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1. Introduction and Literature Review
Markov decision processes (MDPs) provide one of the fun-
damental models in operations research, in which a deci-
sion maker controls the evolution of a dynamic system.
Although this model is mature, with well-developed the-
ories, as in Puterman (1994), it is based on the assump-
tion that the state of the system can be perfectly observed.
Partially observable Markov decision processes (POMDPs)
extend the MDPs by relaxing this assumption. The first
explicit POMDP model is commonly attributed to Drake
(1962), and it attracted the attention of researchers and
practitioners in operations research, computer science, and
beyond. However, this problem is well known for its
computational complexity. The pioneering work of Sondik
(1971) and Smallwood and Sondik (1973) addressed this
issue first, and since then the study of POMDPs has mainly
followed two directions: (1) finding computationally feasi-
ble algorithms for the general model over both finite and
infinite horizons, and (2) finding structural results for spe-
cial POMDP models with well-defined applications, such
as machine replacement and quality control problems. On
both fronts, the research encountered significant obstacles.
Strictly speaking, the problem does not have an effi-
ciently computable solution because computing an optimal
policy is PSPACE-complete, as shown by Papadimitriou
and Tsitsiklis (1987), and finding an �-optimal policy is
NP-hard, as pointed out by Lusena et al. (2001). How-
ever, because of its modeling power and potentially wide

applications, the problem continues to draw attention from
the operations research and computer science communities.

A central concept underlying most existing methods in
the POMDP literature is the “belief vector,” which is a dis-
tribution of the system state (assuming a finite state space).
Because the system state cannot be observed, the decision
maker maintains a belief about the state and updates it after
each (imperfect) observation. It is known that the belief
vector is a sufficient statistic of the complete information
history (Aoki 1965, Astrom 1965, Bertsekas 1976). Thus,
the problem can be formulated by dynamic programming
based on belief vectors. The optimality condition implies
that the part of an optimal policy from any period onward
maximizes the expected value-to-go with respect to the
belief vector at the beginning of that period. A belief vec-
tor of an n-state system belongs to the (n−1)-dimensional
simplex of �n, which is the main source of difficulty in this
approach. Much of the literature discusses techniques to
replace this uncountable set with a finite or countable set.

In this paper, we propose a new perspective and frame-
work for analyzing the POMDP problem, based on some
strong geometric properties of the problem and free from
the belief vectors. We show that the key step of the prob-
lem formulation is equivalent to an existing problem in
computational geometry, the “Minkowski sum” of convex
polytopes. This connection opens the door for using the
state-of-the-art Minkowski-sum algorithms (e.g., Fukuda
2004) to solve the POMDP problem, which may improve
the computational efficiency of the latter substantially.
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Other steps of the problem formulation are also related to a
computational geometry problem, i.e., identifying the ver-
tices of the convex hull of a point set. Geometric intuitions
can enhance our understanding of the problem and facilitate
algorithm design and structure exploration.

The belief vectors are completely suppressed in this
framework. We view the part of a policy from any period
onward as a stand-alone object of its own, hereafter referred
to as a “continuation policy.” Because the system state
is hidden, a continuation policy yields an expected value-
to-go from each possible state, which gives rise to a
vector of expected values-to-go, hereafter referred to as
a “continuation-value vector.” We present a dynamic pro-
gramming formulation based on these continuation-value
vectors. The backward induction yields a collection of
continuation-value vectors in each period that form a so-
called “continuation-value frontier,” where no vector on the
frontier dominates another (or, weakly greater than the other
in all dimensions). For a finite-horizon problem, the back-
ward induction ends when the continuation-value frontier in
the first period is found, and each vector on that frontier is
optimal for certain distributions of the initial system state.
This is the only place where the (initial) belief vector comes
into play in this framework. For an infinite-horizon prob-
lem with discounting, there exists a unique continuation-
value frontier, which is the same in every period and can be
approximated by successive value iterations or policy iter-
ations. We note in the paper that the traditional framework
based on belief vectors and the new framework based on
continuation-value vectors can be reconciled.

Some researchers have used the notion of continuation
policies and continuation-value vectors in the POMDP lit-
erature before. However, this is the first time these concepts
have been systematically treated and embedded in a rigor-
ous framework. To the best knowledge of the author, the
connection between the POMDP problem and the compu-
tational geometry problems, the concept of continuation-
value frontier, the adoption of the Hausdorff metric, the
new dynamic programming formulation, and the conceptual
distinction between the so-called “finite-state controllers”
and “finite-memory policies” are new to the literature. The
new framework also facilitates a rigorous pursuit of the
notion of observability. For a class of POMDPs sharing the
same underlying MDP, we define a partial order through
their observation matrices, which translates into a partial
order of their value frontiers.

In the remainder of this section, we provide a brief lit-
erature review to offer a bird’s-eye view of the rich his-
tory of the problem. Monahan (1982), Lovejoy (1991b),
and White (1991) provide excellent surveys of the solu-
tion techniques and applications of the model up to 1991,
and Poupart (2005) includes a review of the literature up
to 2005. Note that we only discuss the POMDP problem
with discounted rewards in this paper. For analyses of the
average-reward version of the problem, we refer the reader

to Platzman (1980), Fernández-Gaucherand et al. (1991),
Hsu et al. (2006), and Yu and Bertsekas (2008).

Based on researchers’ affiliations, the literature can be
broadly divided into two parts—that in operations research
and that in computer science—and we begin with the first
part. A significant stream of research aims at the solu-
tion and structure of the general POMDP problem. Sondik
(1971) and Smallwood and Sondik (1973) prove that the
value functions (over belief vectors) are piecewise linear
and convex and can be found through a value iteration algo-
rithm that establishes the foundation for many existing algo-
rithms today. Monahan (1982) improves this algorithm by
systematically removing the redundant elements in defining
the value functions. Sondik (1978) presents a policy itera-
tion algorithm for the infinite-horizon model, focusing on a
special type of policies called “finitely transient policies.”
Platzman (1977) presents another policy iteration algorithm
based on finite-memory policies. However, these policy iter-
ation algorithms are not easy to comprehend (using the cri-
teria of Lovejoy 1991b, they are not “transparent”), which
explains the lack of follow-up research. White and Scherer
(1989) present three successive approximation algorithms
to solve the infinite-horizon problem, and in (1994) they
also investigate finite-memory policies. White (1979, 1980)
provides sufficient conditions for the value functions and
optimal policies to be monotone for some special POMDPs,
which are strengthened by Lovejoy (1987). Lovejoy (1991a)
approximates the belief space by a finite grid of points and
constructs upper- and lower-bound solutions.

Another important stream of research focuses on special
application-driven models, especially the machine mainte-
nance and quality control problems. In such problems, the
state of a machine is unobservable, but is partially reflected
in its output. The state can be revealed by a costly inspec-
tion or replacement (the latter resets the machine state). The
problem is to find a minimum-cost maintenance policy. We
refer the reader to Monahan (1982) for a detailed descrip-
tion of this problem and a summary of the earlier work by
Eckles (1968), Ross (1971), Ehrenfeld (1976), Wang (1977),
and White (1977, 1979). Grosfeld-Nir (1996, 2007) finds the
optimal control-limit policies for a two-state replacement
model, and Anily and Grosfeld-Nir (2006) study a com-
bined production and inspection problem in which the sec-
ond stage, inspection, is modeled as a POMDP. Lane (1989)
presents an application of the POMDP problem for fisher-
men, and Treharne and Sox (2002) examine several subop-
timal policies for an inventory control problem in which the
demand process is generated by a hidden Markov process.

The computer science community also has a long tradi-
tion of studying this problem. Because a POMDP can be
considered as a special probabilistic automaton (Paz 1971),
the study is related to the automata theory. Since the 1990s,
there has been a surge of research activities when the model
found applications in artificial intelligence (Cassandra et al.
1994, Kaelbling et al. 1998). To this date, the model has
been applied to robot navigation (Littman et al. 1995,
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Cassandra et al. 1996, Thrun 2000, Montemerlo et al. 2002),
preference elicitation (Boutilier 2002), stochastic resource
allocation (Meuleau et al. 1998, Marbach et al. 2000), and
spoken-dialogue systems (Paek and Horvitz 2000, Zhang
et al. 2001), among others.

A large part of the computer science literature on the
POMDP problem focuses on the computational aspect of
the problem, and numerous algorithms have been proposed,
most of which take the value iteration approach. Sondik’s
(1971) algorithm is often referred to as the “one-pass”
algorithm. Cheng (1988) proposes a “linear-support” algo-
rithm that systematically builds up the value functions,
and Cassandra et al. (1994) introduce a “witness” algo-
rithm focusing on belief vectors that can identify a missing
piece of a value function. Zhang and Liu (1996) present
an “incremental pruning” algorithm that decomposes each
value iteration into three steps and removes the redun-
dancy in each step. Feng and Zilberstein (2004) propose a
“region-based incremental pruning” algorithm that divides
the belief space into smaller regions and performs inde-
pendent pruning in each region. Some algorithms also take
the policy iteration approach. Hansen (1998a, b) studies
a special type of policy named “finite-state controller,”
and Meuleau et al. (1999) study “finite-memory policies.”
Poupart and Boutilier (2004) presents a “bounded policy-
iteration” algorithm to tackle large-scale models.

This paper is organized as follows. Section 2 introduces
the POMDP model and some basic facts. Section 3 focuses
on the new framework for the problem, based on its geo-
metric properties, and §4 reveals the connection of the key
step of the formulation to the Minkowski-sum problem.
Section 5 is dedicated to the basic properties of the infinite-
horizon model and the policy iteration approach to solve it.
We investigate the degree of observability in §6 and discuss
some future research topics in the final section. Proofs of
technical results are provided in the appendix.

2. Model Description and Decomposition
A partially observable Markov decision process (POMDP)
describes the problem faced by a decision maker who con-
trols an underlying Markov decision process, but can only
observe imperfect signals of the system state. The model
can be formally described below. We largely follow the
notation of Lovejoy (1991b). In addition, throughout this
paper, a vector will be in column format by default, whose
transpose will be marked by a “ ′ ” symbol.

(1) The state space is a finite set, denoted by X =
�1�2� � � � � n�. (2) The action space is a finite set, denoted
by A. (3) The observation space is also a finite set, 	 =
�1�2� � � � �m�. (4) The state transition matrices are given
by �Pa�a∈A. For each action a, Pa is an n × n matrix
paij �i� j∈X , where each element paij = Prj � i� a� is the prob-
ability that the system will move from state i to state j fol-
lowing action a. (5) The observation matrices are given by
�Ra�a∈A. For each a, Ra is an n × m matrix raj��j∈X��∈	,

where each element raj� = Pr�� � j� a� gives the probabil-
ity that signal � will be observed after action a is taken
and the system moves to the new state j . Each row of Ra

sums to one. For convenience in the subsequent analysis, the
diagonal matrix formed from the �th column of Ra will be
denoted by Ra�� = diagra1�� r

a
2�� � � � � r

a
n��. (6) The reward

vectors are given by �ga�a∈A. Each ga is an n-dimensional
vector gai �i∈X , where each element gai is the expected
reward in a single period given state i and action a. (7) The
terminal reward vector (for T <�) is gT+1, whose element
gT+1� i is the final reward of the system in state i at the end of
period T . (8) The distribution of the initial state is given by
an n-dimensional vector �0. (9) The horizon of the model
is T � �, which can be finite or infinite, and the periods
are indexed by t = 1� � � � � T . (10) The discount factor is
� ∈ �0�1� if T <� or � ∈ �0�1� if T =�.

It has been shown (Sondik 1971) that the problem has a
dynamic programming formulation based on the belief of
the underlying system state. A belief is a distribution of the
system state, denoted by an n-dimensional vector �. Let
Vt�� be the expected future reward from period t onward
given belief �. It satisfies the following equation:

Vt��

=max
a∈A

{
� ′ga+�∑

�∈	
Pr�� ���a�Vt+1���a����

}
� (1)

In the expression, Pr�����a�=∑
i

∑
j �ip

a
ij r

a
j� is the prob-

ability of observing � after state distribution (belief) � and
action a. The function ���a��� gives the posterior belief
	� after prior belief �, action a, and observation �. Accord-
ing to Bayes’ rule, 	�j =

∑
i �ip

a
ij r

a
j�/Pr�� � ��a�. Recall

that Ra��= diagra1�� r
a
2�� � � � � r

a
n��. Then, in matrix form,

	� ′ = � ′PaRa��
Pr�� ���a� � (2)

Sondik (1971) proves that for any finite t, Vt�� is piece-
wise linear and convex and thus admits the form Vt��=
max ∈!t ��

′ �, where !t is a finite set of n-dimensional
vectors. The point set !t can be recursively determined as
follows. Substituting Vt+1 	��=max ∈!t+1

�	� ′ � into Equa-
tion (1), we obtain

Vt��

=max
a∈A

{
� ′ga+�∑

�∈	
Pr�� ���a�Vt+1

(
� ′PaRa��
Pr�� ���a�

)}

=max
a∈A

{
� ′ga+�∑

�∈	
Pr�� ���a� max

 ∈!t+1

{
� ′PaRa�� 
Pr�� ���a�

}}

=max
a∈A

{
� ′ga+�∑

�∈	
max
 ∈!t+1

� ′PaRa�� 
}
�

t = 1�2� � � � � T � (3)

VT+1��=� ′gT+1� !T+1 = �gT+1�� (4)
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Because Vt�� can be expressed as max ∈!t ��
′ �, the

above expression determines !t from !t+1 implicitly.
However, the iteration is a difficult task—there seems to be
no natural way of enumerating the members of !t , and the
size of !t grows exponentially fast with iterations.

The value function Vt�� can be decomposed, as in
Zhang and Liu (1996):

V at �"��= max
 ∈!t+1

� ′PaRa�� � (5)

V at ��=
∑
�∈	
V at �"��� (6)

Vt��=max
a∈A

�� ′ga+�V at ���� (7)

The intermediate functions V at �"�� and V at �� are also
piecewise linear and convex. Therefore, the problem
becomes one of finding the minimum sets of  -vectors that
describe V at �"��, V

a
t ��, and Vt��, respectively. We will

refer to this three-step iteration (essentially any iteration
derived from Equation (1)) as a belief-value iteration, indi-
cating the role of belief vectors in the formulation. As noted
in the literature, the first and third steps in the iteration are
relatively easy, whereas the second step, finding the min-
imum  -set for V at ��, is the most time consuming. Sig-
nificant efforts have been devoted to this step, and various
existing algorithms mainly differ in this step.

3. A Geometric Framework
Although many researchers have recognized the central role
of the  -vectors, few have studied them independently from
the belief vectors. In this section, we take a dual per-
spective and generate the  -vectors in a systematic way,
free from the belief vectors. We show that an  -vector is
essentially the expected value-to-go (or continuation-value)
vector associated with a continuation policy (part of a com-
plete policy from any period t onward). We propose a new
dynamic programming formulation based on this view. The
development in this section leads the way to a reduction
of the time complexity of the critical step, to be discussed
in §4.

3.1. Duality Between Value Functions and
Convex Hulls

Various dual relationships between hyperplanes and points
have been investigated in the convex analysis literature
(Rockafellar 1970) and computational geometry literature
(Berg et al. 2000, Boissonnat and Yvinec 1998). In a typ-
ical setting, a hyperplane in the primal �n space is an
affine function #u� = u′h + d, where u is an n− 1�-
dimensional vector, h is a given vector, and d is a given
scalar. Such a hyperplane corresponds to a point h�d� in
the dual �n space. The upper envelope (with respect to
the #-axis) of a set of hyperplanes �#ku�= u′hk+dk�k∈K
defines a piecewise-linear and convex function 
#u� =
maxk∈K�u′hk + dk�. The minimum set of hyperplanes that

completely determine the upper envelope are called sup-
porting hyperplanes. One can show that (Berg et al. 2000)
there is a one-to-one correspondence between the support-
ing hyperplanes of an upper envelope in the primal space
and the vertices of an upper convex hull (with respect to
the d-axis) in the dual space.

However, this result must be modified for the POMDP
problem because the primal space is ) × �, where ) =
�� ∈ �n*

∑n
i=1�i = 1 and �i � 0 for all i� is an n− 1�-

dimensional simplex, and a hyperplane in this space is of
the form V ��=� ′ , given an n-dimensional vector  . We
define the corresponding dual space as the �n space of those
 -vectors. Figure 1 illustrates the dual relationship: panel
(a) depicts a piecewise-linear and convex function �V ��=
max��1 + 4�2�3�1 + 3�5�2�4�5�1 + 2�5�2�5�1 + �2� in
the primal space, and panel (b) depicts the corresponding
points �1�4�� 3�3�5�� 4�5�2�5�� 5�1�� in the dual space.

To provide a precise description of this duality, we intro-
duce the following definitions.

Definition 1. Given a point set S ⊂ �n, the generated
convex hull is the set CoS� ≡ �

∑n+1
j=1 ,jvj *

∑n+1
j=1 ,j = 1

Figure 1. Duality between (a) a piecewise-linear and
convex function �V ��=max ∈!�� ′ � in the
primal space, and (b) the positive convex hull
generated by the point set! in the dual space.
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and vj ∈ S�,j � 0� ∀ j�; the surface of the convex hull
with positive outernormal directions, or simply the positive
convex hull PCO�, is the set PCoS� ≡ cl� ∈ CoS�:
∃� ∈)+�� ′ �� ′v� ∀v ∈CoS���, where )+ = �� ∈�n:∑n

i=1�i = 1 and �i > 0� ∀ i�, and clB� is the closure of B.

Definition 2. The pairwise addition of two point sets !1

and !2 is the set !1 +!2 ≡ � 1 + 2*  1 ∈!1� 2 ∈!2�.

In the definition of PCO, the closure is redundant if S
is a finite set. It may be needed when S has a smooth sur-
face, e.g., a sphere. However, it is still an open question
whether smooth surfaces can arise in the POMDP prob-
lem with finite states, finite actions, and finite observations
over the infinite horizon. With the above definitions, the
dual relationships pertinent to the POMDP problem can be
formally stated, as follows.

Lemma 1. Suppose that ! ⊂ �n is closed and bounded.
(1) A piecewise-linear and convex function �V �� =
max ∈!�� ′ �, � ∈ ), is dual to the set PCo!�. More
precisely, for any �� ∈), there is a � ∈ PCo!� such that
�V  ���= �� ′ � , and conversely, for any � ∈ PCo!�, there is
a �� ∈) such that �V  ���= �� ′ � . (2) Given two piecewise-
linear and convex functions �V1�� = max ∈!1

�� ′ � and
�V2�� = max ∈!2

�� ′ �, the function �V1�� + �V2�� is
dual to PCo!1 + !2�. (3) Given the above �V1��
and �V2��, the function max��V1��� �V2��� is dual to
PCo!1 ∪!2�.

The generality of set ! introduces some technical sub-
tlety at the boundary of PCo!�, as can be seen in the
proof (in the appendix). If ! is a finite set, the duality
can be obtained more directly. We can easily see that there
is a one-to-one correspondence between the linear pieces
of �V ��, if any, and the vertices of PCo!�. Parts (1)
and (2) of the lemma are illustrated in Figures 1 and 2,
respectively.

3.2. POMDP Problem in the Dual Space

Lemma 1 implies that the  -vectors representing the func-
tions V at �"��, V

a
t ��, and Vt�� in expressions (5)–(7)

are the vertices of some positive convex hulls. Thus, the
belief-value iteration (5)–(7) has the following counterpart
in the dual space, obtaining the set !t from the set !t+1:

Continuation-Value Iteration
(1) !a

t �� = PCoEx�PaRa�� *  ∈ !t+1��, a ∈ A,
� ∈	;

(2) !a
t = PCoEx!a

t 1�+!a
t 2�+· · ·+!a

t m��� a ∈A;
(3) !t = PCoEx

⋃
a∈A�ga+� *  ∈!a

t ��.

We call this three-step iteration a continuation-value iter-
ation because the  -vectors are the “continuation-value
vectors” defined in the next subsection. The set PCoEx!�
contains the extreme points of the positive convex hull
generated from the point set !. Viewed as an operator,

Figure 2. Duality between �V1��+ �V2�� and
PCo!1 +!2�.
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PCoEx corresponds to a standard problem in computa-
tional geometry—removing redundant points from the con-
vex hull of !. Recall that x is an extreme point of a convex
set C if x �= ,y + 1 − ,�z for any , ∈ 0�1� and y� z ∈
C\�x�, and that extreme points and vertices are the same
in the special case of convex polytopes. Lemma 1 implies
the following result immediately:

Theorem 1. The belief-value iteration and continuation-
value iteration are equivalent.

Like the belief-value iteration, the continuation-value
iteration can be aggregated, as follows.

Lemma 2. The continuation-value iteration is equivalent to
the following iteration:

!t = PCoEx

( ⋃
a∈A

{
ga+�∑

�∈	
PaRa�� at+1��*

 at+1�� ∈!t+1� ∀� ∈	
})
� (8)
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In the above expression, the matrix Pa can be moved
outside of the sum operator. Thus, the continuation-value
iteration has an alternative form in which Pa only appears
in the last step.

Alternative Continuation-Value Iteration
(1) 	!a

t �� = PCoEx�Ra�� *  ∈ !t+1��, a ∈ A,
� ∈	;

(2) 	!a
t = PCoEx	!a

t 1�+ 	!a
t 2�+· · ·+ 	!a

t m��, a ∈A;
(3) !t = PCoEx

⋃
a∈A�ga+�Pa *  ∈ 	!a

t ��.

We note that the first two steps of the alternative iteration
are independent of the action if the observations are, which
is an advantage of this procedure. Now, we briefly com-
pare the first step of the two continuation-value iterations,
because their last two steps are similar in terms of compu-
tation. Let !t+1 be the vertex set of some positive convex
hull. In step 1 of the continuation-value iteration, after a lin-
ear transformation PaRa��, the set of points �PaRa�� *
 ∈ !t+1� still forms a convex hull, but it may not have
positive outernormal directions or even full dimensions.
In either case, the operator PCoEx removes the redun-
dant points. In step 1 of the alternative continuation-value
iteration, if Ra�� has a full rank, the points �Ra�� *
 ∈!t+1� still form a positive convex hull with no redun-
dancy; otherwise, the resulting point set has reduced dimen-
sions and typically contains redundant points.

Similar to the belief-value iteration, the most time-
consuming step in the two continuation-value iterations is
the second one. As illustrated in Figure 2(b), the pair-
wise addition of two point sets is exponentially large, i.e.,
�!1 +!2� = �!1� · �!2�. The corresponding situation in the
primal space is illustrated in Figure 2(a). There are as
many redundant points in !1 + !2 as there are redun-
dant hyperplanes to define �V1��+ �V2��. Almost all algo-
rithms that tackle a general POMDP problem strive to trim
down the number of hyperplanes or dual points. Although
there seems to be no difference between the belief- and
continuation-value iterations regarding algorithm efficiency
at this moment, we will see in §4 that it is more convenient
to explore the geometric properties in the dual space.

3.3. Continuation Policies and
Continuation-Value Vectors

In this subsection, we connect the  -vectors with poli-
cies. To perform backward induction, we define a pol-
icy recursively. Although recursive representations of
POMDP policies exist in the literature, such as the “pol-
icy graph” in Cassandra et al. (1994), the “finite-state con-
troller” in Hansen (1998a), and the “conditional plan” in
Poupart (2005), a systematic treatment as provided here is
useful.

Definition 3. We refer to the beginning of period t as
time t. In a POMDP problem with T � � periods, the
observation history up to time t is the sequence of obser-
vations �1� � � � � �t−1�, denoted by �t−1, where �0 is the

Figure 3. Tree representation of a deterministic policy.

• • •

1 2 m

• • •

1 2 m

a1(θ0)

a2(θ1)

a3(θ2)

θ1

θ2

θ3

empty sequence by default. Let 	t−1 be the set of �t−1.
A deterministic� policy 4 is a sequence of mappings
�at* 	

t−1 → A�t=1�����T , or �a1�
0�� � � � � aT �

T−1���T−1∈	T−1 .
A deterministic� continuation policy from time t is the
part of 4 from time t onward, with recursive representation
4t�

t−1�= �at�t−1�� �4t+1�
t−1� �t���t∈	�.

A policy can be represented as a tree, as in Figure 3.
Every node of the tree has two interpretations: Viewed from
the top down, it represents the history of observations �t−1

and is associated with an action at�
t−1�; viewed from the

bottom up, it corresponds to a continuation policy.
The observation history is the only information needed

to define a policy because the state history is unavailable
and the action history is jointly determined by the obser-
vation history and the policy itself. This definition deviates
from the tradition of including actions in the history as well
(Monahan 1982, Lovejoy 1991b, White 1991). The actions
are needed to update the belief of the system state from
the initial belief �0. If the belief process is suppressed,
however, the actions no longer need to be recorded. The
detachment of the belief process from the core formula-
tion is the key to creating a more parsimonious dynamic
programming expression, as in Theorem 2 below.

Because the system state is unknown, the expected value-
to-go under a continuation policy 4t is not a scalar but
a vector, namely, the continuation-value vector, denoted
by ut . Each component ut�x is the expected value-to-go
when the system starts in state x at time t, and the policy 4t
is followed from then on. Those ut vectors generated by
legitimate continuation policies are denoted by a set Ut . To
make Ut a convex set (if needed), randomization should be
introduced in continuation policies. In a randomized policy,
the action plan in period t is a function at* A×	�t−1 →
6A�, where A×	�t−1 = �a1� �1� � � � � at−1� �t−1�� is the
set of action and observation histories up to time t and
6A� = �7*

∑
a∈A 7a = 1 and 7a � 0 for all a� is the set

of distributions over A. In general, there is no u∗t ∈Ut that
dominates all others in all dimensions, so the entire frontier
of Ut as defined below must be considered, which can be
found by backward induction in the next theorem.
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Definition 4. A continuation-value vector is feasible if it
can be generated by a randomized continuation policy. Let
Ut denote the set of feasible continuation-value vectors at
time t. The continuation-value frontier at time t is the set
PCoUt�, denoted by �Ut . The extreme points of the time-t
continuation-value frontier are denoted by set U ∗

t .

Theorem 2. The feasible continuation-value sets Ut , the
continuation-value frontiers �Ut , and the extreme-point sets
U ∗
t can be determined recursively:

Ut =Co

( ⋃
a∈A

{
ga+�Pa ∑

�∈	
Ra��uat+1��*

uat+1�� ∈Ut+1� ∀� ∈	
})
� (9)

�Ut = PCo

( ⋃
a∈A

{
ga+�Pa ∑

�∈	
Ra��uat+1��*

uat+1�� ∈ �Ut+1� ∀� ∈	
})
� (10)

U ∗
t = PCoEx

( ⋃
a∈A

{
ga+�Pa ∑

�∈	
Ra��uat+1��*

uat+1�� ∈U ∗
t+1�∀� ∈	

})
� (11)

Furthermore, each u∗t ∈ U ∗
t can be generated by a deter-

ministic continuation policy.

The theorem shows that randomization is unnecessary
if we focus on the extreme-point sets U ∗

t . However, sets
Ut and �Ut are still useful in our later developments when
convex or connected sets are more convenient. We note that
the above expressions can be easily generalized such that
A, Pa, and Ra are time dependent and 	 depends upon
both the time and the action.

Clearly, expression (11) coincides with iteration (8), and
the ut vectors coincide with the  t vectors. The belief pro-
cess is completely implicit in the picture except that, the
initial state distribution is used to determine optimal solu-
tion through max�� ′

0u1* u1 ∈ U ∗
1 �. This “mystery” will be

resolved in Theorem 4 in §5.

4. Value Iteration Through
Minkowski Sums

Value iteration is a general approach to solving the POMDP
problem over both finite and infinite horizons. We have
seen three value iteration procedures in previous sections.
In this section, we show that the geometric interpretation
presented in last section connects the POMDP problem
with an existing problem in computational geometry, the
Minkowski-sum problem.

4.1. Minkowski Sum of Convex Polytopes

A polytope is the convex hull of a finite set of points. The
Minkowski sum of two polytopes P1 and P2 is defined as

P1 ⊕ P2 = �u+ v* u ∈ P1� v ∈ P2�, i.e., the pairwise addi-
tion of convex sets P1 and P2. The result is also a poly-
tope. For convenience, we call the positive convex hull of
P1⊕P2 the positive Minkowski sum. The second step of the
two continuation-value iterations can be compactly written
as !a

t =
⊕m

�=1!
a
t �� and 	!a

t =
⊕m

�=1
	!a
t ��, respectively.

Fukuda (2004) presents an algorithm that finds the vertices
of a Minkowski sum in time linear to the number of out-
put vertices. The key idea is to arrange the vertices of the
output polytope as a minimum spanning tree. The algo-
rithm can be directly used in the value iterations to save
computational time. In this subsection, we discuss some
basic properties of the Minkowski sum and main features
of Fukuda’s algorithm, which is valuable for understanding
the geometry behind the POMDP problem and developing
more efficient algorithms in the future.

A subset F is a face of a polytope P if there exists
a vector c ∈ �n such that F = argmaxv∈P �c

′v�, denoted
by F P" c� more precisely. An n-dimensional polytope
has n types of proper faces, with dimensions 0�1� � � � �
and n − 1, respectively. The 0- and 1-dimensional faces
are also called vertices and edges, respectively. For the
Minkowski sum of a set of polytopes, it can be easily
shown that the faces of the output polytope can be con-
structed from those of the input polytopes: F 

⊕k
i=1 Pi" c�=⊕k

i=1 F Pi" c� (Gritzmann and Sturmfels 1993). Figure 4
illustrates the Minkowski sum of two polytopes in the pos-
itive orthant and the decomposition of one output vertex.
Compared with Figure 2(b), the vertices of the output poly-
tope are exactly the  -vectors on the value frontier.

The vertex/edge decomposition is the core of Fukuda’s
algorithm. Let P =⊕k

i=1 Pi. It is shown that: (1) a point
v ∈ P is a vertex of P if and only if v =∑k

i=1 vi for some
vertex vi of Pi and there exists c ∈ Rn with �vi�= F Pi" c�
for all i; (2) a subset E of P is an edge of P if and only
if E =⊕k

i=1 Fi, where each Fi is a vertex or edge of Pi all

Figure 4. Minkowski sum of two polytopes and decom-
position of an output vertex.
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such edges must be parallel� and there exists c ∈ Rn such
that Fi = F Pi" c� for all i.

Fukuda’s algorithm also needs the adjacency information
of the input polytopes, i.e., the pairs of vertices linked by
edges. Let 7i be the maximum degree of Pi, i.e., the maxi-
mum number of vertices adjacent to any vertex of Pi. Then,
7=∑k

i=1 7i is the upper bound of the maximum degree of⊕k
i=1 Pi due to the decomposition property. It is shown that

there is a compact polynomial algorithm for the Minkowski
sum of k polytopes that runs in time Oz7LPn�7�� and
space linear in the input size, where z denotes the number
of vertices of P , and LPn�7� denotes the time needed to
solve a linear program with n variables and 7 constraints.

By today’s standards, those LPs in Fukuda’s algorithm
are small, and their sizes grow with 7 rather than the total
number of vertices. The worst-case complexity of the algo-
rithm is linear in the output size z, and is polynomial in
that sense. It is not necessarily polynomial with respect
to the input size

∑k
i=1 zi, where zi is the number of ver-

tices of Pi. In comparison, the same step in the state-of-
the-art POMDP algorithms (Cassandra et al. 1997, Feng
and Zilberstein 2004) needs Oz

∑k
i=1 zi�LPn� z�� time.

Because the maximum degree of a polytope is typically
much smaller than the number of vertices, the advantage of
Fukuda’s algorithm seems clear.

It is noteworthy that Fukuda’s algorithm requires the
adjacency information of the input polytopes. For an input
polytope Pi, a straightforward method to obtain the adja-
cency information can take Oz2i LPn� zi�� time, which is
still better than the existing POMDP algorithms theoreti-
cally, because z may not be polynomially bounded by zi.
Further, because linear transformations do not alter adja-
cency relationships, in the entire iteration t, we only need to
acquire the adjacency information for a single input poly-
tope, corresponding to the set !t+1. This is especially ben-
eficial for systems with large action and observation spaces.

4.2. Numerical Examples

In this subsection, we illustrate some properties of the
Minkowski sum through two examples. The first example
demonstrates that the output size of a Minkowski sum is
much smaller than the number of combinations of the input
vertices. In the context of the POMDP problem, we focus
on the first two steps of the alternative continuation-value
iteration for a single action.

Example 1. The parameters are: n= 2, m= 3,

Ra =
(

0�3 0�2 0�5
0�5 0�1 0�4

)

for a given action a, and

!t+1 =
(

3 4 5 5�5
6�5 6 5 4

)
�

Figure 5. An alternative continuation-value iteration
given a single action–positive Minkowski
sum of three polytopes determined by three
observations.

1 2 3 4 5

1

2

3

4

5

6

Ωt +1

ω1

ω2

Ωt
a(2)

~

Ωt
a(1)

~

Ωt
a~

Ωt
a(3)

~

where each column of !t+1 represents a continuation-value
vector. The first two steps of the alternative continuation-
value iteration generates the following point set, in matrix
form:

	!a
t =

(
3�0 3�2 3�7 3�9 4�4 4�7 4�8 5�05 5�35 5�5
6�5 6�45 6�25 6�15 5�75 5�5 5�4 5�0 4�5 4�0

)
�

Although � 	!a
t � = 10 is much larger than �!t+1� = 4, it is

still much smaller than �!t+1�3 = 64. The example is illus-
trated in Figure 5.

In the second example, we also focus on a single action
and perform the alternative continuation-value iteration
repeatedly. From an initial point set !T , the output !t+1

of iteration t + 1 is used as the input of iteration t. The
example demonstrates that the maximum degree 7 of a
Minkowski sum is much smaller than the output size z and
grows much more slowly.

Example 2. The parameters are: n=m= 3,

Ra =

 0�3 0�3 0�4

0�2 0�2 0�6
0�5 0�1 0�4




for a given action a, and

!T =

 1 0 0

0 1 0
0 0 0�8




(for demonstration purposes, we start with a representative
!T instead of a singleton set !T+1). The following table
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Figure 6. An output polytope after three alternative
continuation-value iterations given a single
action.

lists the maximum degree 7 and the number of output ver-
tices z after each iteration. The output polytope of iteration
T − 3 is illustrated in Figure 6.

t T T − 1 T − 2 T − 3 T − 4

7 2 4 5 5 6

z 3 9 22 46 86

In last subsection, we argued the theoretical advantage
of adopting Fukuda’s algorithm in the value iteration of
the POMDP problem, whereas in this subsection we have
presented two simple numerical examples. A thorough
comparison of the new POMDP algorithm (incorporat-
ing Fukuda’s Minkowski-sum algorithm) with the existing
POMDP algorithms requires extensive numerical studies,
which is beyond the scope of this paper and is a valuable
topic for future research.

5. Policy Iteration Over
an Infinite Horizon

In the infinite-horizon setting, besides value iterations, the
POMDP problem can also be tackled by the policy itera-
tion approach that was first introduced by Howard (1960)
in the MDP problem. According to limited results in the
POMDP literature, the policy iteration approach appears
to outperform the value iteration approach (Sondik 1978,
Hansen 1998a). In this section, we provide a systematic
treatment of the infinite-horizon POMDP problem based on
the new framework. We first show some basic properties of
the problem, then examine a special type of policy made up
of finitely many components, and finally, we discuss a pol-
icy iteration algorithm proposed by Hansen (1998a). This
section also unifies some existing concepts and algorithms
in the literature.

5.1. Basic Properties of the POMDP Problem

It is convenient to express the continuation-value itera-
tion (11) by an operator = ∗, as U ∗

t = = ∗U ∗
t+1. Similarly, the

recursive Equations (9) and (10) can be expressed as Ut =
=Ut+1 and �Ut = �= �Ut+1, through two operators = and �= ,
respectively. These three operators are closely related and
are useful in different contexts.

To study the convergence of continuation-value frontiers,
we equip the space of continuation-value vectors with the
Hausdorff metric, which measures the distance between
two compact sets U ⊂�n and V ⊂�n:

dHU�V �≡max
{

sup
u∈U

inf
v∈V

�u− v�� sup
v∈V

inf
u∈U

�u− v�
}
�

In this definition, �·� denotes the maximum norm
(which is chosen for convenience), i.e., �u� = max�u1�,
�u2�� � � � � �un�� for any u ∈�n. It is known that the induced
Hausdorff-metric set space is complete if the underlying
metric space (�n) is complete. We can show the following
result (the = operator is more convenient here):

Lemma 3. The operator = is a contraction mapping with
modulus � in the continuation-value set space with respect
to the Hausdorff metric.

The contraction-mapping theorem immediately implies
the existence and uniqueness of the continuation-value
frontier over an infinite horizon:

Theorem 3. If T =�, the POMDP problem has a unique
continuation-value set U�, a unique continuation-value
frontier �U� ⊂U�, and a unique extreme point set U ∗

� ⊂ �U�.

Lemma 3 also guarantees that any sequence of
continuation-value frontiers resulting from successive �=
operations converges to a unique limit, which proves the
convergence of value iterations. The next result unveils the
coherence between the value frontier and the belief process
that has been suppressed in our analysis.

Because the value frontier �U� is a positive convex hull,
for any extreme point u∗ ∈U ∗

�, the unnormalized belief set
)u∗� ≡ �� ∈ �n

+* �
′u∗ � � ′u� ∀u ∈ �U�� is a nonempty

cone, where �n
+ is the nonnegative orthant of �n. This set

of belief vectors can testify that u∗ is on the continuation-
value frontier. If �U� is smooth (differentiable) at u∗, )u∗�
is a single ray along the outernormal direction of �U� at u∗;
if �U� is nonsmooth at u∗, )u∗� is a convex set. The
collection of sets �)u∗�* u∗ ∈ U ∗

�� constitutes a parti-
tion of the unnormalized belief space �n

+, except that the
boundaries of these sets may overlap. According to expres-
sion (2), the unnormalized posterior belief following prior
belief �, action a, and observation � is � ′PaRa���′. Let
)au∗" ��≡ �� ′PaRa���′* � ∈)u∗�� be the set of pos-
terior beliefs updated from the set of prior beliefs )u∗�.

By expression (11), any extreme point of the continua-
tion-value frontier can be generated from an action a∗ and

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Zhang: Partially Observable Markov Decision Processes: A Geometric Technique and Analysis
Operations Research 58(1), pp. 214–228, © 2010 INFORMS 223

a set of continuation-value vectors �u����∈	 that are also
extreme points of the value frontier. We have the following
result:

Theorem 4. If an extreme point on the continuation-value
frontier, u∗ ∈ U ∗

�, is generated from an action a∗ and
extreme points �u�� ∈ U ∗

���∈	, )
a∗u∗" �� ⊂ )u��� for

any � ∈	.
The theorem suggests that if we start with a belief set that

supports an optimal policy, the posterior-belief set shrinks
(relatively) as time elapses and always supports a single
continuation policy at any given point in time. Using the
terminology of Sondik (1978), the collection �)u∗�* u∗ ∈
U ∗

�� forms a Markov partition of the unnormalized belief
space, although he only states this property for the so-called
“finitely transient policies.” In view of this result, the belief
process can be kept implicit in the analysis because there
always exists a belief process consistent with any policy
derived from the continuation-value frontier. This result is
also true in the finite-horizon setting, which can be shown
by modifying the proof of Theorem 4.

5.2. Stationary Policies: Finite-State Controllers

For the MDP problem with finite state and action sets,
policy iteration can find an optimal policy in finite time
because there always exists an optimal policy that is deter-
ministic and stationary, and there are only finitely many
such policies. However, this is an intriguing issue for the
POMDP problem because there are infinitely many history-
dependent deterministic policies.

Sondik’s algorithm is deemed impractical by computer
scientists because of its complexity (Hansen 1998a). How-
ever, within the new framework, Sondik’s and Hansen’s
algorithms are related. The key concept is the finite-state
controller (also called “plan graph” in Kaelbling et al.
1998), denoted by 4 , which consists of a finite set K of
control states, an action rule �ak� ∈A�k∈K , and a transition
rule �sk� �� ∈ K�k∈K��∈	. In control state k, action ak�
is taken, and observation � switches the controller to state
sk� ��. A finite-state controller simplifies an infinite policy
tree, as shown in Figure 3, to a cyclic policy graph. An
example is given next.

Example 3. The true status of a simplistic economy is
unobservable. However, the performance of a representative
market in the economy can be observed, as either “boom”
or “bust,” which may serve as an indicator of the econ-
omy. A typical firm can produce at three quantity levels:
low, medium, and high. The firm’s action affects the under-
lying economy and the representative market. Thus, this
economy can be modeled as a POMDP with hidden states,
two observations, and three actions. A production policy
of the firm in general depends upon the entire observation
history, but simple policies like the one below may be par-
ticularly interesting: if the indicator was “bust” in the last
period, choose the low production level; if the indicator

Figure 7. A three-state production policy in a simplistic
economy.

Medium

Low High

Bust Boom

Boom

Boom

Bust

Bust

was “boom” in the last period but “bust” one period earlier,
choose medium; if the indicator was “boom” in the last two
periods or more, choose high. This policy can be described
by a three-state controller, as illustrated in Figure 7.

A state of the controller k ∈ K (a node in the policy
graph) corresponds to a continuation policy and is associ-
ated with a continuation-value vector, denoted by u∗4k�,
which can be computed from a system of equations:

u∗4k�=gak�+�Pak�
∑
�∈	
Rak���u∗4sk����� k∈K� (12)

Any deterministic policy can be approximated arbitrarily
closely by a finite-state controller by increasing the num-
ber of control states. A finite-state controller may be opti-
mal sometimes, which can be directly verified as follows
(a corollary of Theorem 3).

Corollary 1. If the set of continuation-value vectors gen-
erated by a finite-state controller is invariant under the = ∗

operation, the controller defines an optimal policy.

Another type of policy determined by a finite number
of objects is the finite-memory (or finite-history) policy, in
which the current action depends only upon a finite number
of recent observations and actions (Platzman 1977, White
and Scherer 1994). Finite-memory policies and finite-state
controllers have major differences that have not been fully
elaborated on in the literature. Conceptually, a control state
in the finite-state controller represents a continuation pol-
icy extending into the infinite future, whereas a memory
state in the finite-memory policy represents a history of
the past. Mathematically, any finite-memory policy with
finitely many memory states can be represented by a finite-
state controller, but not vice versa. In fact, the finite-state
controller in Example 3 is also a finite-memory policy.
However, it is easy to find examples in which a finite-state
controller cannot be converted into a finite-memory policy
(Yu and Bertsekas 2008).
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5.3. Policy Iteration Through
Finite-State Controllers

The policy-iteration algorithms by Sondik (1978) and
Hansen (1998a) both center on finite-state controllers.
However, Sondik’s algorithm relies on both belief vec-
tors and continuation-value vectors—essentially operating
in both primal and dual spaces—and is inevitably more
involved. For completeness, we present Hansen’s algorithm
here, with minor modifications in the description. This
algorithm is extended by Poupart and Boutilier (2004) to
incorporate randomized policies. The control state corre-
sponding to a continuation-value vector u is denoted by
ku� below.

Hansen’s Policy Iteration Algorithm
Step 1. Initialization: define an initial finite-state con-

troller 4 , and select precision level �> 0.
Step 2. Policy evaluation: calculate 4’s value vectors

(Equation (12)), denoted by set U .
Step 3. Policy improvement: perform one-step value

iteration, �U = = ∗U (Equation (11)), and modify 4 to �4 as
follows.

(a) For each �u ∈ �U : (i) If �u= u for some u ∈U , keep
ku� unchanged. (ii) Else, if �u� u for some u ∈U , replace
the action and successor links of ku� by those used to cre-
ate �u. If there are more than one such u, the corresponding
control states can be combined into a single one. (iii) Other-
wise, add a new control state k�u� with the action and
successor links used to create �u.

(b) For each u ∈ U\ �U , if it is not used to create any
vector in �U , remove ku�; otherwise, keep ku� unchanged.
Step 4. Termination test: if dHPCo �U��PCoU�� �

�1 − ��/�, exit with an �-optimal policy. Otherwise,
change 4 to �4 and return to step 2.

It can be shown that in a policy improvement step, if 4 is
not optimal, �4 generates a weakly improved value frontier
that is strictly better at some control states, and the policy
iteration algorithm converges to an �-optimal policy after a
finite number of iterations. Hansen tests the above algorithm
on 10 POMDP problems and observes a convergence rate
40 to 50 times faster than that of the value iteration method
on average. Because the = ∗ operation is still needed in the
policy improvement step, which is in fact the bottleneck of
the algorithm, Fukuda’s Minkowski-sum algorithm may still
be used to improve the efficiency of this algorithm.

6. Partial Order of Observability
Partial observability is the defining characteristic of
POMDPs, but except for the two extreme cases, perfect
observability and no observability (Satia and Lave 1973,
White 1980), little can be found in the literature that com-
pares POMDPs from the perspective of observability. In
this section, we extend Blackwell’s (1953) notion of infor-
mativeness to define a partial order of POMDPs and show
that it leads to a partial order of continuation-value fron-
tiers. The same notion can also be found in White (1979),

but it has not been pursued rigorously since then, to the best
knowledge of the author. In what follows, we start from the
two extreme cases and then proceed to the middle.
Case 1: Perfect Observability. If an observation matrix

Ra is the identity matrix I , the action a perfectly reveals
the system state, and each diagonal matrix Ra�� contains
only one nonzero element, the �th main-diagonal element.
Then, the positive Minkowski sum

⊕
�∈	�R

a��u* u ∈ U�
given any point set U is a single point, max�u* u ∈ U�,
where the maximum is taken componentwise. If all Ra,
a ∈A, are identity matrices, the value frontier �Ut reduces to
a singleton �u∗t �, and the recursive expression (11) reduces
to the standard dynamic programming formulation: u∗t =
maxa∈A�ga + �Pau∗t+1�. This MDP problem serves as an
upper bound for the POMDP problem.
Case 2: No Observability. If a column of an observa-

tion matrix Ra is proportional to the vector e (consist-
ing of all 1s), the corresponding observation reveals no
information about the system state. If every column of Ra

is proportional to e, i.e., Ra = ,a1e� � � � � ,
a
me� for ,a� � 0

with
∑

�∈	 ,a� = 1, no observation carries any information
about the system state. In this case, we have Ra��= ,a�I
for all �. For any positive convex hull U , the positive
Minkowski sum

⊕
�∈	�R

a��u* u ∈ U� equals U exactly.
Thus, expression (11) reduces to U ∗

t = PCoEx
⋃
a∈A�ga +

�Pauat+1* u
a
t+1 ∈U ∗

t+1��. This hidden-state MDP problem is
significantly simpler than the POMDP problem because the
most time-consuming step, the Minkowski sum, is absent
from the formulation. This problem provides a lower bound
for the POMDP problem.
Case 3: Partial Observability. The above upper and

lower bounds depend purely upon the underlying Markov
decision process. If the observation matrices �Ra� satisfy
neither of the above conditions, the model falls into the
partial-observability case, and its continuation-value fron-
tier falls between the two bounding frontiers. To com-
pare POMDPs that share the same underlying MDP, we
start with a partial order of observation matrices, following
Blackwell (1953). Recall that an n-state observation matrix
is a nonnegative stochastic matrix with n rows, all summing
to one.

Definition 5. Among the n-state observation matrices,
A is more informative than B, denoted by A� B, if there
exists a nonnegative stochastic matrix X such that AX = B.
If A � B and B � A, A is equivalent to B, denoted by
A≈ B.

Notice that permuting the columns of any observation
matrix creates an equivalent observation matrix. For a study
of the equivalence classes, see Sulganik (1995). Next, we
show that a more informative observation matrix generates
greater continuation values.

Lemma 4. Consider two n-state observation matrices A
and B, with mA and mB columns, respectively. Let A��
and B�� denote the diagonal matrices formed from the
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�th column of A and B, respectively. Then, if A� B,
for any point set U ⊂ �n, the positive convex hull
WAU� = ⊕mA

�=1�A��u�* u� ∈ U� dominates WBU� =⊕mB

�=1�B��u�* u� ∈ U�. If A ≈ B, WAU� = WBU� for
any U ⊂�n.

The class of n-state observation matrices contains a least
equivalence subclass and a greatest equivalence subclass,
consistent with our previous discussion of the two extreme
cases. The proof follows from the definition of the � rela-
tion and is omitted.

Theorem 5. (1) All n-state observation matrices with full
row rank and one nonzero element in each column are
equivalent, forming the perfect-observability class. (2) All
n-state observation matrices of the form ,1e� � � � � ,me� for
any ,� � 0 with

∑m
�=1 ,� = 1 are equivalent, forming the

no-observability class. (3) If A and C belong to the perfect-
and no-observability classes, respectively, and B is an arbi-
trary n-state observation matrix, we have A� B �C.

Finally, the informativeness relation of the observation
matrices induces a partial order of the POMDPs, which in
turn leads to a partial order of their value frontiers.

Definition 6. For two POMDPs sharing the same under-
lying MDP, one is more observable than the other if, for
every action, the observation matrix in the former is more
informative than that in the latter.

Theorem 6. Suppose that one POMDP is more observable
than another. Then, (1) if T <�, starting with the same
singleton set �gT+1�, the continuation-value frontier of the
former dominates that of the latter in every period; and
(2) if T =�, the continuation-value frontier of the former
dominates that of the latter.

7. Conclusion
In this paper, we have proposed a novel framework for
the POMDP problem, based on continuation policies and
continuation-value vectors, with natural geometric interpre-
tations. The framework is more parsimonious than the tra-
ditional framework based on belief vectors. It unveils the
relationship between the POMDP problem and two existing
computational geometry problems, which can help solve
the POMDP problem more efficiently. The framework can
clarify some existing POMDP algorithms over both finite
and infinite horizons and sheds new light on them. It also
facilitates the comparison of POMDPs in terms of observ-
ability, which is a useful structural result.

We conclude the paper with a brief discussion of possible
future research topics. An important topic not addressed in
this paper is the structural properties of optimal policies for
some special POMDPs. This is a well-known challenging
task, even in the two-state case. For example, Ross (1971)
shows that the optimal policy for a two-state machine
replacement problem does not have the control-limit prop-
erty. Other examples of structural results for the optimal

policies are White (1977, 1979) and Grosfeld-Nir (1996,
2007). The geometry underlying the new framework pro-
vides a handy tool for exploring policy structures, which
can be a fruitful future research direction.

Another important topic absent from the paper is the
approximation of optimal solutions. Because of the compu-
tational burden inherent to the POMDP problem, approxi-
mation may be unavoidable in solving practical problems.
The finite-state controller discussed in §5 can generate
lower bounds for the continuation-value frontier in the
infinite-horizon case. The number of control states can be
judiciously chosen to balance the quality of approxima-
tion and cost of computation. To generate upper bounds,
we can conduct successive value iterations starting with
the perfect-observability solution. A common approxima-
tion approach in the primal space is to focus on belief
vectors on a finite grid (Kakalik 1965, Eckles 1966, Cheng
1988, Lovejoy 1991a). The same idea can be applied to
the dual space, which is another valuable topic for future
studies.

Last but not least, the belief vectors can be reintro-
duced into the geometric framework. In this paper, we have
implicitly aimed to solve the POMDP problem for all initial
state distributions simultaneously. However, many applica-
tions of the problem only require the solution for a given
initial state distribution and may not need the complete
continuation-value frontiers. Some (approximation) algo-
rithms in the literature are tailored to such solutions (e.g.,
Satia and Lave 1973, Hansen 1998b, Pineau et al. 2003).
Starting from an initial belief vector and moving forward,
in each period, we can directly compute a set of feasible
beliefs that can be reached under an arbitrary policy. An
extreme point of the continuation-value frontier at time t
need not be created if it is not supported by any feasible
belief at time t. A main implication from this paper is that
the feasible belief sets and continuation-value frontiers can
be disentangled and independently generated (forward and
backward, respectively). Acquiring and utilizing both types
of information prudently may save computational time sub-
stantially for problems stressing the initial state distribution.
The details are left for future investigations.

Appendix. Proofs of Lemmas and
Theorems

Proof of Lemma 1. (1) We first show that for any �� ∈),
there is a � ∈ PCo!� such that �� ′ � � �� ′ for all  ∈!. If
�� ∈)+, by the definition of PCO, such a � must exist, and
then we are done. Suppose that �� ∈)\)+. By the defini-
tions of ) and )+, there exists a sequence of belief vectors
�k ∈  ��+ 1/k�B�∩)+, where B is the unit open ball and
�� + 1/k�B is the open ball centered at �� with radius 1/k.
Clearly, limk→��k = ��. For each �k, there exists a  k ∈
PCo!� such that � ′

k k � � ′
k for all  ∈ !. Because

! ⊂ �n is bounded, by the Bolzano-Weierstrass theorem,
the sequence � k� has a convergent subsequence � kj �. Let
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� = limj→� kj . Because PCo!� is closed, � ∈ PCo!�.
We write �� ′� −  � = �� ′� −  kj � +  �� − �kj �

′ ·
 kj − �+� ′

kj
 kj − �. Because (i) limj→� �� ′� − kj �=

0, (ii) limj→� ��−�kj �′ kj − �= 0 for all  ∈! (by the
boundedness of !), and (iii) � ′

kj
 kj − �� 0 for all  ∈!

and j , we have �� ′� − �� 0 for all  ∈!.
Next, we show that for any � ∈ PCo!�, there is a �� ∈)

such that �� ′ � � �� ′ for all  ∈ !. If � ∈ argmax��� ′ :
 ∈!� for some �� ∈)+, we are done. Otherwise, by the
definition of PCO, � must be the limit of a point sequence
� k ∈PCo!�� associated with a belief sequence ��k ∈)+�
such that � ′

k k ��
′
k for all  ∈!. Again, by the Bolzano-

Weierstrass theorem, ��k� has a convergent subsequence
��kj �. Let �� = limj→��kj . We have �� ∈) by the closeness
of ). We write

�� ′� − �=  �� −�kj �′� − �+� ′
kj
� − kj �

+� ′
kj
 kj − ��

Because

i� lim
j→�

� ′
kj
� − kj �= 0� ii� lim

j→�
 ��−�kj �′� − �= 0

for all  ∈! (by the boundedness of!), and (iii) � ′
kj
 kj −

 �� 0 for all  ∈! and j , we have �� ′� − �� 0 for all
 ∈!.

(2) Because

�V1��+ �V2��=max
 ∈!1

�� ′ �+max
 ∈!2

�� ′ �

= max
 1∈!1� 2∈!2

�� ′ 1 + 2��

= max
 ∈!1+!2

�� ′ ��

the function is dual to PCo!1 +!2�, by part (1).
(3) Because

max
{�V1��� �V2��

}=max
{
max
 ∈!1

�� ′ ��max
 ∈!2

�� ′ �
}

= max
 ∈!1∪!2

�� ′ ��

the function is dual to PCo!1 ∪!2�, by part (1). �

Proof of Lemma 2. The proof is by induction. Con-
sider period t and suppose that the two iterations start with
the same !t+1 set. For the sake of clarity, we dedicate
the label !t to the !t set that results from the three-
step iteration and use the label !∗

t for the one that results
from the aggregated iteration. It suffices to show that the
PCOs underlying !t and !∗

t are identical. For convenience,
define W ∗

t =
⋃
a∈A�ga+�

∑
�∈	 PaRa�� at+1��*  

a
t+1�� ∈

!t+1�∀� ∈	�; hence, !∗
t = PCoExW ∗

t � and PCo!∗
t �=

PCoW ∗
t �. Clearly, !t ⊂ CoW ∗

t �, so !t is dominated by
PCo!∗

t � (with respect to the directions in )). It remains
to show the reverse, i.e., !∗

t is dominated by PCo!t�.

Consider any � ∈!∗
t . By the definition of PCO, one of

the following must be true: (a) there exists �� ∈ )+ such
that �� ′ � � �� ′ for all  ∈ W ∗

t , or (b) � is the limit of
a point sequence � k ∈ W ∗

t � associated with a direction
sequence ��k ∈)+� such that � ′

k k ��
′
k for all  ∈W ∗

t

and for all k. In case (a), because � is an extreme point of
CoW ∗

t �, there must exist â ∈ A and � ât+1�� ∈!t+1��∈	
such that � = gâ+�∑�∈	 P âRâ�� ât+1��. For any � ∈	,
P âRâ�� ât+1�� is dominated by PCo!â

t ���, and hence∑
�∈	 P âRâ�� ât+1�� is dominated by PCo!â

t �. As a
result, � is dominated by PCo!t�. In case (b), because
PCo!t� is closed and every  k is dominated by PCo!t�,
� must be dominated by PCo!t� as well. Thus, !∗

t is
dominated by PCo!t�. Therefore, we have PCo!∗

t � =
PCo!t� and !∗

t =!t . �

Proof of Theorem 2. (1) We show that Equation (9) is
true. Given the time-(t + 1) continuation-value set Ut+1, a
time-t continuation-value vector

ga+�Pa ∑
�∈	
Ra��uat+1��

can be obtained by taking action a and selecting time-(t+1)
continuation-value vector uat+1�� after observation �. The
convex hull of

⋃
a∈A

{
ga+�Pa ∑

�∈	
Ra��uat+1��* u

a
t+1�� ∈Ut+1�∀� ∈	

}

contains all time-t continuation-value vectors that can be
obtained by randomization.

(2) We show that (10) is true. Note that: (a) for
any � ∈ ), a ∈ A, and � ∈ 	, if �� ′PaRa���2 > 0,
� ′PaRa��/�� ′PaRa���2 ∈ ), where �·�2 denotes the
Euclidean norm; (b) by Lemma 1(1), for any compact
convex set Ut+1 ⊂ �n and any � ∈ ), there exists �u ∈
PCoUt+1� such that � ′ �u � � ′u for any u ∈ Ut+1. These
facts, combined with Equation (9) and the definition of
PCO, imply that any point in PCoUt� can be created from
PCoUt+1�. Thus, Equation (10) follows.

(3) Now we show that (11) is true. Consider any
extreme point u∗t ∈ �Ut . By expression (10), there must
exist a∗ ∈ A and �ua

∗
t+1�� ∈ �Ut+1��∈	 such that u∗t = ga∗ +

�Pa
∗ ∑

�∈	 Ra
∗
��ua

∗
t+1��. If ua

∗
t+1�� is an extreme point

of �Ut+1 for all � ∈ 	, we are done. For any � ∈ 	, if
ua

∗
t+1�� is not an extreme point of �Ut+1, it must lie on a

face F ⊂Ut+1 (with at least one dimension) or in the inte-
rior of Ut+1 (define F = Ut+1 in that case). It follows that
Pa

∗
Ra

∗
��v = Pa

∗
Ra

∗
��ua

∗
t+1�� for all v ∈ F ; otherwise,

Pa
∗
Ra

∗
��ua

∗
t+1�� can be expressed as the convex combina-

tion of Pa
∗
Ra

∗
��v′ and Pa

∗
Ra

∗
��v′′ for some v′ �= v′′ ∈ F ,

and hence u∗t can be expressed as the convex combination
of two distinct points in Ut , a contradiction. Thus, ua

∗
t+1��

can be replaced by any extreme point of �Ut+1 on F without
altering u∗t . Therefore, u∗t can always be constructed from
the extreme points of �Ut+1, and expression (11) holds.
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(4) From part (3) and by induction, it is clear that every
u∗t ∈ U ∗

t can be generated by a deterministic continuation
policy. �

Proof of Lemma 3. We show that for any two sets U�
V ⊂�n such that dHU�V �= d, =U and =V are also in �n

and dH=U�=V � � �d. Consider any u∗ ∈ Ex=U� (i.e.,
an extreme point of =U ). By expression (10), there exist
an action a∗ and a set of vectors �u�� ∈U��∈	 such that
u∗ = ga∗ +�Pa∗ ∑�∈	 Ra

∗
��u��. Because dHU�V �= d,

for each u��, there exists v�� ∈ V such that �u��−v���
�d. Let e denote the vector of 1s with a proper dimension.
We have

u∗ −�de= ga∗ +�Pa∗ ∑
�∈	
Ra

∗
��u��−de�

� ga
∗ +�Pa∗ ∑

�∈	
Ra

∗
��v��≡ v∗

� ga
∗ +�Pa∗ ∑

�∈	
Ra

∗
��u��+de�= u∗ +�de�

The first and last equations above follow from
Pa

∗ ∑
�∈	 Ra

∗
��e= e. Clearly, v∗ ∈ =V and �u∗ −v∗�� �d.

The result can be generalized to nonextreme u∗ ∈ =U by
convex combinations. Similarly, we can show that for any
v∗ ∈ =V , there exists u∗ ∈ =U such that �u∗ − v∗� � �d.
Thus, dH=U�=V � � �d, and the operator = is a
contraction mapping with modulus �. �

Proof of Theorem 4. Consider any �∗ ∈)u∗�. By defi-
nition, �∗�′u∗ � �∗�′u for all u ∈ �U�. By expression (10),
u∗ = ga

∗ + �Pa
∗ ∑

�∈	 Ra
∗
��u��. Thus, for any � ∈ 	,

we must have �∗�′Pa∗Ra∗��u�� � �∗�′Pa∗Ra∗��u for
all u ∈ �U�, i.e., �∗�′Pa∗Ra∗�� ∈)u���. By definition,
)a∗u∗" ��⊂)u���. �

Proof of Lemma 4. Suppose that A � B, i.e., there
exists nonnegative matrix X with row sum 1 such that
AX = B. Then, the �th column of B is given by b·� =
Ax·�, where x·� is the �th column of X. Let xk� be the
k� ��th element of X. For any point wB ∈WBU�, suppose
that wB =∑mB

�=1B��u
B
� for some �uB� ∈ U��=1�����mB . Then,

wB = ∑mB

�=1

∑mA

k=1 xk�Ak�u
B
� = ∑mA

k=1

∑mB

�=1 xk�Ak�u
B
� . For

each k = 1� � � � �mA,
∑mB

�=1 xk�Ak�u
B
� is a convex com-

bination of the set of points �Ak�uB� ��=1�����mB and is
hence weakly dominated by the positive convex hull of
�Ak�uB� ��=1�����mB . By the definition of positive Minkowski
sum, wB = ∑mA

k=1
∑mB

�=1 xk�Ak�u
B
� � is dominated by⊕mA

k=1�Ak�u
B
� ��=1�����mB . The latter is in turn dominated by

WAU� because �uB� ��=1�����mB ⊂U . Therefore, the entire set
WBU� is dominated by WAU�. If A≈ B, we have A� B
and B �A, and the above result implies WAU�=WBU�
for any U ⊂�n. �

Proof of Theorem 6. For clarity, we label the second
POMDP by a “˜” symbol. Thus, Ra � �Ra for all a ∈A.
By Lemma 4, for any set U and any action a, the pos-
itive Minkowski sum

⊕
�∈	�R

a��ua�* u
a
� ∈ U� dominates

⊕
�∈	̃� �Ra��ua�* ua� ∈ U�. Thus, �=U = PCo

⋃
a∈A�ga +

�Pa
∑

�∈	 Ra��ua�* u
a
� ∈ U�∀� ∈ 	�� dominates �=U =

PCo
⋃
a∈A�ga + �Pa

∑
�∈	̃ �Ra��ua�* ua� ∈ U�∀� ∈ 	��,

for any point set U . If T < �� =kU dominates �=kU for
any set U and any k=1�2� � � � � T ; if T =�, the sequences
��=kU�k=1�2���� and ��=kU�k=1�2���� converge to the continua-
tion-value frontiers �U� and �U� of the two POMDPs, respec-
tively, and hence �U� dominates �U�. �
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