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SUMMARY

Particle methods are popular computational tools for Bayesian inference in nonlinear non-
Gaussian state space models. For this class of models, we present two particle algorithms to
compute the score vector and observed information matrix recursively. The first algorithm is
implemented with computational complexity O(N ) and the second with complexity O(N 2),
where N is the number of particles. Although cheaper, the performance of the O(N ) method
degrades quickly, as it relies on the approximation of a sequence of probability distributions
whose dimension increases linearly with time. In particular, even under strong mixing assump-
tions, the variance of the estimates computed with the O(N ) method increases at least quadrati-
cally in time. The more expensiveO(N 2) method relies on a nonstandard particle implementation
and does not suffer from this rapid degradation. It is shown how both methods can be used to
perform batch and recursive parameter estimation.

Some key words: Observed information matrix; Particle method; Score; Sequential Monte Carlo simulation; State
space model; Stochastic approximation.

1. INTRODUCTION

State space models include many nonlinear and non-Gaussian time series models used in statis-
tics, econometrics and information engineering; see Cappé et al. (2005), Durbin & Koopman
(2001) and West & Harrison (1997). The following state space model is considered in this
paper. Let {Xn}n∈N and {Yn}n∈N be X - and Y-valued stochastic processes, where {Yn}n∈N is the
observed time series and {Xn}n∈N is the unobserved Markov process with initial density μθ(x)

and Markov transition density fθ (x ′ | x):

X1 ∼ μθ(·) and Xn+1 | (Xn = x) ∼ fθ (· | x) (n = 1, 2, . . .). (1)
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The observation at time n depends on the value of the hidden state at time n only and is drawn
from the density gθ (y | x):

Yn | (Xn = x) ∼ gθ (· | x). (2)

The variable θ in the above densities represents the particular parameters of the model, where
we assume θ ∈ �, an open subset of R

d . We also assume that μθ(x), fθ (x | x ′) and gθ (y | x)

are densities with respect to suitable dominating measures, such as the Lebesgue measure if
X ⊆ R

p and Y ⊆ R
q , denoted generically as dx and dy. These densities are assumed to be twice

continuously differentiable with respect to θ .
For any sequence {zk}, let zi : j denote (zi , zi+1, . . . , z j ). From (1) and (2), the joint density of

(X1:n, Y1:n) is

pθ (x1:n, y1:n) = μθ(x1)

n∏
k=2

fθ (xk | xk−1)

n∏
k=1

gθ (yk | xk).

Furthermore, the likelihood of the observed process is

pθ (y1:n) =
∫

pθ (x1:n, y1:n) dx1:n. (3)

We are interested in the problem of computing, recursively in time, the score vector
∇ log pθ (y1:n), whose r th component is

{∇ log pθ (y1:n)}r = ∂ log pθ (y1:n)

∂θr
,

and the observed information matrix −∇2 log pθ (y1:n), whose (r, s)th component is

{−∇2 log pθ (y1:n)}r,s = −∂2 log pθ (y1:n)

∂θr∂θ s
(r, s = 1, . . . , d).

Except for simple models such as the linear Gaussian state space model (Koopman & Shephard,
1992) or when X is a finite set (Lystig & Hughes, 2002), it is impossible to compute these quan-
tities exactly.

In this paper, we devise sequential Monte Carlo algorithms, henceforth referred to as particle
methods, to approximate the score and observed information matrix for models of the form (1)
and (2). Particle methods can be used to approximate the sequence of conditional probability dis-
tributions of the latent variables X1:n , given the observations y1:n , i.e. {pθ (x1:n | y1:n)dx1:n}n∈N.
A particle approximation of pθ (x1:n | y1:n)dx1:n is comprised of a set of N � 1 weighted random
samples, termed particles, where

p̂θ (dx1:n | y1:n) =
N∑

i=1

W (i)
n δ

X (i)
1:n

(dx1:n), W (i)
n > 0,

N∑
i=1

W (i)
n = 1,

and δx0(dx) denotes the Dirac delta mass located at x0. From now on, for the sake of brevity,
we identify the distributions being approximated using particles by their densities. These parti-
cles are propagated in time using importance sampling and resampling steps; see Cappé et al.
(2005) and Doucet et al. (2001) for a review of the literature. Using { p̂θ (dx1:n | y1:n)}n∈N, it is
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straightforward to recursively approximate expectations of the form

∫ {n−1∑
k=1

ϕk+1(xk, xk+1)

}
pθ (x1:n | y1:n)dx1:n,

where ϕk+1 : X × X → R (Cappé et al., 2005, §8.3). As detailed in §2·1, computing the score
and observed information matrix are instances of this problem. This standard implementation is
O(N ) in complexity per time step. However, it is shown in this paper that even under favourable
mixing assumptions, the variance of this estimate increases at least quadratically with time n as
the particle approximation p̂θ (dx1:n | y1:n) becomes progressively impoverished from the suc-
cessive resampling steps. That is, the number of distinct particles representing pθ (x1:m | y1:n)

for any fixed m < n diminishes as n − m increases. Hence, whatever the number of particles,
pθ (x1:m | y1:n) will eventually be approximated by a single unique particle for all sufficiently
large n. This makes the method unsuitable for large datasets. This problem is well appreci-
ated in the literature and is known as the path degeneracy problem; see Andrieu et al. (2005,
§II.B), Cappé et al. (2005, §8.3) and Olsson et al. (2008) for a discussion of this issue. To over-
come it, we propose in §2·2 an original algorithm that relies only on the particle estimate of
{pθ (xn | y1:n)}n∈N. This comes at a computational cost of O(N 2) per time step.

An important application of the proposed particle methods is to infer the parameters of
models (1) and (2). Parameter estimates are obtained in §3 by maximizing the likelihood
function pθ (y1:n) with respect to θ using a gradient ascent algorithm, which can be done
in both a batch and a recursive setting. An alternative to maximum likelihood is to follow
a Bayesian approach. A prior distribution is assigned to θ and the sequence of posteriors
{p(θ, x1:n | y1:n)}n∈N is estimated recursively using particles; see for example Andrieu et al.
(1999), Fearnhead (2002), Storvik (2002) and an unpublished 2010 paper by Lopes, Car-
valho, Johannes and Polson. This approach is not general because a recursive implementa-
tion is only possible if p(θ | x1:n, y1:n) can be summarized by a set of fixed-dimensional
sufficient statistics. Additionally, as n increases, these algorithms also suffer from the path
degeneracy problem, resulting in unreliable estimates of the posterior p(θ, x1:n | y1:n); see
Andrieu et al. (2005, §II.C) and Chopin et al. (2010) for some illustrations. A more detailed
overview of particle-based methods for parameter estimation is presented in Kantas et al.
(2009).

2. PARTICLE APPROXIMATIONS OF THE SCORE AND OBSERVED INFORMATION MATRIX

2·1. The Fisher and Louis identities and their particle approximations

In this section, algorithms to recursively estimate the score and the observed information
matrix for a fixed value of θ are presented. Henceforth, we assume that regularity conditions
allowing the interchange of integration and differentiation are satisfied.

Using (3), Fisher’s identity for the score is (Cappé et al., 2005, p. 353)

∇ log pθ (y1:n) =
∫

∇ log pθ (x1:n, y1:n)pθ (x1:n | y1:n) dx1:n. (4)

Similarly, the observed information matrix satisfies Louis’ identity (Cappé et al., 2005, p. 353)

− ∇2 log pθ (y1:n) = ∇ log pθ (y1:n)∇ log pθ (y1:n)
T − ∇2 pθ (y1:n)

pθ (y1:n)
, (5)
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where

∇2 pθ (y1:n)

pθ (y1:n)
=
∫

∇ log pθ (x1:n, y1:n)∇ log pθ (x1:n, y1:n)
T pθ (x1:n | y1:n)dx1:n

+
∫

∇2 log pθ (x1:n, y1:n)pθ (x1:n | y1:n)dx1:n. (6)

Equations (4)–(6) suggest that it is sufficient to obtain a particle approximation of pθ (x1:n |
y1:n) to approximate the score and observed information matrix. Many particle algorithms have
been proposed in the literature to approximate {pθ (x1:n | y1:n)}n∈N. We will focus here on the
auxiliary particle filter (Pitt & Shephard, 1999), specifically, on the version of this algorithm
presented in Carpenter et al. (1999), Fearnhead et al. (2008) and Papaspiliopoulos (2010), which
includes only one resampling step at each time instant. Let

qθ (xn, yn | xn−1) = qθ (xn | yn, xn−1)qθ (yn | xn−1)

be a nonnegative function on X × Y whose support includes that of fθ (xn | xn−1)gθ (yn | xn).
Furthermore, suppose that qθ (xn | yn, xn−1) is a probability density function, from which it
is easy to sample and that it is possible to evaluate qθ (yn | xn−1) for any (xn−1, yn) ∈X ×
Y . Pitt & Shephard (1999) suggest choosing qθ (xn | yn, xn−1) = pθ (xn | yn, xn−1) and qθ (yn |
xn−1) = pθ (yn | xn−1). When this is not possible, an approximation of these quantities can be
used. For the choice qθ (xn | yn, xn−1) = fθ (xn | xn−1) and qθ (yn | xn−1) = hθ (yn), where hθ (yn)

is an arbitrary strictly positive function, e.g. hθ (yn) = 1, the auxiliary particle filter becomes the
bootstrap particle filter introduced in the seminal paper of Gordon et al. (1993).

To recursively compute the score and observed information matrix, we use (4)–(6) and the
particle approximation of pθ (x1:n | y1:n) as detailed in Algorithm 1. To each particle X (i)

1:n , we

also associate the vector α
(i)
n = ∇ log pθ (X (i)

1:n, y1:n) and the matrix β
(i)
n = ∇2 log pθ (X (i)

1:n, y1:n).
Algorithm 1 proceeds as follows at time n > 1.

Algorithm 1. Particle approximations based on identities (4) and (5).

Step 1. Resample the particle set {X (i)
1:n−1, α

(i)
n−1, β

(i)
n−1}N

i=1 using the weights {W (i)
n−1qθ (yn |

X (i)
n−1)}N

i=1 to obtain a set of N new particles also denoted {X (i)
1:n−1, α

(i)
n−1, β

(i)
n−1}N

i=1.

Step 2. For i = 1, . . . , N , sample X (i)
n ∼ qθ (· | yn, X (i)

n−1) and compute the weights

W (i)
n ∝ gθ (yn | X (i)

n ) fθ (X (i)
n | X (i)

n−1)

qθ (X (i)
n , yn | X (i)

n−1)
.

Step 3. Update {α(i)
n , β

(i)
n }N

i=1, the score estimate Sn and observed information matrix estimate
	n:

α(i)
n = α

(i)
n−1 + ∇ log gθ (yn | X (i)

n ) + ∇ log fθ (X (i)
n | X (i)

n−1),

β(i)
n = β

(i)
n−1 + ∇2 log gθ (yn | X (i)

n ) + ∇2 log fθ (X (i)
n | X (i)

n−1),

Sn =
N∑

i=1

W (i)
n α(i)

n , and 	n = Sn ST
n −

N∑
i=1

W (i)
n (α(i)

n α(i)T
n + β(i)

n ). (7)

The estimate Sn of ∇ log pθ (y1:n) is obtained by substituting p̂θ (dx1:n | y1:n) for pθ (x1:n |
y1:n) dx1:n into (4). Similarly, the estimate 	n of −∇2 log pθ (y1:n) is obtained by substituting
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Score and observed information matrix particle approximations 69

p̂θ (dx1:n | y1:n) for pθ (x1:n | y1:n) dx1:n into (6) and then substituting the resulting expression,
together with Sn , into (5). Algorithm 1 merely implements this sequentially.

Although there is no need to store the paths {X (i)
1:n}, Algorithm 1 relies on the particle approx-

imation of pθ (x1:n | y1:n) and hence suffers from the path degeneracy problem. Previous particle
approximations of related quantities proposed in Cérou et al. (2001) and Doucet & Tadić (2003)
suffer from the same problem. Path degeneracy has severe consequences for the particle estimates
of the expectations of functions of interest computed with respect to pθ (x1:n | y1:n). Consider

In =
∫ { n∑

k=1

ϕ(xk)

}
pθ (x1:n | y1:n) dx1:n

and its particle approximation În obtained by substituting p̂θ (dx1:n | y1:n) for pθ (x1:n |
y1:n) dx1:n . We show here that the asymptotic variance of N 1/2( În − In) increases at least
quadratically with n. This complements the result of Del Moral & Doucet (2003) which estab-
lishes, under similar assumptions, that the Lp error Eθ (| În − In|p)1/p, where the expectation
is computed with respect to the law of the particles only, is bounded above by a term of order
O(N−1/2n2).

THEOREM 1. Assume there exists a probability density κ on X , positive for all values of x ∈
X , and constants 0 < λ, g−, g+ < ∞ such that for all θ , (x, x ′) ∈X × X and y ∈Y,

λ−1 κ(x ′) � fθ (x ′ | x) � λ κ(x ′), (8)

g− � gθ (y | x) � g+. (9)

Furthermore, assume the function ϕ : X →R is selected such that it is bounded and

varκ{ϕ(X)} =
∫

κ(x)ϕ(x)2 dx −
{∫

κ(x)ϕ(x) dx

}2

> 0 (10)

and we have

qθ (xn, yn | xn−1) = fθ (xn | xn−1)hθ (yn), (11)

where hθ (·) is any strictly positive function on Y . Then there exists a constant λ̄ > 1 and a range
of values for λ, which includes the interval [1, λ̄), such that the asymptotic variance of N 1/2( În −
In) is bounded below by c2n2 + c1n + c0, where (c0, c1, c2) are finite constants with c2 > 0.

Theorem 1 is proved in Appendix. The selection in (11) corresponds to the bootstrap filter
(Gordon et al., 1993). The same result holds for other qθ (xn, yn | xn−1) and if we substitute
ϕ(xk−1, xk) for ϕ(xk); the proof would use similar arguments as Theorem 1 but is more com-
plicated. Theorem 1 may be interpreted as follows. Even as the mixing property of the model
improves, i.e. as λ ↓ 1, the variance of În will still grow at least quadratically with time n. Even in
the case that λ = 1, which corresponds to a latent process that is independent and identically dis-
tributed, the growth of variance is still of order n2. This rapid growth in variance is also confirmed
by simulations in §2·3, in a scenario where these strong mixing assumptions are not satisfied.

2·2. The marginal Fisher and Louis identities and their particle approximations

The superlinear growth in the variance of the estimates developed using (4)–(5) is due to their
reliance on the particle approximation of pθ (x1:n | y1:n), whose dimension is increasing with time.
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This can be circumvented by using versions of the Fisher and Louis identities that are based only
on the marginal density pθ (xn | y1:n). The identity for the score becomes

∇ log pθ (y1:n) =
∫

∇ log pθ (xn, y1:n)pθ (xn | y1:n) dxn. (12)

The observed information matrix satisfies Louis’ identity given in (5), but pθ (y1:n)
−1∇2 pθ (y1:n)

is now expressed in terms of pθ (xn | y1:n),

∇2 pθ (y1:n)

pθ (y1:n)
=
∫

∇ log pθ (xn, y1:n)∇ log pθ (xn, y1:n)
T pθ (xn | y1:n) dxn

+
∫

∇2 log pθ (xn, y1:n)pθ (xn | y1:n) dxn. (13)

Replacing pθ (xn | y1:n) dxn in the above integrals with its particle approximation will yield the
desired approximation to the score and observed information matrix. The same approach was
adopted in §2·1. However, unlike the situation there where the first and second derivatives of
log pθ (x1:n, y1:n) could be computed exactly, there is no analytic expression for the derivatives
of log pθ (xn, y1:n). Instead, we recursively compute pointwise approximations of these quantities
using particle methods. The details are as follows.

A recursion for ∇ log pθ (xn, y1:n) is obtained by taking the ratio of ∇ pθ (xn, y1:n) and
pθ (xn, y1:n), where

∇ pθ (xn, y1:n) = pθ (y1:n−1)gθ (yn | xn)

∫
fθ (xn | xn−1)pθ (xn−1 | y1:n−1)

× {∇ log gθ (yn | xn) + ∇ log fθ (xn | xn−1)

+ ∇ log pθ (xn−1, y1:n−1)} dxn−1, (14)

pθ (xn, y1:n) = pθ (y1:n−1)gθ (yn | xn)

∫
fθ (xn | xn−1)pθ (xn−1 | y1:n−1) dxn−1. (15)

These equations follow from interchanging the order of differentiation and integration. A
recursion for ∇2 log pθ (xn, y1:n) is established by expressing ∇2 log pθ (xn, y1:n) in terms of
∇2 log pθ (xn−1, y1:n−1):

∇2 log pθ (xn, y1:n) = ∇2 pθ (xn, y1:n)

pθ (xn, y1:n)
− ∇ log pθ (xn, y1:n)∇ log pθ (xn, y1:n)

T (16)

where, by routine differentiation,

∇2 pθ (xn, y1:n) = pθ (y1:n−1)gθ (yn | xn)

∫
fθ (xn | xn−1)pθ (xn−1 | y1:n−1)

× [{∇ log gθ (yn | xn) + ∇ log fθ (xn | xn−1) + ∇ log pθ (xn−1, y1:n−1)}
× {∇ log gθ (yn | xn) + ∇ log fθ (xn | xn−1) + ∇ log pθ (xn−1, y1:n−1)}T

+ {∇2 log gθ (yn | xn) + ∇2 log fθ (xn | xn−1)

+ ∇2 log pθ (xn−1, y1:n−1)}] dxn−1. (17)
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Score and observed information matrix particle approximations 71

The procedure for approximating the score and observed information matrix using the iden-
tities (12)–(13) is summarized in Algorithm 2. At time n − 1, let the particle approximation be
p̂θ (dxn−1 | y1:n−1) =∑N

i=1 W̄ (i)
n−1δX (i)

n−1
(dxn−1). Here, the notation for the normalized weights is

different from that used in Algorithm 1, for reasons to become apparent below. Let p̃θ (xn, y1:n)

denote the pointwise approximation of pθ (xn, y1:n); see (19). For each particle X (i)
n , let the vector

ᾱ
(i)
n and the matrix β̄

(i)
n denote the values of the pointwise approximations of ∇ log pθ (xn, y1:n)

and ∇2 log pθ (xn, y1:n) evaluated at X (i)
n , respectively; see (21) and (20). Algorithm 2 proceeds

as follows at time n > 1.

Algorithm 2. Particle approximations based on identities (12) and (13).

Step 1. For i = 1, . . . , N , sample X (i)
n ∼ qθ (· | y1:n) where

qθ (xn | y1:n) ∝
N∑

i=1

W̄ (i)
n−1qθ (yn | X (i)

n−1)qθ (xn | yn, X (i)
n−1),

and compute the normalized weights

W̄ (i)
n ∝ p̃θ (X (i)

n , y1:n)

qθ (X (i)
n | y1:n)

, (18)

p̃θ (xn, y1:n) ∝ gθ (yn | xn)

N∑
i=1

W̄ (i)
n−1 fθ (xn | X (i)

n−1). (19)

Step 2. Update {ᾱ(i)
n , β̄

(i)
n }N

i=1, the score estimate S̄n and the observed information matrix esti-
mate 	̄n:

ᾱ(i)
n =

∑N
j=1 W̄ ( j)

n−1 fθ (X (i)
n | X ( j)

n−1)∑N
k=1 W̄ (k)

n−1 fθ (X (i)
n | X (k)

n−1)
{∇ log gθ (yn | X (i)

n ) + ∇ log fθ (X (i)
n | X ( j)

n−1) + ᾱ
( j)
n−1},

(20)

β̄(i)
n =

∑N
j=1 W̄ ( j)

n−1 fθ (X (i)
n | X ( j)

n−1)∑N
k=1 W̄ (k)

n−1 fθ (X (i)
n | X (k)

n−1)
[{∇ log gθ (yn | X (i)

n ) + ∇ log fθ (X (i)
n | X ( j)

n−1) + ᾱ
( j)
n−1}

× {∇ log gθ (yn | X (i)
n ) + ∇ log fθ (X (i)

n | X ( j)
n−1) + ᾱ

( j)
n−1}T

+ {∇2 log gθ (yn | X (i)
n ) + ∇2 log fθ (X (i)

n | X ( j)
n−1) + β̄

( j)
n−1}] − ᾱ(i)

n ᾱ(i)T
n , (21)

S̄n =
N∑

i=1

W̄ (i)
n ᾱ(i)

n , 	̄n = S̄n S̄T
n −

N∑
i=1

W̄ (i)
n (ᾱ(i)

n ᾱ(i)T
n + β̄(i)

n ). (22)

The approximations (19), (20) and (21) are obtained by substituting p̂θ (dxn−1 | y1:n−1) for
pθ (xn−1 | y1:n−1)dxn−1 into (14), (15) and (17), and using (16).

Algorithm 2 requires O(N 2) operations instead of O(N ) operations used in Algorithm 1.
The benefit of the increased computational complexity of Algorithm 2 is that the score and
observed information matrix estimates are based on approximations of integrals of the form∫

ϕθ,n(xn)pθ (xn | y1:n) dxn and do not rely on the particle approximation of the full posterior
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pθ (x1:n | y1:n). Uniform convergence in time of the particle approximation of pθ (xn | y1:n) has
been established by Chopin (2004, Thm 5) and Del Moral (2004, Ch. 7). Although these results
rely on strong mixing assumptions, uniform convergence has been observed in numerical studies
for a wide class of models where these mixing assumptions are not satisfied. Provided the recur-
sion for ϕθ,n itself enjoys certain stability properties, we conjecture that it is possible to obtain
uniform convergence results for the particle approximation of

∫
ϕθ,n(xn)pθ (xn | y1:n) dxn even

when the integrand ϕθ,n(xn) is being estimated recursively using the previous particle approxi-
mations of the marginals {pθ (xk | y1:k)}k<n . This suggests that Algorithm 2 can provide estimates
whose variances increase only linearly with the time n, compared to superlinearly for the particle
estimates based on the identities (4)–(5). This is what we observed in all the numerical experi-
ments presented in §3.

The auxiliary particle filter in Algorithm 2 requires O(N 2) operations and can be interpreted
as a Rao–Blackwell version of the standard O(N ) auxiliary particle filter of Algorithm 1, since
the weights in (18) are evaluated after the auxiliary variables have been integrated out; see
Lin et al. (2005) for another example of an O(N 2) particle filter. Any standard particle filter of
complexity O(N ) could be used in Algorithm 2, but the overall complexity will remain O(N 2).

2·3. Simulations: comparing the two methods

We begin with a study of a scalar linear Gaussian state space model, for which we may calculate
the score and observed information matrix analytically. We use these exact values as benchmarks
for the particle approximations. The model is

X1 ∼N
(

0,
σ 2

V

1 − φ2

)
, Xn+1 = φXn + σV Vn+1, Yn = Xn + σW Wn, (23)

where {Vn} and {Wn} are two independent and identically distributed N (0, 1) sequences, mutu-
ally independent of each other and of the initial state X1. We simulate a single realization of
10 000 observations using the parameters θ∗ = (φ∗, σ ∗

V , σ ∗
W ) = (0·8, 0·5, 1·0). We compare the

exact value of the score at θ∗ with the particle approximations of Algorithms 1 and 2. Com-
parisons were made after 2500, 5000, 7500 and 10 000 observations to monitor the increase in
variance and the experiment was replicated 100 times. Figure 1 shows box plots obtained for
parameters φ and σV ; similar box plots were obtained for parameter σW . In both algorithms, we
used 500 particles, qθ (xn | yn, xn−1) = pθ (xn | yn, xn−1) and qθ (yn | xn−1) = pθ (yn | xn−1).

Figure 1 shows that, for a fixed N , the particle estimate of Algorithm 2 significantly out-
performs the corresponding particle estimate of Algorithm 1. Similar results not reported here
were obtained for the particle estimates of the observed information matrix. A more revealing
comparison is presented in Fig. 2. We expect the variance of the score estimate from Algorithm
2 to grow only linearly with the time index compared with a quadratic growth of variance for
Algorithm 1. In this example, this indeed appears to be the case. Figure 2 displays the empirical
variance of the score estimates as a function of the time index and each plot has been augmented
with a best fitting straight line and quadratic curve where appropriate. This trend in the variance
growth was also confirmed on the following stochastic volatility model (Pitt & Shephard, 1999)

Xn+1 = φXn + σV Vn+1, Yn = β exp(Xn/2)Wn, (24)

where Vn and Wn are defined as in (23). We simulated 20 000 observations using the parame-
ters θ∗ = (φ∗, σ ∗

V , β∗) = (0·98, 0·2, 0·7). The previous simulation study was repeated but with
Algorithm 1 using 5002 particles and Algorithm 2 using 500 particles for a fair comparison in
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Fig. 1. Box plots of score estimates for parameters σV and φ of the linear Gaussian state
space model in (23). Left column results were based on Algorithm 1 and right column results

were based on Algorithm 2. The dotted lines show the true values of the scores.
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Fig. 2. Comparison of the evolution of the variance of the score estimates (7) of
Algorithm 1 (left column) and (22) of Algorithm 2 (right column) at different time steps,
for parameters σV and φ of the linear Gaussian model in (23). In both algorithms, 500
particles were used. The dashed line is the linear fit and the solid line represents the

quadratic fit.

terms of computational complexity. As can be seen in Fig. 3, the variance of the score for the σV

parameter in Algorithm 2 is less than that of Algorithm 1. For parameter φ, the quadratic variance
growth in Algorithm 1 versus the linear growth in Algorithm 2 will eventually lead to Algorithm 1
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Fig. 3. Comparison of the evolution of the variance of the score estimates (7) of
Algorithm 1 with 5002 particles (left column) and (22) of Algorithm 2 with 500 parti-
cles (right column), for parameters σV and φ of the stochastic volatility model in (24).

The dashed line is the linear fit and the solid line represents the quadratic fit.

being outperformed as well. Thus, for the same computational complexity, Algorithm 2 will
always outperform Algorithm 1 for large enough observation records. For a small number of
observations, however, Algorithm 1 is preferred, as the variance benefit of using Algorithm 2
may be too small to justify the increased computational load. It would be valuable to explore
the use of fast multipole methods, dual-trees and the fast Gauss transform (Klaas et al., 2005) to
reduce the computational burden of Algorithm 2.

3. APPLICATION TO PARAMETER ESTIMATION

3·1. Batch parameter estimation

We show here how the estimates of the score and the observed information matrix presented
in §2 can be used to perform parameter estimation. Let the true static parameter generating
the sequence of observations be θ∗, which is to be estimated from the observed data {yn}n∈N.
Given a batch of observations y1:T , the loglikelihood may be maximized with the steepest ascent
algorithm,

θk+1 = θk + γk+1∇ log pθ (y1:T )|θ=θk , (25)

where k = 0, 1, . . . is the iteration number, θ0 is the initial estimate and {γk} is a sequence
of small positive real numbers called the step-size sequence, which should satisfy the con-
straints

∑
k γk = ∞ and

∑
n γ 2

k < ∞. One possible choice would be γk = k−α , 0·5 < α < 1, e.g.,
γk = k−2/3. It is also possible to include the Hessian by replacing the term multiplying γk+1 with
−{∇2 log pθ (y1:T )|θ=θk }−1∇ log pθ (y1:T )|θ=θk . In this case, the asymptotic rate of convergence
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of this Newton–Raphson algorithm is quadratic and thus faster than the EM algorithm. The parti-
cle methods described earlier can be used to numerically implement either version of this steepest
ascent method. In particular, each iteration of (25) would require Algorithm 1 or Algorithm 2 to
be executed for T observations.

3·2. Recursive parameter estimation

For a long observation sequence, computing the gradient in (25) at each iteration of the
algorithm is expensive. A cheaper alternative is a recursive procedure in which the data are run
through once sequentially:

θn+1 = θn + γn+1∇ log pθ (yn | y1:n−1)|θ=θn .

Upon receiving yn , θn is updated in the direction of ascent of the conditional density of this
new observation. This is not an online algorithm in its present form because computing ∇ log pθ

(yn | y1:n−1) at the current parameter estimate requires revisiting the entire history of observa-
tions. This limitation is removed by utilizing intermediate quantities that facilitate the online
evaluation of this gradient (Le Gland & Mevel, 1997). In particular, define

pn(xn | y1:n) = gθn (yn | xn)
∫

fθn (xn | xn−1)pn−1(xn−1 | y1:n−1) dxn−1∫
gθn (yn | xn) fθn (xn | xn−1)pn−1(xn−1 | y1:n−1) dxn−1:n

, (26)

∇ log pn(xn, y1:n) =
∫

fθn (xn | xn−1)pn−1(xn−1 | y1:n−1)∫
fθn (xn | xn−1)pn−1(xn−1 | y1:n−1) dxn−1

× {∇ log gθ (yn | xn)|θ=θn + ∇ log fθ (xn | xn−1)|θ=θn

+ ∇ log pn−1(xn−1, y1:n−1)} dxn−1. (27)

Taking the ratio of ∇ pθ (xn, y1:n) and pθ (xn, y1:n) defined in (14)–(15) will yield a recur-
sion for ∇ log pθ (xn, y1:n); (27) is precisely this recursion for ∇ log pθ (xn, y1:n) but com-
puted using the current estimate θn . Thus, ∇ log pn(xn, y1:n) and pn(xn | y1:n) are not truly
∇ log pθ (xn, y1:n)|θ=θn and pθ (xn | y1:n)|θ=θn but approximations, as they have been computed
using the previous values of the parameter, i.e., θ1:n−1. The update rule is (Le Gland & Mevel,
1997)

θn+1 = θn + γn+1

∫
∇ log pn(xn, y1:n)pn(xn | y1:n) dxn

− γn+1

∫
∇ log pn−1(xn−1, y1:n−1)pn−1(xn−1 | y1:n−1) dxn−1, (28)

where, by (12), the subtraction of the terms on the right-hand side yields the online approximation
to ∇ log pθ (yn | y1:n−1)|θ=θn . The quantities in (26)–(28) can only be computed exactly when X
is finite and for linear Gaussian state space models. The asymptotic properties of this algorithm
have been studied in the case of an independent and identically distributed hidden process by
Titterington (1984), and by Le Gland & Mevel (1997) when X is a finite set. Le Gland & Mevel
(1997) show that under regularity conditions this algorithm converges towards a local maximum
of the average loglikelihood, and this average loglikelihood is maximized at θ∗.

The particle approximations of the score presented in the previous sections can be used to
implement (28); the details are omitted. As convergence of {θn} often requires several thousand
time steps, it is preferable in this case to implement Algorithm 2 to obtain an online approximation
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Fig. 4. Sequence of recursive parameter estimates using (28) and batch parameter estimates
using (25) for the model in (24). Results are based on Algorithm 2 with 1000 particles. In
both panels, estimates from top to bottom are for φ (solid), β (dash) and σV (dot-dash). True
values in (a) are shown by straight dotted lines. The batch example in (b) was based on the

real dataset used in Durbin & Koopman (2000).

to ∇ log pθ (yn | y1:n−1)|θ=θn with small variance. Over all the examples considered, we observed
experimentally that the variance of Algorithm 2’s estimate of ∇ log pθ (yn | y1:n−1)|θ=θn was uni-
formly bounded over time whereas the variance of Algorithm 1’s estimate increased approxi-
mately linearly over time. In results not reported here, the parameter estimates for the stochastic
volatility model in (24) diverged when (28) was implemented with Algorithm 1 and 10 000 par-
ticles. In contrast, Algorithm 2 with as few as 50 particles gave good results.

3·3. Simulations

We apply the recursive and batch parameter estimation algorithms to the stochastic volatil-
ity model introduced in (24). The model parameters θ = (φ, σV , β) are to be estimated. For
the recursive case, a long sequence of simulated data with θ∗ = (0·98, 0·2, 0·7) was generated
and (28) executed using Algorithm 2 with 1000 particles. As can be seen from the results in
Fig. 4(a), the estimates converged to a value in the neighbourhood of the true parameters. Using
the same model, the performance of the batch parameter estimation method was assessed on the
pound/dollar daily exchange rates analysed in Durbin & Koopman (2000). The steepest ascent
algorithm in (25) combined with Algorithm 2 was executed for 1000 iterations with 1000 parti-
cles. The results displayed in Fig. 4(b) are consistent with those of Durbin & Koopman (2000). If
the batch method is applied to T observations, then each iteration is computationally equivalent
to T iterations of the recursive procedure. It is apparent that the batch method should be used
when the size of the observation record is too small for the recursive procedure to converge in
time. Alternatively, one could use the recursive procedure and run it repeatedly over the fixed
record; the final parameter estimate of the previous run could be used as the initialization value
of the current run.

We also consider a more elaborate stochastic volatility model that introduces nonlinear dynam-
ics in the state equation. The model is the discretized version of the reparameterized continuous-
time Cox–Ingersoll–Ross model discussed in Chib et al. (2006, pp. 16–17), where the volatility
follows a square root process,

Xn+1 = μ + Xn + φ exp(−Xn) + exp(−Xn/2)Vn+1, Yn = σV exp(Xn/2)Wn (29)
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Fig. 5. Sequence of recursive parameter estimates using (28) and batch parameter estimates
using (25) for the model in (29). Results are based on Algorithm 2 with 1000 particles. In
both panels, estimates from top to bottom are for φ (solid), σV (dash) and μ (dot-dash). True

values are shown by straight dotted lines.

and Vn and Wn are defined as in (23). The parameter −μ is the speed of mean reversion and σV

is the volatility term of the square root volatility diffusion. We estimated the model parameters
θ = (μ, φ, σV ) in a batch and a recursive fashion using a simulated dataset of 5000 and 40 000
time steps, respectively. In both cases, the true parameters were set to θ∗ = (−0·03, 0·75, 0·2)

and Algorithm 2 was used with 1000 particles. The results, displayed in Fig. 5, demonstrate
convergence to a neighbourhood of the true parameters.
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APPENDIX

The proof of Theorem 1 holds for any fixed θ , which is omitted from the notation. We commence by
stating several auxiliary results.

It follows from assumptions (8)–(9) that the following forgetting properties hold (Cappé et al., 2005,
Ch. 4; Del Moral, 2004, Ch. 4): for t > m,

‖pr(Xm ∈ · | y1:t−1, xt ) − pr(Xm ∈ · | y1:t−1, x ′
t )‖TV � ρ t−m, (A1)

for any (xt , x ′
t ) and y1:t−1 where ‖ · ‖TV is the total variation norm. The constant

ρ = 1 − λ−2 ∈ (0, 1) (A2)

where λ was defined in (8). Under assumptions (8)–(9), it is also true that

‖pr(Xn ∈ · | yk+1:t , xk) − pr(Xn ∈ · | yk+1:t , x ′
k)‖TV � ρn−k, (A3)

for any n > k, (xk, x ′
k) and yk+1:t . In the literature, (A1) and (A3) are referred to as the backward and

forward forgetting properties of the smoother, respectively.
The following bounds called on in the proof are a consequence of (8), (9), (10) and (11). First, there

exist finite positive constants δ and � such that for all i � k < t and y1:t

δ � varp(x1:k |y1:k−1)

[
p(X1:k | y1:t )

p(X1:k | y1:k−1)

{
ϕ(Xi ) −

∫
ϕ(xi )p(xi | y1:t )dxi

}]
� �. (A4)
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Secondly, there exist finite positive constants δB and �B such that for all 1 < k � t and y1:t ,

δB � p(xk−1, xk | y1:t )

p(xk−1, xk | y1:k−1)
� �B . (A5)

Rough estimates of these constants, by standard calculations, are

δB = λ−2 g−
g+

, �B = λ2 g+
g−

, � = �B‖ϕ‖2, δ = δBλ−3 g−
g+

varκ{ϕ(X)} (A6)

where ‖ϕ‖ = supx∈X |ϕ(x)|.

Proof of Theorem 1. We outline the main steps of the proof and omit some calculations. The expres-
sion for asymptotic variance of the particle estimate of N 1/2

∑t
i=1

∫
ϕ(xi )p(xi | y1:t ) dxi is (Chopin, 2004;

Del Moral, 2004):

∫
p(x1 | y1:t )

2

μ(x1)

{∫
St (x1:t )p(x2:t | x1, y2:t ) dx2:t − S̄t

}2

dx1, (term A)

+
t−1∑
k=2

∫
p(x1:k | y1:t )

2

p(x1:k | y1:k−1)

{∫
St (x1:t )p(xk+1:t | xk, yk+1:t )dxk+1:t − S̄t

}2

dx1:k, (term B)

+
∫

p(x1:t | y1:t )
2

p(x1:t | y1:t−1)
{St (x1:t ) − S̄t }2 dx1:t , (term C)

(A7)

where St (x1:t ) =∑t
i=1 ϕ(xi ), and S̄t = ∫ St (x1:t )p(x1:t | y1:t ) dx1:t . The focus is on term B only and it will

be established that it is bounded below by a term that grows quadratically with t .
Using the forward equation (A3) and backward equation (A1) forgetting property of the smoother, each

term in the sum that defines term B can be bounded by:

∫
p(x1:k | y1:t )

2

p(x1:k | y1:k−1)

{∫
St (x1:t )p(xk+1:t | xk, yk+1:t )dxk+1:t − S̄t

}2

dx1:k

�
∫

p(x1:k | y1:t )
2

p(x1:k | y1:k−1)

{
k∑

i=1

ϕ(xi ) − ϕ̄i,t

}2

dx1:k

− 2‖ϕ‖2

(
2

1 − ρ
+ 2

)(
ρ

1 − ρ

)∫
p(xk−1, xk | y1:t )

p(xk−1, xk | y1:k−1)
p(xk−1, xk | y1:t ) dxk−1:k,

where ϕ̄i,t = ∫ ϕ(xi )p(xi | y1:t ) dxi . Details are routine calculations and are omitted. Combining this bound
with (A5) yields:

term B �
t−1∑
k=2

∫
p(x1:k | y1:t )

2

p(x1:k | y1:k−1)

{
k∑

i=1

ϕ(xi ) − ϕ̄i,t

}2

dx1:k︸ ︷︷ ︸
Bk,t

− 2(t − 2)‖ϕ‖2

(
2

1 − ρ
+ 2

)(
ρ

1 − ρ

)
�B . (A8)

The second term on the right grows linearly with t and the first term will be shown to grow quadratically
with t .
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The importance weight simplifies to

p(x1:k | y1:t )

p(x1:k | y1:k−1)
= wt (xk) = p(xk | y1:t )

p(xk | y1:k−1)
, k � t.

Consider the constituent terms that define the sum of the lower bound of term B in (A8):

Bk,t = E p(x1:k |y1:k−1)

⎡
⎣wt (Xk)

2

{
k−1∑
i=1

ϕ(Xi ) − ϕ̄i,t

}2
⎤
⎦

+ E p(x1:k |y1:k−1)[wt (Xk)
2{ϕ(Xk) − ϕ̄k,t }2]

+ 2
k−1∑
j=1

E p(x1:k |y1:k−1)[wt(Xk)
2{ϕ(Xk) − ϕ̄k,t }{ϕ(X j ) − ϕ̄ j,t }].

The following bound is needed for the cross terms:

E p(x1:k |y1:k−1)[wt(Xk)
2{ϕ(Xk) − ϕ̄k,t }{ϕ(X j ) − ϕ̄ j,t }]

� 2‖ϕ‖ρk− j

{∫
|ϕ(xk) − ϕ̄k,t |wt(xk)p(xk | y1:t )dxk

}
� 2‖ϕ‖ρk− j�1/2�

1/2
B ,

where the first bound is arrived at using (A1) and the second using (A4), (A5) and Cauchy’s inequality.
Thus,

Bk,t � E p(x1:k |y1:k−1)

⎡
⎣wt (Xk)

2

{
k−1∑
i=1

ϕ(Xi ) − ϕ̄i,t

}2
⎤
⎦

+ E p(x1:k |y1:k−1)[wt (Xk)
2{ϕ(Xk) − ϕ̄k,t }2] − 4‖ϕ‖�1/2�

1/2
B

ρ

1 − ρ

� E p(x1:k |y1:k−1)

⎡
⎣wt (Xk)

2

{
k−1∑
i=1

ϕ(Xi ) − ϕ̄i,t

}2
⎤
⎦+ δ − 4‖ϕ‖�1/2 ρ

1 − ρ
�

1/2
B

� k

(
δ − 4‖ϕ‖�1/2 ρ

1 − ρ
�

1/2
B

)
.

The second inequality follows from (A4) and the last by repeating the derivation of the bound a remaining
k − 1 times. Combining all bounds leads to the following lower bound for (A7):

term B �
(

t−1∑
k=2

Bk,t

)
− 2(t − 2)‖ϕ‖2

(
1

1 − ρ
+ 2

)(
ρ

1 − ρ

)
�B

�
(

δ − 4‖ϕ‖�1/2 ρ

1 − ρ
�

1/2
B

)
1

2
(t + 1)(t − 2) − 2(t − 2)‖ϕ‖2

(
2

1 − ρ
+ 2

)(
ρ

1 − ρ

)
�B .

Thus, by (A2) and (A6), there exists a λ̄ > 1 such that for all λ ∈ [1, λ̄), δ > 4‖ϕ‖�1/2ρ(1 − ρ)−1�
1/2
B . �
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