
ARTICLE

Partially overlapping spatial environments trigger
reinstatement in hippocampus and schema
representations in prefrontal cortex
Li Zheng 1,2, Zhiyao Gao 3, Andrew S. McAvan1,2, Eve A. Isham1,2 & Arne D. Ekstrom 1,2✉

When we remember a city that we have visited, we retrieve places related to finding our goal

but also non-target locations within this environment. Yet, understanding how the human

brain implements the neural computations underlying holistic retrieval remains unsolved,

particularly for shared aspects of environments. Here, human participants learned and

retrieved details from three partially overlapping environments while undergoing high-

resolution functional magnetic resonance imaging (fMRI). Our findings show reinstatement

of stores even when they are not related to a specific trial probe, providing evidence for

holistic environmental retrieval. For stores shared between cities, we find evidence for pattern

separation (representational orthogonalization) in hippocampal subfield CA2/3/DG and

repulsion in CA1 (differentiation beyond orthogonalization). Additionally, our findings

demonstrate that medial prefrontal cortex (mPFC) stores representations of the common

spatial structure, termed schema, across environments. Together, our findings suggest how

unique and common elements of multiple spatial environments are accessed computationally

and neurally.
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W
hen asked to think about the dairy section in a familiar
supermarket, other spatially proximate surrounding
sections such as the frozen foods aisle often come to

one’s mind incidentally. This reinstatement of neighboring ele-
ments within the same spatial environment is thought to be a
fundamental property of spatial representations termed “holistic
retrieval”1, underlying our ability to forage for food, plan future
behavior, and even avoid threats in some situations. Human
neuroimaging studies of episodic memory retrieval support the
idea of reinstatement2–4 (i.e., the activity patterns of a previous
experience reoccur when triggered by a partial cue), incidental
retrieval5 (i.e., memory reinstatement not specific to the target
item but also involving some of the neighboring elements bound
to that target), and transitive inference6–8 (i.e., studying A-B and
B-C, then inferring A-C). While these likely have some com-
monalities with holistic retrieval, it is unclear how the recovery of
specific events relates more broadly to retrieval of spatial envir-
onments, which we often experience at multiple time points and
in different manners at different times. In addition, an unresolved
issue about holistic retrieval in spatial environments, in particular,
is how the brain processes shared information between two (or
more) different environments that would lead to conflicts during
holistic retrieval. In other words, if one shops at two super-
markets in the same city that contain the same sections (i.e., dairy
and frozen sections), how does one avoid interference when
reinstatement of two different supermarkets is triggered by the
same sections that they share in common?

The issue of holistic retrieval vs. managing interference from
shared components will typically be less of an issue for episodic
memories and specific routes because they involve unique
moments in time9,10. This potentially allows for disambiguation
of events11 but is potentially catastrophic to more generalized
spatial memories. If both supermarkets have dairy sections in the
same locations yet frozen food locations in different places,
standing in front of the dairy food section in supermarket A may
result in retrieving the frozen food section for supermarket B.
This confusing information would result in the incorrect navi-
gational representation for finding the frozen food section and
other locations in supermarket A. One candidate mechanism
within the hippocampus that could play a role in balancing
interference for similar inputs is pattern separation, a computa-
tional process involving orthogonalizing similar inputs12–14, with
pattern separation suggested to occur in hippocampal subfields
CA3 and/or DG13,15–19. Single-neuron studies demonstrate that
place cell “remapping,” in which place cell firing patterns show a
near-zero correlation between two (in some cases similar)
environments, could relate to such pattern separation
mechanisms20. Recently, by utilizing multivariate pattern analysis
(MVPA) on a population of neurons or local field potential (LFP)
in hippocampus, researchers found that both the pattern of
neural firing rates21 or LFP signals22 could support such a
putative pattern separation mechanisms. Here, we leverage
MVPA and high-resolution magnetic resonance imaging (fMRI)
to test novel hypotheses derived from past single neuron21, LFP22,
and fMRI studies15,23 regarding how pattern separation might
relate to the issue of environment-specific codes through
mechanisms by which inputs that share some similarities—like
supermarkets—can be stored separately.

Yet while pattern separation may allow for orthogonalization
based on maximizing differences (i.e., one supermarket is dif-
ferent than another), it is not clear how holistic retrieval for a
single environment can be balanced with pattern separation for
different environments, particularly when they share common
elements. Specifically, pattern separation may be insufficient for
representing otherwise identical elements between two different
spatial representations (i.e., the dairy sections in two different

supermarkets). One potential solution comes from recent fMRI
studies showing that hippocampal activity patterns can form
“reversed” (past the point of orthogonalization) representations
between shared elements, suggesting a repulsion mechanism of
eliminating overlapping memory representations24–28. According
to this mechanism, the similarity of overlapping sections between
Supermarket A and B would be repulsed to a greater extent,
exhibiting reverse similarity between overlapping sections com-
pared to the similarity of two different sections (i.e., the similarity
between two food sections should be lower than the similarity
between the food sections and the parking lot). We leveraged
these past findings related to repulsion to test novel hypotheses
based on the assumption that “reversed” pattern similarity past
the point orthogonalization — could be a potential mechanism
for maintaining overlapping representations. Although one study
suggested that hippocampal representations of overlapping routes
became more dissimilar than non-overlapping routes during later
learning stages24, it remains unclear whether “repulsion” also
occurs during spatial memory retrieval of competing spatial
environments. In addition, given the heterogeneous nature of the
hippocampus14,29,30, it is important to resolve the potentially
different roles played by the hippocampal subfields.

One possible candidate brain area for modulating
hippocampal-mediated processing during spatial retrieval of
competing information is the lateral prefrontal cortex (PFC),
which may contribute to accurate retrieval via control
processes31–33. On one hand, the lateral PFC could accentuate
retrieval of some responses and memories34 while on the other
hand, the lateral PFC could play a role in suppression of
unwelcome and competing information during memory
retrieval35–38. Schematic “generalized” representations of the
shared elements of multiple environments, potentially repre-
sented in medial PFC (mPFC), could provide one means by
which locations that share overlap vs. those that are unique can be
“tagged.” It is not clear, however, whether the mPFC or the
hippocampus processes such schema. Cognitive map theory
emphasizes the formation of an integrated map to infer spatial
relationships among elements, and, in this way, a cognitive map
shares many similarities with spatial schemas39, with some stu-
dies suggesting that the hippocampus may serve this
function40–42. On the other hand, numerous empirical and the-
oretical papers support a role for the mPFC in schematic
representations43–47. Past studies have also suggested that
hippocampus-mPFC interactions are important to the integration
of multidimensional cognitive maps, including spatial48–50,
temporal51–56, social57, and conceptual associations8,58,59. Whe-
ther mPFC or hippocampus plays the primary role in schema
representation remains unclear, particularly regarding the dif-
ferent roles the two regions might play for overlapping compo-
nents of spatial environments.

In the current study, we test the roles of the hippocampus and
PFC in the retrieval of spatial environments that share some
common elements by using a paradigm adapted from a past
study15 to create overlapping environments. Here, we employ a
high-resolution fMRI approach allowing us to investigate not
only hippocampal subfields but also the role of PFC during spatial
memory retrieval. Participants learned three overlapping cities
made up of shared stores between cities and unique stores specific
to a city by playing a virtual reality navigation game (Fig. 1a, d).
Participants also learned the temporal intervals between different
routes, allowing us to look at both spatial and more episodic-like
representations. Then, all participants were asked to retrieve
details about each virtual environment they had visited by judging
the spatial distance or temporal intervals between stores while
their brain activity was monitored using fMRI (Fig. 1e). Critically,
using a multivariate pattern similarity analysis (MPS)60,61, we
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construct a multivariate pattern template for each store from the
localizer task, and test the holistic retrieval hypotheses by
examining whether or not other non-target stores in the envir-
onment are reinstated when retrieving the target stores in a trial-
specific question. This allows us to further test whether unique
stores are more central to holistic retrieval rather than shared
stores. We further examine whether the hippocampal reinstate-
ment could be mediated by lateral PFC activity through
functional interactions. Finally, we test whether the shared
information across similar environments might be differentiated
by pattern separation and/or repulsion in hippocampal subfields,
while at the same time, whether they might be abstracted to form
a spatial schema in mPFC or in hippocampal subfields.

Results
Holistic representations in hippocampus. We sought to test
whether distributed neural codes within the hippocampus might
reveal evidence for multivariate codes related to holistic retrieval.
In other words, when participants retrieve a neural representation
for an environment, do such codes also contain information
relevant to other stores in the environment as a whole in addition
to those involved in the particular retrieval question? If the spatial
retrieval is specific to a trial (i.e., non-holistic), we predict the
correlation between that trial and “incidental” unpresented stores
specific to that city should be comparable to the correlation
between that trial and unpresented stores belonging to other cities
(Fig. 2a, left panel). In contrast, if spatial retrieval is holistic, we
predict a higher correlation between neural patterns retrieved for
a specific trial and unpresented stores for that same city (i.e.,
unique/shared store within-city PS) compared to those specific to
other cities (i.e., unique store between-city PS; Fig. 2a, middle

panel). A corollary to this is whether the “incidental” stores
retrieved (i.e., those not in the retrieval question) are unique to
that environment (differentiated) and not the ones shared across
environments (non-differentiated). We lay out the possibilities
for shared stores (i.e., holistic and non-differentiated vs. holistic
and differentiated) in Fig. 2a.

We applied MPS60,61 to test this assumption. First, for each of
the six studied stores in the localizer task (i.e., Store 2, Store 4,
Store 6, Store 7, Store 8, and Store 9; see “Materials” and Fig. 1b),
we constructed a multivariate pattern template for that specific
store based on the elicited voxel patterns within a specific region
of interest (ROI). Based on which city or cities each store
appeared in, all six stores could be divided into unique city stores
(only belonged to one city) and stores shared between cities
(belonged to two cities at the same time, Fig. 1b). The
multivariate template of each store from the localizer task
provided an independent measure of the contents retrieved
during distance/duration questions (Fig. 1e). We conducted a
three-way repeated-measure ANOVA, with the factors of 6 ROIs
of MTL, 8 t-stat thresholds (tSNR) levels, and three conditions
(unique store within-city PS/shared store within-city PS/unique
store between-city PS) as within-subject variables. The results
revealed a significant ROI-by-condition interaction (F(5.527,
143.692)= 4.960, p < 0.001, η2p= 0.160, Greenhouse-Geisser
corrected, Supplementary Fig. 1a). Because there was no
significant interaction of tSNR by ROI by condition
(F(7.647,198.825)= 1.579, p= 0.136, η2p= 0.057, Greenhouse-
Geisser corrected), we averaged pattern similarity for each ROI
with different tSNR levels for the following analyses. Simple
effects revealed that the within-city PS for unique stores was
significantly higher than between-city PS for unique stores both
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in CA1 (t(26)= 3.554, p= 0.005, CI= [0.011 ± 0.006], Cohen’s
d= 0.684) and CA2/3/DG (t(26)= 3.475, p= 0.005, CI=
[0.010 ± 0.006], Cohen’s d= 0.669, FDR correction was per-
formed for six comparisons [ROIs]) whereas the within-city PS
for shared stores was not significantly different from between-city
PS for unique stores (CA1: t(26)= 1.833, p= 0.078, CI=
[0.003 ± 0.003], Cohen’s d= 0.353; CA2/3/DG: t(26)= 0.436,
p= 0.666, CI= [0.001 ± 0.004], Cohen’s d= 0.084; Fig. 2b).
These findings suggested that spatial retrieval was holistic and
specific to the unique information of an environment (and not
the shared information).

Importantly, the differences between unique store within-city
PS and unique store between-city PS could not be accounted by a
negative between-city PS for unique stores (see Supplementary
Table 3) or the semantic association between stores (see
Supplementary Note 3). Furthermore, within-city PS was higher
for unique stores than that for shared stores in CA1 (t(26)=
OpenAccess3.133, p= 0.021, CI= [0.008 ± 0.005], Cohen’s
d= 0.603) and CA2/3/DG (t(26)= 2.728, p= 0.022, CI= [0.009
± 0.007], Cohen’s d= 0.525, FDR correction was performed for 6
comparisons [ROIs]), supporting the idea that such holistic
representations were also differentiated from other city repre-
sentations. Notably, the differences between any of the three
conditions (unique store within-city PS/shared store within-city

PS/unique store between-city PS) could not be accounted by
differences in univariate activation levels to stores (Supplemen-
tary Note 3) or unequal numbers of trial pairs (Supplementary
Fig. 2c, see also Supplementary Note 4). Finally, we also examined
whether holistic representations are also present outside the MTL
by using both ROI-based and searchlight-based MPS analyses
(Supplementary Note 3). No ROIs or clusters showed holistic
representation-related effects outside the MTL. Therefore, all
further analyses were focused on hippocampal subfields. In sum,
these results show that spatial memory representations for unique
city information in both CA1 and CA2/3/DG are holistic and
environment specific, with shared store information treated
differently than stores unique to an environment.

PFC contributes to accentuating representations of landmarks
unique to an environment. An important question regards how
interference from stores from shared cities is minimized while
those unique to a city are successfully retrieved. Understanding
this mechanism is also important to understanding how inter-
ference between shared city features can be minimized during
retrieval. One candidate region is the lateral PFC, a key region
thought to directly modulate hippocampal representations62,63.
For example, lateral PFC could contribute, via functional
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interactions, to the retrieval of context-appropriate memories by
suppressing competing, context-interfering memories35,64. If so,
we predict that prefrontal activity should be different for the
retrieval of overlapping environments by enhancing the city-
unique representation and suppressing shared city representa-
tions and those unique to other cities in hippocampus.

We conducted a partial correlation analysis using the unique
store within-city PS, shared store within-city PS, and unique store
between-city PS within hippocampal subfields. We correlated
these measures with the levels of activation across the brain while
controlling for the activation level of hippocampus subfields (see
“Methods”). This allowed us to detect, in an unbiased manner,
which voxels outside of the hippocampus might be modulating
hippocampal environment-specific signals. We chose CA2/3/DG
and CA1 as regions of interest in this partial correlation analysis
because these two subfields were associated with successful
memory retrieval in our previous analyses. When using CA2/3/
DG as the region to be modulated, a direct comparison between
unique store within-city PS vs. unique store between-city PS
revealed stronger modulation of ventrolateral PFC (left inferior
frontal gyrus [LIFG], MNI: −52, 22, −2, Z= 3.91), which was
greater for within than between-city PS (Fig. 2c). By extracting
the averaged partial correlation coefficient (and employing the
Fisher’s z-transform) of three conditions (unique store within-
city, shared store within-city, and unique store between-city)
from the LIFG cluster, we observed a positive correlation between
the activation level of LIFG and unique-store within-city PS
(t(26)= 3.30, p= 0.009, CI= [0.086 ± 0.054], Cohen’s d= 0.636,
compared to zero, two-tailed, FDR correction was performed for
three comparisons, Fig. 2d). In contrast, there was no significant
correlation between the activation level of LIFG and unique store
between city PS (t(26) = 0.516, p= 0.611, CI= [0.014 ± 0.055],
Cohen’s d= 0.099, two-tailed, compared to zero) or shared store
within-city PS (t(26)=−0.667, p= 0.511, CI= [−0.013 ± 0.040],
Cohen’s d=−0.128, two-tailed, compared to zero). However,
when we used CA1 as the region to be modulated, we did not find
significant clusters of activation exceeding chance anywhere
within the brain. These results suggest the possibility that the PFC
might modulate multivariate signals in CA2/3/DG through
functional interactions resulting in prioritization of retrieval of
stores unique to a city.

Hippocampal neural codes for shared city trials involve dif-
ferentiated and “repulsed” representations. Earlier, we reported
that the distributed patterns of neural activity for stores shared
between multiple cities were significantly less correlated than
stores that were unique to the current city being retrieved. An
important next question regards the neural representation for the
shared city stores: these stores were present in at least two dif-
ferent environments and were needed to solve specific distance
questions. Yet, even when they were part of the same city, they
showed a lower correlation than stores unique to that city. This
raises the possibility that these shared stores were in a different
representation entirely, a form of repulsion24,25. Alternatively, it
could simply be that their neural signals were differentiated from
those unique to a city but still part of that same representation.

We can test these possibilities by comparing trials that are
unique to a city, trials shared between two cities, and trials shared
between three cities (Fig. 3b, c, and also see “Methods”). We
calculated the between-city PS within each condition: unique city
trials, two shared city trials, and three shared city trials (see
“Methods”). We predicted that, if the memory representation of
trials shared between cities is the same, the between-city PS of
shared city trials should be higher than between-city PS of
unique-city trials (Fig. 3a, left panel). Alternatively, if the memory

representation of the shared city trials is orthogonal between
cities (perhaps related to pattern separation), the between-city PS
of shared city trials should be comparable (statistically equivalent)
to the between-city PS of unique-city trials (Fig. 3a, middle
panel). Finally, it could be that, as part of interference reduction,
the representations for shared compared to unique city trials
undergo a form of “repulsion”. This would predict lower
between-city PS for the shared city trials compared to trials
unique to a different city (Fig. 3a, right panel).

Focusing on the 2 ROIs (i.e., CA1, CA2/3/DG) which showed
significant effects in our previous analyses related to holistic
retrieval, we conducted a two-way repeated measure ANOVA,
with the factors of 8 tSNR levels and three conditions (between-
city PS for unique city trials, between-city PS for two shared city
trials, and between-city PS for three shared city trials) as within-
subjects variables in each ROI separately. We found a significant
main effect of condition in CA1 (F(1.642, 42.694)= 5.481,
p= 0.007, η2p= 0.174, Greenhouse-Geisser corrected), but not
in CA2/3/DG (F(1.512,39.305)= 0.973, p= 0.385, η2p= 0.036).
Because there was no significant interaction of tSNR by condition
in the two ROIs (Ps > 0.174, Greenhouse-Geisser corrected,
Supplementary Fig. 3), we then averaged pattern similarity for
each ROI across different tSNR levels and compared the three
conditions in a post hoc paired t-test (Fig. 3d).

We found that between-city PS for unique city trials was
significantly higher than three shared city trials (t(26)= 3.364,
p= 0.004, CI= [0.008 ± 0.005], Cohen’s d= 0.647, two-tailed,
FDR corrected) in CA1, suggesting a repulsion effect for three
shared city trials. Between-city PS for two shared city trials,
however, was not significantly lower than unique city trials
(t(26)= 0.462, p= 0.648,CI= [0.001 ± 0.006], Cohen’s d= 0.089,
two-tailed) but was significantly higher than three shared city
between-city PS (t(26)= 3.066, p= 0.010, CI= [0.006 ± 0.005],
Cohen’s d= 0.590, two-tailed, FDR corrected) in CA1. These
findings suggest that while the three shared city trials showed
repulsion compared to the unique city trials, the two shared city
trials did not, an issue we return to in the “Discussion” section.
CA2/3DG, in contrast, did not show a significant difference
between unique city trial PS and two (t(26)=−0.561, p= 0.579,
CI= [−0.002 ± 0.007], Cohen’s d=−0.108, two-tailed) or three
shared city trials PS in CA2/3/DG (t(26)= 0.755, p= 0.457,
CI= [0.002 ± 0.005], Cohen’s d= 0.145, two-tailed, Fig. 3d),
suggesting pattern separation for shared city trials. The different
patten between CA1 (i.e., repulsion) and CA2/3/DG (i.e., pattern
separation) was confirmed by a significant ROI (i.e., CA1, CA2/3/
DG) by condition (between-city PS for unique city trials,
between-city PS for three shared city trials) interaction
(F(1,26)= 4.379, p= 0.046, η2p= 0.144). Importantly, there was
no main effect between the two ROIs (F(1,26)= 0.543, p= 0.468,
η2p= 0.020), and the observed repulsion effect in CA1 (but not in
CA2/3/DG) could not be accounted by higher between-city PS for
unique city trials in CA1 because there was no significant
difference for between-city PS for unique city trials between CA1
and CA23DG (t(26)= 1.619= 0.117, CI= [0.004 ± 0.006],
Cohen’s d= 0.312, two-tailed).

As additional control analyses, we performed the same MPS
analysis using the same number of trial pairs from each condition
and obtained similar results (Supplementary Fig. 4c, see also
Supplementary Note 5). Furthermore, considering that raw PS
scores can be influenced by tSNR and univariate activation levels,
we computed a relative difference score for between-city PS
for three shared city trials compared to unique city trials (Fig. 3e).
This result again revealed a repulsion effect in CA1
(t(26)=−3.364, p= 0.004, CI= [0.008 ± 0.005], Cohen’s
d= 0.647 compared to zero, two-tailed, FDR corrected), but
not in CA2/3/DG (t(26)=−0.755, p= 0.457, CI= [0.002 ±
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0.005], Cohen’s d= 0.145, compared to zero, two-tailed).
Together, these results indicate that both CA2/3/DG and CA1
contributed to the discrimination of overlapping memories but
through potentially different mechanisms. CA2/3/DG appeared
to differentiate similar cities by pattern separation, which was
evidenced by comparably low between-city PS for unique-city
trials compared to shared-city trials. CA1, in contrast, showed
higher between-city PS for unique-city trials compared to three
shared-city trials, which may be a form of repulsion, suggesting
that shared stores were part of a different representation.

Schematic spatial layout representation in medial PFC. Our
previous results showed a potential modulatory role for the PFC
in spatial and temporal processing when participants retrieved
information about different environments. To play a modulatory
role, however, the PFC would also appear to require some
representation of what was shared across the different environ-
ments. Given past suggestions for a role for the medial PFC
(mPFC) in schema representation43–47, in other words, the

shared positional elements across all cities (Fig. 1c), we next
tested to see whether mPFC revealed evidence for such schema.

To address this issue, we adopted a searchlight-based leave-
one-city-out SVR classifier throughout the whole brain (see
“Methods”). This method allowed us to determine whether spatial
distances in two cities could be used to generalize spatial distances
in a different city. The SVR classifier revealed two clusters whose
spatial distances were able to generalize from training on two
cities to a third one. This included a more superior cluster (mostly
located in paracingulate gyrus, MNI: −4, 50, 18, Z= 3.676,
Fig. 4a) and a more ventral cluster (mostly located in anterior
cingulate gyrus and paracingulate gyrus, MNI: −10, 34, −4,
Z= 4.019, Fig. 4c) in mPFC. Testing each city’s classifier accuracy
against chance in each cluster revealed that the classifier
performed above chance on all cities in the superior cluster (City
1: t(26)= 3.031, p= 0.005, CI= [0.070 ± 0.045], Cohen’s
d= 0.583; City 2: t(26)= 3.887, p < 0.001, CI= [0.079 ± 0.045],
Cohen’s d= 0.748; City 3: t(26)= 4.346, p < 0.001, CI=
[0.105 ± 0.045], Cohen’s d= 0.836; two-tailed, survived by FDR
correction, Fig. 4b) and the ventral cluster (City 1: t(26)= 2.881,
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Fig. 3 Multivariate pattern similarity analysis (MPS) of differentiated representations for shared city trials in the hippocampus. a Hypothesized

outcomes for shared city trial representations. First, if the memory representation of trials shared between cities is the same, the between-city PS of shared

city trials should be higher than the between-city PS of unique city trials (left panel). Second, if the memory representation of the shared city trials is

orthogonal between cities (i.e., due to pattern separation), the between-city PS of shared city trials should be comparable to the between-city PS of unique

city trials (middle panel). Third, if repulsion occurs, the between-city PS for the shared city trials should be lower than trials unique to a different city (right

panel). b Venn diagram depicting store overlap across the three environments, same as Fig.1b. c Examples of three kinds of shared city trials/conditions.

Unique city trials (i.e., a trial that could only be attributed to one city, for example, the triads “Store 1-Store 4-Store 5” was only attributable to City 1 and the

triads “Store 8-Store 9-Store 3” was only attributable to City 3, top panel), two shared city trials (i.e., trials that could be attributed to two possible cities,

for example, the triads “Store 2-Store 1-Store 6” and triads “Store 2-Store 6-Store 1” could only be attributed to City 1 and City 2 but not be attributed to

city 3, middle panel) and three shared city trials (i.e., trials that could be attributed to three possible cities, for example, the triads “Store 1-Store 3-Store 5”

and “Store 1-Store 5-Store 3” could be attributed to City 1, City 2 and City 3, bottom panel). d The neural representations for three shared city trials showed

a repulsion effect in CA1 (consistent with the third hypothesized outcome, p= 0.004, two-tailed paired-sample t-test with FDR correction) and a pattern

separation effect in CA2/3/DG (consistent with the second hypothesized outcome, averaged across 8 tSNRs). The two city shared trials did not show

lower between-city PS than unique city trials (p= 0.648, two-tailed paired sample t-test with FDR correction) but significantly higher between-city PS than

three city-shared trials (p= 0.010, two-tailed paired-sample t-test with FDR correction). e The relative difference in between-city PS for three shared city

compared to unique city trials (p= 0.004, two-tailed one-sample t-test with FDR correction, compared to zero). Notes: Boxplots are centered on the

median, boxes extend to first and third quartiles, whiskers extend to 1.5 times the interquartile range or minima/maxima in the absence of outliers. Each

individual dot represents data from an individual subjects. Each black solid diamond represents the mean of the group. All data reflect n= 27 independent

participants. PS pattern similarity. **p < 0.01. Source data are provided in the Source Data file.
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p= 0.008, CI= [0.081 ± 0.055], Cohen’s d= 0.555; City 2:
t(26= 4.800, p < 0.001, CI= [0.113 ± 0.046], Cohen’s d= 0.924;
City 3: t(26)= 4.190, p < 0.001, CI= [0.098 ± 0.144], Cohen’s
d= 0.806; chance level= 0, two-tailed, FDR corrected, Fig. 4d).
Note that these two clusters were the only two that survived
whole brain correction, suggesting schema-like codes for shared
spatial positions within mPFC.

As a control analysis, we tested whether this effect was driven
by the shared stores. In this case, we would expect that City 2
(with the most shared stores, Supplementary Fig. 5c, see also
Supplementary Note 6) would show the highest classification
accuracy, which we did not find (t(26) > 1.138, Ps > 0.266, Fig. 4b
and d see also Supplementary Note 6). We also examined whether
the spatial schema effects were present for temporal durations
estimates using a searchlight-based SVM classification analysis
(see “Methods”); however, no clusters exceeded chance levels. In

addition to the SVR classification analysis, we also tested whether
MPS might reveal quantitatively similar relationships in neural
patterns for shared locations. Therefore, we tested the spatial
schema hypothesis by performing a searchlight-based MPS
throughout the whole brain (see “Methods”), predicting that if
the mPFC contained shared layout information across cities, the
same location between-city PS would be higher than different
location between-city PS. As predicted, this analysis revealed a
significant cluster located in medial frontal pole (MNI: −8, 62, 28,
Z= 3.98, Fig. 4e and Supplementary Fig. 6d; note that we applied
a lower threshed (Z= 2.6) and a small volume correction within
mPFC mask). Together, these findings suggest that mPFC
contains representations with general spatial distance codes.

Next, we examined whether hippocampus also contained such
spatial schematic representations by performing the same SVR
classification analysis and MPS in each of the hippocampal
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Fig. 4 Representation of schematic spatial layout information across environments in medial PFC. a The searchlight leave-one-city-out SVR

classification revealed a more superior cluster (MNI: −4, 50, 18, Z= 3.68) in mPFC whose spatial distances generalized from training on two cities to a

third one (a random-effects model was used for group analyses within the mPFC mask using a cluster-forming threshold of Z > 3.10, with p < 0.05

(corrected for family-wise error rate, using random field theory). b The SVR performance for each city in superior mPFC revealed above chance

performance on cities 1, 2, and 3 (City 1: p= 0.005, City 2: p < 0.001, City 3: p < 0.001, two-tailed one-sample t-test with FDR correction, compared to

chance level of 0). c The searchlight leave-one-city-out SVR classification revealed a more ventral cluster (MNI: −10, 34, −4, Z= 4.02) in mPFC whose

spatial distances generalize from training on two cities to a third one (a random-effects model was used for group analyses across within the mPFC mask

using a cluster-forming threshold of Z > 3.10, with p < 0.05 (corrected for family-wise error rate, using random field theory). d The SVR performance for

each city in ventral mPFC revealed above chance performance on cities 1, 2, and 3 (City 1: p= 0.008, City 2: p < 0.001, City 3: p < 0.001, two-tailed one-

sample t-test with FDR correction compared to chance level of 0). e The searchlight revealed a significant cluster located in medial frontal pole (MNI: −8,

62, 28, Z= 3.98) whose between-city PS for the same locations was higher than for different locations (a random-effects model was used for group

analyses within the mPFC mask using a cluster-forming threshold of Z > 2.60, with p < 0.05 (corrected for family-wise error rate, using random field

theory). Notes: Boxplots are centered on the median, boxes extend to first and third quartiles, whiskers extend to 1.5 times the interquartile range or

minima/maxima in the absence of outliers. Each unfilled dot represents data from an individual subject. Each black solid diamond represents the mean of

the group. All data reflect n= 27 independent participants. mPFC medial prefrontal cortex, SUB subiculum. **p < 0.01, ***p < 0.001. Source data are

provided in the Source Data file.
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subfields. No ROIs within the hippocampus showed above chance
level classification for spatial distance estimates (Ps > 0.631,
Supplementary Fig. 6a) or for temporal interval estimates
(Ps > 0.134, Supplementary Fig. 6b). In addition, no hippocampal
ROIs showed higher between-city PS for the same locations than
different locations (Supplementary Fig. 6c, Ps > 0.237), suggesting
that the hippocampus did not contain such schematic layout
codes. Because a previous study from our lab15 and rodent studies
using single-neuron recordings have identified environmental-
specific codes in the hippocampus65–67, we also tested whether
the hippocampus might instead contain such differentiated
environment-specific codes, despite significant overlap between
the different cities in our task (Fig. 1a). To address this prediction,
we performed a SVM classification analysis to classify the three
cities based on all hippocampal ROIs (see “Methods”) as
participants retrieved information about spatial distances and
temporal intervals (Fig. 1e). This approach allowed us to identify
hippocampal regions where voxel patterns carried city-specific
information (see “Methods”).

The pattern classifier revealed classification rates (across all
cities) well above chance level in CA1 (mean= 43.33%, SD=
16.12%, t(26)= 3.222, p= 0.009, CI= [0.433 ± 0.061], Cohen’s
d= 2.688, chance level= 33.33%, FDR corrected, Fig. 5a; all cities
against chance, City 1: t(26)= 2.662, p= 0.020, CI= [0.438 ±
0.077], Cohen’s d= 2.151; City 2: t(26)= 2.648, p= 0.020,
CI= [0.443 ± 0.082], Cohen’s d= 2.054; City 3: t(26)= 2.108,
p= 0.045, CI= [0.419 ± 0.080], Cohen’s d= 1.984; two-tailed,
FDR corrected, Fig. 5b). Importantly, there were no significant
differences either in memory performance or reaction time (RT)
across the three cities (see Supplementary Note 1), suggesting that
classification accuracy was not confounded by a difference in
behavioral performance across the three cities (please see
Supplementary Note 1 for detailed behavioral results and
analyses). These findings replicate our previous findings of
environment-specific codes within the hippocampus but extend
them to suggest that even cities sharing significant environmental
overlap showed distinct neural representations within CA115.
These findings provide additional support for the idea of
environment-specific codes within the hippocampus.

Discussion
Here, we asked how aspects of spatial memory retrieval are
implemented in the human brain and how such spatial memory
representations are differentiated when they involve overlapping

features. We found that the hippocampus could reinstate non-
target but unique elements within the same environment during
retrieval, providing empirical evidence for “holistic retrieval” of
spatial memory. Then, we further investigated the neural
mechanisms for resolving interference when dealing with shared
features across different environments. On one hand, our findings
suggested that the hippocampus disambiguated the representa-
tion of overlapping elements across environments via pattern
separation12–14 and repulsion mechanisms24–28. On the other
hand, neural activity in the lateral PFC contributed to holistic
spatial retrieval by potentially accentuating hippocampal repre-
sentations of landmarks unique to an environment rather than
shared or unrelated ones. In addition, abstract spatial schema,
which our findings suggested were specific to the medial PFC,
played a role in providing the common spatial structure across
the three environments.

Previous work has demonstrated aspects of holistic retrieval as
part of event (episodic) memory, i.e., that multiple elements
involved in an episode can be retrieved incidentally2,3,5,6. Whether
spatial memory retrieval, however, exhibits the same property
neurally has not been tested previously, with holistic retrieval in
particular considered a critical property of cognitive maps1,68. In
this study, we employed store templates, based on a post-task scan,
to determine the neural patterns associated with each of the dif-
ferent stores participants studied. The neural templates of stores
can be seen as the memories obtained from learning the three
different environments. Based on the idea of environment-specific
codes, the neural representational distances of stores within the
same city would be closer to each other than the neural repre-
sentational distances of stores across cities. Guided by this
hypothesis, we found that the multivoxel activity patterns of
incidental stores within that city showed higher reinstatement than
those unique to another city, providing strong evidence for holistic
retrieval within the hippocampus. In addition, our findings showed
that holistic reinstatement is task-independent, though this effect
was somewhat weaker when only one task was considered (see
Supplementary Note 2). This suggests, that regardless of whether
participants retrieved spatial distances or temporal durations,
whenever they accessed the environment in our experiment, they
retrieved environment-specific codes. Together, our results provide
important evidence for holistic retrieval in human spatial memory,
a cornerstone of the idea of a “cognitive map” and one means by
which spatial information is stored collectively.

As we noted in the introduction, however, one issue with holistic
retrieval is that it does not provide an obvious means for

Fig. 5 Environment-specific representations in CA1. a The SVM classifier revealed overall classification accuracy in CA1 (across all cities) was well above

chance (t(26)= 3.222, p= 0.009, two-tailed one-sample t-test compared to chance level= 33.33% which survived FDR correction). b Testing each city’s

classifier performance against chance in CA1 revealed that the classifier performed above chance on all cities (City 1: p= 0.020, City 2: p= 0.020, City 3:

p= 0.045, two-tailed one-sample t-test compared to chance level= 33.33% with FDR correction). Notes: Boxplots are centered on the median, boxes

extend to first and third quartiles, whiskers extend to 1.5 times the interquartile range or minima/maxima in the absence of outliers. Each unfilled dot

represents data from an individual subject. Each black solid diamond represents the mean of the group. All data reflect n= 27 independent participants.

mSUB subiculum. *p < 0.05, **p< 0.01. Source data are provided in the Source Data file.
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distinguishing shared elements across environments. Accumulating
evidence suggests that pattern separation within the hippocampus
may serve as an important means for distinguishing similar
stimuli12–14, with our findings suggesting such a mechanism, at least
as detected using MVPA and high-resolution fMRI, could play a
partial role in distinguishing shared elements across cities. In the
current study, we correlated the trials involving at least one unique
store with trials involving stores unique to another environment by
excluding pairs that had overlapping stores to create a clearer and
meaningful baseline. Therefore, the comparison of the similarity of
shared city trials between different environments to the similarity of
trials unique to an environment can be used to access the extent of
differentiation among shared city trials. In CA2/3/DG, we found
neither the similarity of two nor three shared city trials was sig-
nificantly different from baseline, likely reflecting orthogonal
memory representations13,15–19,69. Such distinct representations of
shared city trials are likely important to discriminating elements
within similar environments70. Particularly in our experimental
design, the shared city trials involved identical stores and were
shared between two or three cities. Therefore, reduction in the
distributed patterns of neural activity in CA2/3/DG may be
important to forming distinct codes for these competing trials to
reduce memory interference and allow successful retrieval of
environmental information.

At the same time, we found evidence for a different mechanism
within CA1. The between-city PS of three shared city trials in
hippocampus was significantly lower than that for unique and
two shared city trials, representing a significant reduction in
overlapping memories, which is called “repulsion”24–28. Past
studies have shown pattern separation mechanisms in the hip-
pocampus using single-neuron activity16,20, multi-neuron activity
patterns21, LFP activity patterns22, and fMRI activity pattern15,
and while only past fMRI studies have shown repulsion24,71, we
note that theoretically, such a mechanisms could represent a
viable, although untested, manner by which single-neuron
activity and LFPs could also process overlapping information.
Such reverse representations have been reported previously for
overlapping routes during virtual navigation using fMRI24

although, to the best of our knowledge, not in any previous
rodent single-neuron studies or fMRI studies requiring
environment-specific retrieval. Here, by using high-resolution
fMRI, we provide evidence for a functional role of “repulsion” in
CA1 for separating overlapping information during spatial
retrieval

At first blush, this result seems at odds with some theoretical
models and animal studies suggesting that CA1 is less sensitive to
small environmental changes compared to CA2/3/DG and may
play a greater role, in some instances, in pattern completion for
previous environments rather than remapping17,72–74. Because
CA1 receives direct input from subfields CA3 and DG, however,
it is possible that CA1 can serve to further discriminate shared
information as part of interference reduction. Such a finding is
also consistent with theoretical models suggesting that CA1 may
represent changes in input in a linear fashion74, by which its
representational space/range is large enough to allow “reverse”
representations to occur–even past the point of orthogonaliza-
tion. According to this account, positive, zero, and negative MPS
correlations are simply different degrees of similarity existing
along a continuous spectrum of pattern separation/completion.
Such a mechanism would allow greater amplification of differ-
ences among environmental representations when they are
identical, such as occurred in our paradigm, to achieve precise
spatial memory for each city. Indeed, this result was most pro-
minent for three shared city trials while at the same time, in CA1,
pattern similarity for two shared city trials was comparable to
unique-city trials, suggesting a pattern separation effect. Past

results suggest that repulsion mechanisms may necessitate sig-
nificant learning before they arise24, and it is possible, in an
analogous way, that three city-shared trials represented the type
of overlearning requiring such repulsion. Future studies, however,
will need to better define the conditions under which repulsion
and pattern separation might operate. Finally, given the lack of a
direct mapping between hippocampal BOLD fMRI and single-
neuron/LFP activity recorded at single electrodes in the
hippocampus75,76, it is unclear exactly how the fMRI findings
here related to pattern separation and repulsion in particular
might relate to the activity of place cells. While there is evidence
supporting a correspondence between multivariate patterns at the
level of fMRI BOLD activity and populations of single neurons/
LFPs77–81, whether a population of single neural/LFP codes
exhibit the same reversed codes is still need of direct testing. To
more directly address this issue, we performed simulations of how
large groups of neurons displaying distributed codes might relate
to distributed patterns of voxel-based activity using fMRI. Our
simulations support the idea that, under some situations, both
“separation” and “repulsion” mechanisms at the level of single
neurons / LFPs, provided they are sufficiently distributed, can be
detected with MVPA methods at the level of changes in patterns
across voxels (Supplementary Note 7). Overall, these results
support adaptive and flexible representational mechanisms
within the hippocampus as important to mediating memory
interference20,25,26,82.

Is it possible that the evidence we obtained for repulsion could
arise from other factors? Because the three shared city trials were
the trials composed by stores shared across three cities, could our
effects have been driven by repetition suppression? A control
analysis, however, in which we compared activation levels
between unique city trials and three shared city trials did not
reveal any differences (see Supplementary Note 3). Because stores
shared across the three different cities were seen more often
during encoding, could it be that attention demands drove our
effects by altering the noise83 of neuronal representations for
stores unique to a city? We did not observe any significant dif-
ferences in reaction time or accuracy between the unique city
trials and three shared city trials, indicating no observable sig-
nificant attention differences between the two conditions (see
Supplemental Note 1 for a full presentation of the behavioral
results). Finally, as we discussed above, CA1 showed reinstate-
ment of unpresented unique stores specific to an environment
during spatial memory retrieval. In this case, when retrieving the
three shared city trials, the unique stores of the current city might
reinstate incidentally, adding unique information to the repre-
sentation of the three shared city trials, therefore increasing dis-
similarity between those trials. However, if the low similarity of
three shared city trials were fully attributed to the reinstatement
of unique stores, the representations of three shared city trials
should not be lower than unique city store trials (i.e., orthogo-
nalization). Therefore, this account fails to explain why the
representations of the three shared city trials were past the point
of orthogonalization. Instead, we favor an explanation in which
trials involving stores shared across all three cities involved a
completely different neural representation, which would be better
supported by mechanisms like repulsion compared to pattern
separation.

Despite the strong evidence that our findings provided for a
role of the hippocampus in representing the different environ-
ments in our task via pattern separation and repulsion, we also
found evidence that the PFC played important role in our task.
Previous research suggests that the lateral PFC is believed to be
involved in the control processes such as attention, selection,
updating, and maintenance84,85. Specially, past studies have
suggested an important role for the lateral PFC important for
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planning86 and detecting novelty87 during navigation. These
control processes might promote interference resolution by
strengthening task-relevant hippocampal representations62,63.
Supporting this idea, our results provide evidence for a role for
PFC in facilitating spatial holistic retrieval: we found a positive
correlation between ventrolateral PFC (i.e., LIFG) activity and
holistic retrieval in the hippocampus, which was only true for
landmarks unique to an environment (Fig. 2c, d). Our findings,
therefore, suggest a possible framework for spatial holistic
retrieval: the hippocampus is not the only region responsible for
incidental reinstatement of unique information within an envir-
onment, and interactions with the lateral PFC could provide a
mechanistic basis for accentuating the fidelity of the reinstated
stores as part of mediating interference during successful retrie-
val. Neurostimulation or lesion studies would be necessary,
however, to determine the directionality of this potential influ-
ence. Another possibility, although less likely given the suggested
role of PFC in cognitive control, is that hippocampal subfields
modulate schema-like representations in the PFC or both regions
interact in some to-be-defined manner during holistic retrieval.

To successfully complete both the spatial distance and tem-
poral interval judgments required during retrieval, participants
would also need to learn the locations of each of the stores.
Although store identity changed between the different environ-
ments, their locations remained constant (Fig. 1a, c), and there-
fore participants likely abstracted a representation of the locations
of the stores common to all cities. This allowed us to address
whether such a spatial “schema” was represented in the hippo-
campus or in PFC, with past studies supporting both
possibilities40–47,88–90. A recent primate study found direct evi-
dence that macaque hippocampal cells abstract a generic spatial
schema from repeated experiences of one environment, regardless
of the surface features facilitating learning in a novel
environment40. In contrast, another recent non-human primate
study did not find evidence for a common representation of
location within the hippocampus91, consistent with the idea that
such schema representations may be stored elsewhere. Although
our study did not involve single-neuron recordings, and therefore
may have involved different forms of neural-related information
coding schemes, we did not find evidence for spatial schema
within the hippocampus. Specifically, our results from a leave-
one-city-out classification analysis suggested that spatial distances
learned from two cities did not generalize to the third new city in
hippocampus and results from a MPS analysis also suggested that
the between-city PS for the same locations was not higher than
different locations in hippocampus. On the contrary, the same
leave-one-city-out classification and MPS analyses revealed evi-
dence for spatial schema within mPFC.

The leave-one-city out SVR classification analysis places more
emphasis on decoding spatial distance information while the MPS
approach focused on the same location information across three
cities. While both two approaches revealed different aspects of
spatial schema representations, the SVR findings may be better
positioned than the MPS findings to allow inference about spatial
schema because the SVR analysis explicitly utilized distance
measures. Therefore, the present findings are consistent with
previous studies in which mPFC is involved in schema con-
gruency effects during encoding, post-learning consolidation,
and retrieval92, and also in accordance with the SLIMM (schema-
linked interactions between medial prefrontal and medial
temporal regions) model43 which assume reciprocal mPFC-
hippocampus coupling93,94. Taken together, our findings
demonstrate that the hippocampus and mPFC play specific but
important roles in spatial memory retrieval in our task. We found
that the hippocampus was more involved in environment-specific
rather than generic spatial layout representation while the mPFC

played a critical role in representing common elements across
environments in the form of spatial schema.

In summary, the findings of the study provide support for
holistic retrieval in spatial memory retrieval, leading us to pro-
pose a framework involving multiple interacting brain regions to
explain how this might occur. Importantly, we found that two
brain regions in particular interact with each other to accomplish
successful spatial memory retrieval: the hippocampus is involved
in detailed and differentiated memory representation to resolve
interference when encountering multiple similar environments
while the mPFC is involved in representing a common spatial
schema across different learning environments to facilitate spatial
memory retrieval. In this way, both areas are central to spatial
memory retrieval, but play different roles based on the task
demands.

Methods
Participants. A total of 32 right-handed participants were recruited from the
Tucson community and were compensated for their time. Four participants were
excluded from the analysis due to excessive movement (>1 voxel), and one par-
ticipant was excluded due to an incidental finding. Therefore, the final sample size
was comprised of 27 participants (17 females, mean age: 22.52 years, range: 18–35
years). All participants had normal or normal-to-corrected vision and normal color
perception. Based on self-report, all participants were screened to ensure they had
no neurological conditions. The study was approved by the Institutional Review
Board at the University of Arizona and written Informed consent was obtained
from each participant prior to the experiment.

Materials. The experiment consisted of two sessions: an encoding session outside
the scanner and a retrieval session inside the scanner. Three different virtual
environments were created using Unity3D (https://unity3d.com). The three dif-
ferent cities contained stores arranged in a circle, and each consisted of six different
stores located on the edge of the circle. One store (“Camera Store”, which was
consistent across three environments) was in the center of the circle (Fig. 1a),
allowing us to manipulate temporal duration while holding spatial distance con-
stant. All three cities had the same basic layout (Fig. 1c), including the same ground
and wall textures; thus, cities only varied in terms of what stores were shared or
distinct across cities (Fig. 1a).

The degree of similarity between cities was proportionate to the number of
overlapping edge stores between cities (we did not take the center “Camera Store”
into consideration, because the center store was the same across the three cities,
Fig. 1b). Specifically, Cities 1 and 2 were the same except the “Store 4” in City 1 was
changed to “Store 7” in City 2. Cities 2 and 3 were the same except the “Store 2”
and “Store 6” in City 2 were changed to “Store 8” and “Store 9” in City 3,
respectively. Therefore, Cities 1 and 2 had 5 overlapping stores (i.e., “Store 1”,
“Store 2”, “Store 3”, “Store 5” and “Store 6”); Cities 2 and 3 had four overlapping
stores (i.e., “Store 1”, “Store 3”, “Store 5” and “Store 7”); Cities 1 and 3 had three
overlapping stores (i.e., “Store 1”, “Store 3” and “Store 5”). All the three cities also
had three overlapping stores (i.e., “Store 1”, “Store 3” and “Store 5”, Fig. 1b).

For the temporal interval task, participants encoded two different durations: 8 s
(i.e., “Store 3”, “Store 5”, “Store 6” and “Store 9”) and 16 s (i.e., “Store 1”, “Store 2”,”
Store 8”, “Store 4” and “Store 7”, Fig. 1a).

Experimental procedures
Prescan encoding. During the encoding session, the participants were trained to
perform two tasks involving navigating each city: a spatial distance task and
temporal interval task (Fig. 1d). Participants were instructed that there would be
three cities, with some stores shared across cities (see “Methods”), and that there
would be a spatial distance/time interval retrieval task to test whether they could
successfully learn this information in each city. At the beginning of each round of
the spatial distance task, participants were placed at the center of the city and
viewed videos of travel from the center store to peripheral stores in a randomized
order. All the participants were asked to learn as much as they could about store
locations during traversals. Similarly, in the time interval task, participants were
asked to learn the time interval between the center and each store. We consider
differences between the distance and interval tasks in a separate paper, with our
focus here on retrieval of the different spatial environments, which would be
common to both tasks. To ensure that participants did not merely use a counting
strategy to encode time interval information, we added a distractor task (“math
problem”) during the route from the center of the city to each store. A math
problem would pop up in a pseudorandom position during the route to each store.
Participants were asked to focus on processing the time interval while at the same
time correctly answering the arithmetic question by the time they arrived at the
store. This ensured that participants were not using a counting task to encode
temporal intervals. Participants needed to determine their answer and submit it
when they reached the store. Furthermore, the travel speed from the center to each
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store was not constant but variable to avoid the possibility that participants could
merely take advantage of the speed differences to discriminate time intervals.

The encoding process repeated as many times as the participants needed in
order to learn spatial distances and temporal intervals before they moved on to the
next city. The learning order of type of task (space/time) was randomized across all
participants. After participants learned all three cities for one type of task (e.g.,
spatial distance), they then learned three cities for the other task (e.g., temporal
interval task). Before starting the main encoding task, participants also performed a
practice session in which they visited three additional stores in a virtual city to
familiarize themselves with the main task.

After the spatial and time encoding task, we tested participants’ memory for
each of the three cities for both the spatial distance and temporal interval by
performing a shorter version of the memory retrieval task they would experience in
the scanner. The short version retrieval task was the same as the main fMRI
memory retrieval task (see fMRI memory retrieval task, Fig. 1e) but only included
12 trials of spatial distance questions (not used in fMRI task) and 5 trials of
temporal interval questions (used in fMRI task) for each city. If a subject failed to
reach the memory accuracy criterion (i.e., 80%), they re-learned and were re-tested
on their memory for all three cities.

fMRI memory retrieval task. The fMRI retrieval session consisted of six consecutive
spatial runs and six consecutive temporal runs (two per city), each including 15
trials and lasting 4 min and 40 s pertaining to a single city and a single task. The
order of retrieval runs (spatial or temporal) across participants was fully coun-
terbalanced and was pseudo randomized with rules dictating that no city could be
tested twice in a row and that each city must be tested once before a city could be
repeated. The spatial and temporal retrieval probes were rendered identically
during retrieval. Before starting each retrieval run, text and verbal instructions
reminded participants of which city and which type of task they would be
retrieving next, followed by a 7.77 s (3 TRs) refresher picture which included all the
stores of that city. There were not shown the actual layout of the city just pictures
of stores to cue the correct city.

A slow event-related design (18.13 s for each trial) was used in this study to
better characterize the activation pattern for each trial (Fig. 1e). During spatial
distance blocks, participants were instructed to retrieve the spatial distance by
making judgments of the relative distances of stores in that city. For each trial,
participants saw three stores on the screen for 9 s, with one store on the top and
two below (Fig. 1e). Participants were asked to compare which of the two bottom
stores was closer to the upper reference store and indicate their choice by
pressing the corresponding key on an MR-compatible button box. A “one”
response indicated that the lower-left store was closer to the top store, a “two”
indicated the lower right store, and a “three” indicated that the distance from the
two bottom stores to the reference store was equal. For temporal trials, the store
in the center of the city (“Camera Store”) always appeared on the top of the
screen, and two peripheral stores appeared on the bottom. Participants were
instructed to judge which of two intervals between the center (top) and bottom
stores was shorter. Once participants pressed the button within 9 s, a black
outline would appear to indicate that they have completed the current question,
while these three stores would stay on the screen until 9 s finished. Next,
participants performed an active baseline task for 7.77 s, in which they pressed
“one” for the appearance of an “X”, and “two” for the appearance of an “O”95. A
self-paced procedure was used to make this task engaging; each letter appeared
0.2 s after the response.

One hundred and eighty trials were presented in 12 runs, with half as spatial
runs and half as temporal runs. One hundred and eight of these trials (60% of total
trials) presented “unequal” comparisons in which the two bottom stores were an
unequal spatial or temporal distance from the reference store. Seventy-two of these
trials (40% of total trials) presented “equal” comparisons in which the two bottom
stores shared an equal spatial or temporal distance from the reference store.

fMRI localizer task. After the retrieval task, participants were asked to complete a
localizer task involving a vowel counting task, which included two runs, each
containing 18 trials (~6 min). This task served as a localizer task to allow the
creation of multivariate pattern templates for each of six stores (i.e., “Store 2”,
“Store 4”, “Store 6”, “Store 7”, “Store 8”, “Store 9”, see more details in tSNR based
fMRI MPS). The structure of each trial in the vowel counting task was the same as
in the retrieval task (Fig. 1e). Here, participants were asked to count the number of
vowels (i.e., “A”, “E”, “I”, “O”, “U”; “Y” did not count) in each of the three store
names and then select which of the two bottom stores had the closest number of
vowels compared to the store on the top. Participants were asked to perform both
vowel counting and X/O judgment task as accurately and quickly as possible.

To allow us to build store “templates”, each triad of stores included one old
store which was presented in the retrieval task with two new stores for vowel
counting. These new stores were randomly selected from 24 unstudied stores. The
purpose of the new stores was to allow us to identify unique activation patterns
associated with a specific old store while at the same time allowing us to keep the
trial structure the same as during the spatial retrieval questions. The positions of
the old stores in each triad were counterbalanced such that all position
arrangements for each old store were presented (i.e., old store-new store A-new
store B, new store C-old store-new store D, new store E-new store F-old store).

Thus, each old store was repeated three times in a different position of the triad
within a run with an inter-repetition interval ranging from 2 to 12 trials.

MRI image data acquisition. All participants were tested immediately following
encoding in the Siemens 32-Channel 3 T “Skyra” scanner, located in the University
of Arizona. Visual stimuli were projected onto a screen behind the scanner, which
was made visible to the participant through a mirror attached to the head coil.
Stimuli and responses were presented and recorded by PsychoPy (https://
www.psychopy.org) on a Windows laptop. High-resolution functional images were
acquired using a simultaneous multi-slice whole-brain echo planar imaging (EPI)
sequence (interleaved acquisition, TR= 2590 ms, TE= 30 ms, flip angle= 82
degree, field of view (FOV)= 234 mm, matrix= 128 × 128, slice thickness= 1.8
mm, slices= 84, slice acceleration factor= 3, phase encoding direction= right to
left, bandwidth= 1562 Hz/pixel), adapted from a previous study96. High-
resolution structural images were obtained using a 3D, T1-weighted MPRAGE
(1 mm3 isotropic) sequence acquired for the whole brain (FOV= 256 mm,
matrix= 256 × 256, slice thickness= 1 mm, TR= 2100 ms, TE= 2.33 ms, flip
angle= 12 degree, bandwidth= 190 Hz/pixel). High-resolution anatomical images
of the hippocampus and surrounding cortex were acquired with a T2-weighted
turbo-spin echo (TSE) anatomical sequence (FOV= 200 mm × 200mm,
matrix= 448 ×;448, TR= 4200.0 ms, TE= 93.0 ms, flip angle= 139 degree, slice
thickness= 1.8 mm, 28 slices, bandwidth= 199 Hz/pixel). Sequences were
acquired perpendicular to the long axis of the hippocampus. An additional
coplanar matched-bandwidth high-resolution gradient-echo EPI sequence (TR=
6120 ms, TE= 39 ms, slices= 84, FOV= 245 mm, matrix= 128 × 128, flip
angle= 90 degree, bandwidth= 1446 Hz/pixel) was acquired to aid in registration
of the EPI sequence to the high-resolution structural images. B0-field maps were
acquired immediately with a gradient recalled echo sequence (TR= 888.0 ms,
TE1 = 4.92 ms,TE2= 7.38 ms, flip angle= 90 degree, FOV= 256 mm, slice
thickness= 3 mm, slices= 84) following the coplanar matched-bandwidth
sequence to correct for inhomogeneities of the magnetic field97. This sequence
covered the whole brain, allowing us to correct field distortions for the entire EPI
sequence.

fMRI data preprocessing. Image preprocessing was performed by using FEAT
(FMRI Expert Analysis Tool), version 6.00, implemented in FSL (part of the FSL
package; http://www.fmrib.ox.ac.uk/fsl). The first seven images were automatically
discarded from each run by the scanner to allow for scanner to equilibrate. We
additional discarded 3 volumes in which the refresher picture was present before
the retrieval task started. The EPI images were first corrected for geometric dis-
tortion using participants’ field maps97,98 and underwent motion-correction,
temporal filtering (nonlinear high-pass filter with a 100 s cutoff), and slice-timing
correction. Six motion parameters were added as confound variables to the model.
Residual outlier timepoints were identified using FSL’s motion outlier detection
program and integrated as additional confound variables in the first-level general
linear model (GLM) analysis. No spatial smoothing was applied for single-trial
estimation (see below). All functional images were linearly registered to individual-
subject T1 MPRAGE structural volumes in a two-step process via a coplanar
matched-bandwidth sequence described above using FLIRT. Registration from
structural images to the standard MNI-152 template was further refined using
FNIRT nonlinear registration for higher-level group analysis when needed (see
below).

Single-trial response estimates. The GLMs were performed separately to esti-
mate the activation pattern for each of 180 retrieval trials and 36 localizer trials. In
this single-trial model, a Least Square–Separate (LS-S) approach was used, in which
the trial of interest was modeled as one regressor, with all other trials modeled as a
separate regressor99. Specifically, each single-trial GLM included five regressors: (1)
the trial of interest; (2) all other trials; (3) black outline stage; (4) fixation; (5) all
incorrect trials within the active baseline task. Each event was modeled at the time
of stimulus onset and convolved with a canonical hemodynamic response function
(double gamma), whereas the correct baseline trials (X/O judgment task) were not
coded and thus were treated as an implicit baseline. To control for the effects of
head motion, six motion parameters were included in the GLM model as a cov-
ariate. The t-map for each trial was used for multivariate pattern similarity analysis
(MPS) and SVR classification analysis to increase the reliability by normalizing for
noise100.

Run-based response estimates for SVM classification analysis. The GLMs
were performed separately to estimate the activation pattern for each retrieval run.
Each single-run GLM included 6 regressors: (1) the remembered trials; (2) for-
gotten trials; (3) missed trials; (4) black outline stage; (5) fixation; (6) all incorrect
trials within the active baseline task. Each event was modeled at the time of sti-
mulus onset and convolved with a canonical hemodynamic response function
(double gamma), whereas the correct baseline trials (X/O judgment task) were not
coded and thus were treated as an implicit baseline. To control for the effects of
head motion, six motion parameters were included in the GLM model as a cov-
ariate. This resulted in 4 run-based data points per city per subject. The run-based
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t-map has greater reliability101 and could be used for SVM classification analysis to
increase accuracy102 and power103.

Subfield demarcation and ROIs. Automatic hippocampal subfield segmentation
software (ASHS)104,105 was used to segment the subregions of the MTL based on
each participant’s high-resolution T2-weighted MRI image. The MTL was seg-
mented into CA1, CA2/3, DG, and subiculum (SUB), perirhinal cortex (PRC) and
entorhinal cortex (ERC) and parahippocampus cortex (PHC). We combined the
CA2/3 and DG subfields as finer distinctions cannot be made at the acquired
resolution. Single-trial t-map were then obtained within those 6 ROIs (CA1, CA2/
3/DG, SUB, ERC, PRC, PHC) for each subject for further MPS and classification
analysis. Following a previous study43, the medial PFC mask was defined as a set of
three regions within the Brodmann areas (BA) 10, 11, and 32.

Temporal signal-to-noise ratio (tSNR). We adopted voxel-wise tSNR to define
the fMRI time series stability106. Specifically, for each MTL ROI, we obtained the
voxel-wise tSNR of localizer task by calculating the mean of each voxel’s time series
divided by its standard deviation. Then the voxels in each ROI could be ranked
from high to low by the intensity tSNR and could be further divided into eight
portions by different levels of percentile (i.e., 10th, 20th, 30th, 40th, 50th, 60th,
70th, 80th). For example, “10th percentile of tSNR” means that voxels with tSNR
less than the bottom 10% of tSNRs in the ROI were removed from the analysis.
Therefore, by applying different percentile tSNR as the threshold of t-stat, we could
exclude different levels of influence of spurious voxels in the MPS.

tSNR based fMRI multivariate pattern similarity analysis (MPS). Multivariate
patterns of stores. In the localizer task, six studied stores (i.e., “Store 2”, “Store 4”,
“Store 6”, “Store 7”, “Store 8”, “Store 9”) were repeated 6 times (3 times per run, see
Procedures). Based on the specificity, these six stores could be classified into two
categories: unique city stores and stores shared across cities. For example, “Store 4”
(only belongs to City 1),”Store 8” (only belongs to City 3), and”Store 9” (only
belongs to city 3) are unique city stores because they were only presented in one
city, while “Store 2” (belongs to City 1 and City 2), “Store 6” (belongs to City 1 and
City 2) and “Store 7” (belongs to City 2 and 3) are stores shared across cities,
because they were presented in two cities. Then, we constructed a multivariate
pattern template for each of the six studied stores that were presented in the
localizer task by averaging the activation patterns (i.e., single-trial t-maps) across
six repetitions of a given store. The template of each store could provide a neural
measure for a memory trace of each store during memory retrieval. Because the
vowel counting task, which occurred at the end of the fMRI session, did not involve
spatial retrieval and occurred after participants had retrieved information from all
three environments, it is unlikely that the templates contained any environment-
specific information and therefore could provide indices to store identity.

We then applied MPS by measuring the similarity of activation patterns
between each of the six store templates and each remembered trial in both retrieval
tasks (spatial and temporal) based on the different thresholds of tSNR in each
hippocampal subfield. We followed the approach of Power et al.107 and censored
TRs with a framewise displacement >0.5 mm. Specifically, to quantify unique store
within-city pattern similarity (PS), pairwise Pearson correlation coefficients were
calculated by correlating each unique city store template with the activity patterns
evoked by correctly retrieved trials that did not include the given store within that
specific city. For example, to determine whether participants retrieved a store not
contained in a retrieval triad, we correlated the template of “Store 4” (belongs to
City 1) from the control task with any correctly retrieved trial which did not
include “Store 4” within City 1). Similarly, the unique store between-city PS was the
correlation between each unique city store template and the activity pattern elicited
by the remembered trials that did not belong to the current city. For example, to
determine whether participants retrieved a store not contained in a retrieval triad,
we correlated the template of “Store 4” (belongs to City 1 only) from the localizer
task with any remembered trial of City 2 and City 3. Finally, the shared store
within-city PS was the correlation between each store shared across city template
and the activity pattern of each remembered trial that did not include the current
store within all the shared cities. For example, to determine whether participants
retrieved a store not contained in a retrieval triad, we correlated the template of
“Store 2” (belongs to City 1 and City 2) from the localizer task with the activity
pattern of remembered of trials without “Store 2” within City 1 and City 2. Since
correlations are inherently a pairwise comparison, many correlations were
performed and then averaged together for a metric of within-condition similarity.
The resulting correlation coefficients were transformed into Fisher’s z-scores and
then input into further group analyses.

To examine the repulsion hypothesis, we also applied the tSNR based MPS. All
the remembered trials of the retrieval task could be divided into three conditions:
unique city trials (i.e., the trial that could only be attributed to one city, for
example, the triads “Store 1-Store 4-Store 5” was only attributable to City 1 and the
triads “Store 8-Store 9-Store 3” was only attributable to City 3, Fig. 4c, top panel),
two shared city trials (i.e., the trial could be attributed to two possible cities, for
example, the triads “Store 2-Store 1-Store 6” and “Store 2-Store 6-Store 1” could
only be attributed to City 1 and City 2 but not be attributed to city 3, Fig. 4c,
middle panel) and three shared city trials (i.e., the trial could be attributed to three

possible cities, for example, the triads “Store 1-Store 3-Store 5” and “Store 1-Store
5-Store 3” could be attributed to City 1, City 2 and City3, Fig. 4c, bottom panel).
We calculated the between-city pattern similarity of the independent trials that
corresponded to a specific condition (unique city trials, two shared city trials and
three shared city trials) separately for spatial and temporal retrieval tasks. Note that
all MPS analyses involved correlating between different runs of retrieval, thus
avoiding temporal autocorrelations artificially inflating or biasing results.

In addition, we also calculated between-city pattern similarity of trials for a
specific condition across spatial and temporal tasks to utilize as many as possible
correlations to obtain stable metric within a condition. Note, for those pairs which
were included in the between-city PS of unique-city trials calculation, we excluded
the unique-city pairs that have overlapping stores, for example, the triad “Store
1-Store 4-Store 6 and triad “Store 1-Store 8-Store 7”, to make the representation of
each triad as distinct from each other as possible. Because three shared city trials
that involved in the between-city PS calculation are perceptual identical, for
example, the correlation between triad “Store 1-Store 3-Store 5” and triad “Store
1-Store 5-Store 3”. We also matched the two shared city trial pairs by selecting the
pairs that had the same stores, for example, we only calculated the correlation
between triad “Store 1-Store 2-Store 6” and “Store 1-Store 6-Store 2”, we did not
calculate the correlation between triad “Store 1- Store 2-Store 6” and triad “Store
1-Store 3-Store 6”. The resulting correlation coefficients were transformed into
Fisher’s z-scores and then input into further group analysis.

Searchlight-based MPS. To examine the shared spatial layout information across
three cities, we applied the MPS throughout the whole brain using searchlight
approach60. For each voxel, signals (i.e., single-trial t-maps) were extracted from a
cubic ROI containing 343 surrounding voxels throughout each subject’s whole
brain. Specifically, to quantify shared-layout information, the same location
between-city PS was calculated by correlating the remembered trials (in both
spatial and temporal task) that share the same location from different cities using
Pearson correlations. For example, the triads “Store 1-Store 2-Store 6” in City 1
were correlated with the triads “Store 1-Store 8-Store 9” in City 3 (Fig. 1a). In
contrast, the different locations between-city PS was calculated by correlating the
remembered trials (in both spatial and temporal task) that come from different
locations in different cities. For example, the triads “Store 1-Store 2-Store 6” in City
1 were correlated with the triads “Store 1-Store 8-Store 5” in City 3 (Fig. 1a). Note,
given that different location pairs usually contained perceptual differences (dif-
ferent stores), which in turn could contribute to lower PS for different locations
than same locations, we matched the number of different stores between pairs
when calculating PS. For example, there are two different stores between the triads
“Store 3-Store 7-Store 6” and “Store 3-Store 7-Store 9” when calculating the same
location between-city PS. Accordingly, when calculating the different locations
between-city PS, we only consider the pairs that also involve two different stores,
for example, the triads between “Store 1-Store 7-Store 6” and “Store 1-Store 7-Store
8”. We transformed these similarity scores into Fisher’s z-scores and compared the
differences between the same location and different location pairs. Notably, we only
included correctly retrieved trials into consideration and excluded any trials with
any censored frames during the duration of the modeled GLM response using a
framewise displacement threshold of 0.5 mm. A random-effects model was used for
group analyses within the mPFC mask using a cluster-forming threshold of Z > 2.6,
with p < 0.05 (corrected for family-wise error rate, using random field theory).

Correlating frontal activity with hippocampal PS. We also examined the role of
prefrontal activity in modulating hippocampal PS during retrieval. Because the
CA2/3/DG and CA1 were the regions that showed significant city-specific PS and
conformed to our holistic hypothesis (see Results), we focused on these two regions
and tested whether the ROIs could be modulated by PFC activity. We correlated
the activation of each condition (unique city store within-city PS/unique city store
between-city PS) in each voxel of the whole brain during retrieval with the cor-
responding PS in CA2/3/DG and CA1, separately. Because frontal activity was
associated with the activity level in other brain regions, which was in turn asso-
ciated with PS, we conducted a partial correlation analysis by correlating the
activation level in each voxel across the whole brain and the corresponding PS of
CA2/3/DG and CA1 while controlling for the activation levels of CA2/3/DG and
CA1. The resulting Spearman’s rank correlation coefficients were transformed into
Fisher’s z-scores and then directly compared between the unique store within-city
vs. unique store between-city trials, which was put into further group analyses
using a cluster-forming threshold of Z > 3.1, with p < 0.05 (corrected for family-
wise error rate using random field theory, Fig. 2c).

Classification analysis
Searchlight-based leave-one-city-out SVR classification. To test whether the medial
PFC represented the shared spatial layout schema, we performed a linear Support
Vector Regression (SVR)108 using LIBSVM 3.12 (https://www.csie.ntu.edu.tw/
~cjlin/libsvm/) as implemented in MATLAB (The MathWorks) to classify spatial
distance using a searchlight approach60. Briefly, for each voxel, t-maps were
extracted from a cubic ROI containing 343 surrounding voxels throughout each
subject’s whole brain. The idea of the leave-one-city-out classification was that if
the mPFC could support shared layout schema, the spatial distances learned from
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two cities should be able to generalize to the third new city. This is because the new
city had the same layout as the two learned cities, even though the new city had
new stores which they were not presented in the two learned cities (Fig. 1c). First,
for each triad, we measured the physical distances by calculating the Euclidean
distance between the top store displayed and each of the bottom stores (Fig. 1e).
Then, we calculated the sum of the two Euclidean distances as the behavioral index
of spatial distance of each triad. Notably, we only took correctly retrieved trials into
consideration and excluded any trials with any censored frames during the dura-
tion of the modeled GLM response using a framewise displacement threshold of
0.5 mm. There were 18 possible Euclidean distances in all, and the Kolmogorov-
Smirnov Test (KS-test) for group-level uniform distributions indicated that the
frequency of the distance was not uniform (t= 0.168, p= 0.016, Supplementary
Figure 5a) because there were too many trials in the shortest distance category (i.e.,
distance= 66) compared to the other distances. However, when the number of the
shortest distance trials decreased from 14 to 11, the distribution became uniform
(t= 0.137, p= 0.08, Supplementary Fig. 5b). Then, this step was performed for
each individual participant to identify the proper number of the shortest distance
trials to ensure a uniform distribution of distances (Ps > 0.05 in KS-Test). In each
iteration of the leave-one-city-out cross-validation, a SVR model was trained on
runs from two cities, which generated a prediction value of the runs of the third
city based on each cubic ROI’s activation patterns. The accuracy of the SVR pre-
diction was then calculated as Spearman’s rank correlation coefficient between
actual and predicted values of the spatial distance index. The resulting correlation
coefficients were transformed into Fisher’s z-scores and then input into further
group analyses within the mPFC mask using a cluster-forming threshold of Z > 3.1,
with p < 0.05 (corrected for family-wise error rate, using random field theory).
Similarly, the same SVR classification analysis was performed on hippocampal
ROIs to test whether hippocampus could support shared spatial layout schema
during spatial distance retrieval.

For temporal interval task, we also performed the searchlight-based leave-one-
city-out SVM classification analysis across the whole brain. Similar to spatial
distance task, for each triad, the sum of time durations between the top store (the
center of the city) and each of the two bottom stores (i.e., 16+ 16= 32 s;
8+ 8= 16 s; 8+ 16= 24 s) was taken as the temporal interval index of the given
triad (Fig. 1e). Since temporal interval could be divided into only three categories,
here, a multi-class SVM classification was more appropriate to be adopted to
decode the temporal interval information based on the activation patterns of each
cubic ROI. In each iteration, we classify three categories (32 s/16 s/24 s) on two
cities and tested on the left-out city. Classification accuracy thus represented the
percentage of trials that were correctly categorized by the classifier. We balanced
the number of trials in each condition of our classification analysis by randomly
selecting the same number of trials for each condition (this procedure was
performed both for training and testing set). The resulting classification accuracy
map for all participants were input into further group analysis using a cluster-
forming threshold of Z > 3.1, with p < 0.05 (corrected for family-wise error rate,
using random field theory). Similarly, the same SVM classification analysis was
performed on hippocampal ROIs to test whether hippocampus could support
shared layout schema during time duration retrieval.

ROI-based classification analysis for city. To examine whether hippocampal sub-
fields contained city-specific information, we performed an ROI-based multivoxel
pattern classification analysis to classify three cities using a linear support vector
machine (SVM)109 using LIBSVM 3.12 (https://www.csie.ntu.edu.tw/~cjlin/libsvm/)
implemented in MATLAB (The MathWorks). The classification analysis was con-
ducted on 12 run-based t-maps and with a penalty parameter of 1. Since there were
4 runs per city, in each iteration of the leave-three-run-out cross-validation, we
trained the classifier on 9 of retrieval runs (3 runs per city) and used the left out
three runs (1 run per city) to test classification accuracy based on each hippocampal
ROI’s activation patterns. Specifically, for each iteration in the testing run, the SVM
classifier generated a scalar probability estimate of the trial corresponding to 3
categories (City 1, City 2, and City 3). The category with the higher probability was
then set as the classifier’s prediction. Classification accuracy thus represented the
percentage of runs that were correctly categorized by the classifier. We performed a
group analysis on each hippocampus subfield using two-tailed, one-sample t-tests to
determine whether the accuracy was above chance levels (i.e., 33.33%).

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.
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