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Abstract

The problem of making bounded in�degree and out�degree data structures

partially persistent is considered� The node copying method of Driscoll et al�

is extended so that updates can be performed in worst�case constant time
on the pointer machine model� Previously it was only known to be possible
in amortised constant time ����

The result is presented in terms of a new strategy for Dietz and Raman�s
dynamic two player pebble game on graphs�

It is shown how to implement the strategy and the upper bound on the
required number of pebbles is improved from �b��d�O	

p
b
 to d��b� where

b is the bound of the in�degree and d the bound of the out�degree� We also
give a lower bound that shows that the number of pebbles depends on the
out�degree d�

�This work was partially supported by the ESPRIT II Basic Research Actions Program
of the EC under contract no� ���� �project ALCOM II��

yBasic Research in Computer Science� Centre of the Danish National Research
Foundation�
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Introduction

This paper describes a method to make data structures partially persis�
tent� A partially persistent data structure is a data structure in which
old versions are remembered and can always be inspected� However
only the latest version of the data structure can be modi�ed�

An interesting application of a partially persistent data structure is
given in ��� where the planar point location problem is solved by an
elegant application of partially persistent search trees� The method
given in ��� can be generalised to make arbitrary bounded in�degree
data structures partially persistent ����

As in ���	 the data structures we consider will be described in the
pointer machine model	 i�e� they consist of records with a constant
number of �elds each containing a unit of data or a pointer to another
record� The data structures can be viewed as graphs with bounded
out�degree� In the following let d denote this bound�

The main assumption is that the data structures also have bounded
in�degree� Let b denote this bound� Not all data structures satisfy
this constraint 
 but they can be converted to do it� Replace nodes
by convergent binary balanced trees	 so that all original pointers that
point to a node now instead points to the leafs in the tree substituted
into the data structure instead of the node	 and store the node�s orig�
inal information in the root of the tree� The assumption can now be
satis�ed by letting at most a constant number of pointers point to the
same leaf� The drawback of this approach is that the time to access
a node v is increased from O�� to Olog bv� where bv is the original
bound of the in�degree of v�

The problem with the method presented in ��	 �� is that an update of
the data structure takes amortised time O��	 in the worst case it can
be On� where n is the size of the current version of the data structure�

In this paper we describe how to extend the method of ��	 �� so that
an update can be done in worst case constant time� The main result
of this paper is�
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Theorem � It is possible to implement partially persistent data struc�
tures with bounded in�degree �and out�degree� such that each update
step and access step can be performed in worst case time O���

The problem can be restated as a dynamic two player pebble game on
dynamic directed graphs	 which was done by Raman and Dietz in ����
In fact	 it is this game we consider in this paper�

The central rules of the game are that player I can add a pebble to
an arbitrary node and player D can remove all pebbles from a node
provided he places a pebble on all of the node�s predecessors� For
further details refer to Sect� �� The goal of the game is to �nd a
strategy for player D that can guarantee that the number of pebbles
on all nodes are bounded by a constant M � Dietz and Raman gave
a strategy which achieved M � �b � �d � O

p
b� 
 but they were

not able to implement it e�ciently which is necessary to remove the
amortisation from the original persistency result�

In this paper we improve the bound to M � d � �b by a simple mod�
i�cation of the original strategy� In the static case where the graph
does not change� we get M � d� b�

We also consider the case where the nodes have di�erent bounds on
their in� and out�degree� In this case we would like to have Mv �
fbv� dv� where f � N � � N is a monotonically increasing function�
Hence only nodes with a high in�degree should have many pebbles�
We call strategies with this property for locally adaptive� In fact	 the
strategy mentioned above satis�es that Mv � dv � �bv in the dynamic
game and Mv � dv � bv in the static game�

By an e�ciently implementable strategy we mean a strategy that can
be implemented such that the move of player D can be performed in
time O�� if player D knows where player I performed his move� In
the following we call such strategies implementable�

The implementable strategies we give do not obtain such good bounds�
Our �rst strategy obtains M � �bd � �	 whereas the second is locally
adaptive and obtains Mv � �bvdv � �bv � ��

The analysis of our strategies are all tight 
 we give examples which
match the upper bounds� The two e�ciently implementable strategies
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have simple implementations	 so no large constants are involved in the
implementations�

We also give lower bounds for the value of M which shows that M
depends both on b and d for all strategies� More precisely we show
that��

M � maxfb� �� b��
q
�� � ���� ���c�

�
���

log �
�d

log log �
�d
� �

�
���g�

where � � minfb� dg�
Section � describes the method presented in ��	 ��� Section � de�nes
the dynamic graph game of ���� Sect� � gives the new game strategy
for player D which is implementable� Sect� � describes the technical
details which are necessary to implement the strategy from Sect� ��
Sect� � analyses the strategy of Sect� � and �� Sect� � gives a locally
adaptive strategy� Sect� � gives a locally adaptive strategy which is
implementable� �nally Sect� � gives a lower bound for M �

� The node copying method

In this section we brie�y review the method of ��	 ��� For further
details we refer to these articles� The purpose of this section is to
motivate the game that is de�ned in Sect� �	 and to show that if we
can �nd a strategy for this game and implement it e�ciently	 then we
can also remove the amortisation from the partially persistencymethod
described below�

The ephemeral data structure is the underlying data structure we want
to make partially persistent� In the following we assume that we have
access to the ephemeral data structure through a �nite number of entry
pointers� For every update of the data structure we increase a version
counter which contains the number of the current version�

When we update a node v we cannot destroy the old information in
v because this would not enable us to �nd the old information again�
The idea is now to add the new information to v together with the

�We de	ne log x 
 maxf�� log
�
xg
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current version number� So if we later want to look at an old version
of the information	 we just compare the version numbers to �nd out
which information was in the node at the time we are looking for� This
is in very few words the idea behind the so called fat node method�

An alternative to the previous approach is the node copying method�
This method allows at most a constant number M � of additional infor�
mation in each node depending on the size of b�� When the number of
di�erent copies of information in a node gets greater than M we make
a copy of the node and the old node now becomes dead because new
pointers to the node has to point to the newly created copy� In the
new node we only store the information of the dead node which exists
in the current version of the ephemeral data structure� We now have
to update all the nodes in the current version of the data structure
which have pointers that point to the node that has now become dead�
These pointers should be updated to point to the newly created node
instead 
 so we recursively add information to all the predecessors of
the node that we have copied� The copied node does not contain any
additional information�

� The dynamic graph game

The game Dietz and Raman de�ned in ��� is played on a directed graph
G � V�E� with bounded in�degree and out�degree� Let b be the bound
of the in�degree and d the bound of the out�degree� W�l�o�g� we do not
allow the existence of self loops and multiple edges� To each node a
number of pebbles is associated	 denoted by Pv� The dynamic graph
game is now a game where two players I and D alternate to move� The
moves they can perform are�

Player I�

a� add a pebble to an arbitrary node v of the graph or

b� remove an existing edge v� u� and create a new edge v� w�
without violating the in�degree constraint on w	 and place a
pebble on the node v�
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Player D�

c� do nothing or

d� remove all pebbles from a node v and place a new pebble on all
the predecessors of v� In the following Zerov� performs this
operation�

The goal of the game is to show that there exists a constant M and a
strategy for player D such that	 whatever player I does	 the maximum
number of pebbles on any node after the move of player D is bounded
by M �

In the static version of the game player I can only do moves of type
a��

The existence of a strategy for player D was shown in ���	 but the
given strategy could not be implemented e�ciently i�e� the node v in
d� could not be located in time O����

Theorem � �Dietz and Raman ���� A strategy for player D exists
that achieves M � Ob� d��

� The strategy

We now describe our new strategy for player D� We start with some
de�nitions� We associate the following additional information with the
graph G�

� Edges are either black or white� Nodes have at most one incoming
white edge� There are no white cycles�

� Nodes are either black or white� Nodes are white if and only if they
have an incoming white edge�

The de�nitions give in a natural way rise to a partition of the nodes
into components� two nodes connected by a white edge belong to the
same component� It is easily seen that a component is a rooted tree
of white edges with a black root and all other nodes white� A single
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Figure �� The e�ect of performing a Break operation� The numbers
are the number of pebbles on the nodes�

black node with no adjacent white edge is also a component� We call
this a simple component� See Fig� � for an example of a graph with
two simple components and one non simple component�

To each node v we associate a queue Qv containing the predecessors of
v�

The central operation in our strategy is now the following Break op�
eration� Cv denotes the component containing v�

procedure BreakCv�
r � the root of Cv

colour all nodes and edges in Cv black
if Qr �� 	 then

colour r and RotateQr�� r� white
endif
Zeror�

end�

The e�ect of performing Break on a component is that the component
is broken up into simple components and that the root of the original
component is appended to the component of one of its predecessors if
any�� An example of the application of the Break operation is shown
in Fig� ��

A crucial property of Break is that all nodes in the component change
colour except for the root when it does not have any predecessors	 in
this case we per de�nition say that the root changes its colour twice��
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Our strategy is now the following for simplicity we give the moves of
player I and the counter moves of player D as procedures��

procedure AddPebblev�
place a pebble on v
BreakCv�

end�

procedure MoveEdgev� u�� v� w��
place a pebble on v

if v� u� is white then
BreakCv�
DeleteQu� v�
replace v� u� with v� w� in E
AddQw� v�

else
DeleteQu� v�
replace v� u� with v� w� in E
AddQw� v�
BreakCv�

endif
end�

In MoveEdge the place where we perform the Break operation de�
pends on the colour of the edge v� u� being deleted� This is to guar�
antee that we only remove black edges from the graph in order not to
have to split components��

Observe that each time we apply AddPebble or MoveEdge to a
node v we �nd the root of Cv and zero it� We also change the colour of
all nodes in Cv 
 in particular we change the colour of v� Now	 every
time a black node becomes white it also becomes zeroed	 so after two I
moves have placed pebbles on v	 v has been zeroed at least once� That
the successors of a node v cannot be zeroed more than O�� times and
therefore cannot place pebbles on v without v getting zeroed is shown
in Sect� �� The crucial property is the way in which Break colours
nodes and edges white� The idea is that a successor u of v cannot be
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zeroed more than O�� times before the edge from v� u� will become
white� If v� u� is white both v and u belong to the same component	
and therefore u cannot change colour without v changing colour�

In Sect� � we show how to implement Break in worst case time O��
and in Sect� � we show that the approach achieves that M � O���

� The new data structure

The procedures in Sect� � can easily be implemented in worst case time
O�� if we are able to perform the Break operation in constant time�
The central idea is to represent the colours indirectly so that all white
nodes and edges in a component points to the same variable� All the
nodes and edges can now be made black by setting this variable to
black�

A component record contains two �elds� A colour �eld and a pointer
�eld� If the colour �eld is white the pointer �eld will point to the root
of the component�

To each node and edge is associated a pointer cr which points to a
component record� We will now maintain the following invariant�

� The cr pointer of each black edge and simple component will point
to a component record where the colour is black and the root
pointer is the null pointer� Many simple components can share
the same component record�

� For each non simple component there exist exactly one component
record where the colour is white and the root pointer points to
the root of the component� All nodes and white edges in this
component point to this component record�

An example of how this looks is shown in Fig� �� Notice that the colour
of an edge e is simply e�cr�colour so the test in MoveEdge is trivial
to implement� The implementation of Break is now�
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Figure �� A graph with component records�

procedure Breakv�
if v�cr�colour � black then

r � v
else

r � v�cr�root
v�cr�colour � black
v�cr�root� 


endif
if r�Q �� 	 then

u � Rotater�Q�
if u�cr�colour � black then

u�cr � new�component�recordwhite� u�
endif
r�cr � u� r��cr � u�cr

endif
Zeror�

end�

From the discussion of the node copying method in Sect� � it should
be clear that the above described data structure also applies to this
method�
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� The analysis

Theorem � The player D strategy given in Sect� � achieves M �
�bd� ��
Proof� A direct consequence of Lemma � and �� �

Lemma � The player D strategy given in Sect� � achieves M � �bd���
Proof� Let the �rst operation either an AddPebble orMoveEdge

operation� be performed at time �	 the next at time � and so on�

Assume that when the game starts all nodes are black and there are
no pebbles on any node�

Fix an arbitrary node v at an arbitrary time tnow� Let tlast denote the
last time before tnow where v was zeroed if v has never been zeroed let
tlast be ��� In the following we want to bound the number of pebbles
placed on v in the interval �tlast� tnow�� In this interval v can not go
from being black to being white because this would zero v�

Assume without loss of generality that v is white at the end of time
tlast	 that at time tbreak � �tlast� tnow� a BreakCv� is performed and
therefore� at time tnow v is black it is easy to see that all other cases
are special cases of this case��

Note that the only time an AddPebblev� or MoveEdgev� u��
v� w�� operation can be performed is at time tbreak because these op�
erations force the colour of v to change� Therefore	 v�s successors are
the same in the interval �tlast� tbreak�� Similarly for �tbreak� tnow��

We will handle each of the two intervals and the time tbreak separately�
Let us �rst consider the interval �tlast� tbreak�� Let w be one of v�s succes�
sors in this interval� w can at most be zeroed b times before it will be
blocked by a white edge from v w can not change the colour without
changing the colour of v�	 because after at most b� � Zerow�	 v will
be the �rst element in Qw�

So a successor of v can be zeroed at most bd times throughout the
�rst interval which implies that at most bd pebbles can be placed on
v during the �rst interval� For �tbreak� tnow� we can repeat the same
argument so at most bd pebbles will be placed on b during this interval
too�
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We now just have to consider the operation at time tbreak� The colour
of v changes so a BreakCv� is performed� There are three possible
reasons for that� a� An AddPebblev� operation is performed	 b� a
MoveEdge v� u�� v� w�� is performed or c� one of the operations
are performed on a node di�erent from v� In a� and b� we �rst add
a pebble to v and then perform a BreakCv� operation and in c� we
�rst add a pebble to another node in Cv and then do BreakCv�� The
Break operation can at most add one pebble to v when we Zero the
root of Cv because we do not allow multiple edges� so at most two
pebbles can be added to v at time tbreak�

We have now shown that at time tnow the number of pebbles on v can
at most be �bd��� This is nearly the promised result� To decrease this
bound by one we have to analyse the e�ect of the operation performed
at time tbreak more carefully�

What we prove is that when two pebbles are placed on v at time tbreak
then at most bd�� pebbles can be placed on v throughout �tbreak� tnow��
This follows if we can prove that there exists a successor of v that
cannot be zeroed more than b� � times in the interval �tbreak� tnow��

In the following let r be the node that is zeroed at time tbreak� We have
the following cases to consider�

i� AddPebblev� and Breakr� places a pebble on v� Now r and one
of its incoming edges are white� So r can at most be zeroed b � �
times before v� r� will become white and block further Zeror�
operations�

ii� MoveEdgev� u�� v� w�� and Zeror� places a pebble on v� De�
pending on the colour of v� u� we have two cases�

a� v� u� is white� Therefore u is white and r �� u� Since we perform
Breakr� before we modify the pointers we have that r �� w�
So as in i� r can at most be zeroed b � � times throughout
�tbreak� tnow��

b� v� u� is black� Since Break is the last operation we do	 the
successors of v will be the same until after tnow	 so we can argue
in the same way as i� and again get that r at most can be zeroed
b� � times throughout �tbreak� tnow��
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Figure �� A graph which can force M to become �bd� ��

We conclude that no node will ever have more than �bd�� pebbles� �

Lemma � The player D strategy given in Sect� � achieves M � �bd���

Proof� Let G � V�E� be the direct graph given by V � fr� v�� � � � � vb�
w�� � � � � wdg and E � fr� vb�g�fvi� wj�ji � f�� � � � � bgj � f�� � � � � dgg�
The graph is shown in Fig� �� Initially all nodes in V are black and
all queues Qwi

contain the nodes v�� � � � � vb�� We will now force the
number of pebbles on vb to become �bd� ��

First place one pebble on vb 
 so that vb becomes white� Then place
�b � � pebbles on each wj� There will now be bd pebbles on vb and
all the edges vb� wj� are white� Place one new pebble on vb and place
another �b� � pebbles on each wj� Now there will be �bd� � pebbles
on vb� �

� A simple locally adaptive strategy

In this section we present a simple strategy that is adaptive to the local
in� and out�degree bounds of the nodes� It improves the bound achieved
in ���� The main drawback is that the strategy can not be implemented
e�ciently� In Sect� � we present an implementable strategy that is
locally adaptive but does not achieve as good a bound on M �

Let dv denote the bound of the out�degree of v and bv the bound of the
in�degree� De�ne Mv to be the best bound player D can guarantee on
the number of pebbles on v� We would like to have that Mv � fbv� dv�
for a monotonic function f � N � � N �
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The strategy is quite simple� To each node v we associate a queue Qv

containing the predecessors of v and a special elementZero� Each time
the Zero element reaches the front of the queue the node is zeroed�

The simple adaptive strategy
if the I�move deletes v� u� and adds v� w� then

DeleteQu� v�
AddQw� v�

endif
while v� � RotateQv����Zero do v � v� od
Zerov�

end�

Notice that the strategy does not use the values of bv and dv explicitly�
This gives the strategy the nice property that we can allow bv and dv
to change dynamically�

The best bound Dietz and Raman could prove for their strategy was
that M � �b� �d � O

p
b�� The next theorem shows that the simple

strategy above achieves a bound of Mv � dv��bv� If the graph is static
the bound improves to Mv � dv � bv�

Theorem 	 For the simple adaptive strategy we have that Mv � dv �
�bv� In the static case this improves to Mv � dv � bv�

Proof� Each time we perform AddPebblev� or MoveEdgev� u��
v� w�� we rotate Qv� At most bv times can Qv be rotated without
zeroing v� So between two Zerov� operations at most bv MoveEdge

operations can be performed on v and therefore v can at most have
had bv � dv di�erent successors� Between two zeroings of a successor
w will Qv have been rotated because RotateQw� returned v	 this is
because the Zero element is moved to the back of Qw when w is being
zeroed� So except for the �rst zeroing of w all zeroings of w will be
preceded by a rotation of Qv�

For each operation performed on v we both place a pebble on v and
rotate Qv� So the bound on the number of rotations of Qv gives the
following bound on the number of pebbles that can be placed on v�
Mv � dv � bv� � bv�
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Figure �� A graph which can force M to become dv � �bv�

In the static case the number of di�erent successors between two Zero
v� operations is dv so in the same way we get the bound Mv � dv� bv�

It is easy to construct an example that matches this upper bound� Let
G � V�E� where

V � fv� u�� � � � � ubv� w�� � � � � wdv� wdv��� � � � � wdv�bvg and

E � fui� v�ji � f�� � � � � bvgg � fv� wi�ji � f�� � � � � dvgg�
The graph is shown in Fig� ��

At the beginning all nodes are black and the Zero elements will be
at the front of each of the nodes� queues� The sequence of operations
which will force Pv to become dv � �bv is the following� AddPebble
on v� w�� � � � � wdv	 followed by MoveEdgev� wi���dv�� v� wi�dv�� and
AddPebblewi�dv� for i � �� � � � � bv�

The matching example for the static case is constructed in a similar
way� �

� A locally adaptive data structure

We will now describe a strategy that is both implementable and locally
adaptive� The data structure presented in Sect� � and Sect� � does not
have this property	 because when redoing the analysis with local degree
constraints we get the following bound�

Mv �
X

w�Outv��tlast�tbreak��

bw � � �
X

w�Outv��tbreak�tnow��

bw�
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The solution to this problem is to incorporate a Zero element into each
of the queues Qv as in Sect� � and then only zero a node when Rotate
returns this element� We now have the following Break operation�

procedure BreakCv�
r � the root of Cv

colour all nodes and edges in Cv black
w � RotateQr�
if w �Zero then

Zeror�
w � RotateQr�

endif
if w ��Zero then

colour r and w� r� white
endif

end�

The implementation is similar to the implementation of Sect� ��

The next theorem shows that the number of pebbles on a node v with
this strategy will be bounded by Mv � �bvdv � �bv � �	 so only nodes
with large in�degree or out�degree� can have many pebbles�

Theorem 
 The above strategy for player D achieves Mv � �bvdv �
�bv � ��

Proof� The proof follows the same lines as in the proof of Theorem ��
A node v can at most change its colour �bv�� times between two zero�
ings� We then have that the number of AddPebble and MoveEdge

operations performed on v is at most �bv � ��

We have that the time interval between two Zerov� operations is
partitioned into �bv intervals and that v changes its colour only on the
boundary between two intervals� In each of the intervals each successor
w of v can at most be zeroed once before it will be blocked by a white
edge from v�

So when we restrict ourselves to the static case we have that each
successor gets zeroed at most �bv times� Hence the successors of v can
at most place �bvdv pebbles on v�
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EachAddPebble operation places a pebble on v	 so for the static case	
the total number of pebbles on v is bounded by Mv � �bvdv � �bv � ��

We now only have to show that a MoveEdgev� u�� v� w�� operation
does not a�ect this analysis� We have two cases to consider� If u has
been zeroed in the last interval then u will either be blocked by a white
edge from v or v appears before the Zero element in Qu and therefore
none of the Break operations inMoveEdge can result in a Zerou��
If u has not been zeroed then it is allowed to place a pebble on v in
the MoveEdge operation� If the Break operation forces a Zerow�
to place a pebble on v then w can not place a pebble on v during the
next time interval� So we can conclude that the analysis still holds�

The matching lower bound is given in the same way as in Theorem ��
�

	 A lower bound

In this section we will only consider the static game�

Raman states in ��� that �the dependence on d of M appears to be an
artifact of the proof for the strategy of ������ Theorem � shows that it
is not an artifact of the proof	 but that the value of M always depends
on the value of b and d�

It is shown in ��� that in case of the amortised result we can get M � b	
so in that game M does not depend of d� So we have here a trade of
between the amortised game and the worst case game�

Theorem � For b � � and all player D strategies we have�

M � maxfb� �� b��
q
�� � ���� ���c�

�
���

log �
�d

log log �
�d
� �

�
���g�

where � � minfb� dg�
Proof� Immediate consequence of Lemma � and � and Corollary ��
�

Lemma � For b� d � � and all player D strategies we have M � b���
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Proof� We will play the game on a convergent tree with l levels
where each node has exactly b incoming edges� The player I strategy
is simple	 it just places the pebbles on the root of the tree�

The root has to be zeroed at least once for each group of M � � Ad�
dPebble operations� So at least a fraction �

M�� of the time will be
spent on zeroing the root� At most M pebbles can be placed on any
internal node before the next Zero operation on that node	 because
we do not perform AddPebble on internal nodes� So a node on level
� has to be zeroed at least once for every M Zero operation on the
root	 so a node at level � has to be zeroed at least �

M �M���
of the time�

By induction a node on level i will be zeroed at least �
M i�M��� of the

time�

Because the number of nodes in each level of the tree increases by a
factor b we now have the following constraint on M �

lX
i	


bi

M iM � ��
�

�

M � �

lX
i	


�
b

M

�i
� ��

So by letting l �M we get that M � b� �� If d � � Theorem � gives
us that this is a tight bound� �

Lemma 	 For b� d � � and all player D strategies we have�

M �
�
���

log �
�d

log log �
�d
� �

�
��� �

Proof� We will play the game on the following graph G � V�E�
where V � fr� v�� � � � � vdg and E � fr� v��� � � � � r� vd�g� The adversary
strategy we will use for player I is to cyclically place pebbles on the
subset of the vi�s which have not been zeroed yet� The idea is that for
each cycle at least a certain fraction of the nodes will not be zeroed�

We start by considering how many nodes can not be zeroed in one
cycle� Let the number of nodes not zeroed at the beginning of the
cycle be n� Each time one of the vi�s is zeroed a pebble is placed on r	
so out of M � � zeroings at least one will be a Zeror�� So we have
that at least b n

M��c of the nodes are still not zeroed at the end of the
cycle� So after i cycles we have that the number of nodes not zeroed

��



is at least the number of �oors is i��
�
� � �

��
d

M � �

	
�

M � �

	
� � �

�

M � �

	
�

By the de�nition of M 	 we know that all nodes will be zeroed after
M � � cycles	 so we have the following equation the number of �oors
is M � ���

�
� � �

��
d

M � �

	
�

M � �

	
� � �

�

M � �

	
� ��

Lemma � gives us that M � �� By induction on the number of �oors
is it easy to show that by doing the calculations without any rounding	
the resulting value is at most ��� too big� A solution to the equation
above will therefore also be a solution the the following inequality�

d

M � ��M��
� ����

So the minimum solution ofM for this inequality will be a lower bound
for M � It is easy to see that this minimum solution has to be at least
log �

�
d

log log �

�
d
� �� �

Lemma 
 For all D strategies where b � d we have�

M � bb�
q
�b� ���� ���c�

Proof� For b � d � � the lemma is trivial� The case b � d � � is true
by Lemma �� In the following we assume b � d � ��

Again	 the idea is to use player I as an adversary that forces the number
of pebbles to become large on at least one node�

The graph we will play the game on is a clique of size b � �� For all
nodes u and v both u� v� and v� u� will be edges of the graph and all
nodes will have in� and out�degree b� Each Zero operation of player D
will remove all pebbles from a node of the graph and place one pebble
on all the other nodes�

At a time given P
� P�� � � � � Pb will denote the number of pebbles on
each of the b � � nodes 
 in increasing order	 so Pb will denote the
number of pebbles on the node with the largest number of pebbles�
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Figure �� The adversary�s strategy�

From a certain time on we will satisfy the following invariants� We let
c�� c� and c� denote constants characterising the adversary�s strategy�

I� � i � j � Pi � Pj�

I� � Pi � i�

I� �


�
�Pc��c��i � c� � c� � � for � � i � c��
Pc��c��i � c� � c� � � for c� � i � c��

I� � � � c� � c� and c� � c� � b� ��

I� is satis�ed per de�nition� I� is not satis�ed initially but after the
�rst b Zero�s will be satis�ed� This is easily seen� The nodes that
have not been zeroed will have at least b pebbles and the nodes that
have been zeroed can be ordered according to the last time they were
zeroed� A node followed by i nodes in this order will have at least i
pebbles because each of the following at least� i zeroings will place a
pebble on the node�

We can now satisfy I� and I� by setting c� � c� � c� � � so now we
have that all the four invariants are satis�ed after the �rst b Zero

��



operations�

Figure � illustrates the relationship between c�� c� and c� and the num�
ber of pebbles on the nodes� The �gure only shows the pebbles which
are guaranteed to be on the nodes by the invariants� The idea is to
build a block of nodes which all have the same number of pebbles�
These nodes are shown as a dashed box in Fig� �� The moves of player
I and D a�ect this box� A player I move will increase the block size
whereas a player D move will push the block upwards� In the following
we will show how large the block can be forced to be�

We will �rst consider an AddPebble operation� If c� � c� we know
that on node c�� c�� c��� in the current ordering� there are at least
c��c��� pebbles so by placing a pebble on the node c��c��c��� we
can increase c� by one and still satisfy the invariants I�� � � � � I�� There
are three cases to consider� If the node c� � c� � c� � � already has
c� � c� � � pebbles we increase c� by one and try to place the pebble
on another node� If c� � c� and c� � c� � b � � we can increase c� by
one and set c� � � and then try to place the pebble on another node�
If we have that c� � c� and c� � c� � b� � we just place the pebble on
an arbitrary node 
 because the block has reached its maximum size�

Whenever player D does a Zero operation we can easily maintain the
invariant by just increasing c� by one 
 as long as c� � c� � b � ��
Here we have three cases to consider� Let i denote the number of
the node that player D zeroes� We will only consider the case when
c� � i � c� � c�	 the cases � � i � c� and c� � c� � i � b are treated
in a similar way� The values of the P s after the Zero operation are�
P �


 � �� P �

� � P
��� � � � � P �

i � Pi����� P �

i�� � Pi����� � � � � P �

b � Pb���
So because I� and I� were satis�ed before the Zero operation it follows
that when we increase c� by one the invariant will still be satis�ed after
the Zero operation�

We will now see how large the value of c� can become before c� � c� �
b� �� We will allow the last move to be a player I move�

We let x denote the maximum value of c� when c�� c� � b��� At this
point we have that c� � b� �� x� Initially we have that c� � �� Each
Zero operation can at most increase c� by one so the maximumnumber
of AddPebble operations we can perform is � � b � � � x� � �� �

��



b� �� x�

It is easily seen that the worst case number of pebbles we have to add
to bring c� up to x is � �

Px��
i	� i� �� 
 because it is enough to have

two pebbles in the last column of the block when we are �nished�

So the size of x � � is now constrained by�

� �
x��X
i	�

i� ��� b� �� x�

Which gives us that�

x� ��x � ��

�
� b� x�

x� � x� �� �b�� ��

and therefore x � b��� �
q
�b� ���c� Let i � f�� �� � � � � x � �g denote

the number of Zero operations after the block has reached the top�
By placing the pebbles on node b�� it is easy to see that the following
invariants will be satis�ed I� and I� will not be satis�ed any longer��

I� � Pb � b� i�

I �Pb�j � b� i� � for j � �� � � � � x� i� ��

So after the next x � � zeroings we see that Pb � b � x � �� which
gives the stated result� �

Corollary � For all D strategies we have M � b��
q
�� � �������c

where � � minfb� dg�


 Conclusion

In the preceding sections we have shown that it is possible to implement
partially persistent bounded in�degree and out�degree� data structures
where each access and update step can be done in worst case constant
time� This improves the best previously known technique which used
amortised constant time per update step�

��



It is a further consequence of our result that we can support the oper�
ation to delete the current version and go back to the previous version
in constant time� We just have to store all our modi�cations of the
data structure on a stack so that we can backtrack all our changes of
the data structure�

�� Open problems

The following list states open problems concerning the dynamic two
player game�

� Is it possible to show a general lower bound for M which shows
how M depends on b and d�

� Do better locally adaptive� strategies exist�

� Do implementable strategies for player D exist where M � Ob�
d��
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