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ABSTRACT

The growth process of protoplanets can be sped up by accreting a large number of solid, pebble-sized objects that are still present in
the protoplanetary disc. It is still an open question on how efficient this process works in realistic turbulent discs. We investigate the
accretion of pebbles in turbulent discs that are driven by the purely hydrodynamical vertical shear instability (VSI). For this purpose,
we performed global 3D simulations of locally isothermal, VSI turbulent discs that have embedded protoplanetary cores from 5 to
100 M⊕, which are placed at 5.2 au distance from the star. In addition, we followed the evolution of a swarm of embedded pebbles
of different sizes under the action of drag forces between gas and particles in this turbulent flow. Simultaneously, we performed a set
of comparison simulations for laminar viscous discs where the particles experience stochastic kicks. For both cases, we measured the
accretion rate onto the cores as a function of core mass and Stokes number (τs) of the particles and compared these values to recent
magneto-rotational instability (MRI) turbulence simulations. Overall the dynamic is very similar for the particles in the VSI turbulent
disc and the laminar case with stochastic kicks. For small mass planets (i.e. 5–10 M⊕), well-coupled particles with τs = 1, which have
a size of about 1 m at this location, we find an accretion efficiency (rate of particles accreted over drifting inwards) of about 1.6−3%.
For smaller and larger particles, this efficiency is higher. However, the fast inwards drift for τs = 1 particles makes them the most
effective for rapid growth, leading to mass doubling times of about 20 000 yr. For masses between 10 and 30 M⊕ the core reaches the
pebble isolation mass and the particles are trapped at the pressure maximum just outside of the planet, shutting off further particle
accretion.
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1. Introduction

A theory of planet formation should be able to explain the variety
of planetary systems discovered within a coherent framework.
In particular, the presence of gas giants poses a fundamen-
tal constraint.Within the core accretion scenario, the interstellar
dust grains need to grow from µm size to a 10–20 M⊕ plane-
tary core before gas accretion sets in. This growth must happen
before the star can photoevaporate the gas disc, which occurs
on a timescale of ∼3 Myr (Hillenbrand 2008). Moreover, dur-
ing the growth period, planets are embedded in the ambient disc
and their orbital evolutions are determined by planet–disc and
planet–planet interactions. Some planets may end up accreted
onto the star or ejected from the system if no other physi-
cal mechanisms intervene to stop them (see e.g. Alexander &
Pascucci 2012; Ercolano & Rosotti 2015). Planet formation and
evolution are determined by the structure of the protoplanetary
discs in which they form. The observations of these discs can
give some information about their masses, rotation, and den-
sity profile (Williams & Cieza 2011). The observed diversity in
the sample of extrasolar planets indicates that the evolution of a
planet may depend on variations in the initial conditions or ran-
dom (external or internal) events occurring during this crucial
phase. An important initial condition is the stellar environment
of the growing planetary system, which can strongly affect the
disc lifetime by tidally truncating the outer regions of its birth

disc and the dynamical evolution of the planetary system (see
e.g. Picogna & Marzari 2015).

We can place some constraints on the initial conditions and
the giant planet formation models by studying their current
physical and chemical properties. The Galileo mission mea-
sured the abundances of various elements in the outer layers
of Jupiter. Young (2003) found that they were in the range of
2–4 times solar, with a predicted core mass in the range 0–18 M⊕,
strongly dependent on the assumed equation of state (Fortney
& Nettelmann 2010). The internal composition has also been
derived for hot Jupiters such as HAT-P-13 b, where Buhler et al.
(2016) used the analysis of secondary eclipses of the planet to
infer a core mass of Mc < 25 M⊕ with a most likely value of
11 M⊕. These observations can be explained by a bottom-up
model of planet formation, such as the core accretion model
(Pollack et al. 1996), which predicts an enriched solid compo-
sition respect to the solar one. Within this framework, we are
interested in studying the process that can explain how the min-
imum solid core mass, necessary to rapidly build up a massive
gaseous envelope, can be accreted within the disc lifetime.

The solid materials accreting onto the forming planetary
core can have different origins based on the local size distribu-
tion (and Stokes number) of the solid disc. One solid reservoir
consists of the planetesimals that are gravitationally perturbed
by the planetary embryo. If they can cross the mean motion
resonances with the planet and enter into its gravitational
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influence zone, they can end up being accreted onto it. This
model of solid core accretion via planetesimals can explain a
certain class of gas giants within few au from the central star,
but the timescales needed to form the observed planets at tens
or hundreds of au are prohibitive.

One possibility to overcome this limitation is the rapid
accretion of pebble-sized particles (Ormel & Klahr 2010;
Lambrechts & Johansen 2012). In this context pebbles are
centimetre-to-meter-sized objects that strongly interact with the
gas via drag force. Planetary embryos with an increased gas den-
sity in their proximity have an enhanced sphere of influence to
accrete solid particles, and they can interact with an higher flux
of pebble-sized particles owing to their fast drift speed. Adopting
this accretion channel, the timescale of giant planet formation
can be lowered, making the build up of gas giants at tens of
au possible, if a significant reservoir of pebbles is present. In
2D hydrodynamical simulations with embedded particles, this
fast accretion was confirmed (Morbidelli & Nesvorny 2012). The
limiting factor for this accretion process is given by the need of a
continuous resupply of material from the outer disc because the
drift timescale of this pebble-sized particles is very short. The
formation of a strong pressure gradient created, for example, by
the growing planet can filtrate particles, thereby preventing these
particles from reaching the planet or inner parts of the disc; this
process sets in at the so-called pebble isolation mass of the core
and can explain a class of the observed transition discs. In this
paper, we address these limiting factors by studying the evolution
of a variety of particle sizes in a global turbulent disc, deriving
their accretion rates onto the planet, and obtaining new estimates
on the pebble isolation mass.

We consider the evolution of particles in discs made tur-
bulent by a purely hydrodynamical process, the vertical shear
instability (VSI) as described in Nelson et al. (2013). Recently,
Stoll & Kley (2016) showed that the dust dynamics in VSI-
turbulent discs, following the gas behaviour, has a drift speed
directed inwards at the disc midplane and outwards in its upper
layers in a similar way as for global MHD simulations (Flock
et al. 2011). This is exactly opposite to the meridional flow
observed for laminar viscous discs. This phenomenon can have
important effects on the planet formation process, resupplying
materials to the outer disc regions and explaining the observed
chondrule population in the outer regions of the solar sys-
tem (Bockelée-Morvan et al. 2002). Moreover, Stoll & Kley
(2016) found that the strong vertical motions induced by the
VSI were able to collect pebble-sized particles in rings of high
surface density and low relative velocity, potentially aiding the
planet formation process through streaming instability (Youdin
& Goodman 2005; Auffinger & Laibe 2018). In this work, we
extend our recent analysis of the planet–disc interaction in a
laminar and turbulent disc (Stoll et al. 2017b) by adding dust
particles to the simulations and study their accretion dynamics
on the planet. We perform two sets of models. In the first set,
the dust is embedded in VSI turbulent discs (with no explicit
viscosity added) and in the second series corresponding viscous
discs models are performed. This allows us to disentangle the
effect of turbulence on the planet–dust interaction and the result-
ing accretion rate of solid particles. Recently, Xu et al. (2017)
studied the accretion of pebbles on small cores in turbulent discs
driven by the magneto-rotational instability (MRI). We compare
our results to their study.

In Sect. 2 we describe the various forces acting on dust par-
ticles embedded in the protoplanetary disc, and then focussing
in Sect. 3 on the models for planet–disc interaction and solid
particle accretion. In Sect. 4 we describe the adopted set-up for

the numerical analysis and the main results obtained in Sect. 5.
Finally, we discuss the obtained solid accretion rate onto a grow-
ing planetary core in Sect. 6 and draw the main conclusions in
Sect. 8.

2. Dust dynamics

We consider a thin vertically isothermal gaseous disc with an
embedded protoplanet of mass Mp orbiting around a Sun-like
star. Additionally, we follow simultaneously the motion of dust
particles of various sizes whose motions are determined by the
star, planet, and turbulent gas. In the VSI turbulent disc models,
the particles experience the normal drag forces due gas–particle
interaction; see Sect. 2.2. On the other hand, in the viscous
disc models, the effect of the underlying turbulence is modelled
via additional stochastic kicks on the particles as described in
Sect. 2.3, in addition to the regular drag forces.

2.1. Equations of motion

A dust particle immersed in the disc is subject to (i) the gravita-
tional force of the central star and the protoplanet, (ii) the drag
force due to the varying velocity between the dust orbiting with
a Keplerian speed, and the gas, which rotates with a slightly
sub-Keplerian speed (Whipple 1964), due to the radial pres-
sure gradient that partially supports it against the stellar gravity,
(iii) gas turbulent motion, which influences the dust dynamics
by radially and vertically spreading small particles; (iv) pho-
tophoretic gas pressure and radiation pressure, which we do not
take into account since we focus mainly on a region close to the
disc midplane where the efficiency of these processes is expected
to be low, (v) growth/fragmentation (depending on their compo-
sition/relative speed) due to collisions between grains (see e.g.
Testi et al. 2014). We do not consider this because we study the
dynamics of particles of varying sizes remaining agnostic about
the dust size distribution.

We define a reference frame in spherical coordinates, cen-
tred at the location of the star with mass M⋆ = 1 M⊙ and
co-rotating with constant angular velocityΩf , following a proto-
planet of mass Mp and fixed position rp. Then, we can describe
the equation of motion of a dust particle of mass md as

md r̈d = Fgrav + Fdrag + Fturb + Fnonin. (1)

In this equation, the first term is the gravitational interaction with
the star and planet,

Fgrav = −
GM⋆md

|rd|3
rd +

GMpmd

|rp − rd|3
(rp − rd), (2)

the second term is the drag force (see Sect. 2.2), the third term is
the turbulence force (see Sect. 2.3), and the last is the non-inertial
term imparted to the star by the planet,

Fnonin = −
GMpmd

|rp|3
rp. (3)

We ignore the self-gravity of the disc since we model a low
mass disc in which a large planetary core has already formed.

2.2. Drag force

The drag force acting on a particle depends strongly on the phys-
ical condition of the gas and the shape, size, and velocity of
the particle. We limit ourselves to spherical particles, for which

A116, page 2 of 18



G. Picogna et al.: Particle accretion in VSI turbulent discs

the drag force always acts in the direction opposite to the rela-
tive velocity. The drag regime experienced by a dust particle is
described by three non-dimensional parameters as follows:
1. The Knudsen number, K = λ/(2s), is the ratio of two char-

acteristic length scales of the system: the mean free path of
the gas molecules λ and the particle size, where s denotes
the particle radius.

2. The Mach number, M = vr/cs, is the ratio of the relative
velocity between dust and gas, ur, to the gas sound speed cs.

3. The Reynolds number is given by

Re =
2vrs

νm
, (4)

where νm is the gas molecular viscosity defined as

νm =
1

3

(

m0v̄th

σ

)

, (5)

and m0 and v̄th =
√
π/8cs are the mass and mean thermal

velocity of the gas molecules, and σ is their collisional cross
section.

2.2.1. Drag law

We adopt a law that can model the drag force for a broad
range of Knudsen numbers, using the approach implemented
by Woitke & Helling (2003), who used a quadratic interpolation
between the Epstein and Stokes regimes

Fdrag =

(

3K

3K + 1

)2

Fdrag,E +

(

1

3K + 1

)2

Fdrag,S. (6)

For large Knudsen numbers, the first term dominates reducing
the drag to the Epstein regime (Baines et al. 1965; Kwok 1975),

Fdrag,E = −
4

3
π

(

1 +
9π

128
M2

)1/2

ρg(rp)s2v̄tur, (7)

where ρg(rp) is the gas density at the particle location. For small
Knudsen numbers, the second term dominates leading to the
Stokes regime

Fdrag,S = −
1

2
CDπs2ρg(rp)vrur, (8)

where the drag coefficient CD for low Mach numbers is (Whipple
1972; Weidenschilling 1977)

CD ≃























24 Re−1 Re < 1

24 Re−0.6 1 < Re < 800

0.44 Re > 800.

(9)

For more information, see Picogna & Kley (2015, and references
therein).

2.2.2. Stopping time

A fundamental parameter to determine the strength of the drag
force is the stopping time, ts, defined as

Fdrag = −
md

ts
ur. (10)

It approximates the timescale on which the embedded gas parti-
cles approach the velocity of the gas. In the Epstein regime, the
stopping time takes the form

ts =
sρs

ρgv̄th
, (11)

where ρs is the internal particle density. It is also useful to derive
a dimensionless stopping time (or, hereafter, Stokes number) as

τs = tsΩK(r), (12)

where ΩK is the Keplerian orbital frequency. The Stokes number
τs (sometimes abbreviated by St) describes the effect of a drag
force acting on a particle independent of its location within the
disc. With our definition of the stopping time in Eq. (11), the
Stokes number is defined in the midplane of the disc.

2.3. Turbulence

Turbulence in the gas acts to stir up well-coupled solid parti-
cles, preventing the settling process into a thin layer at the disc
midplane. In general, the source of this turbulence is unknown
(either driven by MHD or purely hydrodynamic processes as in
our case), but it is responsible for both angular momentum and
particle transport within the disc (Armitage 2010). By equating
the gravitational force in the vertical direction |Fgrav|z with the
drag force |Fdrag|z, we can derive a characteristic settling speed

vset = tsΩ
2
Kz. (13)

The condition for which the turbulence strength can counteract
the vertical settling of small dust particles is then obtained by
comparing the settling time

tset =
z

vset

=
1

tsΩ
2
K

, (14)

to the time tdiff the turbulence needs to erase the spatial gradients
in the particle concentration

tdiff =
z2

Dd

, (15)

where Dd is the turbulent diffusion coefficient of the particles
(dust). If one assumes that Dd equals, to a first approximation,
the diffusion coefficient for the gas Dg and that we can write
Dg ≃ αcsh, assuming that the turbulence acts like an effec-
tive viscosity (Shakura & Sunyaev 1973), then one can derive
the minimum α value required to prevent dust settling at one
scale height, z = h

α >∼ τs. (16)

In the following we use a more complex turbulent diffusion
model that distinguishes between Dd and Dg.

Turbulent diffusion model. The source of turbulence in planet-
forming discs is unknown. It can depend strongly on the envi-
ronment, and different sources might be dominant in the various
regions and during the evolution of the disc. In the laminar disc
simulation, we do not consider the origin of the turbulence and
use a simplified turbulence diffusion model to evolve the dust
population. The basic idea is to mimic turbulent transport as a
diffusive process (through a Brownian motion; Dubrulle et al.
1995; Youdin & Lithwick 2007; Charnoz et al. 2011) with a
stochastic term in the equation of dust motion to account for
the kicks induced by the turbulent gas velocity field. We model
the kick on the particle position as a random Gaussian variable
δrd,T with mean 〈δrd,T〉 and variance σ2

d,r
depending on the dust

diffusion coefficient Dd as follows:

δrd,T =















〈δrd,T〉 = Dd

ρg

∂ρg

∂x
dt,

σ2
d,r
= 2Dddt,

(17)
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where dt is the time step and ∂/∂x is the spatial derivative along
the considered direction. The relation between particle and gas
diffusion can be written as

Dd =
Dg

Sc
, (18)

where Scis the Schmidt number (Youdin & Lithwick 2007):

Sc =
1 + Ω2

K
τ2

s

1 + 4ΩKτs

. (19)

This prescription for the turbulent diffusion assumes that the
diffusion coefficients in the vertical and radial direction are iden-
tical. This is a crude assumption as we have shown in Stoll et al.
(2017a) because the α parameter can differ in the radial and verti-
cal directions by more than two orders of magnitude; see also the
discussion in Youdin & Lithwick (2007). Nevertheless, we use
this simplified description to model the vertical and radial spread
of dust particles in the viscous disc simulations and find results
comparable to those created self-consistently by VSI turbulence
as we show later.

3. Planet–solid disc interaction

3.1. Particle accretion

The idea that gas plays a pivotal role in the accretion of solids by
planetary cores was first introduced in the Kyoto model (Hayashi
et al. 1977; Nakazawa & Nakagawa 1981; Nakagawa et al. 1983).
The basic concept was that the orbital decay experienced by
planetesimals is size dependent, occurring at a lower rate for
larger bodies. In this way, a large embryo can grow as drag feeds
it with dust and small planetesimals. Later, Weidenschilling &
Davis (1985) found that orbital resonances with the growing core
can effectively filter a significant fraction of planetesimals for
which the drag force is not strong enough to allow them to cross
those stable regions. However, since eccentricities are pumped
up at resonances, collisions between large planetesimals become
more frequent, increasing the fraction of smaller bodies that can
cross the resonances and accrete onto the planetary core.

On the other hand, Kary et al. (1993) showed that even if a
body is small enough to cross all the resonances, it can avoid
being accreted. The impact probability typically ranges between
10% and 40% but can be higher if the core possesses an extended
atmosphere (D’Angelo et al. 2014). More generally, the accretion
rate is inversely proportional to the strength of the drag force
and the inclination of the planetesimal. Moreover, Kary et al.
(1993) found that for cores with mass ratio q = Mp/M⋆ > 10−5,
the material approaching the planet can be captured into a sta-
ble orbit around the planet, thereby forming an accretion disc
around it.

This strong perturbation in the local environment of the
protoplanet creates pressure gradients that impact the evolu-
tion of dust and planetesimals (Paardekooper & Mellema 2004;
Paardekooper 2007). In particular, small protoplanets, depend-
ing on their surface and temperature profiles, can carve a gap in
the dust disc even if there is no gas gap (Picogna & Kley 2015;
Rosotti et al. 2016; Dipierro et al. 2016).

3.2. Resonances

A particle that migrates within the disc feels a stronger (regu-
lar) gravitational interaction with a planetary companion when
it reaches specific locations in the disc where its mean motion

nd = 2π/T , where T is its orbital period, is a multiple of the
planet mean motion nP

nd

nP

=
(l + m)

l
, (20)

where l and m are integer numbers. These are called mean
motion orbital resonances (MMR), where m gives the order
of the resonance. These MMRs can effectively excite the
eccentricity and inclination of particles, potentially halting their
drift process. Their strength grows for decreasing values of m
and increasing l. Thus, focussing on first order MMR (m = 1),
the larger l, the smaller the particles that can be stopped from
accreting onto the planet. The resonances are yet not able to halt
all the particles because they become more and more closely
spaced as l grows until the point at which they overlap leading
to a chaotic behaviour of the dust particles that can cross the
higher order resonances (Wisdom 1980). The minimum size
smin of a particle for which the resonant perturbations due to
a planet with mass ratio q are stronger than the drag force is
(Weidenschilling & Davis 1985)

smin =
ρghad

3ρdqC(l)l3/2
, (21)

where C(l) is an increasing function of l, ad is the particle
semi-major axis, and the region of chaotic behaviour close to
the planet location starts at (Duncan et al. 1989)

|r − ad| ≃ 1.5q2/7. (22)

This relation depends strongly on the local gas properties.
When the planet opens up a gap in the gaseous disc, reducing
the gas surface density, the particle Stokes number increases;
thus the inner resonances can halt a larger fraction of incoming
particles, which are less coupled to the gas.

For a planet with q = 10−4, Paardekooper & Mellema (2004)
found three visible regimes. Particles with Stokes number less
than τs ≃ 0.1 are well coupled to the gas, and they always reach
the planet surface. On the other hand, particles with τs > 10 are
trapped in external resonances, and their accretion rate is very
low. Finally, the intermediate regime is reaching the co-orbital
region of the planet, but not all of them are accreting as predicted
by Kary et al. (1993).

4. Set-up

We used the PLUTO code (Mignone et al. 2007) and modified
it to take into account the evolution of partially coupled par-
ticles. The main parameters of the reference simulations are
summarised in Table 1. The simulations analysed in this work
are the same as in Stoll et al. (2017b), where we analysed the
dynamics of a planet embedded in a VSI turbulent disc without
particles, so we briefly describe the set-up, focussing only on the
dust part. For a more detailed description of the initial conditions
of the gaseous disc, see Stoll et al. (2017b).

4.1. Gas component

The initial disc profile is axisymmetric and extends from 2.08 to
13 au (0.4–2.5 in code units, where the unit of length is 5.2 au).
The gas moves with azimuthal velocity given by the Keplerian
speed around a 1 M⊙ star, corrected for the pressure term and
rotational velocity of the coordinate system that rotates here with
the orbital speed of the planet. The total disc mass is 0.01 M⊙ and
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Table 1. Model parameter.

Parameter Model

Radial range [5.2 au] 0.4–2.5
Vertical range [H, θ] ±5, 76◦−104◦

Phi range [rad] 0–2π
Radial grid size 600
Theta grid size 128
Phi grid size 1024
Planet masses [M⊕] 5, 10, 30, 100

Particle sizes [cm] 0.01, 0.1, 1, 10, 30,

(105 in each bin) 100, 300, 103, 104, 105

Corresponding 7.79 × 10−5, 7.79 × 10−4, 0.0078
Stokes number 0.082, 0.27, 1.23, 6.91, 67.2
for the 10 bins 377, 7670

the density distribution, created by force equilibrium, is given in
cylindrical coordinates (R,Z, φ) by

ρg(R,Z) = ρg,0

(

R

Rp

)p

exp

[

GMs

c2
s

(

1

r
−

1

R

)]

, (23)

where ρg,0 is the gas midplane density at R = 1 and p = −1.5 is

the density exponent. In our case ρg,0 = 2.07× 10−11g cm−3 such
that the vertically integrated surface density at R = 1 is Σg =

200 g cm−2. The disc is modelled with a locally isothermal equa-
tion of state, and we assume a constant aspect ratio H/R = 0.05,
which corresponds to a radial temperature profile with an expo-
nent q = −1 and T (Rp) = 121 K. For the inner and outer radial
boundary, we apply reflective conditions, while outflow condi-
tions are implemented for the vertical boundaries and periodic
conditions in the azimuthal direction. We perform two sets of
simulations. One set has an inviscid disc in which the source of
turbulence is given entirely by the VSI and the other uses a vis-
cous disc in which the viscosity is given by ν = 2/3αcsH, where
we use a constant α viscosity as derived from the VSI simulation,
which is α = 5 × 10−4 (Stoll et al. 2017b).

4.2. Dust component

The solid fraction of the disc is modelled with 106 Lagrangian
particles divided into ten size bins as reported in Table 1. This
approach has the great advantage of modelling a broad range of
Stokes numbers (see Eq. (12)) self-consistently using the same
model particles. The trade-off is that in the regions of low den-
sity, the resolution of the dust population is lower. However,
for our study this is not a problem since we are mainly inter-
ested in the dynamical evolution of dust particles; thus we do
not take into account collisions between particles or the back-
reaction of the dust onto the gas. We study particles with sizes
from 0.1 mm up to 1 km and internal density ρd = 1 g cm−3. The
particle sizes and corresponding Stokes numbers are quoted in
Table 1, where the Stokes numbers are evaluated at the planet
location. The particle sizes are chosen to cover a wide range of
different dynamical behaviour. The initial surface density profile
of the dust particles is

Σd(r) ∝ R−1. (24)

This choice was made to have a larger reservoir of particles
in the outer disc. This particle distribution leads to equal number

particles in each radial ring as the grid is spaced logarithmically
in the radial direction. The dust particles are placed initially at
the disc midplane in the disc model with active VSI driven tur-
bulence because the particle stirring is obtained via the turbulent
mechanism. For the laminar disc, we start with a vertical distri-
bution given by the local disc scale height and the dust diffusion
coefficient. By comparing Eqs. (14) and (15), we find that, for
our initial profiles, particles larger than 1 mm are going to settle
to the disc midplane. The particles are introduced at the begin-
ning of the simulation, and they are evolved with two different
integrators depending on their Stokes numbers. Following the
approach by Zhu et al. (2014), we adopt a semi-implicit leapfrog-
like (drift-kick-drift) integrator in spherical coordinates for larger
particles and a fully implicit integrator for particles well coupled
to the gas. We include in Appendix B the detailed implementa-
tion of the two integrators. We do not consider the effect of the
disc self-gravity on the particle evolution. Particles that leave
the computational domain at the inner boundary are re-entered
at the outer boundary. Accreted particles are flagged but are
otherwise kept in the simulations.

4.3. Planets

We embed a planet, with a mass in the range [5, 10, 30, 100] M⊕,
orbiting a solar mass star on a circular orbit with semi-major axes
ap = 1 in code units (5.2 au). The planet does not migrate and its
mass is kept fixed. To prevent a singularity close to the planet
location, its gravitational potential is smoothed with a cubic
expansion inside a sphere centred on the planet location with
a radius given by the smoothing length drsm = 0.5RH (Klahr &
Kley 2006; Stoll et al. 2017b), where RH denotes the radius of
the Hill sphere:

RH = Rp

(

1

3
q

)1/3

. (25)

After the dust component has been evolved for 20 orbits
in the computational domain, the planetary mass is slowly
increased over additional 20 orbits to allow for a smooth initial
phase. Each simulation was run over 200 orbital periods of the
planet when the disc structure had reached a quasi-stationary
state.

5. Global dust motion

In this section, we analyse the overall behaviour of the dust par-
ticles in the presence of the planet in combination with the disc
turbulence. Of particular interest are the changes in the spatial
distribution of the particles as induced by the planet. However,
before we focus on the action of the planet we comment briefly
on the dust dynamics in the disc.

5.1. Vertical dust distribution

The action of the turbulence in the disc works against the ten-
dency of the dust particles to settle towards the midplane of the
disc and leads to a vertical spreading of the particles. Concern-
ing this particle stirring in turbulent discs, we present in Fig. 1
the vertical scale height of the particles (in units of the gas scale
height H) as a function of their Stokes number, τs for various
models. The two cases studied in this work are shown by the
blue and green crosses for the VSI turbulent case and the lami-
nar disc with stochastic particle kicks, respectively. We analysed
the particle distribution for the 5 M⊕ case at a radius of 1.8rp
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Fig. 1. Measured particle scale height, Hp, in units of the gas scale
height, H, as a function of the particle Stokes number for the simula-
tions of the turbulent VSI, and the laminar disc plus stochasistic kicks
at R = 1.8rp, averaged between 150 and 200 orbital periods. Shown are
the results of the runs used in this paper (labelled with blue and green
crosses), and of Stoll & Kley (2016) and Fromang & Nelson (2009) indi-
cated with light blue and black circles, respectively. Additionally, we
overplot the fit of the VSI particle scale heights by Youdin & Lithwick
(2007; see Eq. (26)).

averaged between 150 and 200 orbital periods. From our previ-
ous work in Stoll & Kley (2016), we know that the timescale for
spreading the particles vertically in the presence of fully devel-
oped VSI turbulence is about 100 orbital periods, so near the
end of our simulations (150–200 orbits) the particle distribution
has reached a quasi-stationary state. Furthermore, we checked
the particle vertical distribution from 100 to 150 orbital periods
at the same distance and found the same profile, confirming that
an equilibrium was reached. Additionally, we show the results of
Stoll & Kley (2016) for locally isothermal discs using the data
taken from their Table 1 (labelled SK16) and Fromang & Nelson
(2009) who studied particle settling in global ideal MHD disc
displaying MRI turbulence (labelled FN09).

Overplotted to the data is an approximation by Youdin
& Lithwick (2007, their Eq. (28)), which can be written as
(neglecting a correction factor of order unity)

Hp

H
=

√

αz

αz + τs

, (26)

where αz measures the vertical diffusion of the gas; see Youdin
& Lithwick (2007). In Fig. 1 we use αz = 1.737 × 10−3 for the
fit. Equation (26) accounts for the fact that for small τs the parti-
cles are well coupled to the gas and the two scale heights agree,
Hp = H, while larger particle settle more to the midplane of the
disc and have a smaller thickness. For large τs the slope becomes
∝ τ−0.5

s as can be inferred from Eq. (26).
For the small particle sizes, our distribution is similar to that

of Fromang & Nelson (2009). For their investigated particle sizes
with τs = (10−4, 10−3, 10−2), they find a scaling Hp/H ∝ τ−0.2

s in
rough agreement with our findings. For the larger particles, the
slope becomes steeper than the expected ∝τ−0.5

s scaling because
we have reached the resolution limit in our simulations such that
the particle scale height cannot be resolved anymore.

In our previous simulations of particles embedded in VSI
turbulent discs (Stoll & Kley 2016), we find for the mean ver-
tical velocity at 5 au < v2z >= 5 × 10−6v2

K,1au
(normalising to the

Keplerian velocity at 1 au). Using this value and H/r = 0.05,
we find for the mean vertical Mach number Mz ≈ 0.1. In Stoll
& Kley (2016), we quote for the (dimensionless) eddy turnover

timescale τe ≈ 0.2. From these we can calculate a vertical
diffusion coefficient of (Youdin & Lithwick 2007)

αz = τe M2
z . (27)

Hence, from Stoll & Kley (2016), we find τe ≈ 0.2, which is
consistent with the value obtained by the fit for Fig. 1.

5.2. Dust filtration

In Fig. 2 we plot the radial distribution of three representative
size particles as a function of time. Shown are the results
for both the viscous α- and turbulent VSI-disc models for
all planet masses from 5 M⊕ (top) to 100 M⊕ (bottom). The
particle sizes increase from left to right from 10.0 cm to 10 m,
which corresponds to the Stokes numbers 8 × 10−2, 1.23, and
67, respectively. Clearly visible are the different radial drift
velocities of the particles that are a function of the Stokes
number, τs. Indeed, the speeds found in our simulations are in
good agreement with the theoretical expectation of Nakagawa
et al. (1986), which is given by

vdrift =
∂ ln p

∂ ln R

(

H

R

)2 uK

τs + τ
−1
s

≡ −2 η
vK

τs + τ
−1
s

. (28)

Equation (28) indicates that the maximum speed, reached for
τs = 1, is given by vdrift = −ηvK, where η is typically of order
(H/R)2 and vK is the Keplerian azimuthal velocity. The results
on the drift speed for the VSI turbulent and viscous disc are very
similar for all cases studied.

For the low mass 5 M⊕ planet and small particles, one notices
small disturbances near the planet (first two rows on the left), but
the planets are not able to stop the particles from crossing their
location. The same behaviour is also found in the 10 M⊕ case dis-
played in the second two rows of Fig. 2. Focussing on the middle
column, we can see the evolution of 1 m particles, which have
a Stokes number of order unity (τs = 1.23). Their drift speed
is so high that they can cross the whole computational domain
in ∼150 orbits, in agreement with Eq. (28); see also Stoll et al.
(2017b). A change in the drift speed is also visible as the parti-
cles cross the planet co-orbital region because the Stokes number
suddenly increases because of the drop in the gas density. The
only exception is given by the planetesimal-sized objects (10 m,
τs = 67, right column), which do not feel a strong gas drag, such
that the planetary core can effectively perturb their orbits deplet-
ing its co-orbital region. This regime is described in Dipierro &
Laibe (2017), who found that for a Stokes number number greater
than a critical value

τs,crit ≃ 2.76

( −ζ
1 + ǫ

)

≃ 6.83, (29)

where ǫ = 0.01 is the dust-to-gas ratio, and ζ = ∂ ln p∂ln R =
−2.5, the minimum mass to open a gap in the solid disc is

Mcrit ≃ 1.38

( −ζ
1 + ǫ

)3/2

τ−3/2
s

(

H

R

)3

M⊙. (30)

For our parameter space, we find that this transition happens
between the particles with s = 300 cm (τs = 6.91) and a critical
mass of 12 M⊕ and the particles with s = 1000 cm (τs = 67.2)
and a critical mass of 0.4 M⊕. We see that only the second sample
of particles is depleted from the co-orbital region of the small
mass planets, confirming their analytical prescription.
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Fig. 2. Spatial distribution of the dust particles as a function of time for the different planetary masses and for three representative particle sizes.
The Stokes numbers from left to right are 0.08, 1.23, and 67.2.
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The third two rows of Fig. 2 show the particle evolution for a
30 M⊕ planet. This planetary mass can change the final particle
distribution dramatically. A gap is already visible for the 10 cm
particles, while for the particles with Stokes number of order
unity (central column) the planet acts as a barrier and can fil-
trate the dust in the outer disc. This effect is due to the formation
of a pressure maximum beyond the planet where small particles
are trapped (Paardekooper & Mellema 2006). After ∼100 orbits
the particles are located either in the pressure bump close to the
planet position or in the outer disc. This dust filtration leads to
a strong reduction of particles inside the planetary orbit, and
hence the number of particles leaving through the inner radius
is strongly diminished. As those particles are re-entered at the
outer boundary, eventually this results in a shut-off of the flow
of particles in the outer disc. We decided not to have a constant
inflow of particles because they would only end at the pressure
bump as all the others. The particle concentration could become
a sweet spot to have a second generation of planets due to stream-
ing instability, but it is beyond the purpose of this paper to study
this high dust density regions in more detail.

For the planetesimal-sized objects, the 30 M⊕ planet can
open a deeper and wider gap compared to the small mass
cases. Only planets greater than 10 M⊕ are able to filter the
pebble-sized particles efficiently. This result confirms the value
obtained by Lambrechts et al. (2014) in which they defined
the pebble isolation mass around 20 M⊕ for similar initial disc
condition. As we have seen, a planet that modifies the pressure
profile in the disc can effectively stop the inward drift of certain
size of dust particles. In a related scenario, such a dust filtration
is believed to explain the observation of a class of transition
discs (Type 2), where the dust is highly depleted in the inner
region of the protoplanetary disc while the gas accretion rate
onto the star remains high (for a recent review on the subject, see
Ercolano & Pascucci 2017). The last two rows show the particle
evolution for the 100 M⊕ planet where the dynamical behaviour
of the dust particles is very similar to the 30 M⊕ case but the gap
opens earlier, and so the simulations reach a stationary state on
a shorter timescale.

5.3. Gap opening

A planet can open a gap in the dust disc even if no clear
gap appears in the gas distribution (see e.g. Picogna & Kley
2015). We analysed the radial distribution of the dust population
by splitting the computational domain into 400 logarithmically
spaced bins and following its evolution with time. In Fig. 3 we
plot the distribution at the end of the simulation (200 planetary
orbits) for the same three representative size particles as in the
previous plot. In the left column, the 10 cm dust particles (cor-
responding to a Stokes number of τs = 0.08) do not show a
strong perturbation by the presence of the small mass planets
(in the first two rows, corresponding to 5 and 10 M⊕). A clear
gap appears starting with the 30 M⊕ planet (third row), where
the influence of the VSI (represented by a blue line) favours the
formation of deeper gaps.

The intermediate case of meter-sized particles, which cor-
responds to a Stokes number of τs = 1.2, represents the fastest
evolving particles in the simulation; see Eq. (28). As shown in
the central column, the distribution is strongly affected by the
vertical motion of the VSI where a bunching behaviour can be
noticed (Stoll & Kley 2016). This feature cannot be reproduced
by the viscous α-disc model. In the 30 M⊕ planet case (third col-
umn) we see that the VSI also leads to a faster dust filtration
process, which is already completed for the 100 M⊕ case in which

the inner disc is practically devoid of particles. For the massive
planets, one notices that a large number of small and large par-
ticles remain at the co-rotation location. These are particles that
collect near the two Lagrange points L4 and L5.

For a planetesimal-sized object of 10 m in the third row (cor-
responding to a Stokes number of τs = 67) the gas influence is
negligible. A gap is visible in the distribution already for the
small mass planets due to their gravitational interaction with the
particles. In this case, the VSI does not affect the evolution of
planetesimals and yields results identical to the viscous case.

The effect of filtering and gap formation can be understood
in terms of the angular velocity distribution in the disc around
the planet. The onset of gap formation leads to a super-Keplerian
flow just outside of the planet, which coincides with a maximum
in the radial pressure distribution. The angular velocity is shown
in Fig. 4, where the ratio of vφ/vkep is shown for the four differ-
ent planetary masses. Outside of the planet the ratio is slightly
smaller than one owing to the pressure support of the gas. For the
planet masses displayed the super-Keplerian motion begins to
show for the 30 M⊕ case. Hence, as expected the filtering process
is directly related directly to the maximum in the angular veloc-
ity. The property that particles (with unit Stokes number) cannot
be accreted above a critical planet mass is referred to as the peb-
ble isolation mass. In Appendix A we present additional simula-
tions to confirm that our simulations have been run long enough
to draw this conclusion about the super-Keplerian motion.

5.4. Planet–solid disc interaction

The planet is not only able to open a gap in the dust and gas
disc, but it can also generate non-axisymmetric features in their
distribution that might be observable with modern observational
facilities. In Fig. 5 we show the surface density distribution of the
dust population after 80 planetary orbits. The spiral arms that are
typically generated by embedded planets are only (barely) visible
for the most massive planet (bottom row) and the smallest parti-
cles (left column) that are well coupled to the gas dynamics. For
the 100 M⊕ planet, strong vortices are created in the gas disc for
the VSI case and less so for the laminar case (Stoll et al. 2017b).
Because they are pressure maxima, particles tend to accumulate
in these vortices, which is reflected in the corresponding particle
distributions as seen in the bottom left part of the plot.

Also visible in the middle column is the strong effect that
the VSI has on pebble-sized particles creating regions where
particles are collected, as shown in Stoll & Kley (2016). For
the large planets we see, as shown in more detail before, in
the bottom part of the middle column that a sort of transition
disc is formed since the planet has reached the pebble isolation
mass, stopping the influx of meter-sized particles (as seen also in
Ayliffe et al. 2012). On the other hand, for the planetesimal-sized
objects, shown in the right panel, we observe ripples close to
the planet location due to the excitation of the eccentricity in the
dust particles by the planet that the gas is not able to effectively
damp on a short timescale. Furthermore, the planetesimals are
collecting in the Lagrangian points (L4 and L5) in front and
behind the planet location, and their density is enhanced at the
outer 2:1 mean motion resonance with the planet, visible in the
upper part of the last column for the 100 M⊕ planet.

The eccentricity distribution indicated in Fig. 6 shows only
small differences between the α- and VSI-disc models, while
they are much more pronounced for the inclination distribution
shown in Fig. 7. The excitations at the resonance locations are
visible for the biggest size objects in the lower panel. From
Eq. (22), we find that the region where the chaotic behaviour
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Fig. 3. Histogram of the dust surface number density distribution as a function of radius after 200 planetary orbits for three representative dust
sizes in the turbulent (blue) and laminar (green) case. The Stokes numbers from left to right are 0.08, 1.23, and 67.2.

Fig. 4. Azimuthal gas speed in units of the Keplerian speed as a function of radius for the different planetary masses and models (VSI = red,
alpha-disc = green). When the gas speed becomes super-Keplerian outside the planet location, the dust-filtration process occurs and the pebble
isolation mass is reached.
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Fig. 5. Surface density distribution of the dust particles after 80 planetary orbits for the different planetary masses and for three representative
particle sizes. The Stokes numbers from left to right are 7.79 × 10−5, 1.23, and 67.2.
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Fig. 6. Eccentricity distribution for 3 representative size particles in the VSI (blue) and alpha-disc (green) model at the end of the simulation. The
first six inner and outer first-order MMRs are overlaid.

prevents the resonances from stopping planetesimal objects
starts at a radial distance of 0.1478 from the planet location for
the 100 M⊕ planet and 0.1048 for 30 M⊕. These values roughly
correspond to the 5:4 and 7:6 MMRs with the planet. From
Fig. 6, where the location of the major MMRs are plotted, we
can confirm this finding. Planetesimal objects cannot reach
the region inside the 5:4 resonance with the 100 M⊕ planet,
while for the 30 M⊕ planet the bodies are able to reach the 7:6
resonance where the chance of being accreted by the planetary
core is much higher.

In Table 2 we also report the mean values of all the solids
in the disc at the end of the simulation. The eccentricity and
inclinations are on average higher for the VSI discs with respect
to the laminar discs in the small mass planets. This effect
can be explained by the highly anisotropic turbulence nature
of the VSI, which is able to stir up dust particles exciting
their orbital elements more efficiently. This trend, however, is
inverted for the high mass planets, possibly because the VSI
strength is partly reduced by the presence of massive planets,
and the production of vortices in which the particles tend to be
collected.

The viscous α-disc model cannot correctly reproduce the dis-
tributions observed in the VSI disc because we assumed a con-
stant α-value throughout the whole computational domain, and
did not distinguish between radial and vertical angular momen-
tum transport. However, as shown recently, the VSI turbulence
behaves strongly anisotropic with a large difference between
radial and vertical transport (Stoll et al. 2017a). Since the tur-
bulent kicks in the particle motion are generated based on the
constant alpha value, they over- or under-predict the turbulence
efficiency in the laminar disc resulting in a different particle
scale height, and thus inclination. Nevertheless, this does not
seem to play a crucial role in the solid accretion rate to the planet
from small turbulent velocities.

Table 2. Comparison of the mean eccentricity and inclinations of the
solids in the disc for the different planet masses at the end of the
simulation.

Planet masses Eccentricity Inclination

VSI Laminar VSI Laminar

[10−3] [10−3] [10−1 deg] [10−1 deg]

5 M⊕ 4.673 4.480 7.439 6.920
10 M⊕ 5.054 4.786 7.310 6.936
30 M⊕ 5.062 5.250 6.071 6.702
100 M⊕ 8.843 9.406 4.854 7.089

6. Solid accretion rate

In order to detect the particles that accrete onto the planet, we
adopted two different approaches, depending on the ratio of
their Stokes number and the time they spend inside the Hill
sphere which, for pebble-sized particles with τs is tenc = RH/∆v,
where ∆v is the relative velocity between the particle and the
planet. For particles with stopping time shorter than tenc, their
trajectory close to the planet location is determined primarily by
the drag force. Whether the particle is then accreted depends on
the relative strength of the gravitational attraction and the drag
force. If the drag force dominates, it can sweep out a particle
even if it is gravitationally bound. Thus, we checked if the
timescale for gravitational attraction tg = ∆v/g is shorter than
four times the timescale for the stopping time. The factor of four
stems from the results of Ormel & Klahr (2010), who had found
in their numerical simulations that only a small deflection of a
fourth of the velocity is needed to accrete the particle.

Larger particles lose only a small amount of momentum
through drag when they cross the Hill sphere. Thus, we checked

A116, page 11 of 18

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201732523&pdf_id=0


A&A 616, A116 (2018)

Fig. 7. Inclination distribution for 3 representative size particles in the VSI (blue) and alpha-disc (green) model at the end of the simulation. The
first six inner and outer first-order MMRs are overlaid.

Fig. 8. Number of accreted particles per orbit over time for the four
different planet masses. Shown is the total number summed over all
size bins.

for whether particles inside the Hill sphere are bound by the
gravity of the planet, which is the case if the particle has not
enough kinetic energy to leave the Hill sphere, that is

ekin + egrav < egrav(RH). (31)

Both approaches also agree in the transition region where the
stopping time is similar to tenc. We checked for these conditions
every tenth of a planetary orbit and we flagged as accreted the
particles that fulfil the previous criteria without removing these
particles from the computational domain.

In Fig. 8 we show the number of accreted particles per
orbit for the different planet masses as a function of time. In
the initial phase of the simulations, the number of accreted

particles increases while the mass of the inserted planets grows
to their final value (within 20 orbits). After that, the number of
accreted particles drops continuously and settles roughly to a
constant value for the lower mass planets, as there is at least for
the faster drifting particles a continuous supply from the outer
disc (see Fig. 2 middle column). For the larger mass planets,
the accretion rates are further reduced as they have reached
their isolation mass for the particles with Stokes number around
unity. Additionally, for the large planets, the small and large
particles drift very slowly and, after the particles within the
horseshoe region have been accreted, the new inflow from the
outer disc is very slow.

In Fig. 9 we show the number of accreted particles of vari-
ous sizes for different planet masses summed over 50 planetary
orbits, from t = 100 to 150. Several interesting features can be
noted. The number of accreted particles peaks for particles in
the range between 30 and 300 cm (corresponding to pebble-sized
objects with Stokes number of order unity) for the small plane-
tary masses, while these particles are effectively accreted and
filtered for the two higher mass planets. The total number of
accreted particles adds up to about 5000 for each of the lower
mass planets in agreement with the results shown in Fig. 8.
Moreover, although the effect of VSI seems marginal it shows
in nearly all cases a slightly higher solid accretion rate than for
the viscous α-disc model. As the difference is rather small we
may conclude that our modelling of the stochastic motion of par-
ticles in discs also gives reasonable results for the accretion rates
of the particles onto embedded planets.

To obtain an actual mass accretion rate onto the planet, we
need then to convolve this result with a dust size distribution.
Birnstiel et al. (2012) showed that the size distribution is very
steep for Stokes numbers less than 0.1. At that point, there is a
gap due to the so-called meter-sized barrier. This effect removes
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Fig. 9. Accreted particles as a function of the particle stopping time,
where their approximate size is also reported in the top x-axis, inte-
grated over 50 planetary orbits (from t = 100 to 150). The VSI (solid
line) and alpha disc model (dashed line) are compared.

Fig. 10. To measure the accretion (and survival) efficiency, the evolution
of particles initially within a ring outside the planet co-orbital region
(defined as in Eq. (34)) is monitored.

the peak point of our accreted particles for the small mass plan-
ets and renders the accretion growth for smaller dust particles
even steeper. For the bigger size objects, there are far fewer con-
straints from models. The leading theory of streaming instability
predicts that the peak of formed planetesimals is 10–100 km-
sized objects with a tail in the distribution also to kilometre-sized
objects, which represent our bigger size objects in the simulation
(Simon et al. 2016, 2017).

Efficiency of pebble accretion. Very important for the mass
growth of a planetary core is the efficiency, Peff , of the accre-
tion process, i.e. the number of accreted particles onto the planet
divided by the number of particles that would otherwise drift
across the location of the planet in an unperturbed disc. Fol-
lowing Ormel & Klahr (2010), we define this efficiency as

Peff =
Ṁacc

Ṁdrift

, (32)

where Ṁacc is the actual accretion rate of solids onto the proto-
planet and Ṁdrift is the particle drift rate through the disc, given
by

Ṁdrift = 2πrΣpvdrift, (33)

where Σp is the particle surface density and vdrift is given by
Eq. (28). The quantity Peff in Eq. (32) is, in fact, the probabil-
ity that a particle that drifts through the disc is accreted by the
protoplanet.

When analysing the data in this way, we encountered the
problem that for the particles with very small and very large
Stokes numbers, the drift velocities vdrift are very small (in agree-
ment with Eq. (28)) such that the calculated efficiencies became
very high because of the relatively large amount of particles

accreted. The reason for this lies in the fact that the accreted
small and large particles originate primarily from the horseshoe
region and did not migrate to the planet, which is only a tran-
sient effect visible in the initial phase of the simulations. Hence,
we decided to use an alternative way of measuring the efficiency
of particle accretion from our simulation, which is illustrated in
Fig. 10. To measure the accretion efficiency of particles on to
a growing planet we monitor the evolution of particles that are
initially in a ring just outside the planet. We use the radial range
from xs to 2xs, where xs is the horseshoe half-width as defined,
by Paardekooper & Papaloizou (2009), as

xs = 1.68 Rp

(

q

h

)1/2

. (34)

Radial drift brings the particles into the co-orbital region
of the planet. Some of the particles are accreted (and marked
so), while others are able to cross the horseshoe region and are
not accreted. These latter particles enter the inner region of the
domain and are called the survivors. The results of using this pro-
cedure for our simulations are shown in Fig. 11 for the different
planet masses and particle sizes.

For the two larger planet masses (30 M⊕ and 100 M⊕), the
results are not very meaningful because the total number of
accreted particles is very small as they have already reached
their isolation masses. Hence, for the growth of planets, we
focus on the two smaller mass planets (5 M⊕ and 10 M⊕).
In both cases the lowest accretion efficiency is reached for
particles with Stokes number τs ≈ 1. For smaller and larger
particles, the efficiency rises but due to the very slow drift
speeds becomes unreliable for very small (τs < 10−2) and large
particles (τs > 10−100). The result shows that particles with fast
radial drift (τs around unity) have small accretion efficiencies
because a high percentage of particles can cross the planetary
orbit. For Stokes number τs = 1, we find Peff ≈ 1.6% for the
5 M⊕ and around 3% for the 10 M⊕ planet.

We can compare our measurements to the results of previous
estimates using particle trajectories in the vicinity of the planet.
We use our set-up with the protoplanet located at Rp = 5.2 au.

The radial drift speed is then vdrift = 30 m s−1 and for the particle
density, we have with 1% in solids Σp = 2 g cm−2. To calculate
the efficiency we use Eq. (37) from Ormel & Klahr (2010) with
log10 Pcol = 0.5 for the (dimensionless) collision rate, and drop
the 3D correction. The specific collision rate Pcol is given in this
case by (see their Eq. (3))

Ṁcol = PcolΣp RHvH, (35)

where

vH = ΩKRH (36)

is the Hill velocity. For an alternative comparison, we use the
accretion rate in the Hill regime as given in Lambrechts &
Johansen (2012), also in the 2D version:

ṀHill = 2ΣpRHvH, (37)

i.e. the ratio of these two is given by 100.5/2 ≈ 1.6. To com-
pare directly to other estimates, we can transform our obtained
accretion rates in terms of the Hill accretion rate and define

fHill ≡
Ṁacc

ṀHill

= Peff

Ṁdrift

ṀHill

= Peff π
Rpvdrift

RHvH
. (38)
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Fig. 11. Efficiency of accreted (red line) and survived particles (green line) as a function of Stokes number for different planetary masses. The
laminar disc run is represented with solid lines, while the VSI run with dashed lines. The fit from Lambrechts & Johansen (2014) is overplotted for
intermediate τs values with a dashed grey line (see Eq. (40)).

Table 3. Comparison of the efficiency of pebble accretion with Stokes
number one, for three cases.

Model Planet masses

5M⊕ 10M⊕
Hill (Eq. (38)) 0.43 0.50
Col (from Eq. (35)) 0.67 0.80

Turb (simulations) 1.6 × 10−2 3 × 10−2

Applying the definitions of vdrift,RH and vH from Eqs. (28),
(25) and (36), one obtains with τs = 1 and η = (H/R)2

fHill ≈ 6.5 Peff

(

h

q1/3

)2

. (39)

Using this equation and our findings for the particle accre-
tion, we obtain the results quoted in Table 3. We notice that
our estimates are about 50% lower than the 2D approximation
for the Hill case, but here we also conside the third dimension,
which can lower the amount of particles within the reach of
an embedded planet. In Fig. 11 we compare also the accretion
efficiency with the prescription from Lambrechts & Johansen
(2014), that is

Peff,LJ ≃ 0.034

(

τs

0.1

)−1/3
(

Mc

M⊕

)2/3 (

r

10 au

)−1/2

, (40)

where we see that although our result are slightly lower, the scal-
ing with the Stokes number and planetary masses for the inter-
mediate τs, for which our approach was reliable, is consistent.

From our simulation, we may estimate the mass doubling
time for our low mass planets, for which we use

tdouble =
Mcore

Ṁacc

. (41)

With our results on Peff we find tdouble = 20 000 yr for the
small mass planets. The region in the disc that can supply
this amount of solid material within the time tdouble extends to
roughly 36 au assuming a constant surface density of solids,
Σp = 2 g cm−2.

7. Discussion

After having presented our main findings we now compare our
results to other studies of particles embedded and accreted onto

a planetary core in MHD turbulent discs. Then we shall discuss
possible limitations of our simulations because in performing the
simulations we had to use several approximations to make them
feasible.

7.1. Comparison to MHD simulations

Recently, Xu et al. (2017) studied the accretion of particles onto
small planets embedded in discs exhibiting magnetically driven
turbulence. These authors considered a local shearing box cen-
tred at the growing core and studied three different types of discs:
a fully turbulent disc using ideal MHD, a less turbulent disc with
ambipolar diffusion, and a non-turbulent hydrodynamic disc.
For all three cases, particles with various Stokes numbers were
injected to the flow after reaching equilibrium, and the accre-
tion rate of particles onto the core was measured. The measured
particle accretion rates were then compared to that in the 2D Hill
regime as estimated by Lambrechts & Johansen (2012). In all
cases, these authors found for Stokes numbers around unity that
their measured rates agree very well (within ≈ 10%) with the 2D
accretion rate of Eq. (37) in Lambrechts & Johansen (2012) and
argue for a high accretion efficiency. In our simulations we mea-
sure the absolute accretion efficiency as defined in Eq. (32) and
this is much lower than one for 10−2 ≤ τs ≤ 1, with an additional
drop towards τs = 1; see Fig. 11. To compare directly to Xu et al.
(2017), we can use Eq. (38) and the values quoted in Table 3,
which shows that our calculated accretion rates are about 50%
smaller than theirs.

The higher rates obtained by Xu et al. (2017) may be a result
of the relatively small vertical and radial extent of the disc in
their simulations (only one H in each direction) and the fact
that they do not consider a stream of particles through their
domain. Hence, they measure the transient accretion rate of par-
ticles present initially in the computational box. In our case we
measure the accretion rate of particles in an equilibrium situa-
tion. The absolute accretion efficiency, as defined in Eq. (32), is
more important; we measure this rate directly. This is actually
very low, but the combination with the large drift speed allows
us to tap a larger reservoir of particles making the accretion of
τs = 1 particles very useful in the overvall growth process.

7.2. Planet migration

In our simulations, the location of the planet is kept fixed at
5.2 au. However, planets interact gravitationally with their pro-
toplanetary disc, and this usually results in an inwards migration
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Fig. 12. Comparison between the average drift speed of the different
dust size particles. These values are calculated at the end of the simu-
lation at R = 1.8 with the analytical drift speed (black solid line), the
migration speed of a 5 M⊕ (dotted line), and a 10 M⊕ (dashed line) mass
planet. The error bars reflect the impact of radial diffusion for the vari-
ous stopping times. The smaller particle sizes in the VSI simulation are
migrating outwards rather then inwards due to the inverse meridional
circulation (Stoll et al. 2017a).

through the disc, which may modify our conclusions about the
capture efficiency of particles. To check the impact of planet
migration, we compare the particle drift rates to the expected
planet migration for which we use the 3D results of D’Angelo &
Lubow (2010) for low mass planets in the linear regime, as stated
in Kley & Nelson (2012):

tmig = C
M2
⋆

MpΣg(rp)r2
p

(

H

r

)2

Ω
−1
K , (42)

where C = 1/(1.36 + 0.62 βΣ + 0.43 βT). The value βΣ = p − 1
is the coefficient of the surface density profile, while βT = q is
the coefficient of the temperature radial profile. In our models
we used βΣ = 0.5 and βT = 1.0 (see Sect. 4.1) and then we find
C = 0.48. In Fig. 12 we compare the dust drift velocity mea-
sured at the beginning of the simulations, when the planet has not
yet perturbed the disc structure, to the theoretical drift speed (as
obtained from Eq. 28; black solid line), and the migration speed
of the two small planets (two dashed lines). We can see that only
the tails of the particle size distribution drift slower than the
planets. However, pebble-sized particles have a migration speed
orders of magnitude faster than the planet. Hence, we conclude
that any planet migration does not influence our results for peb-
ble accretion. For larger mass planets that migrate with Type II
migration, the drift speed slows down considerably, and their
masses are well above the pebble isolation mass. The impact of
non-circular planetary orbits on the pebble accretion efficiency
was studied recently by Liu & Ormel (2018) who found that it
can be increased slightly for moderately eccentric orbits.

7.3. Equation of state

In our simulations, we used an isothermal equation of state and
now briefly discuss a possible impact of including radiative
effects. The inclusion of radiative transfer leads to finite cooling
times of the gas that lowers the efficiency of the VSI-driven
turbulence (Nelson et al. 2013). In full simulations that include
radiative transfer, it has been shown that in irradiated discs
an efficiency of α≈ 10−4 can be reached (Stoll & Kley 2014,
2016), while Flock et al. (2017) find a somewhat smaller value.
All those simulations apply to larger distances from the star

and it remains to be seen what the VSI-efficiency is at shorter
distances from the star. In any case, a reduced turbulence level
leads to a concentration of the dust particles in the midplane,
which might enhance the accretion process. On the other hand,
the inclusion of radiative transfer allows for additional disc
heating by the planet (by the spiral waves), which enhances the
disc temperature and might lead to partial evaporation of the
particles. However, for the lower mass planets, for which the
dust accretion efficiency is higher, the effect on the disc is not be
that strong and we do not expect a large impact. Additionally, the
dust clearing around the planet alters the opacity of the medium
and hence the radiative transport. These impacts of radiative
transport and the link to observations have to be investigated in
more detail by future simulations.

7.4. Dust feedback

In our simulations we have neglected the backreaction of the
dust onto the gas. Within a disc without an embedded planet
the particle concentrations are such that the dust density remains
typically smaller than the gas density, given an initial dust to gas
ration of 1/100. In the presence of a planet, this is not true in the
case of filtering because then the dust density can equal the gas
density near the pressure maximum. This situation has recently
been explored by Weber et al. (2018), who showed that dust feed-
back can potentially displace the gas density maximum, and thus
the pressure maximum, outwards. Additional dust diffusion (for
example from disc turbulence) can smooth the density peak of
the dust distribution, altering the dust filtration process for par-
ticles with Stokes numbers around unity. However, concerning
the filtration ability, which also affects pebble accretion onto the
planet, they did not observe any difference by adding dust feed-
back. Hence, we conclude that dust feedback does not impact
our results significantly. In a realistic scenario, where a dust size
distribution is present, this effect is even less pronounced. The
impact of dust feedback onto the dust dynamics in the dust trap
itself will have to be investigated in more detail in the future.

7.5. Numerical convergence

Our hydrodynamical simulations are performed with one numer-
ical resolution as given in Table 1. This is based on our results in
Stoll et al. (2017b) in which we studied the effect of doubling the
grid resolution on the VSI and found no noticeable differences in
the disc dynamics. The calculated αSS close to the inner bound-
ary (see their Fig. 1) was increased marginally, however it had no
effect at the location of the planet. We also checked in Stoll et al.
(2017b) that the torque acting onto the planet reached a constant
value (see their Fig. 6), guaranteeing that the model was run long
enough for the disc-planet system to have reached a quasi-stable
state. The obtained torque distributions on the planet were also
identical for the standard resolution (used here) and the simula-
tions with doubled resolution. The dust dynamics is not affected
by numerical resolution since we did not take into account their
backreaction on the gas. Thus, we do not expect that our results
on accretion efficiencies and dust dynamics in the vicinity of the
planet are impacted by resolution that is too low.

8. Conclusions

In this study we have modelled the dynamics of a broad
range of solid particles, ranging from 100 µm dust particles
to kilometer-sized planetesimals, interacting with a growing
planetary core in a 3D globally isothermal disc. By modelling
a global disc, we were able to take into account the effect of
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MMRs for planetesimal-sized objects and the enhanced particle
density in spiral arms and vortices. The turbulence driving the
disc evolution has been modelled both self-consistently through
the VSI instability and with an alpha parameter derived from
the VSI simulation where the turbulence has been recreated in
the particle dynamics by adding random kicks to their motion.
We determined the solid accretion rate onto the planet after it
reaches a stable state averaging the values over 50 planetary
orbits in Fig. 9.

The actual growth rates in particles that a planet can achieve
depends on the particle size distribution. In our study, we sample
the particle dynamics in ten different size bins. One can con-
volve this result with a model of dust size distribution to obtain
a mass accretion rate onto the planet. We observed a peak in
the absolute number of accreted particles in the range of pebble-
sized objects (100 cm) with Stokes number of order unity, but
the strength of this effect depends strongly on the chosen dust
size distribution. Concerning the accretion efficiency, we find
that the minimum efficiency is reached for particles with τs = 1,
where Peff = 0.016 and 0.03 for the planets with masses 5 M⊕
and 10 M⊕, respectively. For smaller and larger particles, the effi-
ciency rises but due to the rapid inwards drift of particles with
τs = 1, we find that the optimal particle size for pebble accretion
for our massive cores is about 1 m at the orbit distance of about
5 au. If all the solid material in the disc was this size range, the
mass doubling time would be around 20 000 yr. We find that the
obtained accretion efficiencies are very similar for the VSI tur-
bulent disc and the laminar disc models, one has to keep in mind
however to add the stochastic kicks to the particles for the vis-
cous model. This similarity can be attributed to the fact that the
overall turbulence generated by the VSI is relatively weak such
that the disc structures are very similar, despite the occurrence
of vortices in the VSI case.

The accretion efficiency found in our simulations agrees
reasonably well with previous results, for example, the 2D
approximations of Ormel & Klahr (2010) and Lambrechts &
Johansen (2012) or the 3D turbulent simulations of Xu et al.
(2017) who found similar results for particles with τs = 1. To
obtain the efficiencies of very small or large particles exactly,
one needs longer integration time due to the very slow radial
drift. Concerning the pebble isolation mass of a growing planet
we confirm that the occurrence of a pressure maximum in the
gas created by the planet is sufficient to filter particles with
Stokes numbers of unity efficiently, at least for the relatively
weak VSI turbulence. Hence, using purely hydrodynamical stud-
ies the dependence of the isolation mass on the viscosity and
pressure scale height of the disc has been examined recently to
obtain scaling relations (Bitsch et al. 2018).

The treatment of the turbulence adopted for the particles
in the laminar disc produced accretion rates in good agree-
ment with those of the self-consistent VSI treatment. The impact
of radiative transfer within the disc and the migration of the
planet through the disc were not treated. These topics need to
be addressed in future work.

Acknowledgements. We thank the anonymous referees for useful comments
and suggestions. The very helpful discussions with Chris Ormel are grate-
fully acknowledged. G. Picogna acknowledges the support through the German
Research Foundation (DFG) grant KL 650/21 within the collaborative research
programme “The first 10 Million Years of the Solar System”. M.H.R.S. acknowl-
edges the support through the (DFG) grant KL 650/16. This work was performed
on the computational resource ForHLR I funded by the Ministry of Science,
Research and the Arts of Baden-Württemberg, and the DFG. This research was
supported by the Munich Institute for Astro- and Particle Physics (MIAPP) of
the DFG cluster of excellence “Origin and Structure of the Universe”.

References

Alexander, R. D., & Pascucci, I. 2012, MNRAS, 422, L82
Armitage, P. J. 2010, Astrophysics of Planet Formation (Cambridge, UK:

Cambridge University Press), 294
Auffinger, J., & Laibe, G. 2018, MNRAS, 473, 796
Ayliffe, B. A., Laibe, G., Price, D. J., & Bate, M. R. 2012, MNRAS, 423, 1450
Bai, X.-N., & Stone, J. M. 2010, ApJS, 190, 297
Baines, M. J., Williams, I. P., & Asebiomo, A. S. 1965, MNRAS, 130, 63
Birnstiel, T., Klahr, H., & Ercolano, B. 2012, A&A, 539, A148
Bitsch, B., Morbidelli, A., Johansen, A., et al. 2018, A&A, 612, A30
Bockelée-Morvan, D., Gautier, D., Hersant, F., Huré, J.-M., & Robert, F. 2002,

A&A, 384, 1107
Buhler, P. B., Knutson, H. A., Batygin, K., et al. 2016, ApJ, 821, 26
Charnoz, S., Fouchet, L., Aleon, J., & Moreira, M. 2011, ApJ, 737, 33
D’Angelo, G., & Lubow, S. H. 2010, ApJ, 724, 730
D’Angelo, G., Weidenschilling, S. J., Lissauer, J. J., & Bodenheimer, P. 2014,

Icarus, 241, 298
Dipierro, G., & Laibe, G. 2017, MNRAS, 469, 1932
Dipierro, G., Laibe, G., Price, D. J., & Lodato, G. 2016, MNRAS, 459, L1
Dubrulle, B., Morfill, G., & Sterzik, M. 1995, Icarus, 114, 237
Duncan, M., Quinn, T., & Tremaine, S. 1989, Icarus, 82, 402
Ercolano, B., & Pascucci, I. 2017, R. Soc. Open Sci., 4, 170114
Ercolano, B., & Rosotti, G. 2015, MNRAS, 450, 3008
Flock, M., Dzyurkevich, N., Klahr, H., Turner, N. J., & Henning, T. 2011, ApJ,

735, 122
Flock, M., Nelson, R. P., Turner, N. J., et al. 2017, ApJ, 850, 131
Fortney, J. J., & Nettelmann, N. 2010, Space Sci. Rev., 152, 423
Fromang, S., & Nelson, R. P. 2009, A&A, 496, 597
Hayashi, C., Nakazawa, K., & Adachi, I. 1977, PASJ, 29, 163
Hillenbrand, L. A. 2008, Phys. Scr. Vol. T, 130, 014024
Kary, D. M., Lissauer, J. J., & Greenzweig, Y. 1993, Icarus, 106, 288
Klahr, H., & Kley, W. 2006, A&A, 445, 747
Kley, W., & Nelson, R. P. 2012, ARA&A, 50, 211
Kwok, S. 1975, ApJ, 198, 583
Lambrechts, M., & Johansen, A. 2012, A&A, 544, A32
Lambrechts, M., & Johansen, A. 2014, A&A, 572, A107
Lambrechts, M., Johansen, A., & Morbidelli, A. 2014, A&A, 572, A35
Liu, B., & Ormel, C. W. 2018, A&A, 615, A138
Mignone, A., Bodo, G., Massaglia, S., et al. 2007, ApJS, 170, 228
Morbidelli, A., & Nesvorny, D. 2012, A&A, 546, A18
Nakazawa, K., & Nakagawa, Y. 1981, Prog. Theor. Phys., 70, 11
Nakagawa, Y., Hayashi, C., & Nakazawa, K. 1983, Icarus, 54, 361
Nakagawa, Y., Sekiya, M., & Hayashi, C. 1986, Icarus, 67, 375
Nelson, R. P., Gressel, O., & Umurhan, O. M. 2013, MNRAS, 435, 2610
Ormel, C. W., & Klahr, H. H. 2010, A&A, 520, A43
Paardekooper, S.-J. 2007, A&A, 462, 355
Paardekooper, S.-J., & Mellema, G. 2004, A&A, 425, L9
Paardekooper, S.-J., & Mellema, G. 2006, A&A, 453, 1129
Paardekooper, S.-J., & Papaloizou, J. C. B. 2009, MNRAS, 394, 2297
Picogna, G., & Kley, W. 2015, A&A, 584, A110
Picogna, G., & Marzari, F. 2015, A&A, 583, A133
Pollack, J. B., Hubickyj, O., Bodenheimer, P., et al. 1996, Icarus, 124, 62
Rosotti, G. P., Juhasz, A., Booth, R. A., & Clarke, C. J. 2016, MNRAS, 459,

2790
Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337
Simon, J. B., Armitage, P. J., Li, R., & Youdin, A. N. 2016, ApJ, 822, 55
Simon, J. B., Armitage, P. J., Youdin, A. N., & Li, R. 2017, ApJ, 847, L12
Stoll, M. H. R., & Kley, W. 2014, A&A, 572, A77
Stoll, M. H. R., & Kley, W. 2016, A&A, 594, A57
Stoll, M. H. R., Kley, W., & Picogna, G. 2017a, A&A, 599, L6
Stoll, M. H. R., Picogna, G., & Kley, W. 2017b, A&A, 604, A28
Testi, L., Birnstiel, T., Ricci, L., et al. 2014, Protostars and Planets VI, 339
Weber, P., Benítez-Llambay, P., Gressel, O., Krapp, L., & Pessah, M. E. 2018,

ApJ, 854, 153
Weidenschilling, S. J. 1977, MNRAS, 180, 57
Weidenschilling, S. J., & Davis, D. R. 1985, Icarus, 62, 16
Whipple, F. L. 1964, Proc. Natl. Acad. Sci., 52, 565
Whipple, F. L. 1972, in From Plasma to Planet, ed. A. Elvius (New York, NY:

Wiley Interscience Division) 211
Williams, J. P., & Cieza, L. A. 2011, ARA&A, 49, 67
Wisdom, J. 1980, AJ, 85, 1122
Woitke, P., & Helling, C. 2003, A&A, 399, 297
Xu, Z., Bai, X.-N., & Murray-Clay, R. A. 2017, ApJ, 847, 52
Youdin, A. N., & Goodman, J. 2005, ApJ, 620, 459
Youdin, A. N., & Lithwick, Y. 2007, Icarus, 192, 588
Young, R. E. 2003, New Astron. Rev., 47, 1
Zhu, Z., Stone, J. M., Rafikov, R. R., & Bai, X.-n. 2014, ApJ, 785, 122

A116, page 16 of 18

http://linker.aanda.org/10.1051/0004-6361/201732523/1
http://linker.aanda.org/10.1051/0004-6361/201732523/2
http://linker.aanda.org/10.1051/0004-6361/201732523/3
http://linker.aanda.org/10.1051/0004-6361/201732523/4
http://linker.aanda.org/10.1051/0004-6361/201732523/5
http://linker.aanda.org/10.1051/0004-6361/201732523/6
http://linker.aanda.org/10.1051/0004-6361/201732523/7
http://linker.aanda.org/10.1051/0004-6361/201732523/8
http://linker.aanda.org/10.1051/0004-6361/201732523/9
http://linker.aanda.org/10.1051/0004-6361/201732523/10
http://linker.aanda.org/10.1051/0004-6361/201732523/11
http://linker.aanda.org/10.1051/0004-6361/201732523/12
http://linker.aanda.org/10.1051/0004-6361/201732523/13
http://linker.aanda.org/10.1051/0004-6361/201732523/14
http://linker.aanda.org/10.1051/0004-6361/201732523/15
http://linker.aanda.org/10.1051/0004-6361/201732523/16
http://linker.aanda.org/10.1051/0004-6361/201732523/17
http://linker.aanda.org/10.1051/0004-6361/201732523/18
http://linker.aanda.org/10.1051/0004-6361/201732523/19
http://linker.aanda.org/10.1051/0004-6361/201732523/20
http://linker.aanda.org/10.1051/0004-6361/201732523/20
http://linker.aanda.org/10.1051/0004-6361/201732523/21
http://linker.aanda.org/10.1051/0004-6361/201732523/22
http://linker.aanda.org/10.1051/0004-6361/201732523/23
http://linker.aanda.org/10.1051/0004-6361/201732523/24
http://linker.aanda.org/10.1051/0004-6361/201732523/25
http://linker.aanda.org/10.1051/0004-6361/201732523/26
http://linker.aanda.org/10.1051/0004-6361/201732523/27
http://linker.aanda.org/10.1051/0004-6361/201732523/28
http://linker.aanda.org/10.1051/0004-6361/201732523/29
http://linker.aanda.org/10.1051/0004-6361/201732523/30
http://linker.aanda.org/10.1051/0004-6361/201732523/31
http://linker.aanda.org/10.1051/0004-6361/201732523/32
http://linker.aanda.org/10.1051/0004-6361/201732523/33
http://linker.aanda.org/10.1051/0004-6361/201732523/34
http://linker.aanda.org/10.1051/0004-6361/201732523/35
http://linker.aanda.org/10.1051/0004-6361/201732523/36
http://linker.aanda.org/10.1051/0004-6361/201732523/37
http://linker.aanda.org/10.1051/0004-6361/201732523/38
http://linker.aanda.org/10.1051/0004-6361/201732523/39
http://linker.aanda.org/10.1051/0004-6361/201732523/40
http://linker.aanda.org/10.1051/0004-6361/201732523/41
http://linker.aanda.org/10.1051/0004-6361/201732523/42
http://linker.aanda.org/10.1051/0004-6361/201732523/43
http://linker.aanda.org/10.1051/0004-6361/201732523/44
http://linker.aanda.org/10.1051/0004-6361/201732523/45
http://linker.aanda.org/10.1051/0004-6361/201732523/46
http://linker.aanda.org/10.1051/0004-6361/201732523/47
http://linker.aanda.org/10.1051/0004-6361/201732523/48
http://linker.aanda.org/10.1051/0004-6361/201732523/48
http://linker.aanda.org/10.1051/0004-6361/201732523/49
http://linker.aanda.org/10.1051/0004-6361/201732523/50
http://linker.aanda.org/10.1051/0004-6361/201732523/51
http://linker.aanda.org/10.1051/0004-6361/201732523/52
http://linker.aanda.org/10.1051/0004-6361/201732523/53
http://linker.aanda.org/10.1051/0004-6361/201732523/54
http://linker.aanda.org/10.1051/0004-6361/201732523/55
http://linker.aanda.org/10.1051/0004-6361/201732523/56
http://linker.aanda.org/10.1051/0004-6361/201732523/56
http://linker.aanda.org/10.1051/0004-6361/201732523/57
http://linker.aanda.org/10.1051/0004-6361/201732523/58
http://linker.aanda.org/10.1051/0004-6361/201732523/59
http://linker.aanda.org/10.1051/0004-6361/201732523/60
http://linker.aanda.org/10.1051/0004-6361/201732523/61
http://linker.aanda.org/10.1051/0004-6361/201732523/61
http://linker.aanda.org/10.1051/0004-6361/201732523/62
http://linker.aanda.org/10.1051/0004-6361/201732523/63
http://linker.aanda.org/10.1051/0004-6361/201732523/64
http://linker.aanda.org/10.1051/0004-6361/201732523/65
http://linker.aanda.org/10.1051/0004-6361/201732523/66
http://linker.aanda.org/10.1051/0004-6361/201732523/67
http://linker.aanda.org/10.1051/0004-6361/201732523/68
http://linker.aanda.org/10.1051/0004-6361/201732523/69


G. Picogna et al.: Particle accretion in VSI turbulent discs

Appendix A: Long-term two-dimensional integrations

Fig. A.1. Ratio of the azimuthal gas velocity to the Keplerian value for a 2D disc with an embedded 10 M⊕ planet at different times after insertion
of the planet. The simulation in the left panel uses a viscosity of α = 10−4 and the right α = 5 × 10−4.

In Fig. 4 above we displayed the ratio of the angular velocity of the gas to the Keplerian velocity for the different planet masses
and compared the turbulent case to the viscous laminar case. From this, we argued that the occurrence of super-Keplerian flow can
be taken as an indication of having reached the isolation mass for that particular planet. However, this argument is only valid if
the equilibrium of the flow has already been reached and does not change in time significantly anymore. For a viscous disc with a
kinematic viscosity ν, the viscous timescale is given by

τν =
∆r2

ν
, (A.1)

where ∆r2 is the spatial region under consideration. Assuming an α-type viscosity with ν ∼ αΩKH2 and ∆r = fHH one finds for the
viscous timescale

τν =
f 2
H

2πα
PK, (A.2)

where PK is the Keplerian period. The maximum of Ω occurs roughly at a distance of ∆r = 2H in our case and for fH = 2 Eq. (A.2)
gives an equilibration time of over 1200 orbits. To run our computations in full 3D for such a long timescale would have been too
costly and we investigated this issue by performing comparison 2D simulations of planets embedded in flat discs. For these, we used
a 10 M⊕ planet and two different effective viscosities, α = 5 × 10−4 and a lower viscosity case using α = 10−4. The results are shown
in Fig. A.1. While for the low viscosity case the flow becomes super-Keplerian, the model with α = 5 × 10−4 remains sub-Keplerian
throughout. From this, we infer that in VSI turbulent discs with an effective α = 5 × 10−4 the isolation mass is indeed above 10 M⊕
as found in the full 3D simulations presented above.

Appendix B: Integrator

We used two different integrators to evolve the Lagrangian particles, based on their coupling with the gas dynamics.

B.1. Semi-implicit integrator in polar coordinates

The dynamics of particles well coupled to the gas, which have a stopping time much smaller than the time step adopted to evolve
the gas dynamics, is described by adopting the semi-implicit Leapfrog (Drift-Kick-Drift) integrator described in Zhu et al. (2014)
in polar coordinates. This method guarantees the conservation of the physical quantities for the long-term simulations performed in
this paper and, at the same time, it is faster than an explicit method. The variables are updated beginning with a first half drift:

Lr,n+1 = Lr,n, Lθ,n+1 = Lθ,n, Lφ,n+1 = Lφ,n.

rn+1 = rn + Lr,n

dt

2
, θn+1 = θn +

1

2













Lθ,n

r2
n

+
Lθ,n+1

r2
n+1













dt

2
, φn+1 = φn +

1

2













Lφ,n

R2
n

+
Lφ,n+1

R2
n+1













dt

2
,

followed by a kick step:

rn+2 = rn+1, θn+2 = θn+1, φn+2 = φn+1.

Lφ,n+2 = Lφ,n+1 +
dt

1 + dt
2ts,n+1

[

−
(

∂Φ

∂φ

)

n+1

+
Lφ,g,n+1 − Lφ,n+1

ts,n+1

]

,
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Lθ,n+2 = Lθ,n+1 +
dt

1 + dt
2ts,n+1















1

2

cos(θn+2)

sin(θn+2)















(

Lφ,n+1

Rn+1

)2

+

(

Lφ,n+2

Rn+2

)2














−
(

∂Φ

∂θ

)

n+1

+
Lθ,g,n+1 − Lθ,n+1

ts,n+1

+















,

Lr,n+2 = Lr,n+1 +
dt

1 + dt
2ts,n+1















1

2rn+2















(

Lφ,n+1

Rn+1

)2

+

(

Lφ,n+2

Rn+2

)2

+

(

Lθ,n+1

rn+1

)2

+

(

Lθ,n+2

rn+2

)2














−
(

∂Φ

∂r

)

n+1

+
Lr,g,n+1 − Lr,n+1

ts,n+1















,

and, for the laminar disc case, also a random kick, i.e.

rn+2 = rn+2 + δrd,T, θn+2 = θn+2 + δθd,T, φn+2 = φn+2 + δφd,T.

Finally, a second half drift follows as the first half drift.

B.2. Fully implicit integrator in polar coordinates

For particles with stopping time much smaller than the numerical time step, the drag term can dominate the gravitational force term,
causing the numerical instability of the integrator. Thus, it is necessary to adopt a fully implicit integrator following Bai & Stone
(2010) and Zhu et al. (2014).

We begin with a predictor step for the particle positions:

r′ = rn + Lr,ndt, θ′ = θn +
Lθ,n

r2
n

dt, φ′ = φn +
Lφ,n

R2
n

dt,

followed by a shift for the momenta

Lφ,n+1 = Lφ,n +
dt/2

1 + dt
(

1
2ts,n
+

1
2ts,n+1

+
dt

2ts,nts,n+1

) ·
[

−
(

∂Φ

∂φ

)

n

−
Lφ,n − Lφ,g,n

ts,n

+

(

−
(

∂Φ

∂φ

)

n+1

−
Lφ,n − Lφ,g,n+1

ts,n+1

)(

1 +
dt

ts,n

)]

,

Lθ,n+1 = Lθ,n +
dt/2

1 + dt
(

1
2ts,n
+

1
2ts,n+1

+
dt

2ts,nts,n+1

) ·
[

−
(

∂Φ

∂θ

)

n

−
Lθ,n − Lθ,g,n

ts,n
+

cos(θ′)

sin(θ′)

(

Lφ,n

R

)2

+

(

−
(

∂Φ

∂θ

)

n+1

−
Lθ,n − Lθ,g,n+1

ts,n+1

+
cos(θ′)

sin(θ′)

(

L′φ

R′

)2 )(

1 +
dt

ts,n

)]

,

Lr,n+1 = Lr,n +
dt/2

1 + dt
(

1
2ts,n
+

1
2ts,n+1

+
dt

2ts,nts,n+1

) ·
[

−
(

∂Φ

∂r

)

n

−
Lr,n − Lr,g,n

ts,n
+

1

rn















L2
φ,n

R2
n

+
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θ,n
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n


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
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(

−
(

∂Φ
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)
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−
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+
1
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
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
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
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


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)(

1 +
dt

ts,n

)]

,

a turbulent kick for the laminar disc case

rn = rn + δrd,T, θn = θn + δθd,T, φn = φn + δφd,T,

and finally a corrector step for the particle positions:

rn+1 = rn +
1

2
(Lr,n + Lr,n+1)dt, θn+1 = θn +

1

2













Lθ,n

r2
n

+
Lθ,n+1

r2
n+1













dt, φn+1 = φn +
1

2


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







Lφ,n

R2
n

+
Lφ,n+1

R2
n+1






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dt.
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