 1, 3 and every given A ⊂ A

sup
h∈HT

Di(h,A)

D2(h,A)
= oP (1).

From the definition of CV (h,A), we have

CV (h,A) =
1

T

T∑

t=1

{Yt − UT
tAβ̂(h,A)− ĝt(VtA, β̂(h,A))}2

=
1

T

T∑

t=1

e2t +D(h,A) +R(h,A), (6.6.26)

where

R(h,A) =
2

T

T∑

t=1

[{UT
tA0
βA0 + gA0(VtA0)} − {UT

tAβA + ĝt(VtA, β̂(h,A))}]et

satisfies for every given A ⊂ A

sup
h∈HT

R(h,A)

D(h,A)
= oP (1).

Thus, we have for every given h ∈ HT and A ⊂ A

CV (h,A) =
1

T

T∑

t=1

e2t +D(h,A) + oP (D(h,A)).

In order to prove Lemma 6.6.2, it suffices to show that there exists a h∗ ∈ HT

such that for any h ∈ HT , A 6= A0 and A ⊂ A− A0

CV (h∗, A0) < CV (h,A),

which can be proved by comparing the corresponding terms of CV (h,A0) and

CV (h,A). The detail is similar to the proof of Theorem 1 of Chen and Chen

(1991). Thus, the proof of Lemma 6.6.2 is finished.
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According to Lemma 6.6.2, we need only to consider those A satisfying

A ⊂ A0 and A 6= A0. Under the conditions of Lemma 6.6.2, we can show

that there exist two constants C0(A) and C1(A) depending on A such that

h∗d = C0(A)T−1/(4+d) ∈ HT and for every given A ⊂ A

CV (A) = inf
h∈HT

CV (h,A) = CV (h∗d, A)

= σ̂2
T + C1(A)T−4/(4+d) + oP (T−4/(4+d)). (6.6.27)

which implies Lemma 6.6.3. The proof of (6.6.27) is similar to that of Lemma 8

of Härdle and Vieu (1992).

Proof of Theorem 6.3.1

According to Lemma 6.6.2 again, we only need to consider those A satisfying

A ⊂ A0 and A 6= A0. Thus, by (6.6.24) we have as T →∞

Pr{CV (A) > CV (A0)} = Pr
{
C1(A)T

4(d−d0)

(4+d)(4+d0)

−C1(A0) + oP (T
4(d−d0)

(4+d)(4+d0) ) > 0
}
→ 1. (6.6.28)

Equation (6.6.28) implies limT→∞ Pr(Â0 = A0) = 1 and therefore we complete

the proof of Theorem 6.3.1.

Proof of Theorem 6.3.2

Analogous to (6.6.26), we have

σ̂(ĥ, Â0)
2 =

1

T

T∑

t=1

{Yt − UT
tÂ0
β̂(ĥ, Â0)− ĝ(VtÂ0

, ĥ)}2

=
1

T

T∑

t=1

e2t +
1

T

T∑

t=1

{UT
tA0
βA0 − UT

tÂ0
β̂(ĥ, Â0)}2

+
1

T

T∑

t=1

{gA0(VtA0)− ĝ(VtÂ0
, ĥ)}2+ 2

T

T∑

t=1

{UT
tA0
βA0 − UT

tÂ0
β̂(ĥ, Â0)}et

+
2

T

T∑

t=1

{UT
tA0
βA0 − UT

tÂ0
β̂(ĥ, Â0)}{gA0(VtA0)− ĝ(VtÂ0

, ĥ)}

+
2

T

T∑

t=1

{gA0(VtA0)− ĝ(VtÂ0
, ĥ)}et

≡ 1

T

T∑

t=1

e2t + ∆(ĥ, Â0).

It follows that as T →∞
1

T

T∑

t=1

e2t −→P σ2
0. (6.6.29)
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By applying Lemmas 6.6.4 and 6.6.5, it can be shown that

∆(ĥ, Â0) −→P 0. (6.6.30)

Therefore, the proof of Theorem 6.3.2 follows from (6.6.29) and (6.6.30).

Proofs of Theorems 6.4.1-6.4.5

Technical Lemmas

Lemma 6.6.6 Assume that Assumption 6.6.8 holds. Then as T →∞

sup
x

sup
h∈HT

|f̂h(x)− f(x)| = oP (1),

where the supx is taken over all values of x such that f(x) > 0 and

f̂h(·) =
1

T − 2

T∑

t=3

Kh(· − yt−2).

Proof. Lemma 6.6.6 is a weaker version of Lemma 1 of Härdle and Vieu (1992).

Lemma 6.6.7 (i) Assume that Assumption 6.6.8 holds. Then there exists a se-

quence of constants {Cij : 1 ≤ i ≤ 2, 1 ≤ j ≤ 2} such that

Li(h) =
1

N

N∑

n=1

{ĝi,h(yn)− gi(yn)}2w(yn)

= Ci1
1

Nh
+ Ci2h

4 + oP (Li(h)), (6.6.31)

Mi(h) =
1

N

N∑

n=1

{ĝi,h(yn)− gi(yn)}Zn+2w(yn) = oP (Li(h)) (6.6.32)

uniformly over h ∈ HT , where Zn+2 = yn+1 − E(yn+1|yn).

(ii) Assume that Assumption 6.6.8 holds. Then for i = 1, 2

sup
h∈HT

1

N

N∑

n=1

{ĝi,h(yn)− gi(yn)}2 = oP (N−1/2), (6.6.33)

sup
h∈HT

1

N

N∑

n=1

{ĝi,h(yn)− gi(yn)}Zn+2 = oP (N−1/2). (6.6.34)

Proof. (i) In order to prove Lemma 6.6.7, we need to establish the following fact

ĝi,h(yn)− gi(yn) = {ĝi,h(yn)− gi(yn)} f̂h(yn)

f(yn)

+
{ĝi,h(yn)− gi(yn)}{f(yn)− f̂h(yn)}

f(yn)
. (6.6.35)
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Note that by Lemma 6.6.6, the second term is negligible compared to the first.

Similar to the proof of Lemma 8 of Härdle and Vieu (1992), replacing Lemma 1

of Härdle and Vieu (1992) by Lemma 6.6.6, and using (6.6.35), we can obtain the

proof of (6.6.31). Using the similar reason as in the proof of Lemma 2 of Härdle

and Vieu (1992), we have for i = 1, 2

L̄i(h) =
1

N

N∑

n=1

{ĝi,h(yn)− ĝi,n(yn)}2w(yn) = oP (Li(h)). (6.6.36)

It follows from (6.4.7) that for i = 1, 2

1

N

N∑

n=1

{ĝi,h(yn)− gi(yn)}Zn+2w(yn) =
1

N

N∑

n=1

{ĝi,n(yn)− gi(yn)}Zn+2w(yn)

+
1

N

N∑

n=1

{ĝi,h(yn)− ĝi,n(yn)}Zn+2w(yn),

where

ĝi,h(yn)− ĝi,n(yn) =
K(0)(Nh)−1{yn+3−i − ĝi,h(yn)}

f̂h(yn)− (Nh)−1K(0)
. (6.6.37)

Observe that

yn+2 − ĝ1,h(yn) = en+2 + βun+2 + g1(yn)− ĝ1,h(yn)− β{g2(yn)− ĝ2,h(yn)}

and

yn+1 − ĝ2,h(yn) = un+2 = Zn+2 + g2(yn)− ĝ2,h(yn). (6.6.38)

In order to prove (6.6.32), in view of (6.6.36)–(6.6.38), it suffices to show that

for i = 1, 2

1

N

N∑

n=1

{ĝi,n(yn)− gi(yn)}Zn+2w(yn) = oP (Li(h)) (6.6.39)

and

1

N

N∑

n=1

{ĝi,h(yn)− ĝi,n(yn)}Zn+2w(yn) = oP (Li(h)). (6.6.40)

The proof of (6.6.39) follows from that of (5.3) of Härdle and Vieu (1992).

The proof of (6.6.40) follows from Cauchy-Schwarz inequality, (6.6.36)–(6.6.38),

Lemma 6.6.6, (6.6.31) and

1

N

N∑

n=1

Z2
n+2w(yn) = OP (1), (6.6.41)
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which follows from the fact that w is bounded and

1

N

N∑

n=1

Z2
n+2 →P σ2

2 (6.6.42)

using the standard ergodic theorem, where

σ2
2 = E{yn+1 − E(yn+1|yn)}2

= Ey2
n+1 − E{E2(yn+1|yn)} ≤ 2Ey2

n+1 <∞

using Assumption 6.6.8(vi).

(ii) Lemma 6.6.7(ii) is a weaker version of Lemma 6.6.7(i). Similar to the

proof of Lemma 8 of Härdle and Vieu (1992) and the proof of (5.3) of Härdle

and Vieu (1992), and using the fact that Assumption 6.6.8 still holds when the

compact support of the weight function w is the same as that of the density f ,

we can prove both (6.6.33) and (6.6.34).

Lemma 6.6.8 Let {Znk, k ≥ 0} be a sequence of random variables and {Ωn,k−1}
be an increasing sequence of σ-fields such that {Znk} is measurable with respect

to Ωnk, and E(Znk|Ωn,k−1) = 0 for 1 ≤ k ≤ n. If as n→∞,

(i)
∑n

k=1E(Z2
nk|Ωn,k−1)→ a2

2(> 0) in probability;

(ii) for every b2 > 0, the sum
∑n

k=1E{Z2
nkI(|Znk| > b2)|Ωn,k−1} converges in

probability to zero; then as n→∞
n∑

k=1

Znk −→L N(0, a2
2).

Proof. See Theorem 1 of Chapter VIII in Pollard (1984).

Lemma 6.6.9 Assume that Assumption 6.6.8 holds. Then

lim
T→∞

1

T
sup

h∈HT

T∑

t=3

u2
t = σ2

2 (6.6.43)

in probability.

Proof. Observe that

1

T

T∑

t=3

u2
t =

1

T

T∑

t=3

Z2
t +

1

T

T∑

t=3

(ḡ2
2t,h + 2ḡ2t,hZt)

≡ 1

T

T∑

t=3

Z2
t +RT (h),
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where ḡ2t,h = g2(yt−2)− ĝ2,h(yt−2) and

RT (h) =
1

T

T∑

t=3

{g2(yt−2)− ĝ2,h(yt−2)}2

+
2

T

T∑

t=3

{g2(yt−2)− ĝ2,h(yt−2)}{yt−1 − E(yt−1|yt−2)}

≡ R1T (h) +R2T (h).

In view of (6.6.42), in order to prove (6.6.43), it suffices to show that for

i = 1, 2

sup
h∈HT

RiT (h) = oP (1),

which follows from Lemma 6.6.7(ii).

Proofs of Theorems 6.4.1 and 6.4.4

By (6.4.2), in order to prove Theorem 6.4.1, it suffices to show that as T →∞

T−1/2
T∑

t=3

Ztet −→L N(0, σ2σ−2
2 ), (6.6.44)

T∑

t=3

{ĝ2,h(yt−2)− g2(yt−2)}et = oP (T 1/2), (6.6.45)

T∑

t=3

{ĝh(yt−2)− g(yt−2)}Zt = oP (T 1/2), (6.6.46)

and

T∑

t=3

{ĝ2,h(yt−2)− g2(yt−2)}{ĝh(yt−2)− g(yt−2)} = oP (T 1/2) (6.6.47)

uniformly over h ∈ HT , where

g(yt−2)− ĝh(yt−2) = g1(yt−2)− ĝ1,h(yt−2)− β{g2(yt−2)− ĝ2,h(yt−2)}. (6.6.48)

Write Ωt+1 for the σ-field generated by {y1, y2; e3, · · · , et}. The variable {Ztet}
is a martingale difference for Ωt.

By (6.6.42) we have as T →∞

1

T

T∑

t=3

E{(Ztet)
2|Ωt} →P σ2σ2

2. (6.6.49)
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Observe that for every given b2 > 0

1

T

T∑

t=3

E{(Ztet)
2I(|Ztet| > b2T

1/2)|Ωt}

≤ 1

T

T∑

t=3

E{(Ztet)
2I(e2t > b2T

1/2)|Ωt}+
1

T

T∑

t=3

E{(Ztet)
2I(Z2

t > b2T
1/2)|Ωt}

=
1

T

T∑

t=3

Z2
tEe

2
t I(e

2
1 > b2T

1/2) +
1

T

T∑

t=3

Z2
t σ

2I(Z2
t > b2T

1/2). (6.6.50)

Because of (6.6.42), the first sum converges to zero in probability. The second

sum converges in L1 to zero because of Assumption 6.6.8. Thus, by Lemma 6.6.8

we obtain the proof of (6.6.45).

The proofs of (6.6.45) and (6.6.46) follow from (6.6.34). The proof of (6.6.47)

follows from (6.6.33) and Cauchy-Schwarz inequality. The proof of Theorem 6.4.4

follows immediately from that of Theorem 6.4.1 and the fact that ĥC ∈ HT defined

in (6.4.8).

Proofs of Theorems 6.4.2 and 6.4.5

In order to complete the proof of Theorem 6.4.2, we first give the following de-

composition of σ̂(h)2

σ̂(h)2 =
1

T

T∑

t=3

{yt − β̂(h)yt−1 − ĝ∗h(yt−2)}2

=
1

T

T∑

t=3

e2t +
1

T

T∑

t=3

u2
t{β − β̂(h)}2 +

1

T

T∑

t=3

ḡ2
t,h

+
2

T

T∑

t=3

etut{β − β̂(h)}+
2

T

T∑

t=3

etḡt,h +
2

T

T∑

t=3

ḡt,hut{β − β̂(h)}

≡
6∑

j=1

Jjh, (6.6.51)

where ḡt,h = g(yt−2)− ĝh(yt−2).

By (6.6.42) and Theorem 6.4.1 we have

sup
h∈HT

|J2h| ≤ oP (T−1/2). (6.6.52)

Also, by (6.6.48) and Lemma 6.6.7(ii) we get

sup
h∈HT

|J3h| ≤ oP (T−1/2). (6.6.53)
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Similar to the proof of (6.6.34), we obtain for i = 1, 2

1

T

T∑

t=3

et{ĝi,h(yt−2)− gi(yt−2)} ≤ oP (T−1/2) (6.6.54)

uniformly over h ∈ HT .

By Theorem 6.4.1, Lemma 6.6.7(ii), (6.6.48) and (6.6.52) we have

J4h =
2

T
{β − β̂(h)}

[ T∑

t=3

etZt +
T∑

t=3

et{g2(yt−2)− ĝ2,h(yt−2)}
]

= oP (T−1/2), (6.6.55)

J5h =
2

T

T∑

t=3

et{g(yt−2)− ĝh(yt−2)} = oP (T−1/2), (6.6.56)

and

J6h =
2

T
{β − β̂(h)}

T∑

t=3

ut{g(yt−2)− ĝh(yt−2)}

=
2

T
{β − β̂(h)}

T∑

t=3

Zt{g(yt−2)− ĝh(yt−2)}

+
2

T
{β − β̂(h)}

T∑

t=3

Zt{g(yt−2)− ĝh(yt−2)}{g2(yt−2)− ĝ2,h(yt−2)}

= oP (T−1/2) (6.6.57)

using the Cauchy-Schwarz inequality.

Therefore, the proof of Theorem 6.4.2 follows from (6.6.51)–(6.6.57) and

√
T (J1h − σ2) −→L N(0, V ar(e21)) (6.6.58)

as T →∞.

The proof of Theorem 6.4.4 follows from that of Theorem 6.4.2 and the fact

that h ∈ HT defined in (6.4.8).

Proof of Theorem 6.4.3

Before proving Theorem 6.4.3, we need to make the following notation

m(zn) = βyn+1 + g(yn), m̂h(zn) = β̂(h)yn+1 + ĝ∗h(yn),

and

m̂h,n(zn) = β̃(h)yn+1 + ĝ∗h,n(yn), (6.6.59)



176 6. PARTIALLY LINEAR TIME SERIES MODELS

where zn = (yn, yn+1)
T and ĝ∗h,n(·) = ĝ1,n(·)− β̃(h)ĝ2,n(·).

Observe that

D(h) =
1

N

N∑

n=1

{m̂h(zn)−m(zn)}2w(yn) (6.6.60)

and

CV (h) =
1

N

N∑

n=1

{yn+2 − m̂h,n(zn)}2w(yn). (6.6.61)

In order to prove Theorem 6.4.5, noting (6.6.60) and (6.6.61), it suffices to show

that

sup
h∈HN+2

|D̄(h)−D(h)|
D(h)

= oP (1) (6.6.62)

and

sup
h,h1∈HN+2

|D̄(h)− D̄(h1)− [CV (h)− CV (h1)]|
D(h)

= oP (1), (6.6.63)

where

D̄(h) =
1

N

N∑

n=1

{m̂h,n(zn)−m(zn)}2w(yn). (6.6.64)

We begin proving (6.6.63) and the proof of (6.6.62) is postponed to the end

of this section.

Observe that the following decomposition

D̄(h) +
1

N

N∑

n=1

e2n+2w(yn) = CV (h) + 2C(h), (6.6.65)

where

C(h) =
1

N

N∑

n=1

{m̂h,n(zn)−m(zn)}en+2w(yn).

In view of (6.6.65), in order to prove (6.6.63), it suffices to show that

sup
h∈HN+2

|C(h)|
D(h)

= oP (1). (6.6.66)

Observe that

C(h) =
1

N

N∑

n=1

{m̂h,n(zn)−m(zn)}en+2w(yn)



6. PARTIALLY LINEAR TIME SERIES MODELS 177

=
1

N

N∑

n=1

Zn+2en+2w(yn){β̃(h)− β}+
1

N

N∑

n=1

{ĝ1,n(yn)− g1(yn)}en+2w(yn)

−{β̃(h)− β} 1

N

N∑

n=1

{ĝ2,n(yn)− g2(yn)}en+2w(yn)

−β 1

N

N∑

n=1

{ĝ2,n(yn)− g2(yn)}en+2w(yn)

≡
4∑

i=1

Ci(h). (6.6.67)

Similar to the proof of Theorem 6.4.1, we can show that

β̃(h)− β = OP (N−1/2) (6.6.68)

uniformly over h ∈ HN+2, where β̃(h) is as defined in (6.4.5).

Thus, noting that {Zn+2en+2w(yn)} is a martingale difference, using the sim-

ilar reason as the proof of (6.6.42), and applying Lemma 6.6.7(i), we have

sup
h∈HN+2

|C1(h)|
D(h)

= oP (1). (6.6.69)

Therefore, noting (6.6.67)–(6.6.69), in order to prove (6.6.66), it suffices to

show that for i = 1, 2

sup
h∈HN+2

|∑N
n=1{ĝi,n(yn)− gi(yn)}en+2w(yn)|

ND(h)
= oP (1), (6.6.70)

which follows from Lemma 6.6.7(i) and

D(h) = C1
1

Nh
+ C2h

4 + oP{D(h)}, (6.6.71)

where Ci (i = 1, 2) are some positive constants.

Observe that

D(h) =
1

N

N∑

n=1

{m̂h(zn)−m(zn)}2w(yn)

=
1

N

N∑

n=1

[{β̂(h)yn+1 + ĝ1,h(yn)− β̂(h)ĝ2,h(yn)} − {βyn+1 + g(yn)}]2w(yn)

=
1

N

N∑

n=1

Z2
n+2w(yn){β̂(h)− β}2 +

1

N

N∑

n=1

{ĝ1,h(yn)− g1(yn)}2w(yn)

+β̂(h)2 1

N

N∑

n=1

{ĝ2,h(yn)− g2(yn)}2w(yn)

+{β̂(h)− β} 2

N

N∑

n=1

{ĝ1,h(yn)− g1(yn)}Zn+2w(yn)
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−{β̂(h)− β}β̂(h)
2

N

N∑

n=1

{ĝ2,h(yn)− g2(yn)}Zn+2w(yn)

−β̂(h)
2

N

N∑

n=1

{ĝ2,h(yn)− g2(yn)}{ĝ1,h(yn)− g1(yn)}w(yn)

≡
6∑

i=1

Di(h). (6.6.72)

Using (6.6.41) and Theorem 6.4.1, we have

sup
h∈HN+2

|D1(h)| = OP (N−1). (6.6.73)

By Theorem 6.4.1 and Lemma 6.6.7(i), we obtain for i = 2, 3

Di(h) = Ci1
1

Nh
+ Ci2h

4 + oP{Di(h)}, (6.6.74)

D4(h) = oP (D2(h)) and D5(h) = oP (D3(h)), (6.6.75)

where Ci1 and Ci2 are real positive constants.

Therefore, applying Cauchy-Schwarz inequality to D6(h) and using (6.6.31)

again, we complete the proof of (6.6.71).

We now prove (6.6.62). By the definition of D̄(h), we have

D̄(h) =
1

N

N∑

n=1

{m̂h,n(zn)−m(zn)}2w(yn)

=
1

N

N∑

n=1

[{β̃(h)yn+1 + ĝ1,n(yn)− β̃(h)ĝ2,n(yn)} − {βyn+1 + g(yn)}]2w(yn)

=
1

N

N∑

n=1

Z2
n+2w(yn)(β̃(h)− β)2 +

1

N

N∑

n=1

{ĝ1,n(yn)− g1(yn)}2w(yn)

+β̃(h)2 1

N

N∑

n=1

{ĝ2,n(yn)− g2(yn)}2w(yn)

+{β̃(h)− β} 2

N

N∑

n=1

{ĝ1,n(yn)− g1(yn)}Zn+2w(yn)

−{β̃(h)− β}β̃(h)
2

N

N∑

n=1

{ĝ2,n(yn)− g2(yn)}Zn+2w(yn)

−β̃(h)
2

N

N∑

n=1

{ĝ2,n(yn)− g2(yn)}{ĝ1,n(yn)− g1(yn)}w(yn)

≡
6∑

i=1

D̄i(h). (6.6.76)
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Firstly, by (6.6.72) and (6.6.76) we obtain

D̄1(h)−D1(h) =
1

N

N∑

n=1

Z2
n+2w(yn){β̃(h)− β̂(h)}[{β̃(h)− β}

+{β̂(h)− β}]. (6.6.77)

Similar to the proof of Theorem 6.4.1, we can prove

β̃(h)− β̂(h) = oP (N−1/2), (6.6.78)

Thus, (6.6.41) and Theorem 6.4.1 imply

sup
h∈HN+2

|D̄1(h)−D1(h)|
D(h)

= oP (1). (6.6.79)

Secondly, by the similar reason as the proof of Lemma 2 of Härdle and Vieu

(1992) we have for i = 1, 2

sup
h∈HN+2

|∆D̄i(h)|
D(h)

= oP (1), (6.6.80)

where

∆D̄i(h) =
1

N

N∑

n=1

[{ĝi,n(yn)− gi(yn)}2 − {ĝi,h(yn)− gi(yn)}2]w(yn).

Thus

sup
h∈HN+2

|D̄2(h)−D2(h)|
D(h)

= oP (1). (6.6.81)

On the other hand, observe that

D̄3(h)−D3(h) = β̃(h)2∆D̄2(h) + {β̃(h)− β̂(h)}{β̃(h) + β̂(h)}D3(h).(6.6.82)

Hence, by Theorem 6.4.1, (6.6.68), (6.6.74), (6.6.78), and (6.6.80) we get

sup
h∈HN+2

|D̄3(h)−D3(h)|
D(h)

= oP (1). (6.6.83)

Thirdly, by (6.6.32) and (6.6.36)–(6.6.41), we obtain for i = 4, 5

sup
h∈HN+2

|D̄i(h)−Di(h)|
D(h)

= oP (1), (6.6.84)

where

D̄4(h)−D4(h) = {β̂(h)− β} 2

N

N∑

n=1

{ĝ1,n(yn)− ĝ1,h(yn)}Zn+2w(yn)

+{β̃(h)− β̂(h)} 2

N

N∑

n=1

{ĝ1,n(yn)− g1(yn)}Zn+2w(yn)
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and

D̄5(h)−D5(h) = −{β̂(h)− β}β̂(h)
2

N

N∑

n=1

{ĝ2,n(yn)− ĝ2,h(yn)}Zn+2w(yn)

−{β̃(h)− β̂(h)}{β̃(h) + β̂(h)− β}

× 2

N

N∑

n=1

{ĝ2,n(yn)− g2(yn)}Zn+2w(yn). (6.6.85)

Finally, note that the following decomposition

D̄6(h) − D6(h) = −2β̃(h)

N

[ N∑

n=1

{ĝ1,n(yn)− ĝ1,h(yn)}{ĝ2,n(yn)− ĝ2,h(yn)}

+
N∑

n=1

{ĝ1,h(yn)− g1(yn)}{ĝ2,n(yn)− ĝ2,h(yn)}

+
N∑

n=1

{ĝ1,n(yn)− ĝ1,h(yn)}{ĝ2,h(yn)− g2(yn)}
]
w(yn)

+
2{β̃(h)− β̂(h)}

N

N∑

n=1

{ĝ1,h(yn)− g1(yn)}{ĝ2,h(yn)− g2(yn)}w(yn)

≡ E1(h) + E2(h) + E3(h) + E4(h). (6.6.86)

Thus, applying Cauchy-Schwarz inequality, using Lemma 6.6.7(i) and equa-

tions (6.6.36)–(6.6.41), we have for i = 1, 2, 3, 4

sup
h∈HN+2

|Ei(h)|
D(h)

= oP (1). (6.6.87)

Therefore, the proof of (6.6.62) follows from (6.6.76)–(6.6.87).
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FIGURE 6.1. Canadian lynx data. Part (a) is a time plot of the com-
mon-log-transformed lynx data. Part (b) is a plot of fitted values (solid) and
the observations (dashed). Part (c) is a plot of the LS estimate against the first
lag for model (6.4.22). Part (d) is a plot of the nonparametric estimate against
the second lag for model (6.4.22). Part (e) is a plot of the nonparametric estimate
against the first lag for model (6.4.23) and part (f) is a plot of the LS estimate
against the second lag for model (6.4.23).
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APPENDIX: BASIC LEMMAS

In this appendix, we state several famous results including Abel’s inequality

and Bernstein’s inequality and then prove some lemmas which are often used

in the previous chapters.

Abel’s Inequality. Let {ξn, n ≥ 1} be a sequence of real numbers such that
∑
ξn

converges, and let {ηn} be a monotone decreasing sequence of positive constants.

Then

η1

(
min

1≤k≤n

k∑

i=1

ξi
)
≤

n∑

i=1

ξiηi ≤ η1

(
max
1≤k≤n

k∑

i=1

ξi
)
.

Bernstein’s Inequality. Let V1, . . . , Vn be independent random variables with

zero means and bounded ranges: |Vi| ≤M. Then for each η > 0,

P (|
n∑

i=1

Vi| > η) ≤ 2 exp
[
−η2

/{
2
( n∑

i=1

VarVi +Mη
)}]

.

Lemma A.1 Suppose that Assumptions 1.3.1 and 1.3.3 (iii) hold. Then

max
1≤i≤n

|Gj(Ti)−
n∑

k=1

ωnk(Ti)Gj(Tk)| = O(cn) for j = 0, . . . , p,

where G0(·) = g(·) and Gl(·) = hl(·) for l = 1, . . . , p.

Proof. We only present the proof for g(·). The proofs of the other cases are similar.

Observe that
n∑

i=1

ωni(t)g(Ti)− g(t) =
n∑

i=1

ωni(t){g(Ti)− g(t)}+
{ n∑

i=1

ωni(t)− 1
}
g(t)

=
n∑

i=1

ωni(t){g(Ti)− g(t)}I(|Ti − t| > cn)

+
n∑

i=1

ωni(t){g(Ti)− g(t)}I(|Ti − t| ≤ cn)

+
{ n∑

i=1

ωni(t)− 1
}
g(t).

By Assumption 1.3.3(b) and Lipschitz continuity of g(·),
n∑

i=1

ωni(t){g(Ti)− g(t)}I(|Ti − t| > cn) = O(cn) (A.1)
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and

n∑

i=1

ωni(t){g(Ti)− g(t)}I(|Ti − t| ≤ cn) = O(cn). (A.2)

(A.1)-(A.2) and Assumption 1.3.3 complete our proof.

Lemma A.2 If Assumptions 1.3.1-1.3.3 hold. Then

lim
n→∞

n−1X̃T X̃ = Σ.

Proof. Denote hns(Ti) = hs(Ti)−
∑n

k=1 ωnk(Ti)Xks. It follows fromXjs = hs(Tj)+

ujs that the (s,m) element of X̃T X̃ (s,m = 1, . . . , p) can be decomposed as:

n∑

j=1

ujsujm +
n∑

j=1

hns(Tj)ujm +
n∑

j=1

hnm(Tj)ujs +
n∑

j=1

hns(Tj)hnm(Tj)

def
=

n∑

j=1

ujsujm +
3∑

q=1

R(q)
nsm.

The strong laws of large number imply that limn→∞ 1/n
∑n

i=1 uiu
T
i = Σ and

Lemma A.1 means R(3)
nsm = o(n). Using Cauchy-Schwarz inequality and the

above arguments, we can show thatR(1)
nsm = o(n) andR(2)

nsm = o(n). This completes

the proof of the lemma.

As mentioned above, Assumption 1.3.1 (i) holds when (Xi, Ti) are i.i.d. ran-

dom design points. Thus, Lemma A.2 holds with probability one when (Xi, Ti)

are i.i.d. random design points.

Next we shall prove a general result on strong uniform convergence of weighted

sums, which is often applied in the monograph. See Liang (1999) for its proof.

Lemma A.3 (Liang, 1999) Let V1, . . . , Vn be independent random variables with

EVi = 0 and finite variances, and sup1≤j≤nE|Vj|r ≤ C < ∞ (r ≥ 2). Assume

that {aki, k, i = 1 . . . , n} is a sequence of real numbers such that sup1≤i,k≤n |aki| =
O(n−p1) for some 0 < p1 < 1 and

∑n
j=1 aji = O(np2) for p2 ≥ max(0, 2/r − p1).

Then

max
1≤i≤n

∣∣∣
n∑

k=1

akiVk

∣∣∣ = O(n−s log n) for s = (p1 − p2)/2, a.s.

Lemma A.3 considers the case where {aki, k, i = 1 . . . , n} is a sequence of

real numbers. As a matter of fact, the conclusion of Lemma A.3 remains un-

changed when {aki, k, i = 1 . . . , n} is a sequence of random variables satisfying
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sup1≤i,k≤n |aki| = O(n−p1) a.s. and
∑n

j=1 aji = O(np2) a.s. for some 0 < p1 < 1

and p2 ≥ max(0, 2/r− p1). Thus, we have the following useful results: Let r = 3,

Vk = ek or ukl, aji = ωnj(Ti), p1 = 2/3 and p2 = 0. We obtain the following

formulas, which plays critical roles throughout the monograph.

max
i≤n

∣∣∣
n∑

k=1

ωnk(Ti)ek

∣∣∣ = O(n−1/3 log n), a.s. (A.3)

and

max
i≤n

∣∣∣
n∑

k=1

ωnk(Ti)ukl

∣∣∣ = O(n−1/3 log n) for l = 1, . . . , p. (A.4)

Lemma A.4 Let V1, . . . , Vn be independent random variables with EVi = 0 and

sup1≤i≤nEV
4
i < ∞. Assume that Assumption 1.3.3 with bn = Cn−3/4(log n)−1

holds. Then for n large enough, we have In = o(n1/2) a.s., where

In =
n∑

i=1

∑

j 6=i

ωnj(Ti)(V
′
j − EV ′

j )(V
′
i − EV ′

i ),

in which V ′
i = ViI(|Vi| ≤ i1/4).

Proof. See Gao (1995a) for its proof.



186 APPENDIX



REFERENCES

Akahira, M. & Takeuchi, K.(1981). Asymptotic Efficiency of Statistical Estima-
tors. Concepts and Higher Order Asymptotic Efficiency. Lecture Notes in
Statistics 7, Springer-Verlag, New York.

An, H. Z. & Huang, F. C. (1996). The geometrical ergodicity of nonlinear au-
toregressive models. Statistica Sinica, 6, 943–956.

Andrews, D. W. K. (1991). Asymptotic normality of series estimates for nonpara-
metric and semiparametric regression models. Econometrica, 59, 307–345.

Anglin, P.M. & Gencay, R. (1996). Semiparametric estimation of a hedonic price
function. Journal of Applied Econometrics, 11, 633-648.

Bahadur, R.R. (1967). Rates of convergence of estimates and test statistics. Ann.
Math. Stat., 38, 303-324.

Begun, J. M., Hall, W. J., Huang, W. M. & Wellner, J. A. (1983). Information
and asymptotic efficiency in parametric-nonparametric models. Annals of
Statistics, 11, 432-452. ALS, 14, 1295–1298.

Bhattacharya, P.K. & Zhao, P. L.(1997). Semiparametric inference in a partial
linear model. Annals of Statistics, 25, 244-262.

Bickel, P.J. (1978). Using residuals robustly I: Tests for heteroscedasticity, non-
linearity. Annals of Statistics, 6, 266-291.

Bickel, P. J. (1982). On adaptive estimation. Annals of Statistics, 10, 647-671.

Bickel, P. J., Klaasen, C. A. J., Ritov, Ya’acov & Wellner, J. A. (1993). Efficient
and Adaptive Estimation for Semiparametric Models. The Johns Hopkins
University Press.

Blanchflower, D.G. & Oswald, A.J. (1994). The Wage Curve, MIT Press Cam-
bridge, MA.

Boente, G. & Fraiman, R. (1988). Consistency of a nonparametric estimator of a
density function for dependent variables. Journal of Multivariate Analysis,
25, 90–99.

Bowman, A. & Azzalini,A. (1997). Applied Smoothing Techniques: the Kernel
Approach and S-plus Illustrations. Oxford University Press, Oxford.

Box, G. E. P. & Hill, W. J. (1974). Correcting inhomogeneity of variance with
power transformation weighting. Technometrics, 16, 385-389.



188 REFERENCES

Buckley, M. J. & Eagleson, G. K. (1988). An approximation to the distribution of
quadratic forms in normal random variables. Australian Journal of Statistics,
30A, 150–159.

Buckley, J. & James, I. (1979). Linear regression with censored data. Biometrika,
66, 429-436.

Carroll, R. J. (1982). Adapting for heteroscedasticity in linear models. Annals
of Statistics, 10, 1224-1233.
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Liang, H., Härdle, W. & Carroll, R.J. (1999). Estimation in a semiparametric
partially linear errors-in-variables model. Annals of Statistics, in press.
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SYMBOLS AND NOTATION

The following notation is used throughout the monograph.

a.s. almost surely
i.i.d. independent and identically distributed
F the identity matrix of order p
CLT central limit theorem
LIL law of the iterated logarithm
MLE maximum likelihood estimate
Var(ξ) the variance of ξ
N(a, σ2) normal distribution with mean a and variance σ2

U(a, b) uniform distribution on (a, b)
def
= denote
−→L convergence in distribution
−→P convergence in probability
ST the transpose of vector or matrix S
X (X1, . . . , Xn)T

Y (Y1, . . . , Yn)T

T (T1, . . . , Tn)T

ωnj(·) or ω∗
nj(·) weight functions

S̃ (S̃1, . . . , S̃n)T with S̃i = Si −
∑n

j=1 ωnj(Ti)Sj,
where Si represents a random variable or a function.

G̃ (g̃1, . . . , g̃n)T with g̃i = g(Ti)−
∑n

j=1 ωnj(Ti)g(Tj).
ξn = Op(ηn) for any ζ > 0, there exist M and n0 such that

P{|ξn| ≥M |ηn|} < ζ for any n ≥ n0

ξn = op(ηn) P{|ξn| ≥ ζ|ηn|} → 0 for each ζ > 0
ξn = op(1) ξn converges to zero in probability
Op(1) stochastically bounded
S⊗2 SST

S−1 = (sij)p×p the inverse of S = (sij)p×p

Φ(x) standard normal distribution function
φ(x) standard normal density function

For convenience and simplicity, we always let C denote some positive constant

which may have different values at each appearance throughout this monograph.
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