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Partially Supervised Oil-Slick Detection by SAR
Imagery Using Kernel Expansion

Grégoire Mercier, Member, IEEE, and Fanny Girard-Ardhuin, Member, IEEE

Abstract—Spaceborne synthetic aperture radar (SAR) is well
adapted to detect ocean pollution independently from daily or
weather conditions. In fact, oil slicks have a specific impact on
ocean wave spectra. Initial wave spectra may be characterized
by three kinds of waves, namely big, medium, and small, which
correspond physically to gravity and gravity-capillary waves. The
increase of viscosity, due to the presence of oil damps gravity-
capillary waves. This induces not only a damping of the backscat-
tering to the sensor but also a damping of the energy of the wave
spectra. Thus, local segmentation of wave spectra may be achieved
by the segmentation of a multiscale decomposition of the original
SAR image. In this paper, a semisupervised oil-slick detection is
proposed by using a kernel-based abnormal detection into the
wavelet decomposition of a SAR image. It performs accurate
detection with no consideration to signal stationarity nor to the
presence of strong backscatters (such as a ship). The algorithm
has been applied on ENVISAT Advanced SAR images. It yields
accurate segmentation results even for small slicks, with a very
limited number of false alarms.

Index Terms—Image analysis, oil spill, satellite applications, sea
surface, synthetic aperture radar, water pollution.

I. INTRODUCTION

THE OCEANIC sea surface is complex and is often
governed by nonlinear dynamic systems. Surface waves,

which are found in the ocean, range from the millimeter scale
to hundreds of meters. By considering an infinite sea surface,
the wind induces capillary waves by friction. Capillary waves
cannot propagate without wind excitation. But, they transfer
their energy to waves with a longer wavelength until they reach
an equilibrium that depends on the wind. In addition, gravity
waves transfer their energy to gravity-capillary waves. Several
models have been proposed to characterize the sea-surface
spectrum with an accuracy that depends on the wavelength
bandwidth. Those models integrate not only the wind but also
the current, atmospheric pressure, and so on. An interesting
comparison of some models may be found in [1] in the context
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of synthetic aperture radar (SAR) imagery. On the one hand,
capillary waves are generated by friction, more specifically by
friction velocity, related to wind speed and surface properties,
which die down when the friction decreases. On the other hand,
gravity waves are generated indirectly by sea spectrum energy
spreading and propagating over long distances far from their
origins.

In fact, backscattering phenomena are directed by gravity-
capillary waves (due to the wavelength of electromagnetic
waves), while typical SAR systems are sensitive to gravity
waves (due to their resolution).

A viscous area is seen smoother than a clean sea surface
since small wave generation and propagation is reduced by
the viscosity of a slick. From the SAR sensor point of view,
a slick is characterized by a lack of backscattered energy and
then is restituted through a dark area [2]. According to the
Bragg phenomenon, the backscattering process is mostly due to
surface roughness. That is why many slick-detection algorithms
are based on a thresholding technique [3]–[5]. Nevertheless,
this process is not efficient, as slick measurement is sensitive
to many parameters (see Section II). Moreover, a radiometric
point of view shows some limitations since wave slopes that are
not oriented to the sensor are restituted with a lower radiometry
that may be confused with small slicks. That is why most slick-
detection strategies include a postprocessing stage to remove
small slicks through geometrical, morphological, or contextual
criteria [6]–[8].

In order to develop a slick-detection scheme in an operational
context, the strategy is based on the segmentation of the shape
of the local sea-surface wave spectrum. This segmentation is
achieved by a kernel expansion that allows to be used with
synergistic data. Moreover, the margin maximization is imple-
mented through an abnormal detection technique in order to
characterize the normal sea state only (which is then calibrated
to the sensor and sea state), while viscous areas are being
detected as abnormal observation, if any.

This paper is organized as follows. Section II focuses on the
slick measurement through SAR data and outlines the main
parameters that are to be taken into consideration in an oper-
ational framework. Section III presents the multiscale strategy
that allows adding to the initial SAR observation a local sea-
surface wave-spectrum point of view. In Section IV, abnormal
detection is defined through support vectors (Section IV-A),
while Section IV-B focuses on the kernel definition that allows
to perform an abnormal detection in the sense of slick detection.
Section V shows some typical examples with Environmen-
tal Satellite (ENVISAT) Advanced SAR (ASAR) data, and
Section VI concludes.
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II. SLICK MEASUREMENT

Benjamin Franklin was among the first modern scientist to be
interested in the applications of wave damping by surface slicks
[9]. A slick at the ocean surface damps gravity-capillary waves,
as explained by Marangoni’s theory [10], which is detailed in
[11]–[15]. Wave damping is due to the decrease in the surface
stress, which is associated with film elasticity, and also to the
slick nature, density, and surface viscosity.

Radar is sensitive to surface roughness, which is linked by
gravity-capillary waves and is damped by slicks. The radar
backscattering level is decreased by the presence of a slick,
which appears as a dark patch with weak backscattering in
comparison with the surrounding regions.

From a synthesis of previous experimental studies, the best
approach to take in detecting slicks is to consider a function
of several parameters such as radar configuration, slick nature
(natural slick or oil spill), and meteorological and oceanic
conditions [16].

1) Wavelength: Each radar frequency band responds differ-
ently, according to wind speed and slick nature [14], [15],
[17]–[19]. Several experimental multifrequency studies
have shown the greatest contrast with the C-, X-, and
Ku-bands by pouring artificial slicks; these results have
been confirmed with numerical simulations [20].

The C-band frequency seems to be the most suitable
frequency, allowing strong contrasts to be measured up to
a wind speed of about 10–14 m · s−1 [18].

2) Polarization: The choice of polarization depends on
radar frequency and wind speed. Some experiments have
shown that there is no real difference between the HH
and VV polarizations for a slick study [21]. However, VV
polarization seems to be the most suitable for the C-band,
which is notably with strong winds [22], [23].

3) Incidence angle: The reflection mode of the incident
electromagnetic wave is a function of the incidence angle.
There are two backscattering mechanisms: a Kirchhoff,
for a 0◦ to 15◦ incidence angle, and the Bragg reflection,
for a 20◦ to 70◦ incidence angle. The latter allows ob-
servation via the Bragg resonance with gravity-capillary
waves that are highly damped by surface films. According
to wind constraints and radar frequency, the most suitable
incidence angle is from 20◦ to 45◦.

4) Nature of the slick: Backscatter damping is a function of
the slick nature and of the slick properties of viscosity
and elasticity [12], [13]. Wave damping is more important
for oil spills than for natural slicks in the C-, X-, and
Ku-bands [17], whereas natural slicks cause stronger
damping with the L-band at low speed [19]. Thus, the use
of multifrequency radar measurements may play a role in
determining slick nature.

5) Influence of meteorological and oceanic conditions: The
wind is the most important parameter in slick SAR
imaging. Efficient radar detection of surface films at the
C-band frequency requires a wind speed from 2–3 to
10–14 m · s−1 [12], [22]. At lower wind speed, the surface
roughness is not uniform, and the calmer areas look like
oil spills. At higher wind speeds (up to 10–14 m · s−1),

backscattering remains high in the slick, and then, con-
trast decreases. Some conditions produce similar features
as oil spills on radar images (look-alike). For example,
weak backscatter areas exist over weak wind regions, like
in the lee of an island. Some other conditions, like oceanic
internal waves, quickly distort slicks that become less
dense, thus less easy to detect.

III. MULTISCALE STRATEGY

A priori, the proposed multiscale strategy, which is imple-
mented to detect oil slicks, may be justified by several concepts
mentioned above.

1) The SAR sensor is only sensitive to surface roughness (at
a centimeter scale), which is modulated by larger scale
phenomena that induce shades of texture.

2) The increase of viscosity, which is due to the presence
of an oil slick on the sea surface, affects the sea-surface
wave spectrum shape.

3) The oil slicks induce dark areas on the SAR images
under certain conditions such as limited wind (i.e., under
10–14 m · s−1).

The wavelet transform is an appropriate tool for the local
analysis of the sea wave spectrum. Two parameters are neces-
sary to characterize a multiscale representation: time and scale.
Scale defines a concept linked with a frequency characterization
that is time dependent.

A multiscale transform is not a multiresolution transform
since it does not include decimation steps; it may be imple-
mented in several forms. When a signal is decomposed into
a multiscale representation, the details of each band of the
decomposition are represented in a progressive manner (that is
to say, the bound frequency ωmax of the Fourier spectrum is
increasing). On the contrary, when using a multiresolution tool,
detail levels remain the same in each band (Fourier spectra are
of the same bandwidth), but the sampling is modified. In this
paper, we focus on the multiscale decomposition with a wavelet
transform that is shift invariant. Hence, details and texture have
the same signature whatever is their location.

Many shapes may be found in mother wavelets (but they are
subject to admissibility conditions [24]), and the choice of the
best wavelet remains an open question, which depends on the
application. The wavelet transform is defined in order to detect
sharp variations and also to characterize the local shape of a
signal at different scale. Then, the mother wavelet is defined
as the first derivative of a smoothing function θ(x) (i.e., this
function is the impulse response of a low-pass filter)

ψ(x) =
dθ(x)

dx
.

This constraint has been proposed by Mallat and Zhong in order
to build a wavelet frame that acts as a multiscale differential
operator [25]. According to this point of view, the wavelet
coefficients are proportional to the components of the gradient
of the signal smoothed by θ(·) at a scale 2j [which is equiv-
alent to a smoothing function θj(x) = θ(x/2j)]. With such a
multiscale differential operator, each singularity of the signal
is detected by following the modulus maxima of the wavelet
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coefficients toward finer scales. Moreover, it has been shown
that, if the signal has a band-limited Fourier transform and if
the wavelet has a compact support, then the wavelet modulus
maxima define a complete and stable signal representation [26].

In this paper, this wavelet representation is used for analysis
only. In two-dimensional (2-D), the multiscale differential op-
erator is defined in the same way as the Canny edge detector,
which detects points of sharp variation by calculating the mod-
ulus of the gradient vector of the signal. Then, two 1-D mother
wavelets are defined as

ψx(x) =
dθ(x)

dx
, ψy(y) =

dθ(y)

dy

where the superscripts “x” and “y” stand for the vertical and
horizontal decompositions. That means that, in such a wavelet
decomposition, there is no need for a diagonal decomposition,
as it is usually the case for multiresolution analysis [27].

The decomposition of an image I [where the pixel value
at position (x, y) is denoted I(x, y)] is achieved by a con-
volution with a smoothing function θ(x, y) = θ(x)θ(y) that
yields the smoothed image denoted by I low

1 . Two convolutions
with the wavelets ψx(x) and ψy(y) are also applied on im-
ages I to yield gradient images at scale ℓ = 1, which is de-
noted by W x

1 I(x, y) = I ∗x ψx(x) = (d/dx)(I ∗x θ(x)) and
W y

1 I(x, y) = I ∗y ψy(y) = (d/dy)(I ∗y θ(y)). ∗x (resp. ∗y)
stands for the convolution on x (resp. y) only. At coarser level,
the decomposition is applied on the smoothed image I low

ℓ , so
that the overall decomposition up to a scale L may be denoted
as the set of 2L + 1 images

I −→
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with 0 � ℓ < L (see Fig. 1).
In order to analyze the observations as locally as possible,

the scale function θ(·) was chosen as short as possible, and its
Fourier transform is a cubic spline. The low-pass and high-pass
coefficients are then defined (in z transform) by

H(z) = (z−1 + 3 + 3z + z2)/8

G(z) = − 2 + 2z. (2)

The high-pass filter corresponds to the discrete approximation
of the derivative operator. When applied to SAR images, it is
not necessary to use more than two or three levels since I low

L=2

or I low
L=3 contains details at the swell scale, which is enough for

our application.

IV. KERNEL-BASED ANOMALY DETECTION

We consider the problem of finding oil slick from a SAR
image as a detection problem instead of a classification one.
In fact, a SAR image of the sea surface may not contain any
slick. If any, a slick may not be statistically representative. So,

Fig. 1. Multiscale decomposition of a SAR image. Lossless characterization
of the initial information is performed through images of wavelet coefficients.
Images W x

ℓ
I (respectively, W y

ℓ
I) contain the vertical (respectively, horizontal)

detections of sharp variation and the characterization of local texture at scale
ℓ (0 � ℓ < 3). The image Ilow

L=3
is the coarse approximation of I at level 3.

a classification approach may have limited performances, and
the results would be very sensitive to the image content.

A. Support Vectors for Abnormal Detection

Let us consider an observation z of R
2L+1 that comes from

the set of the 2L + 1 images of (1) at a given position (x, y).
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Fig. 2. Separable dataset. (a) With the unique supporting hyperplane sep-
arating data from the origin with maximum margin. (b) With a nonlinear
characterization.

For oil-slick detection, with the classical formulation of the
detection theory, this observation may correspond to hypothesis
Hsea (i.e., that corresponds to normal sea state) or Hother (i.e.,
that corresponds to an unexpected sea state—to be associated
to a slick under some conditions, as shown in Section IV-B).

Many studies have been proposed to draw a theoretical
framework for hypothesis testing (from the common formu-
lations of Bayes, minimax, and Neymann–Pearson to the
so-called RX or generalized likelihood ratio) [28], [29].
Unfortunately, all those techniques are based on a parametric
formulation. Normal sea surface could be modeled through
some parametric law, autoregressive methods [8], or a frac-
tal behavior [30]. This required a large amount of data for
parameter estimation that may not be available for oil-spill
characterization.

Hence, it is proposed to use a nonparametric technique to
solve this hypothesis problem. A general solution consists in
building a decision function f(·), where Hsea is decided if
f(z) > 0

f(z)
Hsea

≷
Hother

0. (3)

Kernel expansion has been chosen to draw this decision func-
tion since this technique does not require the knowledge of the
statistical model and remains computationally efficient. This
technique is known as support vector novelty detection [31].

From a geometric point of view, as shown in Fig. 2(a),
the decision function should return a “+1” when applied to
the training set {s1, s2, . . . , sm} that corresponds to Hsea. The
decision function should return a “−1” elsewhere. The strategy
is to map the data into R

2L+1 and to separate them from
the origin with a maximum margin. For a new observation z,
the value f(z) is determined by evaluating which side of the
hyperplane it falls on. The hyperplane that separates the space
in two sides is defined by

g(z) = 〈z,w〉 − ρ

=

m
∑

i=1

αi〈z, si〉 − ρ (4)

where w is the normal vector of the hyperplane, which depends
on the support vectors {si}i=1,...,m through some linear combi-

nation of dot products 〈·, ·〉. Then, the decision function is given
by the sign of g(·)

f(z) = sgn (〈z,w〉 − ρ) . (5)

If the training set {s1, s2, . . . , sm} is separable, then there
exists a unique supporting hyperplane with the following
properties.

1) It separates all the data from the origin.
2) Its distance to the origin is maximal among all the hyper-

planes that fit property 1).
The supporting hyperplane is the one that maximizes the dis-
tance to the origin, while each training sample si are located on
the same side of the hyperplane with f(si) > 0. The distance
to be maximized from the hyperplane to the origin is given by
ρ/‖w‖, so that it yields the following quadratic problem:

minimize
w

1

2
‖w‖2 subject to 〈w, si〉 � ρ, ∀i ∈ {1, 2, . . . ,m}.

In fact, we do not use directly the observations from (1) since
there is no reason for the distance to the origin of the space
R

2L+1 to be relevant for hypothesis Hsea with no false alarms.
That is why a feature space is defined to add a thematic point of
view to the anomaly detection.

B. Kernel Design for Slick Detection

Let Φ(·) be the feature map that transforms initial obser-
vations in R

2L+1, which come from (1), into a feature space
where oil-slick signatures are becoming highly contrasted. The
initial dot product is transformed into a kernel evaluation

K (z,z′) = 〈Φ(z),Φ(z′)〉.

Then, the normal vector becomes w =
∑

i αiΦ(si) in the
feature space, and the hyperplane, which performs linear sep-
aration, becomes

f(z) =

m
∑

i=1

αiK(si,z) − ρ (6)

which is given by the dual problem:

minimize
w

1

2

∑

i,j∈{1,...,m}

αiαjK(si, sj)

subject to 0 � αi �
1

νm
and

m
∑

i=1

αi = 1. (7)

Here, ν ∈]0, 1] is introduced in close analogy to the ν-SV
classification algorithm [32]. If ν tends to approach to zero,
the upper bounds on the Lagrange multipliers tend to approach
infinity, and the constraint of (7) vanishes. We are facing a hard
margin problem.

The kernels are relevant to the behavior of the dot product
into the feature space. Kernels to be used for oil-slick detection
have to locate slick observations near the origin, while normal
sea state can be located far away. We remind that oil slick is
characterized by: 1) a lack of radiometry and 2) a damping of
the wave spectrum. The use of the wavelet transform transfers
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these physical properties into numerical properties: the wavelet
coefficients tend to be lowered inside a slick.

1) Usual Kernels: For the oil-slick segmentation, we ob-
served that polynomial (8) or sigmoid kernels (9) were the more
satisfactory since they minimize the number of false alarms:

KPolynomial(z, si) = (〈z, si〉 + 1)p (8)

KSigmoid(z, si) = tanh (〈z, si〉 + 1) . (9)

Those kernels are based on the classical dot product, and z

tends to approach to zero into the slicks (0 ∈ R
2L+1, i.e., a

lower radiometry and surface roughness), as shown in Fig. 2.
2) Texture Kernels: It is of interest to consider not only

pointwise observations through vector-to-vector comparisons
but also local neighborhoods to perform the local characteri-
zation of the sea-surface wave spectra. A texture-based kernel
has been developed in order to act as a contrast measure of local
texture on each component of the vectors.

Let us consider the neighborhood of each component of
vectors z and z

′. Here, each component {z1, z2, . . . , z2L+1}
of z are wavelet coefficients according to (1). Furthermore,
the neighborhood concept is to be understood as a spatial
neighborhood on the image (on the sea surface) and not through
a Euclidean distance into the feature space.

For the accuracy of the local parameter estimation, local
probability density functions (pdfs) have been chosen to follow
the Gaussian law that is supposed to be independent from a
component to another. Distributions are compared through the
Bhattacharyya distance [B(·, ·)].

Thus, the texture kernel may be defined, as an RBF kernel, as

K(z,z′) = e−(1−B(pz,p
z
′ ))

with B(pz, pz
′) =

L−1
∏

ℓ=0

∫

√

pzℓ
(u)pz′

ℓ
(u)du. (10)

Since B(pz, pz
′) ∈ [0, 1], the kernel of (10) satisfies Mercer’s

conditions.
3) Mixture of Kernels: It is of interest to consider not only

the backscattering process but also its local shape. A linear
mixture of kernels can fit the dual point of view: similarity
according to the dot product and also similarity according to
the texture. A mixture of kernels may be defined as [33]

K(z,z′) = µKa(z,z′) + (1 − µ)Kb(z,z′) (11)

where Ka(·, ·) and Kb(·, ·) are two kernels. Since Ka(·, ·) and
Kb(·, ·) satisfy Mercer’s conditions, all linear combinations are
eligible for kernels.

V. APPLICATIONS

Let us summarize the procedure for oil-slick detection.
1) SAR image I is composed of a multiscale

representation that yields a vector with 2L + 1
components: (I low

L ,WIx
L−1,WIy

L−1, . . . ,WIx
0 ,WIy

0 )t,
according to (1).

2) A region of interest (ROI) is defined from a nonpolluted
sea area to the kernel design of (7). The choice of the
ROI for a kernel-based anomaly-detection design is not as

Fig. 3. Detection results on a study area extracted from an ENVISAT ASAR
image, November 17, 2002 (10h45 UTC, orbit 3741, pol VV, wide swath mode,
and pixel size 75 × 75 m). (a) Initial image with the ROI (white square) used
to define the decision function (3550 pixels). (b) Detection results with our
method. (c) Detection results with the JRC algorithm. Note the presence of
boats near the tanker at the bottom left of the image. Image courtesy of ESA.

crucial as in the case of a maximum-likelihood approach.
Nevertheless, it is recommended to define a training set
that will improve the difference between the ambiguous
area and the polluted area. In the following examples,
training sets were defined through ROI of approximately
2000 pixels.

3) The overall classification is performed by the sign of
the kernel expansion of (6). The computational cost of
the classification depends on the complexity of (6). It
takes a minute (on a 1.8-GHz Linux Laptop) to classify a
512 × 512 image, including the wavelet transform proce-
dure. The training procedure (7) takes 10 s or so.

A. Accident Monitoring

A typical example that was chosen occured during the
Prestige wreck in November 2002 near the Spanish coast. An
ENVISAT ASAR image was acquired on November 17, which
is four days after the accident and two days before it sunk. A
complete analysis of this case with synergistic data may be
found in [16]. Wreckage can be seen as strong backscatters
on the bottom left of the extracted image in Fig. 3(a). The
slick by itself is easy to detect (since meteorological condi-
tions, which are shown by QuikSCAT SeaWinds observations,
proved there is enough wind speed—from 7 to 10 m · s−1—
to exclude a detection of a natural film). Nevertheless, some
dark areas (due to atmospheric perturbation [16]) often induce
false alarms.
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Fig. 4. Detection results on a study area extracted from an ENVISAT ASAR
image, January 6, 2003 (22h30 UTC, orbit 4464, pol VV, wide swath mode, and
pixel size 75× 75 m). (a) Initial image with the ROI used to define the decision
function (6308 pixels). (b) Detection results. (c) Distance to hyperplane. Image
courtesy of ESA.

Before applying any slick-detection algorithm, the backscat-
ter image is calibrated and transformed into a sea-surface
roughness image using an ocean backscatter model such as
the C-band model (CMOD), as described in [34]. This impor-
tant step removes the incidence angle dependence across the
range and thus enables estimation of global statistics on the sea-
surface image that are used in most detection algorithms.

Kernel expansion was trained in a small area, delimited
by the white square in Fig. 3(a). A decision of (3) has been
applied, and it yields the results shown in Fig. 3(b). It is of
interest to stress that strong backscatters (such as boats near
the tanker) do not interfere into the slick-detection accuracy.
The Joint Research Centre (JRC) algorithm has been chosen for
comparison since this algorithm is used routinely for detecting
pollution over the Mediterranean Sea [35]. The result [Fig. 3(c)]
is very close to our detection [Fig. 3(b)]. This first example
shows that kernel-based slick detection yields similar results as
the classical methods on an easy case.

B. Oil Dumping Detection

Another example has been selected from an ENVISAT
ASAR acquisition of the same area (south of Galicia), but
not connected to the Prestige’s wreck. This image [Fig. 4(a)],
acquired on January 6, 2003, shows a 30-km-long thin linear
oil spill, but the wind speed (which has been estimated to
be up to 5–12 m · s−1 from the SAR image itself [34] and
also from QuikSCAT SeaWinds observations) is strong enough
to ensure spill detection. This case is interesting since the linear

Fig. 5. Detection results on a study area extracted from an ENVISAT ASAR
image, December 2, 2002 (22h30 UTC, orbit 3963, pol VV, wide swath mode,
and pixel size 75 × 75 m). (a) Initial image with the ROI used to define the
decision function (1665 pixels). (b) Detection results. (c) Detection result by
using the decision function built in Fig. 4. Image courtesy of ESA.

oil spill is easy to detect by eyes, but most of the automatic
detections fail. It is mostly due to swell, which is dominant
in the background of the slick and which induces noncon-
tiguous detections (the significant wave height is estimated
to be 5 m with the Wave Watch III model [36]).

The 6308-pixel ROI includes a dark area induced by at-
mospheric conditions. The spill detection still shows false
alarms, but the detection itself remains accurate [Fig. 4(b)].
Also, a distance map to the hyperplane [values of (6) shown in
Fig. 4(c)] can be used to connect the linear spill. Moreover, the
distance map shows that ships [that appear dark in Fig. 4(c)] are
located to the opposite side of the feature space from the spill.
It confirms the good choice of the kernel. In comparison, the
JRC algorithm used, in this case does not detect this particular
linear spill.

While the proposed technique yields similar results on the
first case (which may be considered as a toy case), the kernel ex-
pansion proved to be interesting when classical methods failed.

C. Ambiguous Area

During the weeks following the Prestige tanker accident,
SAR images were acquired in order to monitor the oil-spill
drift. The image for December 2 was acquired in this context.
It was an example of complex detection because of the weak
contrast of the dark patches, which could be oil spills or not
[Fig. 5(a) shows an extracted area]. The detailed synergistic
data analysis for this case is available in [16]. This day was
characterized by strong north–northwesterly winds higher than
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10 m · s−1. This direction implies that dark patches do not
correspond to weak winds due to an orographic effect. More-
over, the swell of the same direction has a 3–4-m significant
wave height. These conditions imply that the dark patches
detected in the SAR image are probably not due to natural
phenomena but are thick oil spills drifting on the ocean surface.
This conclusion is confirmed by aircraft observation maps [16].
Fig. 5(b) shows the detection of oil slicks from kernel-based
detection. Although the JRC algorithm does not detect any slick
on this difficult scene, kernel-based detection shows interesting
patches that correspond to real slicks. Unfortunately, no real
ground truth is available, so that it is not possible to draw
receiver operating characteristics (ROC) curves to evaluate the
ratio between good detection and the number of false alarms
that are surely found here.

In order to show the ability of stochastic kernels to learn a
normal sea state and to generalize normal conditions, this am-
biguous case has been processed by using the decision function
of (6), which is trained from the previous image [Fig. 4(a)]. The
result, shown in Fig. 5(c), proves that the learning of normal
sea state may be used for the complete image (and not only
from a selected area) and, also, for a set of images associated to
equivalent meteo-oceanic conditions.

VI. CONCLUSION

SAR imagery is well adapted to detect ocean pollution
independently from daily or weather conditions. Detection may
be performed on operational conditions when the impacts of a
viscous slick on the sea surface and then on the SAR data are
carefully taken into consideration. In this paper, a semisuper-
vised oil-slick detection technique is proposed by using single-
class support vector machines into a wavelet decomposition
of a SAR image. A specific kernel is developed to perform
accurate segmentation of the local sea-surface wave spectrum
by using both radiometric and texture information. Instead of
the previous studies such as in [37] and [38], this technique is
efficient in an operational context and proves to be a relevant
strategy to detect oil slicks as abnormal situations of the sea-
surface roughness and radiometry.

The proposed technique is as follows:
1) fast and can be applied on large images;
2) efficient since the detection is equivalent or better than

classical tools;
3) able to be generalized and made generic by using precal-

culated kernels.
Actually, deeper validation has to be made by considering the

synergistic data derived from the data of SAR itself (for wind
only) or any other sensor. To perform an accurate detection and
to reduce human supervision, it is of interest now to consider
a kernel family that can integrate such meteo-oceanic informa-
tion. It may significantly reduce false alarms from classical look
alikes.
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