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Abstract

Accumulating evidence suggests that storing speech sounds requires transposing rapidly

fluctuating sound waves into more easily encoded oromotor sequences. If so, then the clas-

sical speech areas in the caudalmost portion of the temporal gyrus (pSTG) and in the inferi-

or frontal gyrus (IFG) may be critical for performing this acoustic-oromotor transposition. We

tested this proposal by applying repetitive transcranial magnetic stimulation (rTMS) to each

of these left-hemisphere loci, as well as to a nonspeech locus, while participants listened to

pseudowords. After 5 minutes these stimuli were re-presented together with new ones in a

recognition test. Compared to control-site stimulation, pSTG stimulation produced a highly

significant increase in recognition error rate, without affecting reaction time. By contrast,

IFG stimulation led only to a weak, non-significant, trend toward recognition memory im-

pairment. Importantly, the impairment after pSTG stimulation was not due to interference

with perception, since the same stimulation failed to affect pseudoword discrimination ex-

amined with short interstimulus intervals. Our findings suggest that pSTG is essential for

transforming speech sounds into stored motor plans for reproducing the sound. Whether or

not the IFG also plays a role in speech-sound recognition could not be determined from the

present results.

Introduction

Speech sounds fluctuate at high, millisecond speeds, and it appears that integrating and storing

such rapidly varying signals cannot be carried out by the auditory system alone. This supposi-

tion is based on the evidence that storing new speech sounds requires reproducing or mimick-

ing those sounds [1], and it is likely that the same applies to storing new melodies. That

mimicking is a prerequisite for laying down an auditory memory is suggested by two related

findings: First, auditory stimuli that humans have great difficulty mimicking, such as reversed

words, are ones that humans have great difficulty recognizing a few minutes after hearing them

[1]; and second, mammals such as dogs and monkeys that cannot mimic their conspecifics'
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vocalizations, unlike marine mammals and songbirds that can do so, seem to be devoid of audi-

tory recognition memory [1–4]. These findings imply that the formation of long-term auditory

memories requires the assistance of the motor system, and this, in turn, suggests that in hu-

mans, the arcuate fasciculus, a bidirectional pathway that directly connects the auditory and

oromotor systems, with end stations in the posterior portion of the superior temporal gyrus

(pSTG) and the inferior frontal gyrus (IFG) [5,6], plays an essential role in storing the central

representations of acoustic stimuli.

In the influential working memory model of Baddeley and Hitch [7], verbal information is

processed by a phonological loop, which is further subdivided into a passive storage compo-

nent (phonological storage) and an active rehearsal mechanism (articulatory rehearsal pro-

cess). Whereas the passive storage is assumed to store auditory information only for a few

seconds [8], the articulatory rehearsal process can maintain information for longer time spans

[9].

There is converging evidence to support the notion that articulatory rehearsal is supported

by subvocal speech: (i) participants show a greater memory span [10] and superior recognition

accuracy [11] for short compared to long words; (ii) the articulatory rehearsal process can be

interrupted by preventing internal rehearsal of verbal material [9,12–14]; and (iii) neuroimag-

ing studies have reported that subvocal rehearsal of verbal material engages motor-related

areas [9,15–20]. Thus, participants might use their ability to produce speech in order to convert

the aurally presented verbal information into internally rehearseable motor representations or

sensorimotor codes [16,17,19].

Whereas Baddeley’s working memory model recognizes the importance of subvocal articu-

lation (or rather verbalization) to refresh or retrieve (verbal) memory traces, it does not make

any claims about the form in which auditory memory traces are stored in long-term memory.

The idea that the motor system is pivotal in the formation of auditory long-term memories ex-

pands the importance of articulation to long-term storage of a wider array of auditory stimuli,

especially when these stimuli cannot be attached to a semantic association.

Indeed, Hickok and Poeppel’s well known dual-stream model of speech processing [21] can

be expanded to explain more general processes of auditory long-term memory: In particular,

the dorsal stream, which follows the arcuate fasciculus and maps acoustic speech signals onto

frontal articulatory networks, might play an important role in auditory and verbal working

memory. The dorsal stream connects the pSTG (referred to as Spt by [21]) with the articulatory

motor networks in and around the IFG.

Several neuroimaging studies suggest a role of the temporo-parietal areas in and around the

pSTG as a sensorimotor interface: Left parietal-temporal areas increase activity during the

delay period of verbal working memory tasks, independent of the modality of the presented sti-

muli [17,22] and are activated not only by a wide range of auditory stimuli (speech and music)

but also by oromotor behavior (covert speech/humming) [17,23].

The left IFG, often referred to as Broca’s area, has also been implicated in verbal working

memory [9,15,18,24–26], as well as in tonal (auditory) working memory [16,17,19]. The sup-

position that Broca’s area participates in verbal working memory is further strengthened by ev-

idence from repetitive TMS (rTMS) studies confirming this area's necessary participation in

phonological and verbal working memory [27,28]. Imaging data also suggests that the IFG is

especially important during auditory-verbal long-term memory: Buchsbaum and co-workers

[29] could show that activity in the IFG increases as a function of increasing time delay be-

tween word encoding and recognition whereas activity in the temporo-parietal cortex showed

the opposite pattern.

Our goal in the current study was to further investigate the participation of the dorsal path-

way in auditory LTM. We examined the effects of applying repetitive TMS (rTMS) to the

Classical Speech Areas and Auditory Long-TermMemory

PLOS ONE | DOI:10.1371/journal.pone.0119472 March 27, 2015 2 / 15



pSTG and the IFG in separate experiments while participants listened to a list of pseudowords

that they were asked to remember, as these were to be presented again later in a recognition

memory test. As a control intervention in the recognition of pseudowords, we also applied

rTMS to a nonspeech site in each of the two experiments. In contrast to most earlier rTMS

studies, which used words, we chose pseudowords in order to avoid any semantic encoding,

and we blocked working memory during the retention period so that participants could not

use articulatory rehearsal, a working memory related process, to recognize the pseudowords.

Articulatory suppression (i.e., suppression of both overt and covert movement of the articula-

tors for example [10,11,30–33] can interrupt the maintenance and rehearsal of stored material

in the articulatory or phonological loop [8,34]. By instructing the participants to count tones

that were presented in the retention period, and thereby engaging their phonological loop, we

forced the participants to rely on auditory long-term memory to perform the recognition task.

Methods

Participants

Thirty healthy volunteers, all right-handed and native English speakers, were recruited for the

study. They were divided into two groups of 15 participants each. One group (mean age, 26.6 ±

6.3 years; 9 females) was assigned to the pSTG experiment, and the other (mean age, 30.6 ±

9.2 years; 9 females) was assigned to the IFG experiment. One member of each group had to be

excluded due to technical difficulties during TMS stimulation, and one member of the IFG

group withdrew during the first experimental session. One further participant was removed

from the IFG group due to difficulties performing the task (for details see section on statistical

analysis).more than 8 errors during control stimulation. This performance cutoff was defined

as a error rate during control stimulation that was more than 3 standard deviations above the

mean detected during piloting. The results reported below are thus based on 14 participants in

the pSTG experiment and 12 participants in the IFG experiment. Both experiments were ap-

proved by the Neuroscience Institutional Review Board (IRB) of the National Institutes of

Health (NIH, 11-N-018). Before the experiments, all participants gave their informed oral and

written consent in accordance with the Code of Ethics of the World Medical Association (Dec-

laration of Helsinki) and the NIH guidelines. Prior to participation all participants completed a

neurological examination, standard at the National Institute of Neurological Disorders and

Stroke that included a gross hearing assessment. However no quantitative hearing exam

was performed.

Experimental Procedure

Participants were seated in front of a PC laptop (Dell Latitude D610) and fitted with foam in-

sert headphones (Etymotic Research, Elk Grove, Illinois). The laptop was used to present the

stimuli and record the behavioral responses, and the headphones ensured stimulus clarity and

sound-protection during rTMS.

Auditory long-term memory was tested in two sessions, each consisting of an encoding, in-

terference, and recognition phase (Fig. 1). During encoding, the participant listened to one of

two lists of 10 pseudowords, each pseudoword enveloped by 2 seconds of 10-Hz rTMS. The

stimulation started 500 ms before pseudoword onset and ended 750 ms after pseudoword off-

set, the pseudoword itself also lasting 750 ms. The participant was asked to fixate a cross on the

computer screen throughout this 2-sec period. The interval between pseudowords, and hence

between rTMS pulses, was 5 seconds. In the first experiment, rTMS was delivered over the left

Sylvian-parietal-temporal area (pSTG; active site; Fig. 2A) in one session and over the occiput

(Oz; control site; Fig. 2B) in the other. In the second experiment, stimulation was delivered
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over the left inferior frontal gyrus (IFG; active site; Fig. 2C) in one session and over the Oz con-

trol site in the other. In each experiment, both the order of stimulation site (active site first,

control site first) and the list order (list 1 first, list 2 first) were randomized across participants.

Prior to presentation of the pseudowords, the participants were instructed to try to remem-

ber the upcoming auditory stimuli without using elaborate memorization strategies (e.g., meth-

od of loci [35]). Immediately after the encoding phase, the participants were presented with a

5-minute articulatory interference task designed to prevent them from silently rehearsing the

pseudowords they had heard in the encoding phase. This interference task required counting

the number of times a randomly occurring tone (220 Hz) was presented via the headphones.

After each minute of counting, the participants were asked to report, by pressing a button, the

number of tones they had heard, with the tone occurring either 22, 23, or 24 times per minute;

this procedure was repeated five times in quick succession while the participants continued to

fixate the cross. Finally, during the recognition phase, which followed immediately after the in-

terference task, 20 pseudowords were presented via the headphones. These pseudowords in-

cluded the 10 that had been presented during encoding and 10 new ones. After each

pseudoword, participants were instructed to indicate whether or not they had heard it before

by pressing either the 1 key for ‘old’ or the 2 key for ‘new’. Immediately after each response

choice, the next pseudoword was presented. Participants were instructed to keep their fingers

at the ready on the response keys throughout this recognition phase. At the end of each session,

participants were asked to rate the overall level of difficulty of the recognition task on a scale of

1–5 (1, extremely easy; 5, extremely hard. Participants were given a 1-hour rest period between

the two rTMS sessions. Because the after-effects of rTMS are transient, a 1-hour rest interval is

thought sufficient to avoid carry-over effects between the two stimulation sites [36].

In case a t-test indicated a significant group-level difference between control and active site,

participants were invited back approximately one month after the main experiment. This was

only the case in the pSTG group, so only the participants of this group were invited back for a

perceptual control test. This was done in order to determine whether or not stimulation of the

Fig 1. Illustration of the study design.

doi:10.1371/journal.pone.0119472.g001
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pSTG site during presentation of a pseudoword interfered with their perception of it, as mea-

sured by their ability to discriminate between pseudowords. For the perceptual control experi-

ment, the participants were again instructed to fixate a cross on the computer screen while

listening this time to 20 pairs of pseudowords separated by an intrapair interval of 750 ms. The

first item in each pair was enveloped as before by 2 seconds of 10-Hz rTMS stimulation (with

stimulation lasting until the end of the intra-pair interval of 750 ms), and, immediately after

presentation of the second item in the pair, the participants were asked to judge whether the

second item was the same as the first (by pressing the 1 key) or different from it (by pressing

the 2 key). The pseudowords used in the control experiment were different from the pseudo-

words used in the main experiment but constructed on the same principles (See S1 Fig. for a vi-

sualization of the perceptual control task and some example stimuli). As in the recognition

experiment, the pSTG site was stimulated in one session, and the Oz site, in a separate session.

Again, session order was randomized and, to exclude carry-over effects, the two sessions were

separated by a 1-hour rest period.

Fig 2. Themean location of the target and orientation of the stimulator during rTMS of: (A) caudalmost
portion of the temporal gyrus, pSTG; (B) control site, Oz; and (C) inferior frontal gyrus, IFG.

doi:10.1371/journal.pone.0119472.g002
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Stimuli and Behavioral Measures

The pseudowords, which were easily mimicked but had no meaning, were each 4 letters and 2

syllables in length and 750 ms in duration. They were generated with a speech synthesizer

using a UK English female voice (http://cepstral.com) and modified for length and loudness

using Adobe Audition 3.0 (http://www.adobe.com/products/audition/). The sound intensities

were adjusted by the experimenter to a level at which the participant could hear the pseudo-

words clearly during rTMS. As noted earlier, pseudowords were chosen as stimuli instead of

real words to avoid semantic associations and thereby encourage stimulus-specific oromotor

encoding and storage.

rTMS

Repetitive TMS was produced by a MagStim Super-Rapid (MagStim, Whitland, Wales, UK)

stimulator connected to a double 70-mm, air-cooled coil attached to a Numatic air blower

(Numatic International, Chard, UK). An additional PC running Signal software and a Micro

1401 data acquisition unit (Cambridge Electronics Design, Cambridge, England) were used to

trigger the magnetic stimulators that delivered the pulse trains. The timing of the pulse trains

was synchronized with the behavioral tasks by interfacing the parallel port of the laptop com-

puter with the trigger input of the Micro 1401 unit.

Before the two rTMS sessions, we measured each participant’s resting motor threshold of

the right first dorsal interosseus muscle (RMTFDI). The active electrode was placed over the

muscle belly, and the reference electrode, over the joint of the second finger. EMG was re-

corded using a Nicolet Viking IV biological system (Madison, Wisconsin, US). The RMTFDI

was defined as the lowest intensity with which a single TMS pulse given over the cortical area

M1 ‘hotspot’ for the FDI induced a motor evoked potential (MEP) of at least 50-μV peak-to

peak amplitude in at least five out of ten trials.

During the encoding phase of the recognition task, the 10-Hz rTMS pulse train with which

each pseudoword was paired was set at 110% of the participant’s RMT. However, if this RMT

level was over 90% of the maximum stimulator output, as was the case for two participants in

the pSTG experiment and one in the IFG experiment, the stimulation intensity was set at 100%

of the RMT. The average stimulation intensity in the pSTG group was 64.6 (±11) percent of

stimulator output and the average stimulation intensity in the IFG group was 65.4 (±10) per-

cent of stimulator output.

The temporo-parietal site was defined as the caudalmost portion of the superior temporal

gyrus (pSTG; BA 22) and the IFG site was defined as the ventralmost portion of the pars oper-

cularis (vpPO; BA 44). We chose individual MRI-guided TMS neuronavigation since this tech-

nique has been shown to be superior to both functional Talairach coordinates and 10–20 EEG

positioning [37]. The coordinates for pSTG were x = -57 ± 3.9; y = -50 ± 7.3; z = 18 ± 5.9

(MNI, mean ± sd), and those for IFG were x = -48 ± 3.6; y = 15.3 ± 2.8; z = 2 ± 2.7 (mean ± sd).

The Oz control site in both experiments was determined according to the 10–20 EEG measure-

ment system, which defines Oz as lying above the inion by 10% of the distance along the partic-

ipant’s nasion-inion line. For precise positioning of the hand-held coils over both the

experimental and control sites, we used Brainsight Neuronavigation (Rogue Research, Mon-

treal Quebec, Canada) and magnetic resonance imaging (MRI), with each individual partici-

pant’s scan normalized a posteriori to the Montreal Neurological Institute (MNI) brain

template. (Prior to the present experiments, we tested 13 other participants using procedures

identical to those described here, except that the 10-Hz rTMS train applied to IFG was set at

100% instead of 110% RMT; see S2 Fig. and S1 Methods.)

Classical Speech Areas and Auditory Long-TermMemory
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The Drift Diffusion Model

To address that we observed differences in accuracy without an accompanying drop in reaction

time and to estimate cognitive processes underlying task performance we used a simplified dif-

fusion drift model (EZ-diffusion model [38]). This simplified version allowed us to calculate

the three most important unobserved variables of a two-choice decision task: (1) The decision

boundary a, interpreted as a measure of response conservatism with large values indicating

that the process takes more time to reach the boundary (2) The drift rate v, indicating the

mean approach rate to the decision boundary. It is interpreted as the relative amount of infor-

mation that is absorbed per time unit and indicates task difficulty. (3) The non-decision time

T_er, summarizing all non-decision constants like the motor response. The simplified model

used here, does not allow modelling RT distributions or to separately estimating the parameters

for correct and erroneous trials, however, due to the limited amount of data collected in this ex-

periment a more ‘macroscopic’modeling approach was the only available option. The EZ-dif-

fusion model (open-source matlab implementation: http://www.ejwagenmakers.com/papers.

html) calculates v, a and T-er by taking the mean response time, the variance of response time,

and response accuracy as input.

Statistical Analysis

Behavioral data were processed in Excel, and all data were checked for normality distribution

using the Kolmogorov-Smirnov test. For each dependent measure (recognition accuracy, reac-

tion time, task difficulty as well as false alarm, miss rate and EZ-diffusion parameters) a repeat-

ed-measure ANOVA including the between-subject factor Group (pSTG vs. IFGBroca) and

the within-subject factor Stimulation Site (experimental vs. control) was used. In case of a sig-

nificant main effect or interaction effect post-hoc Tukey tests were applied.

Unpublished pilot data on stimulus validity suggested average error rates around 20%

(mean: 4 errors ± 1.4) for our pseudo-word lists. To ensure all participants did perform the

task reasonably well, we aimed at removing participants whose baseline performance exceeded

an error rate of 40%. This level was determined by the mean error rate from the behavioral

pilot plus three standard derivations. All analyses were carried out using Statistica 9.1 (Statsoft,

Inc., Tulsa, OK, USA).

Results

Basic Performance Measures

The data were normally distributed according to the Kolmogorov-Smirnov test. Table 1 shows

the descriptive statistics for the basic performance measures (error rate, reaction time, difficulty

rating). For the error rates, the within-subject factor Stimulation Site (active vs. control)

showed a significant effect (F(1) = 12.81, p = 0.001), with the error rate being higher in the

active than in the control condition across groups. Neither the main effect for the between-

subject factor Group or the Group x Stimulation Site interaction was significant (F(1) = 0.001,

Table 1. Descriptive statistics for the basic performance measures.

Basic measures Active Control

Error RT (ms) Rating Error RT (ms) Rating

pSTG Experiment 6.0 (±2.4) 949 (±310) 3.4 (±0.8) 3.6 (±1.4) 861 (±348) 3.1 (±0.5)

IFG Experiment 5.4 (±2.3) 781 (±345) 4.0 (±0.8) 4.1 (±2.3) 829 (±284) 3.5 (±0.6)

doi:10.1371/journal.pone.0119472.t001
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p = 0.96 and F(1) = 1.21, p = 0.282, respectively). Direct comparisons of Stimulation Site

showed that the effect was heavily driven by a significant difference between active and control

stimulation in the pSTG group (p = 0.01), whereas the post-hoc comparison between active

and control in the IFG group did not reach significance (p = 0.35) (Figs. 3–4).

Fig 3. Upper graph: Recognition errors (groupmean +/- SE following stimulation of Oz (control site)
and pSTG (experimental site). Lower graph: Each participant's recognition errors following stimulation of Oz
and pSTG. The line marked by diamond end-points represents the performance of three participants with the
same scores.

doi:10.1371/journal.pone.0119472.g003

Classical Speech Areas and Auditory Long-TermMemory
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For the reaction times the rmANOVA did not show any significant main effects or interac-

tions (Group: F(1) = 0.081, p = 0.37, Stimulation Site n: F(1) = 0.098, p = 0.76, and Group x

Stimulation Site n F(1) = 1.14, p = 0.294).

For the difficulty judgments the rmANOVA did show a significant effect of Group F(1) =

5.91, p = 0.022 with the pSTG group rating both tasks as easier than the IFG group, however,

there was no significant Stimulation Site effect or a Stimulation x Group Interaction (F(1) =

2,62, p = 0.11, and F(1) = 0.16, p = 0.68, respectively).

Fig 4. Upper graph: Recognition errors (groupmean +/- SE following stimulation of Oz (control site) and IFG (experimental site). Lower graph: Each
participant's recognition errors following stimulation of Oz and IFG.

doi:10.1371/journal.pone.0119472.g004
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Perceptual Control Task

Since only the pSTG group showed a significant within group difference between active and

control stimulation we called these participants back for a perceptual control task to test if the

difference was caused by sensory deficits. Here, a student’s t-test was used to compare the effect

of experimental and control site. The perceptual control experiment failed to differentiate be-

tween the effects of stimulating the experimental and control sites, as under both conditions all

participants discriminated between the two members of each of the 20 pairs of pseudowords

with 100 percent accuracy. There was also no detectable difference in the reaction times (exper-

imental, 707 ms ±347; control, 687 ms ±292; t[12] = 0.43, p = 0.67) or in the mean perceived

difficulty of the control task (experimental, 1.4 ± 0.7; control, 1.2± 0.5; (t[12]) = 1.00; p = 0.34).

Diffusion Model Parameters

Table 2 shows the descriptive statistics for the diffusion model parameters (v, a, T_er). An

rmANOVA using the drift rate v (measure of task difficulty) as the dependent variable showed

a significant effect of Stimulation Site (F(1) = 10,94; p = 0.003), with lower drift rates (i.e.,

higher task difficulty) when stimulating the active site. Also for v there was no significant

Group effect (F(1) = 0,72; p = 0.402) or Group x Stimulation interaction (F(1) = 1,57; p =

0.222) but the post-hoc tests showed again that the main effect of Stimulation Site was strongly

driven by the effect in the pSTG group (p = 0.01), in the IFG group post-hoc tests did not

show significant differences between active and rest (p = 0.52). For the parameters indicating

response conservativeness and non-decision time (a and T_er) neither main effects (all

p-values> 0.4) nor interactions were significant.

Error Types

Table 3 shows the descriptive statistics for the different error types (False alarm, Miss). Since

our simplified diffusion model did not allow for a detailed modeling of specific error responses,

we investigated the effect of stimulation on false alarms (i.e., judging a new pseudoword as old)

and misses (i.e., judging an old pseudo word as new) separately. The rmANOVA for false

alarms did show a significant main effect for Stimulation Site (F(1) = 28,40, p< 0.001) as well

as a significant Group x Stimulation interaction (F(1) = 9,11, p = 0.006). Post-hoc tests again

confirmed that only the pSTG group showed significant differences in false recognition rate. In

Table 2. Descriptive statistics for the diffusion model parameters.

EZ-diffusion model Active Control

v a T_er v a T_er

pSTG Experiment 0.03 (±0.02) 0.25 (±0.07) -0.7 (±0.7) 0.07 (±0.02) 0.25 (±0.05) -0.59 (±0.4)

IFG Experiment 0.03 (±0.02) 0.23 (±0.09) -0.72 (±0.7) 0.05 (±0.03) 0.26 (±0.07) -0.81 (±0.6)

doi:10.1371/journal.pone.0119472.t002

Table 3. Descriptive statistics for the different error types.

Error types Active Control

False alarm Omission False alarm Omission

pSTG Experiment 2.5 (± 1.5) 3.6 (± 1.4) 0.9 (± 1.0) 2.6 (± 1.4)

IFG Experiment 1.9 (± 1.3) 4.0 (± 2.1) 1.4 (± 2.3) 3.4 (± 2.0)

doi:10.1371/journal.pone.0119472.t003

Classical Speech Areas and Auditory Long-TermMemory
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the pSTG group false alarms were higher following active compared to control stimulation

(p< 0.001) (Fig. 5). For the misses, no significant main effect or interaction could be found

(Group: F(1) = 0.30, p = 0.585, Stimulation Site: F(1) = 3.95, p = 0.058, and Group x Stimula-

tion F(1) = 0.19, p = 0.662).

Discussion

Of the two speech sites we stimulated, the posterior portion of the superior temporal gyrus

(pSTG) and the inferior frontal gyrus (IFG), our results provide clear support for a role in audi-

tory long-term memory of only the first of these. Thus, compared to the mnemonic effects of

stimulating a nonspeech control site, rTMS applied to the left pSTG during pseudoword en-

coding resulted, as predicted, in a highly significant impairment in the participants' ability to

recognize those pseudowords after a 5-min delay interval filled with an articulatory suppres-

sion task. That this stimulation-induced deficit was not attributable to interference with the

participants' auditory perception was demonstrated by their preserved ability to discriminate

between two matched and two nonmatched pseudowords when the members of each pair were

presented in rapid succession. By contrast to the unambiguous mnemonic effect of stimulating

the pSTG, stimulation of the IFG led to only a weak, nonsignificant trend toward recognition

impairment. Additional analysis using a simplified drift model indicatedindicates that the pa-

rameter v, indicating task difficulty, during encoding was significantly affected by stimulation

Fig 5. Normalized false alarm and omission errors (groupmean +/- SE) for IFG and pSTG stimulation.

doi:10.1371/journal.pone.0119472.g005
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over the active sites. As for the error rate, rTMS applied to the left pSTG during pseudoword

encoding resulted in significantly decreased drift rates, indicating a decrease in perceived signal

quality during this condition. Even though IGF stimulation also led to a decrease in drift rate,

the within group difference for the IFG group was non-significant. A similar pattern could also

be observed for the false alarm rate (i.e., identifying a new word as old) where false alarms were

significantly higher only after pSTG simulation. The different outcomes following stimulation

of the two different experimental sites will be considered in turn.

As summarized in the Introduction, left temporo-parietal areas in and around the pSTG

[39] are critical for the transposition of speech sounds into oromotor sequences and have been

implicated in verbal working memory [22]. Additionally, lesions that include the pSTG cause

severe impairment in verbal working memory [39].

Given the evidence that working memory ability depends on the activation of stimulus rep-

resentations stored in long-term memory [40,41] the impairment reported here in long-term

memory is consistent both with the literature on working memory cited above and with the im-

pairment others have observed in working memory following rTMS applied to a slightly more

anterior temporo-parietal site (e.g., reduced digit span [28] and reduced active pseudoword re-

call [42]).

Our results also showed that, pSTG stimulation specifically affected encoding since the drift

rate was the only diffusion model parameter significantly affected by pSTG stimulation. The

fact that neither the decision boundary nor the non-decision time was significantly affected in-

dicates that pSTG stimulation selectively disrupted encoding without interfering with non-spe-

cific retrieval processes or a general tendency to change the decision boundary during retrieval.

When comparing error types, pSTG stimulation increased false alarm rates (FA) while

misses stayed unaffected. This complements the findings of the drift model since it is known

that higher task difficulty can cause participants to commit more false alarm errors [43–45].

Taken together, the results thus suggest that only pSTG stimulation led to a shallow encoding

of pseudowords, thereby prompting participants to more false alarms.

Our combined evidence suggests that the pSTG serves as a gateway between the auditory

and oromotor systems, and, in the process, transposes unfamiliar speech sounds into oromotor

representations that are encoded and stored long-term, thereby leading to the strong memory

traces for those sounds.

The companion hypothesis that the left IFG is also an essential site for encoding and storing

the motor representations of speech sounds was not supported by the present results. A nega-

tive outcome of applying rTMS to this site was unexpected, inasmuch as previous studies

[27,28,46] had reported that stimulation of the left IFG interferes with short-term phonological

memory. However, the nonsignificant trend toward decreased recognition accuracy that we ob-

served after IFG stimulation should probably not be dismissed. One possible interpretation is

that the trend signals a genuine though weak memory impairment caused by spread of the IFG

stimulation caudally from its focal point in the ventral IFG to the ventral premotor cortex,

which some investigators [28,47,48] have proposed is the more critical locus for encoding the

memory of speech sounds. Indeed, our IFG stimulation site (x = -48, y = 15, z = 0) lay rostral to

the stimulation site reported by Romero and colleagues [28] (x = -46, y = 2, z = 16). However,

in our data set we could not find a systematic trend that participants who showed memory im-

pairment after IFG stimulation had a more rostral stimulation site than participants who

showed no change or an improvement (impaired: x = -47, y = 15, z = 0 vs. same/improved: x =

-49, y = 15, z = 0). Another possibility is that rTMS over the IFG merely led to incidental stimu-

lation of the facial muscles around the eye and jaw (see Fig. 2), which were sometimes observed

to twitch slightly, thereby possibly causing sporadic inattention. Since facial muscle stimulation

was not an issue during control stimulation over the occipital cortex, the sporadic inattention it
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caused might be a reason for the non-significant increase in error rate. These issues need to be

resolved before it will be possible to determine from rTMS evidence whether or not the IFG

plays an essential role in long-term auditory memory.

There are some caveats that should be discussed in connection with both the IFG and the

pSTG experiment:

First, we used a relatively small number of stimuli in the experiment. We decided on a small

number of pseudowords per condition since, considering the high mean baseline–error rates of

20%, an increased number of stimuli would have likely meant that some participants would

not exceed chance performance in the control condition. The small number of stimuli meant

however, that the absolute change in performance was relatively small. The number of stimuli

also meant that our study had relatively low power. For the detected difference following pSTG

stimulation this has no direct implications since a small sample size does not affect a type I

error but it may have prevented the detection of more subtle changes following IFG stimula-

tion. However, the IFG results presented here are replicated by the data in the supplementary

material where IFG stimulation in the same experimental setup was given at an only10% lower

intensity. The results from this additional experimental group strengthen the reliability of our

IFG finding.

Finally, that active and control TMS were applied on the same day might have an additional

caveat. We cannot completely exclude the possibility of carry-over effects, even though the lit-

erature suggests that this was not the case, since the excitability increasing effects of short high-

frequency rTMS trains usually do not outlast the stimulation by more than a couple of minutes

[36,49].
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