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Abstract
We consider a class of beams that are both partially polarized and partially
coherent from the spatial standpoint. They are characterized by a correlation
matrix whose elements have the same form as the mutual intensity of a
Gaussian Schell-model beam. We focus our attention on those beams that
would appear identical to ordinary Gaussian Schell-model beams in a scalar
treatment. After establishing some inequalities that limit the choice of the
matrix parameters, we study the main effects of propagation. Starting from
the source plane, in which the beam is assumed to be uniformly polarized,
we find that in the course of propagation the degree of polarization generally
becomes non-uniform across a typical section of the beam. Furthermore, we
find that the intensity distribution at the output of an arbitrarily oriented
linear polarizer is Gaussian shaped at the source plane whereas it can be
quite different at other planes.

Keywords: Polarization, beams, coherence theory

1. Introduction

Partially coherent beams characterized by a mutual intensity

(or by a cross-spectral density) of the Gaussian Schell-model

(GSM) type [1] have played a very important role in coherence

theory [1, 2]. To quote just a few examples, they were widely

used for investigating the relationship between radiometry and

coherence theory [3–18], offered the first explicit example [19–

22] of modal expansion of the cross-spectral density [1, 23]

and were crucial to introducing the concept of twisting for

partially coherent beams [24–30]. The interest in these beams

is far from subsiding as proved by recent papers [31, 32]. The

previously quoted investigations used a scalar description. The

underlying assumption is that the state of polarization of the

beam does not play any significant role in the phenomena under

scrutiny. A typical case in which this can be assumed is when

the beam is completely and uniformly polarized. We shall refer

to the beam considered in the scalar treatment as the ordinary

GSM beam. On the other hand, light beams with non-uniform

and/or partial polarization have gained considerable attention

in recent times [33–53]. Therefore, it seems of interest to

inquire about the possibility of using a suitable extension of

the GSM structure when passing from a scalar to a vectorial

treatment. In other words, it is worthwhile to investigate beams

that are both partially polarized and partially coherent from

the spatial standpoint when the correlation functions among

different field components have a GSM form. For the sake

of brevity, we shall refer to such beams as partially polarized

GSM (or PGSM) beams.

In this paper, we discuss certain basic properties of PGSM

beams, making use of a description based on the BCP (beam

coherence-polarization) matrix [54, 55]. As will be seen, the

matrix elements are specified by nine parameters and this

makes the general discussion rather demanding. On the other

hand, we can focus our attention on a particular class of beams.

Indeed, it is physically interesting to answer the following

question: is there any partially polarized beam that behaves

like an ordinary GSM beam if polarization is ignored and yet

is physically different from the ordinary GSM beam? In order

to clarify the meaning of this question we add that a PGSM

beam is said to behave as an ordinary GSM beam in the scalar

sense if its equivalent mutual intensity [55, 56] (in particular

1464-4258/01/010001+09$30.00 © 2001 IOP Publishing Ltd Printed in the UK 1
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its optical intensity) is identical to that of an ordinary GSM

beam at any transverse plane in the course of propagation. In

addition, for the sake of simplicity, we shall require the degree

of polarization to be uniform across the source plane.

At first, we could think that having imposed such

constraints the resulting PGSM beam should not be very

different from an ordinary one. In contrast, we shall see

that significant differences can be found when polarization

properties are taken into account. For example, the degree

of polarization, although uniform across the source plane,

becomes a function of position upon propagation. Even

more intriguing and easier to demonstrate is the effect of a

linear polarizer inserted in the beam path. If we place the

polarizer against the source the emerging intensity distribution

is Gaussian shaped irrespective of how the polarizer is oriented.

On the other hand, if the polarizer is inserted at a different

plane the output intensity distribution changes upon rotation

of the polarizer and is generally non-Gaussian. Strange as it

may sound, all this is a consequence of the GSM form for the

elements of the BCP matrix.

Something has to be added about the choice of the parame-

ters characterizing the matrix elements. On limiting ourselves

to partially polarized beams that are undistinguishable from

ordinary GSM beams when polarization is disregarded, and

using the hypothesis that the degree of polarization is uniform

across the source plane, we reduce the number of free parame-

ters from nine to six. Furthermore, these six parameters cannot

be chosen at will, since certain inequalities have to be satis-

fied. Surprisingly enough, it turns out that, except for particu-

lar cases, the correlation between the x- and y-components of

the electric field must have a greater range (correlation length)

than the self-correlation of the x- (or y-) component.

The paper is organized as follows. After a few

preliminaries devoted to recollecting the main formulae

relating to the BCP treatment (section 2), we shall characterize

the class of PGSM beams of our interest (section 3.1).

Then, we shall discuss the inequalities that the parameters

of the matrix elements must meet (section 3.2). The most

relevant effects of the propagation process on the polarization

characteristics are presented in section 4 with the aid of a

numerical example (section 5). Some final remarks and hints

for extensions are given in section 6.

2. Preliminaries

We shall use a reference frame in which the z-axis coincides

with the mean direction of propagation of the beam.

At a typical transverse plane, the vector r is used to

specify the position of a point. Let us recall that, for a

quasimonochromatic field, the BCP matrix is defined as [54,

55]

Ĵ (r1, r2, z) =

(

Jxx(r1, r2, z) Jxy(r1, r2, z)

Jyx(r1, r2, z) Jyy(r1, r2, z)

)

, (1)

where

Jαβ(r1, r2, z) = 〈E∗
α(r1, z; t)Eβ(r2, z; t)〉,

(α, β = x, y).
(2)

The angle brackets denote time average and Eα (α = x, y) is a

Cartesian component of the time-dependent electric field. The

BCP matrix gives an approximate form of the general tensorial
theory of coherence developed by Wolf [1, 57].

The following relationships for the BCP matrix hold:

Jxy(r1, r2, z) = J ∗
yx(r2, r1, z), (3)

|Jαβ(r1, r2, z)|
2

� Jαα(r1, r1, z)Jββ(r2, r2, z),

(α, β = x, y).
(4)

Furthermore, the following important non-negativity condition
has to be satisfied:
∫ ∫

[f ∗
1 (r1)f1(r2)Jxx(r1, r2, z)

+f ∗
1 (r1)f2(r2)Jxy(r1, r2, z)

+f ∗
2 (r1)f1(r2)Jyx(r1, r2, z)

+f ∗
2 (r1)f2(r2)Jyy(r1, r2, z)] d2r1 d2r2 � 0, (5)

where f1(r) and f2(r) are arbitrary functions.
The local polarization properties of the beam at a typical

point of a cross section are specified by the BCP matrix with
r1 = r2 = r. We shall refer to it as the local polarization
matrix. Further, the degree of polarization [1, 58, 59] is given
by [55]

P(r, z) =

√

1 −
4 det{Ĵ (r, r, z)}

(Tr{Ĵ (r, r, z)})2
, (6)

where det stands for the determinant and Tr denotes the trace
of the BCP matrix.

In addition, we can define an equivalent mutual intensity
as

Jeq(r1, r2, z) = Jxx(r1, r2, z) + Jyy(r1, r2, z)

= Tr{Ĵ (r1, r2, z)}. (7)

In fact, if no anisotropic element is used, all propagation,
diffraction and interference phenomena will be correctly
described by replacing the actual beam by one describable in
scalar terms, provided that the mutual intensity of the latter is
given by equation (7) [55, 56].

In particular, the optical intensity at a typical point, say
I (r, z), will be given by

I (r, z) = Jeq(r, r, z). (8)

If some anisotropic optical element, whose Jones matrix
[1, 58, 59] is denoted by T̂ (r), is inserted in the beam path at
a certain plane z = constant, then the BCP matrix of the field
emerging from it, say Ĵ ′, can be evaluated [55] through the
relation

Ĵ ′(r1, r2, z) = T̂ †(r1)Ĵ (r1, r2, z)T̂ (r2), (9)

where the dagger denotes the Hermitian conjugate. For
instance, the intensity emerging from a uniform linear
polarizer, whose transmission axis forms an angle ϑ (anti-
clockwise) with the x-axis, turns out to be

Iϑ (r, z) = Jxx(r, r, z)C
2

+Jyy(r, r, z)S
2 + 2Re {Jxy(r, r, z)}CS (10)

whereC = cosϑ andS = sin ϑ , and Re stands for the real-part
operator.

Our present treatment applies to quasimonochromatic
fields. Its extension to the polychromatic case involves the
use of the cross-spectral density [1]. Most of the results we are
going to derive could be easily translated into the language of
the space-frequency description.
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3. Partially polarized GSM beams

3.1. Definitions and notations

We recall that the mutual intensity of an ordinary, scalar GSM

source, placed at z = 0, say Jsc(r1, r2, 0), takes the form

Jsc(r1, r2, 0) = I0 exp

[

−
r2

1 + r2
2

4σ 2
I0

−
(r1 − r2)

2

2σ 2
µ0

]

, (11)

where I0 is a constant intensity factor, while σ 2
I0

and σ 2
µ0

are

the widths of the transverse intensity profile and of the degree

of coherence, respectively.

It seems natural to define a PGSM source as one in which

all the elements of the BCP matrix have a form similar to

equation (11). More explicitly, we let

Jαβ(r1, r2, 0) = I0αβ exp

[

−
r2

1 + r2
2

4σ 2
I0αβ

−
(r1 − r2)

2

2σ 2
µ0αβ

]

,

(α, β = x, y).

(12)

It should be noted that I0xx and I0yy have to be real, positive

quantities, while I0xy may be complex. Due to equation (3),

I0yx = I ∗
0xy . In physical terms, the argument of I0xy accounts

for a constant phase shift between the x- and y-components of

the field. Such a phase difference could be easily eliminated

using a suitable waveplate (see appendix A). Accordingly, for

the sake of simplicity, the argument of I0xy will be set to zero.

It also follows from equation (3) that

σI0xy
= σI0yx

; σµ0xy
= σµ0yx

. (13)

It is seen that the matrix elements (12) are specified by a set of

nine real parameters. Beams generated by this type of source

have already been considered by some authors [37, 53].

As we said in the introduction, we shall now impose that,

in scalar terms, the PGSM source must be indistinguishable

from an ordinary, scalar GSM source. This means that the

equivalent mutual intensity Jeq(r1, r2, 0) associated with the

BCP matrix (see equation (7)) must be equal to Jsc(r1, r2, 0),

for any choice of r1, r2. On using equations (7), (11) and (12)

we find at once the following conditions:

σI0xx
= σI0yy

; σµ0xx
= σµ0yy

, (14)

while I0xx and I0yy can be different.

Using equations (6) and (12) we easily derive, for the

local degree of polarization at the source plane, the following

expression:

P(r, 0)

=

{

(

I0xx − I0yy

I0xx + I0yy

)2

+
4I 2

0xy

(I0xx + I0yy)2
exp

[

−

(

1

σ 2
I0xy

−
1

σ 2
I0xx

)

r2

]}1/2

. (15)

Furthermore, we require the degree of polarization to be

uniform across the source plane, i.e. independent of r. By

virtue of equation (15) this implies

σI0xy
= σI0xx

. (16)

Taking equation (14) into account, we see that σI0xx
, σI0yy

and

σI0xy
have the same value. We shall use for this common

value the same symbol, σI0
, pertaining to the scalar source.

Using equations (15) and (16) we see that the local degree of

polarization across the source plane is now expressed by

P(r, 0) =

√

(

I0xx − I0yy

I0xx + I0yy

)2

+
4I 2

0xy

(I0xx + I0yy)2
. (17)

Taking into account the inequality

I 2
0xy � I0xxI0yy, (18)

which follows from equations (4) and (12), we can easily

control that P � 1. The number of free parameters is now

reduced to six. They are I0xx , I0yy , I0xy , σI0
, σµ0xx

and σµ0xy
.

However, such parameters cannot be chosen completely at will.

One constraint is expressed by equation (18). Others will be

seen in a moment.

3.2. Non-negativity of the BCP matrix

We now examine the constraints connected to the non-

negativity condition (5). In particular, we derive a necessary

condition and a sufficient condition for the choice of the free

parameters.

First of all, we letf1(r) = −f2(r) = f (r) in equation (5),

with

f (r) = exp(i2πu · r), (19)

where u denotes a typical vector in the spatial frequency plane

and the dot represents the standard inner product. This choice

will lead us to a necessary condition.

Let us write the BCP elements in the form

Jαβ(r1, r2; 0) = I0αβ exp[−p(r1 + r2)
2 − mαβ(r1 − r2)

2],

(α, β = x, y),

(20)

where

p =
1

8σ 2
I0

; mαβ =
1

8σ 2
I0

+
1

2σ 2
µ0αβ

. (21)

Then, equation (5) becomes
∫ ∫

exp[−i2πu · (r1 − r2) − p(r1 + r2)
2]

×{(I0xx + I0yy) exp[−mxx(r1 − r2)
2]

−2I0xy exp[−mxy(r1 − r2)
2]} d2r1 d2r2 � 0. (22)

The integral in equation (22) can be evaluated on introducing

the variables

s =
r1 + r2

2
; t = r1 − r2, (23)

giving

π2

4p

{

(I0xx + I0yy)

mxx

exp

(

−
π2u2

mxx

)

−
2I0xy

mxy

exp

(

−
π2u2

mxy

)}

� 0, (24)

3
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for any choice of u. In particular, for u = 0 and for u → ∞

condition (24) leads to

I0xx + I0yy

mxx

�
2I0xy

mxy

, (25)

and

mxx � mxy, (26)

respectively. Furthermore, on taking equation (21) into

account, equations (25) and (26) become

I0xx + I0yy

2I0xy

�
σ 2
µ0xy

σ 2
µ0xx

4σ 2
I0

+ σ 2
µ0xx

4σ 2
I0

+ σ 2
µ0xy

, (27)

and

σµ0xx
� σµ0xy

, (28)

respectively. Finally, from equations (14) and (16) we have

σµ0xx
� σµ0xy

� σµ0xx

√

√

√

√

I0xx + I0yy

2I0xy

4σ 2
I0

+ σ 2
µ0xy

4σ 2
I0

+ σ 2
µ0xx

, (29)

which represents a necessary condition for the parameters of

the PGSM source. The upper bound has an implicit form.

We do not dwell on transforming it into an explicit form,

because the most important result is given by the lower bound.

The latter, in particular, implies that the correlation length

pertaining to the off-diagonal terms of the BCP matrix cannot

be lower than that pertaining to the diagonal terms. This

may sound surprising. However, it was already noted that

Jxy(r1, r2, z) is not locally connected to Jxx(r1, r2, z) except

when r1 = r2 [55].

Let us now derive a sufficient condition. Starting again

from equation (5), and letting

gj (r) = fj (r) exp

(

−
r2

4σ 2
Io

)

, (j = 1, 2), (30)

equation (5) turns out to be
∫ ∫ {

[I0xxg
∗
1(r1)g1(r2) + I0yyg

∗
2(r1)g2(r2)]

× exp

[

−
(r1 − r2)

2

2σ 2
µ0xx

]

+I0xy[g∗
1(r1)g2(r2) + g∗

2(r1)g1(r2)]

× exp

[

−
(r1 − r2)

2

2σ 2
µ0xy

]}

d2r1 d2r2 � 0. (31)

On expressing the Gaussian functions depending on r1 − r2

by means of their Fourier transform, equation (31) becomes
∫ ∫ ∫

{[I0xxg
∗
1(r1)g1(r2)

+I0yyg
∗
2(r1)g2(r2)]σ

2
µ0xx

exp(−2π2σ 2
µ0xx

u2)

+I0xy[g∗
1(r1)g2(r2) + g∗

2(r1)g1(r2)]

×σ 2
µ0xy

exp(−2π2σ 2
µ0xy

u2)}

× exp[i2π(r1 − r2) · u] d2r1 d2r2 d2u � 0. (32)

If we now introduce the Fourier transform of the functions

gj (r), namely g̃j (u)(j = 1, 2), we obtain
∫ {

[I0xx |g̃1(u)|
2 + I0yy |g̃2(u)|

2] exp(−2π2σ 2
µ0xx

u2)

+2

(

σµ0xy

σµ0xx

)2

I0xyRe [g̃∗
1(u)g̃2(u)]

× exp(−2π2σ 2
µ0xy

u2)

}

d2u � 0, (33)

which can be written as
∫ {[

∣

∣

∣

∣

√

I0xx g̃1(u)

∣

∣

∣

∣

2

+

∣

∣

∣

∣

√

I0yy g̃2(u)

∣

∣

∣

∣

2]

× exp(−2π2σ 2
µ0xx

u2) + 2

(

σµ0xy

σµ0xx

)2
I0xy

√

I0xxI0yy

×Re

[

√

I0xx g̃
∗
1(u)

√

I0yy g̃2(u)

]

× exp(−2π2σ 2
µ0xy

u2)

}

d2u � 0. (34)

Furthermore, taking the following identity into account:

(|a|2 + |b|2)U1 + 2Re {a∗b}U2

= 1
2
|a + b|2(U1 + U2) + 1

2
|a − b|2(U1 − U2), (35)

where a and b are arbitrary complex numbers, while U1 and

U2 are real positive numbers, equation (33) can be written
∫

∣

∣

∣

√

I0xx g̃1(u) +
√

I0yy g̃2(u)

∣

∣

∣

2

×

[

exp(−2π2σ 2
µ0xx

u2) +

(

σµ0xy

σµ0xx

)2
I0xy

√

I0xxI0yy

× exp(−2π2σ 2
µ0xy

u2)

]

d2u

+

∫

∣

∣

∣

√

I0xx g̃1(u) −
√

I0yy g̃2(u)

∣

∣

∣

2

×

[

exp(−2π2σ 2
µ0xx

u2) −

(

σµ0xy

σµ0xx

)2
I0xy

√

I0xxI0yy

× exp(−2π2σ 2
µ0xy

u2)

]

d2u � 0. (36)

The first integral in equation (36) is always positive. Therefore,

a sufficient condition for satisfying inequality (36) for any

choice of f1 and f2 is

exp(−2π2σ 2
µ0xx

u2) −

(

σµ0xy

σµ0xx

)2

×
I0xy

√

I0xxI0yy

exp(−2π2σ 2
µ0xy

u2) � 0, (37)

for any value of u. On considering the casesu = 0 andu → ∞

we derive from equation (37) the following constraints:

σµ0xx
� σµ0xy

� σµ0xx

√

√

I0xxI0yy

I0xy

, (38)

which represent the above-mentioned sufficient condition.

When P(r, 0) ≪ 1, we see from equation (17) that

I0xy ≪
√

I0xxI0yy . Then, according to equation (38), the

values of σµ0xy
can be much greater than σµ0xx

.

4
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4. Propagation of PGSM beams

We recall that, for the field generated by an ordinary GSM

source (11), the following propagation formula holds (see

e.g. [60]):

Jsc(r1, r2, z) =
I0

F 2(z)
exp

[

−
ik

2R(z)
(r2

1 − r2
2 )

]

× exp

[

−
r2

1 + r2
2

4σ 2
I0
F 2(z)

]

exp

[

−
(r1 − r2)

2

2σ 2
µ0
F 2(z)

]

, (39)

where

F 2(z) = 1 +
(λz/π)2

4σ 2
I0

(

1

4σ 2
I0

+
1

σ 2
µ0

)

,

R(z) = z

(

1 +
1

F 2(z)

)

.

(40)

There is a similar propagation formula [55] for each element

of the BCP matrix describing the field generated by a PGSM

source. More explicitly we have

Jαβ(r1, r2, z) =
I0αβ

F 2
αβ(z)

exp

[

−
ik

2Rαβ(z)
(r2

1 − r2
2 )

]

× exp

[

−
r2

1 + r2
2

4σ 2
I0
F 2
αβ(z)

]

exp

[

−
(r1 − r2)

2

2σ 2
µ0αβ

F 2
αβ(z)

]

, (41)

with

F 2
αβ(z) = 1 +

(λz/π)2

4σ 2
I0

(

1

4σ 2
I0

+
1

σ 2
µ0αβ

)

,

Rαβ(z) = z

(

1 +
1

F 2
αβ(z)

)

,

(42)

and α, β = x, y. Except for the case σµ0xx
= σµ0xy

, the

expansion factors Fxx(z) and Fxy(z) are different at any z > 0.

Accordingly, the matrix elements Jxx (or Jyy) and Jxy change

in a different way.

In order to see this, let us write the local polarization matrix

(see section 2) Ĵ (r, r, z). Using equation (41) we find

Ĵ (r, r, z)

=







I0xx

F 2
xx (z)

exp

[

− r2

2σ 2
I0
F 2
xx (z)

]

I0xy

F 2
xy (z)

exp

[

− r2

2σ 2
I0
F 2
xy (z)

]

I0xy

F 2
xy (z)

exp

[

− r2

2σ 2
I0
F 2
xy (z)

]

I0yy

F 2
xx (z)

exp

[

− r2

2σ 2
I0
F 2
xx (z)

]






.

(43)

On inserting from equation (43) into equation (6) we obtain

the following law of variation for the degree of polarization

upon propagation:

P(r, z) =

{(

I0xx − I0yy

I0xx + I0yy

)2

+
4I 2

0xy

(I0xx + I0yy)2

[

Fxx(z)

Fxy(z)

]4

× exp

[

−
r2

σ 2
I0

(

1

F 2
xy(z)

−
1

F 2
xx(z)

)]}1/2

. (44)

Equation (44) shows that if σµ0xx
�= σµ0xy

and I0xy �= 0 the

degree of polarization, which is uniform at the plane z = 0,

will be non-uniform across a typical section z = constant > 0.

It can be shown that the requirement that P(r, z) � 1 for any

choice of (r, z) leads to further limitations for the values of

σµ0xx
and σµ0xy

(see appendix B). In particular, it can be proved

that, when the light field is completely polarized across the

source plane (P(r, 0) = 1), the radiated beam retains this

property upon propagation, resulting in σµ0xx
= σµ0xy

5.

We have already pointed out the fact that the beam emitted

by a PGSM source is absolutely undistinguishable from that

generated by an ordinary, scalar GSM source if no anisotropic

element is inserted in the beam path. In other terms, we can say

that an interference scheme involving no anisotropic elements

measures the trace of the BCP matrix, i.e. Jeq(r1, r2, z) (see

equation (7)). In order to demonstrate the effects of the off-

diagonal elements of the BCP matrix, or even to measure

them, one thus needs to use some anisotropic device, such

as polarizers or waveplates.

The simplest scheme consists of a linear polarizer inserted

across the beam path at a typical plane z = constant. On

denoting by ϑ the angle between the transmission axis of the

polarizer and the x-axis, the transverse optical intensity after

the polarizer Iϑ (r, z) is given by equation (10), which, on

considering for simplicity I0xx = I0yy , leads to

Iϑ (r, z) = Jxx(r, r, z) + Jxy(r, r, z) sin 2ϑ. (45)

For example, on setting ϑ = ±π/4, we obtain from

equation (45)

I±π/4(r, z) = Jxx(r, r, z) ± Jxy(r, r, z), (46)

which, in the case of our PGSM beam, turns out to be

I±π/4(r, z) = I0xx









exp

[

− r2

2σ 2
I0
F 2
xx (z)

]

F 2
xx(z)

±

η exp

[

− r2

2σ 2
I0
F 2
xy (z)

]

F 2
xy(z)









, (47)

where η = I0xy/I0xx . Therefore, except for the case σµ0xy
=

σµ0xx
, the output intensity is no longer Gaussian, a feature one

could hardly foresee looking at equation (12).

5. Numerical example

In this section it will be shown through a simple numerical

example how the polarization features of PGSM beams change

upon free propagation. On the other hand we will show how

it is possible to distinguish PGSM beams from ordinary GSM

beams when a linear polarizer is considered.

First of all it should be noticed that the local degree of

polarization of a PGSM beam will change, showing different

behaviours with z and r , depending on the beam parameters.

In order to illustrate the propagation characteristics of a PGSM

beam and the differences between an ordinary GSM and

PGSM beam we choose the simple case considered in the

previous section. With this aim, we will assume that the

total intensity at the source plane is normalized to unity and

that I0xx = I0yy . The beam size at this plane is chosen as

σI0
= 1 mm and the other beam parameters have been selected

5 It should be noted that the condition P(r, z) � 1 can be traced back to the

Schwartz inequality (4) [1].

5



F Gori et al

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10

D
e

g
re

e
o

f
p

o
la

ri
z

a
ti

o
n

z [m]

Figure 1. Polarization degree of a PGSM beam as a function of the
propagation distance z for several values of r/σI (z) (from the top to
the bottom r/σI (z) = 0, 0.5, 0.75, 0.92, 1.25, 2, 3, 5). Beam
parameters are I0xx = I0yy = 1/2, I0xy = 0.1, σIo = 1 mm,
σµ0xx

= σµ0yy
= 0.1 mm, σµ0xy

= 0.2 mm and λ = 632.8 nm.
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Figure 2. Polarization degree of a PGSM beam as a function of the
scaled variable x/σI (z) at different propagation distances z. Due to
the rotational symmetry of the beam only the x-section (y = 0) is
shown. Beam parameters are as in figure 1.

in such a way as to satisfy equations (13), (14), (16), (18), (29)

and (38). In particular we set I0xx = I0yy = 1/2, I0xy = 0.1,

σµ0xx
= σµ0yy

= 0.1 mm and σµ0xy
= 0.2 mm. In such a case

the beam is partially polarized. If we use the decomposition

of a given wave into a unpolarized and a polarized portion

which are mutually independent [2], then its totally polarized

component is linear with azimuth +π/4.

Figure 1 shows the local degree of polarization P(ρ, z),

calculated from equation (44), versus the propagation distance

z for various values of ρ. We used the scaled variable

ρ = r/σI (z), where r is the radial coordinate and σI (z) is

the beam width at each plane z = constant. As can be seen,

the polarization at the source plane is uniform for all the points

at the transversal section of the beam with the same value

P(ρ, 0) = 0.2. As the beam propagates in free space the

degree of polarization becomes different from point to point of

the cross section of the beam. The degree of polarization never

remains constant along z, although in some cases it is possible

to obtain the same value of P(ρ, z) at both the far field and the

source plane (see figure 1 for ρ = 0.92).

In order to compare the degree of polarization distribution

across the transversal section of the beam for different values
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Figure 3. PGSM beam intensity after a linear polarizer versus
x/σI (z) at different angles with respect to the x-axis: θ = 0 (solid
curves), θ = π/4 (dashed curves) and θ = −π/4 (dotted curves),
placing the polarizer at (a) z = 1 m, (b) z = 1.6 m and (c) z = 3 m.
Beam parameters are as in figures 1 and 2.

of z we have plotted P(ρ, z) along the x-axis (y = 0) (see

figure 2). It is clear from this figure that the non-uniformity

of the degree of polarization at the beam transversal section is

different for each plane z = constant. It starts from a constant

distribution at z = 0, changing to a Gaussian distribution,

whose variance decreases as z is increased.

Finally we show the effect of a linear polarizer on a PGSM

beam. As pointed out above, it is not possible to distinguish a

PGSM from an ordinary GSM beam when only beam intensity

measures are performed, but it is necessary to introduce some

anisotropic element such as a polarizer. The intensity of a

6
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PGSM beam at the output of a polarizer is calculated from

equation (45) for our beam and for three different values of

θ . The polarizer is placed at three distances z from the source

plane. The results are plotted in figure 3. For θ = 0 the

beam intensity profile is Gaussian at each plane z whereas for

θ = ±π/4 we have a sharper or flatter beam profile.

Note that as the beam propagates its central region presents

a higher degree of polarization (see figure 2). This means that

the fraction of the totally polarized component of the beam is

increased and remains linearly polarized at +π/4. This fact

accounts for the shape of the curves of figure 3, where an

intensity reduction (hole) is seen at the centre of the beam

when the polarizer is placed at θ = −π/4 whereas a higher

value of the intensity at the centre is observed for θ = +π/4.

6. Conclusions

We have considered a six-parameter class of partially

polarized Gaussian Schell-model (PGSM) sources with

uniform polarization as well as the beams generated by such

sources. We found that the choice of the six parameters

is restricted by certain constraints. Upon propagation the

polarization across a typical beam section generally becomes

non-uniform. At an intuitive level, this can presumably

be accepted as due to a different correlation length of the

diagonal elements as compared with the off-diagonal ones.

More surprising is the fact that on rotating a linear polarizer

inserted in the beam path we see the central region of the

intensity pattern turn into a dip or a hill with respect to

the Gaussian shape. In a sense, the beam behaves as the

incoherent superposition of two non-Gaussian shaped beams

with orthogonal polarization. When two such beams are

superposed and no anisotropic optical element is used the result

is just an ordinary GSM beam. Neither the intensity pattern

nor the equivalent mutual intensity distribution would allow us

to realize that the beam has a richer structure than the ordinary

GSM beam. The physical difference between the two beams

is accounted for by the simple BCP matrix treatment.

As we said previously, the unrestricted family of PGSM

beams is specified by nine parameters instead of six. Indeed,

this set is expected to exhibit an even richer behaviour than

the set considered in this paper. Criteria for the correct choice

of the nine parameters remain to be found and a full scope

description of the corresponding propagation features has to

be developed.
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Appendix A. Removing the phase of I0xy

Let us consider the partially polarized GSM source passing

through a waveplate whose Jones matrix, say T̂WP, is of the

form

T̂WP =

(

1 0

0 exp(i*ϕ)

)

, (A.1)

where*ϕ denotes the phase delay introduced by the waveplate.

The local BCP matrix across the source plane of our partially

polarized GSM source turns out to be

Ĵ (r1, r2; 0) = exp

(

−
r2

1 + r2
2

4σ 2
Io

)

×





I0xx exp



−
(r1−r2)

2

2σ2
µ0xx



 M0xy exp(i-0xy ) exp



−
(r1−r2)

2

2σ2
µ0xy





M0xy exp(−i-0xy ) exp



−
(r1−r2)

2

2σ2
µ0xy



 I0yy exp



−
(r1−r2)

2

2σ2
µ0xx







,

(A.2)

where we set I0xy = M0xy exp(i-0xy).

On substituting equations (A.1) and (A.2) into (9), the

BCP matrix after the passage through the waveplate turns out

to be

Ĵ ′(r1, r2; 0) = T̂
†

WPĴ (r1, r2, z)T̂WP

= exp

(

−
r2

1 + r2
2

4σ 2
Io

)

×





I0xx exp



−
(r1−r2)

2

2σ2
µ0xx



 M0xy exp(i-0xy + i*ϕ) exp



−
(r1−r2)

2

2σ2
µ0xy





M0xy exp(−i-0xy − i*ϕ) exp



−
(r1−r2)

2

2σ2
µ0xy



 I0yy exp



−
(r1−r2)

2

2σ2
µ0xx







,

(A.3)

from which, on setting *ϕ = −-0xy , the phase of I0xy can be

removed.

Appendix B. Further constraint of BCP parameters

We derive a further necessary condition for the values of σµ0xx

andσµ0xy
, following from the fact that the degree of polarization

P(r, z) has to be less than or equal to unity everywhere in

space [1]. First of all, we see from equation (44) that, for a fixed

value of z, the maximum value of the degree of polarization is

reached at r = 0. This maximum varies with z according to

the following law:

P(0, z) =

√

(

I0xx − I0yy

I0xx + I0yy

)2

+
4I 2

0xy

(I0xx + I0yy)2

[

Fxx(z)

Fxy(z)

]4

.

(B.1)

In the limit of very large values of z, equation (B.1) gives

lim
z→∞

P(0, z)

=

√

√

√

√

√

(

I0xx − I0yy

I0xx + I0yy

)2

+
4I 2

0xy

(I0xx + I0yy)2





1
4σ 2

I0

+ 1
σ 2
µ0xx

1
4σ 2

I0

+ 1
σ 2
µ0xy





2

,

(B.2)

where use has been made of equation (42). In particular, it is

possible to show that limit (B.2) constitutes the maximum for

the degree of polarization, i.e.

P(r, z) � P(0,∞), (B.3)

for any choice of (r, z). Thus, on imposing that P(0,∞) � 1,

after simple algebra we obtain the following inequality:

σµ0xy
� σµ0xx

γ

√

√

√

√

4σ 2
Io + σ 2

µ0xy

4σ 2
Io + σ 2

µ0xx

, (B.4)
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where γ =
√

I0xxI0yy/I0xy . Equation (B.4) represents a

necessary condition. By solving it with respect to σµ0xy
, it

can be shown that equation (B.4) becomes

σµ0xy
�

2γ σI0
σµ0xx

√

4σ 2
I0

− (γ 2 − 1)σ 2
µ0xx

, (B.5)

for those values of σI0
, γ , σµ0xx

, for which the argument of the

square root in equation (B.5) is greater than zero. For other

values of σI0
, γ , σµ0xx

, it is possible to see that condition (B.4) is

always satisfied. An important consequence of equation (B.5)

is that, when the degree of polarization across the source plane

is equal to unity, i.e. when γ = 1 (see equation (17)), σµ0xy

cannot exceed σµ0xx
. According to equation (28), this means

that the only possible choice is σµ0xy
= σµ0xx

, so the radiated

beam remains completely polarized at any transverse plane.
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