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Abstract

Research in NLP lacks geographic diver-

sity, and the question of how NLP can

be scaled to low-resourced languages has

not yet been adequately solved. “Low-

resourced”-ness is a complex problem go-

ing beyond data availability and reflects

systemic problems in society.

In this paper, we focus on the task of Ma-

chine Translation (MT), that plays a cru-

cial role for information accessibility and

communication worldwide. Despite im-

mense improvements in MT over the past

decade, MT is centered around a few high-

resourced languages.

∗

∀ to represent the whole Masakhane community.

As MT researchers cannot solve the prob-

lem of low-resourcedness alone, we pro-

pose participatory research as a means to

involve all necessary agents required in

the MT development process. We demon-

strate the feasibility and scalability of par-

ticipatory research with a case study on

MT for African languages. Its imple-

mentation leads to a collection of novel

translation datasets, MT benchmarks for

over 30 languages, with human evalua-

tions for a third of them, and enables par-

ticipants without formal training to make

a unique scientific contribution. Bench-

marks, models, data, code, and evaluation

results are released at https://github.

com/masakhane-io/masakhane-mt.

https://github.com/masakhane-io/masakhane-mt
https://github.com/masakhane-io/masakhane-mt
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1 Introduction

Language prevalence in societies is directly

bound to the people and places that speak this

language. Consequently, resource-scarce lan-

guages in an NLP context reflect the resource

scarcity in the society from which the speak-

ers originate (McCarthy, 2017). Through the

lens of a machine learning researcher, “low-

resourced” identifies languages for which few

digital or computational data resources exist,

often classified in comparison to another lan-

guage (Gu et al., 2018; Zoph et al., 2016).

However, to the sociolinguist, “low-resourced”

can be broken down into many categories:

low density, less commonly taught, or endan-

gered, each carrying slightly different mean-

ings (Cieri et al., 2016). In this complex defini-

tion, the “low-resourced”-ness of a language is

a symptom of a range of societal problems,

e.g. authors oppressed by colonial govern-

ments have been imprisoned for writing nov-

els in their languages impacting the publica-

tions in those languages (Wa Thiong’o, 1992),

or that fewer PhD candidates come from op-

pressed societies due to low access to tertiary

education (Jowi et al., 2018). This results

in fewer linguistic resources and researchers

from those regions to work on NLP for their

language. Therefore, the problem of “low-

resourced”-ness relates not only to the avail-

able resources for a language, but also to the

lack of geographic and language diversity of

NLP researchers themselves.

The NLP community has awakened to the

fact that it has a diversity crisis in terms of lim-

ited geographies and languages (Caines, 2019;

Joshi et al., 2020): Research groups are ex-

tending NLP research to low-resourced lan-

guages (Guzmán et al., 2019; Hu et al., 2020;

Wu and Dredze, 2020), and workshops have

been established (Haffari et al., 2018; Axelrod

et al., 2019; Cherry et al., 2019).

We scope the rest of this study to machine

Language Articles Speakers Category

English 6,087,118 1,268,100,000 Winner

Egyptian Arabic 573,355 64,600,000 Hopeful

Afrikaans 91,002 17,500,000 Rising Star

Kiswahili 59,038 98,300,000 Rising Star

Yoruba 32,572 39,800,000 Rising Star

Shona 5,505 9,000,000 Scraping by

Zulu 2,219 27,800,000 Hopeful

Igbo 1,487 27,000,000 Scraping by

Luo 0 4,200,000 Left-behind

Fon 0 2,200,000 Left-behind

Dendi 0 257,000 Left-behind

Damara 0 200,000 Left-behind

Table 1: Sizes of a subset of African language

Wikipedias1, speaker populations2, and categories

according to Joshi et al. (2020) (28 May 2020).

translation (MT) using parallel corpora only,

and refer the reader to Joshi et al. (2019) for an

assessment of low-resourced NLP in general.

Contributions. We diagnose the problems

of MT systems for low-resourced languages

by reflecting on what agents and interactions

are necessary for a sustainable MT research

process. We identify which agents and inter-

actions are commonly omitted from existing

low-resourced MT research, and assess the im-

pact that their exclusion has on the research.

To involve the necessary agents and facilitate

required interactions, we propose participatory

research to build sustainable MT research com-

munities for low-resourced languages. The fea-

sibility and scalability of this method is demon-

strated with a case study on MT for African

languages, where we present its implementa-

tion and outcomes, including novel translation

datasets, benchmarks for over 30 target lan-

guages contributed and evaluated by language

speakers, and publications authored by partici-

pants without formal training as scientists.

2 Background

Cross-lingual Transfer. With the success of

deep learning in NLP, language-specific fea-

ture design has become rare, and cross-lingual
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transfer methods have come into bloom (Upad-

hyay et al., 2016; Ruder et al., 2019) to transfer

progress from high-resourced to low-resourced

languages (Adams et al., 2017; Wang et al.,

2019; Kim et al., 2019). The most diverse

benchmark for multilingual transfer by Hu et al.

(2020) allows measurement of the success of

such transfer approaches across 40 languages

from 12 language families. However, the in-

clusion of languages in the set of benchmarks

is dependent on the availability of monolin-

gual data for representation learning with pre-

viously annotated resources. The content of the

benchmark tasks is English-sourced, and hu-

man performance estimates are taken from En-

glish. Most cross-lingual representation learn-

ing techniques are Anglo-centric in their de-

sign (Anastasopoulos and Neubig, 2019).

Multilingual Approaches. Multilingual

MT (Dong et al., 2015; Firat et al., 2016a,b;

Wang et al., 2020) addresses the transfer of

MT from high-resourced to low-resourced

languages by training multilingual models for

all languages at once. (Aharoni et al., 2019;

Arivazhagan et al., 2019) train models to trans-

late between English and 102 languages, for

the 10 most high-resourced African languages

on private data, and otherwise on public

TED talks (Qi et al., 2018). Multilingual

training often outperforms bilingual training,

especially for low-resourced languages.

However, with multilingual parallel data

being also Anglo-centric, the capabilities to

translate from English versus into English

vastly diverge (Zhang et al., 2020).

Another recent approach, mBART (Liu

et al., 2020), leverages both monolingual and

parallel data and also yields improvements

in translation quality for lower-resource lan-

guages such as Nepali, Sinhala and Gujarati.3

3Note that these languages have more digital re-
sources available and a longer history of written texts
than the low-resourced languages we are addressing here.

While this provides a solution for small quanti-

ties of training data or monolingual resources,

the extent to which standard BLEU evaluations

reflect translation quality is not clear yet, since

human evaluation studies are missing.

Targeted Resource Creation. Guzmán et al.

(2019) develop evaluation datasets for low-

resourced MT between English and Nepali,

Sinhala, Khmer and Pashtolow. They high-

light many problems with low-resourced trans-

lation: tokenization, content selection, and

translation verification, illustrating increased

difficulty translating from English into low-

resourced languages, and highlight the ineffec-

tiveness of accepted state-of-the-art techniques

on morphologically-rich languages. Despite

involving all agents of the MT process (Sec-

tion 3), the study does not involve data curators

or evaluators that understood the languages in-

volved, and resorts to standard MT evaluation

metrics. Additionally, how this effort-intensive

approach would scale to more than a handful

of languages remains an open question.

3 The Machine Translation Process

We reflect on the process enabling a sustainable

process for MT research on parallel corpora

in terms of the required agents and interac-

tions, visualized in Figure 1. Content creators,

translators, and curators form the dataset cre-

ation process, while the language technologists

and evaluators are part of the model creation

process. Stakeholders (not displayed) create

demand for both processes.

Stakeholders are people impacted by the

artifacts generated by each agent in the MT

process, and can typically speak and read the

source or the target languages. To benefit from

MT systems, the stakeholders need access to

technology and electricity.

Content Creators produce content in a lan-

guage, where content is any digital or non-

digital representation of language. For digi-
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tal content, content creators require keyboards,

and access to technology.

Translators translate the original content,

including crowd-workers, researchers, or trans-

lation professionals. They must understand the

language of the content creator and the target

language. A translator needs content to trans-

late, provided by content creators. For digital

content, the translator requires keyboards and

technology access.

Curators are defined as individuals in-

volved in the content selection for a

dataset (Bender and Friedman, 2018), requir-

ing access to content and translations. They

should understand the languages in question

for quality control and encoding information.

Language Technologists are defined as in-

dividuals using datasets and computational lin-

guistic techniques to produce MT models be-

tween language pairs. Language technologists

require language preprocessors, MT toolkits,

and access to compute resources.

Evaluators are individuals who measure

and analyse the performance of a MT model,

and therefore need knowledge of both source

and target languages. To report on the perfor-

mance on models, evaluators require quality

metrics, as well as evaluation datasets. Evalu-

ators provide feedback to the Language Tech-

nologists for improvement.

3.1 Limitations of Existing Approaches

If we place a high-resource MT pair such

as English-to-French into the process defined

above, we observe that each agent nowadays

has the necessary resources and historical

stakeholder demand to perform their role ef-

fectively. A “virtuous cycle” emerged where

available content enabled the development of

MT systems that in turn drove more transla-

tions, more tools, more evaluation and more

content, which cycled back to improving MT

systems.

Figure 1: The MT Process, in terms of the neces-

sary agents, interactions and external constraints

and demand (excluding stakeholders).

By contrast, parts of the process for exist-

ing low-resourced MT are constrained. His-

torically, many low-resourced languages had

low demand from stakeholders for content cre-

ation and translation (Wa Thiong’o, 1992).

Due to missing keyboards or limited access

to technology, content creators were not em-

powered to write digital content (Adam, 1997;

van Esch et al., 2019). This is a chicken-or-

egg problem, where existing digital content in

a language would attract more stakeholders,

which would incentivize content creators (Kaf-

fee et al., 2018). As a result, primary data

sources for NLP research, such as Wikipedia,

often have a few hundred articles only for low-

resourced languages despite large speaker pop-

ulations, see Table 1. Due to limited demand,

existing translations are often domain-specific

and small in size, such as the JW300 corpus

(Agić and Vulić, 2019) whose content was cre-

ated for missionary purposes.

When data curators are not part of the so-

cieties from where these languages originate,

they are are often unable to identify data

sources or translators for languages, prohibit-

ing them from checking the validity of the cre-

ated resource. This creates problems in en-
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coding, orthography or alignment, resulting

in noisy or incorrect translation pairs (Taylor

et al., 2015). This is aggravated by the fact that

many low-resourced languages do not have a

long written history to draw from and therefore

might be less standardized and using multiple

scripts. In collaboration with content creators,

data curators can contribute to standardization

or at least recognize potential issues for data

processing further down the line.

As discussed in Section 1, language tech-

nologists are fewer in low-resourced societies.

Furthermore, the techniques developed in high-

resourced societies might be inapplicable due

to compute, infrastructure or time constraints.

Aside from the problem of education and com-

plexity, existing techniques may not apply due

to linguistic and morphological differences in

the languages, or the scale, domain, or quality

of the data (Hu et al., 2020; Pires et al., 2019).

Evaluators usually resort to potentially un-

suitable automatic metrics due to time con-

straints or missing connections to stakehold-

ers (Guzmán et al., 2019). The main evaluators

of low-resourced NLP that is developed today

typically cannot use human metrics due to the

inability to speak the languages, or the lack of

reliable crowdsourcing infrastructure, identi-

fied as one of the core weaknesses of previous

approaches (in Section 2).

In summary, many agents in the MT process

for low-resourced languages are either missing

invaluable language and societal knowledge, or

the necessary technical resources, knowledge,

connections, and incentives to form interac-

tions with other agents in the process.

3.2 Participatory Research Approach

We propose one way to overcome the limita-

tions in Section 3.1: ensuring that the agents

in the MT process originate from the coun-

tries where the low-resourced languages are

spoken or can speak the low-resourced lan-

guages. Where this condition cannot be sat-

isfied, at least a knowledge transfer between

agents should be enabled. We hypothesize that

using a participatory approach will allow re-

searchers to improve the MT process by iterat-

ing faster and more effectively.

Participatory research, unlike conventional

research, emphasizes the value of research

partners in the knowledge-production process

where the research process itself is defined

collaboratively and iteratively. The “partici-

pants” are individuals involved in conducting

research without formal training as researchers.

Participatory research describes a broad set

of methodologies, organised in terms of the

level of participation. At the lowest level

is crowd-sourcing, where participants are in-

volved solely in data collection. The highest

level—extreme citizen science–involves partic-

ipation in the problem definition, data collec-

tion, analysis and interpretation (English et al.,

2018).

Crowd-sourcing has been applied to low-

resourced language data collection (Ambati

et al., 2010; Guevara-Rukoz et al., 2020; Mil-

lour and Fort, 2018), but existing studies high-

light how the disconnect between the data

creation process and model creation process

causes challenges. In seeking to create cross-

disciplinary teams that emphasize the values

in a societal context, a participatory approach

which involves participants in every part of

the scientific process appears pertinent to solv-

ing the problems for low-resourced languages

highlighted in Section 3.1.

To show how more involved participatory

research can benefit low-resource language

translation, we present a case study in MT for

African languages.

4 Case Study: Masakhane

Africa currently has 2144 living lan-

guages (Eberhard et al., 2019). Despite this,
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African languages account for a small fraction

of available language resources, and NLP

research rarely considers African languages.

In the taxonomy of Joshi et al. (2020), African

languages are assigned categories ranging

from “The Left Behinds” to “The Rising

Stars”, with most languages not having any

annotated data. Even monolingual resources

are sparse, as shown in Table 1.

In addition to a lack of NLP datasets, the

African continent lacks NLP researchers. In

2018, only five out of the 2695 affiliations of

the five major NLP conferences were from

African institutions (Caines, 2019). ∀ et al.

(2020) attribute this to a culmination of cir-

cumstances, in particular their societal embed-

ding (Alexander, 2009) and socio-economic

factors, hindering participation in research ac-

tivities and events, leaving researchers dis-

connected and distributed across the conti-

nent. Consequently, existing data resources

are harder to discover, especially since these

are often published in closed journals or are

not digitized (Mesthrie, 1995).

For African languages, the implementation

of a standard crowd-sourcing pipeline as for

example used for collecting task annotations

for English, is at the current stage infeasible,

due to the challenges outlined in Section 3 and

above. Additionally, no standard MT evalua-

tion set for all of the languages in focus exists,

nor are there prior published systems that we

could compare all models against for a more

insightful human evaluation. We therefore re-

sort to intrinsic evaluation, and rely on this

work becoming the first benchmark for future

evaluations.

We invite the reader to adopt a meta-

perspective of this case study as an empirical

experiment: Where the hypothesis is that par-

ticipatory research can facilitate low-resourced

MT development; the experimental method-

ology is the strategies and tools employed

to bring together distributed participants, en-

abling each language speaker to train, con-

tribute, and evaluate their models. The experi-

ment is evaluated in terms of the quantity and

diversity of participants and languages, and the

variety of research artifacts, in terms of bench-

marks, human evaluations, publications, and

the overall health of the community. While

a set of novel human evaluation results are

presented, they serve as demonstration of the

value of a participatory approach, rather than

the empirical focus of the paper.

4.1 Methodology

To overcome the challenge of recruiting par-

ticipants, a number of strategies were em-

ployed. Starting from local demand at a ma-

chine learning school (Deep Learning Indaba

(Engelbrecht, 2018)), meetups and universities,

distant connections were made through Twitter,

conference workshops,4 and eventually press

coverage5 and research publications.6 To over-

come the limited tertiary education enrollments

in Sub-Saharan Africa (Jowi et al., 2018), no

prerequisites were placed on researchers join-

ing the project. For the agents outlined in Sec-

tion 3, no fixed roles are imposed onto par-

ticipants. Instead, they join with a specific

interest, background, or skill aligning them

best to one or more of agents. To obtain cross-

disciplinarity, we focus on the communication

and interaction between participants to enable

knowledge transfer between missing connec-

tions (identified in Section 3.1), allowing a

fluidity of agent roles. For example, someone

who initially joined with the interest of using

4ICLR AfricaNLP 2020: https://africanlp-
workshop.github.io/

5https://venturebeat.com/2019/

11/27/the-masakhane-project-wants-

machine-translation-and-ai-to-

transform-africa/
6https://github.com/masakhane-

io/masakhane-community/blob/master/

publications.md

https://africanlp-workshop.github.io/
https://africanlp-workshop.github.io/
https://venturebeat.com/2019/11/27/the-masakhane-project-wants-machine-translation-and-ai-to-transform-africa/
https://venturebeat.com/2019/11/27/the-masakhane-project-wants-machine-translation-and-ai-to-transform-africa/
https://venturebeat.com/2019/11/27/the-masakhane-project-wants-machine-translation-and-ai-to-transform-africa/
https://venturebeat.com/2019/11/27/the-masakhane-project-wants-machine-translation-and-ai-to-transform-africa/
https://github.com/masakhane-io/masakhane-community/blob/master/publications.md
https://github.com/masakhane-io/masakhane-community/blob/master/publications.md
https://github.com/masakhane-io/masakhane-community/blob/master/publications.md
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machine translation for their local language (as

a stakeholder) to translate education material,

might turn into a junior language technologist

when equipped with tools and introductory ma-

terial and mentoring, and guide content cre-

ation more specifically for resources needed

for MT.

To bridge large geographical divides, the

community lives online. Communication

occurs on GitHub and Slack with weekly

video conference meetings and reading groups.

Meeting notes are shared openly so that contin-

uous participation is not required and time com-

mitment can be organized individually. Sub-

interest groups have emerged in Slack chan-

nels to allow focused discussions. Agendas for

meetings and reading groups are public and

democratically voted upon. In this way, the re-

search questions evolve based on stakeholder

demands, rather than being imposed upon by

external forces.

The lack of compute resources and prior

exposure to NLP is overcome by providing tu-

torials for training a custom-size Transformer

model with JoeyNMT (Kreutzer et al., 2019)

on Google Colab7. International researchers

were not prohibited from joining. As a re-

sult, mutual mentorship relations emerged,

whereby international researchers with more

language technology experience guided re-

search efforts and enabled data curators or

translators to become language technologists.

In return, African researchers introduced the

international language technologists to African

stakeholders, languages and context.

4.2 Research Outcomes

Participants. A growth to over 400 partici-

pants of diverse disciplines, from at least 20

countries, has been achieved within the past

year, suggesting the participant recruitment

process was effective. Appendix A contains

7https://colab.research.google.com

detailed demographics of a subset of partic-

ipants from a voluntary survey in February

2020. 86.5% of participants responded pos-

itively when asked if the community helped

them find mentors or collaborators, indicating

that the health of the community is positive.

This is also reflected in joint research publica-

tions of new groups of collaborators.

Research Artifacts. As a result of mentor-

ship and knowledge exchange between agents

of the translation process, our implementa-

tion of participatory research has produced

artifacts for NLP research, namely datasets,

benchmarks and models, which are publicly

available online.8. Additionally, over 10 partic-

ipants have gone on to publish works address-

ing language-specific challenges at confer-

ence workshops, such as (Dossou and Emezue,

2020; Orife, 2020; Orife et al., 2020; Öktem

et al., 2020; Van Biljon et al., 2020; Martinus

et al., 2020; Marivate et al., 2020).

Dataset Creation. The dataset creation pro-

cess is ongoing, with new initiatives still

emerging. We showcase a few initiatives be-

low to demonstrate how bridging connections

between agents facilitates the MT process.

1. A team of Nigerian participants, driven

by the internal demand to ensure that ac-

cessible and representative data of their

culture is used to train models, are trans-

lating their own writings including per-

sonal religious stories and undergraduate

theses into Yoruba and Igbo9.

2. A Namibian participant, driven by a pas-

sion to preserve the culture of the Damara,

is hosting collaborative sessions with

Damara speakers, to collect and trans-

late phrases that reflect Damara culture

8https://github.com/masakhane-io
9https://github.com/masakhane-

io/masakhane-wazobia-dataset

https://colab.research.google.com
 https://github.com/masakhane-io
https://github.com/masakhane-io/masakhane-wazobia-dataset
https://github.com/masakhane-io/masakhane-wazobia-dataset
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around traditional clothing, songs, and

prayers.10

3. Creating a connection between a trans-

lator in South-Africa’s parliament and

a language technologist has enabled the

process of data curation, allowing access

to data from the parliament in South-

Africa’s languages (which are public but

obfuscated behind internal tools).11.

These stories demonstrate the value of includ-

ing curators, content creators, and translators

as participants.

Benchmarks. We publish 45 benchmarks

for neural translation models from English into

32 distinct African languages, and from French

into two additional languages, as well as from

English into three different languages.12 Most

were trained on the JW300 corpus (Agić and

Vulić, 2019). From this corpus, we select

the English sentences most commonly found

(and longer than 4 tokens) in all languages,

as a global set of test sources. For individ-

ual languages, test splits are composed by se-

lecting the translations that are available from

this subset. While this biases the test set to-

wards frequent segments, it prevents cross-

lingual overlap between training and test data

which has to be ensured for cross-lingual trans-

fer learning. For training data, other sources

like Autshumato (McKellar, 2014), TED (Cet-

tolo et al., 2012), SAWA (De Pauw et al.,

2009), Tatoeba13, Opus (Tiedemann, 2012),

and data translated or curated by participants

were added. Language pairs were selected

based on the individual demands of each of the

32 participants, who voluntarily contributed

10https://github.com/masakhane-

io/masakhane-khoekhoegowab
11http://bit.ly/raw-parliamentary-

translations
12Benchmark scores can be found in Appendix C.
13https://tatoeba.org/

the benchmarks they valued most. 16 of the

selected target languages are categorized as

“Left-behind” and 11 are categorized as “Scrap-

ing by” in the taxonomy of (Joshi et al., 2020).

The benchmarks are hosted publicly, includ-

ing model weights, configurations and prepro-

cessing pipelines for full reproducibility. The

benchmarks are submitted by individual or

groups of participants in form of a GitHub Pull

Request. By this, we ensure that the contact to

the benchmark contributors can be made, and

ownership is experienced.

4.3 Human MT Evaluation

To our knowledge, there is no prior research

on human evaluation specifically for machine

translations of low-resourced languages. Until

now, NLP practitioners were left with the hope

that successful evaluation methodologies for

high-resource languages would transfer well

to low-resourced languages. This lack of study

is due to the missing connections between the

community of speakers (content creators and

translators), and the language technologists.

MT evaluations by humans are often done ei-

ther within a group of researchers from the

same lab or field (e.g. for WMT evaluations14),

or via crowdsourcing platforms (Ambati and

Vogel, 2010; Post et al., 2012). Speakers of

low-resource languages are traditionally under-

represented in these groups, which makes such

studies even harder (Joshi et al., 2019; Guzmán

et al., 2019).

One might argue that human evaluation

should not be attempted before reaching a vi-

able state of quality, but we found that early

evaluation results in an improved understand-

ing of the individual challenges of the target

languages, strengthens the network of the com-

munity, and most importantly, improves the

connection and knowledge transfer between

language technologists, content creators and

14http://www.statmt.org/wmt19/

https://github.com/masakhane-io/masakhane-khoekhoegowab
https://github.com/masakhane-io/masakhane-khoekhoegowab
http://bit.ly/raw-parliamentary-translations
http://bit.ly/raw-parliamentary-translations
https://tatoeba.org/
http://www.statmt.org/wmt19/
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curators.

The “low-resourced”-ness of the addressed

languages pose challenges for evaluation be-

yond interface design or recruitment of eval-

uators proficient in the target language. For

the example of Igbo, evaluators had to find

solutions for typing diacritics without a suit-

able keyboard. In addition, Igbo has many

dialects and variations which the MT model is

uninformed of. Medical or technical terminol-

ogy (e.g., “data”) is difficult to translate and

whether to use loan words required discussion.

Target language news websites were found to

be useful for resolving standardization or termi-

nology questions. Solutions for each language

were shared and often also applicable for other

languages.

Data. The models are trained on JW300

data.15 To gain real-world quality estimates be-

yond religious context, we assess the models’

out-of-domain generalization by translating a

English COVID-19 survey with 39 questions

and statements regarding COVID-19,16 where

the human-corrected and approved translations

can directly serve the purpose of gathering re-

sponses. The domain is challenging as it con-

tains medical terms and new vocabulary. Fur-

thermore, we evaluate a subset of the Multitar-

get TED test data (Duh, 2018)17. The obtained

translations enrich the TED datasets, adding

new languages for which no prior translations

exist. The size of the TED evaluations vary

from 30 to 120 sentences. Details are given in

Table 3, Appendix B.

Evaluators. 11 participants of the commu-

nity volunteered to evaluate translations in

their language(s), often involving family or

friends to determine the most correct transla-

tions. The evaluator role is therefore taken

15Except for Hausa: multiple domains, see Table 4.
16https://coronasurveys.org/
17http://www.cs.jhu.edu/˜kevinduh/a/

multitarget-tedtalks/

by both stakeholders and language technolo-

gists. Within only 10 days, we gathered a total

of 707 evaluated translations covering Igbo

(ig), Nigerian Pidgin (pcm), Shona (sn), Luo

(luo), Hausa (ha, twice by two different an-

notators), Kiswahili (sw), Yoruba (yo), Fon

(fon) and Dendi (ddn). We did not impose pre-

scriptions in terms of number of sentences to

evaluate, or time to spend, since this was volun-

tary work, and guidelines or estimates for the

evaluation of translations into these languages

are non-existent.

Evaluation Technique. Instead of a direct

assessment (Graham et al., 2013) often used

in benchmark MT evaluations (Barrault et al.,

2019; Guzmán et al., 2019), we opt for post-

editing. Post-edits are grounded in actions that

can be analyzed in terms of e.g. error types for

further investigations, while direct assessments

require expensive calibration (Bentivogli et al.,

2018). Embedded in the community, these

post-edit evaluations create an asset for the

interaction of various agents: for the language

technologists for domain adaptation, or for the

content creators, curators, or translators for

guidance in standardization or domain choice.

Results. Table 2 reports evaluation results in

terms of BLEU evaluated on the benchmark

test set from JW300, and human-targeted TER

(HTER) (Snover et al., 2006), BLEU (Papineni

et al., 2002) and ChrF (Popović, 2015) against

human corrected model translations. For ha

we find modest agreement between evaluators:

Spearman’s ρ = 0.56 for sentence-BLEU mea-

surements of the post-edits compared to the

original hypotheses. Generally, we observe

that the JW300 score is misleading, overesti-

mating model quality (except yo). Training

data size appears to be a more reliable predic-

tor of generalization abilities, illustrating the

danger of chasing a single benchmark. How-

ever, ig and yo both have comparable amounts

https://coronasurveys.org/
http://www.cs.jhu.edu/~kevinduh/a/multitarget-tedtalks/
http://www.cs.jhu.edu/~kevinduh/a/multitarget-tedtalks/
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Trg. Train. Autom.: JW300 Human: COVID Human: TED

lang. size BLEU ↑ HTER ↓ HBLEU ↑ HCHRF ↑ HTER ↓ HBLEU ↑ HCHRF ↑

ddn 6,937 22.30 1.11 0.27 0.08 - - -

pcm 20,214 23.29 0.98 3.03 0.19 0.84 9.76 25.16

fon 27,510 31.07 0.92 15.43 23.22 - - -

luo 136,459 34.33 - - - 1.26 7.90 20.88

ha 333,845 41.11
0.71 26.96 43.97 0.73 20.42 39.31

0.64 26.56 46.71 - - -

ig 414,467 34.85 0.85 11.94 29.86 0.55 33.74 49.67

yo 415,100 38.62 0.09 85.92 89.90 0.51 49.22 58.41

sn 712,455 30.84 0.53 31.31 54.04 - - -

sw 875,558 48.94 - - - 0.32 60.47 78.67

Table 2: Evaluation results for translations from English. Metrics are computed based on Polyglot-

tokenized translations. HTER are mean sentence-level TER scores computed with the Pyter Python

package. BLEU and ChrF are computed with Sacrebleu and tokenize “none” (Post, 2018).

of training data, JW300 scores, and carry di-

acritics, but exhibit very different evaluation

performances, in particular on COVID. This

can be explained by the large variations of ig

as discussed above: Training data and model

output are not consistent with respect to one

dialect, while the evaluator had to decide on

one. We also find difference in performance

across domains, with the TED domain appear-

ing easier for pcm and ig, while the yo model

performs better on COVID.

5 Conclusion

We proposed a participatory approach as a so-

lution to sustainably scaling NLP research to

low-resourced languages. Having identified

key agents and interactions in the MT devel-

opment process, we implement a participatory

approach to build a community for African

MT. In the process, we discovered successful

strategies for distributed growth and commu-

nication, knowledge sharing and model build-

ing. In addition to publishing benchmarks and

datasets for previously understudied languages,

we show how the participatory design of the

community enables us to conduct a human eval-

uation study of model outputs, which has been

one of the limitations of previous approaches

to low-resourced NLP. The sheer volume and

diversity of participants, languages and out-

comes, and that for many for languages fea-

tured, this paper constitutes the first time that

human evaluation of an MT system has been

performed, is evidence of the value of partici-

patory approaches for low-resourced MT. For

future work, we will (1) continue to iterate,

analyze and widen our benchmarks and eval-

uations, (2) build richer and more meaningful

datasets that reflect priorities of the stakehold-

ers, (3) expand the focus of the existing com-

munity for African languages to other NLP

tasks, and (4) help implement similar commu-

nities for other geographic regions with low-

resourced languages.
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Loı̈c Barrault, Ondřej Bojar, Marta R. Costa-jussà,
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Maja Popović. 2015. chrF: character n-gram f-
score for automatic MT evaluation. In Proceed-
ings of the Tenth Workshop on Statistical Ma-
chine Translation, pages 392–395, Lisbon, Por-
tugal. Association for Computational Linguis-
tics.

Matt Post. 2018. A call for clarity in reporting
BLEU scores. In Proceedings of the Third Con-
ference on Machine Translation: Research Pa-
pers, pages 186–191, Belgium, Brussels. Asso-
ciation for Computational Linguistics.

Matt Post, Chris Callison-Burch, and Miles Os-
borne. 2012. Constructing parallel corpora for
six Indian languages via crowdsourcing. In
Proceedings of the Seventh Workshop on Sta-
tistical Machine Translation, pages 401–409,
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Figure 2: Education (a) and occupation (b) of a

subset of 37 participants as indicated in a voluntary

survey in February 2020.

A Demographics

Figure 2 shows the demographics for a subset

of participants from a voluntary survey con-

ducted in February 2020. Between then and

now (May 2020), the community has grown

by 30%, so these figures have to be seen as

a snapshot. Nevertheless we can see that the

educational background and the occupation is

fairly diverse, with a majority of undergraduate

students (not necessarily Computer Science).

B Evaluation Data

Table 3 reports the number sentences that were

post-edited in the human evaluation study re-

ported in Section 4.

C Benchmark Scores

Table 4 contains BLEU scores on the JW300

test set for all benchmark models. BLEU

scores are computed with Sacrebleu (Post,

2018) with tokenizer ’none’ since the JW300

Language Domain Size

Nigerian Pidgin COVID 39

TED 100

Luo TED 30

Yoruba COVID 39

TED 80

Hausa COVID 78

TED 120

Igbo COVID 39

TED 50

Fon COVID 39

Swahili TED 55

Shona COVID 39

Dendi COVID 39

Table 3: Number of sentences for collected post-

edits for TED talks and COVID surveys.

data comes tokenized with Polyglot.18. The ta-

ble also features the target categories according

to (Joshi et al., 2020) as of 28 May 2020.

18https://polyglot.readthedocs.io/

en/latest/index.html

https://polyglot.readthedocs.io/en/latest/index.html
https://polyglot.readthedocs.io/en/latest/index.html
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Source Target Best Test BLEU Category

English Afrikaans (Autshumato) 19.56 Rising Star

English Afrikaans (JW300) 45.48 Rising Star

English Amharic 2.03 Rising Star

English Arabic (TED, custom) 9.28 Underdog

English Dendi 22.30 Left Behind

English Efik 33.48 Left Behind

English È. dó 12.49 Left Behind

English È. s̀.án 6.2 Left Behind

English Fon 31.07 Left Behind

English Hausa (JW300+Tatoeba+more) 41.11 Hopeful

English Igbo 34.85 Scraping by

English Isoko 38.91 Left Behind

English Kamba 27.90 Left Behind

English Kimbundu 32.76 Left Behind

English Kikuyu 37.85 Scraping by

English Lingala 48.64 Scraping by

English Luo 34.33 Left Behind

English Nigerian Pidgin 23.29 Left Behind

English Northern Sotho (Autshumato) 19.56 Scraping by

English Northorn Sotho (JW300) 15.40 Scraping by

English Sesotho 41.23 Scraping by

English Setswana 19.66 Hopeful

English Shona 30.84 Scraping by

English Southern Ndebele (I) 4.01 Left Behind

English Southern Ndebele (II) 26.61 Left Behind

English kiSwahili (JW300) 48.94 Rising Star

English kiSwahili (SAWA) 3.60 Rising Star

English Tigrigna (JW300) 4.02 Hopeful

English Tigrigna (JW300+Tatoeba+more) 14.88 Hopeful

English Tiv 44.70 Left Behind

English Tshiluba 42.52 Left Behind

English Tshivenda 49.57 Scraping by

English Urhobo 28.82 Left Behind

English isiXhosa (Autshumato) 13.32 Hopeful

English isiXhosa (JW300) 6.00 Hopeful

English Xitsonga (JW300) 4.44 Scraping by

English Xitsonga (Autshumato) 13.54 Scraping by

English Yoruba 38.62 Rising Star

English isiZulu (Autshumato) 1.96 Hopeful

English isiZulu (JW300) 4.87 Hopeful

Efik English 33.68 Winner

French Lingala 39.81 Scraping by

French Swahili Congo 33.73 Left Behind

Hausa English 25.27 Winner

Yoruba English 39.44 Winner

Table 4: Benchmarks as of May 28, 2020. If not indicated, training domain is JW300. BLEU scores

are computed with Sacrebleu (tokenize=’none’) on the JW300 test sets. Target languages are categorized

according to (Joshi et al., 2020) as of 28 May 2020.


