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Abstract 

Resistive pulse sensors, RPS, are allowing the transport mechanism of molecules, 

proteins and even nanoparticles to be characterised as they traverse pores. Previous 

work using RPS has shown that the size, concentration and zeta potential of the 

analyte can be measured. Here we use tunable resistive pulse sensing (TRPS) 

which utilises a tunable pore to monitor the translocation times of nanoparticles with 

DNA modified surfaces. We start by demonstrating that the translocation times of 

particles can be used to infer the zeta potential of known standards and then apply 

the method to measure the change in zeta potential of DNA modified particles. By 

measuring the translocation times of DNA modified nanoparticles as a function of 

packing density, length, structure, and hybridisation time, we observe a clear 

difference in zeta potential using both mean values, and population distributions as a 

function of the DNA structure. We demonstrate the ability to resolve the signals for 

ssDNA, dsDNA, small changes in base length for nucleotides between 15-40 bases 

long and even the discrimination between partial and fully complementary target 

sequences. Such a method has potential and applications in sensors for the 

monitoring of nanoparticles in both medical and environmental samples.  
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1. Introduction 

 

The immobilization of oligonucleotides onto surfaces is a key design to many 

technologies within DNA sequencing1,2, DNA-protein interactions3–5, biosensing6–9 

and targeted drug delivery10–12. The functionalization of DNA onto nanoparticle 

surfaces is now a common practice, and within the field of biosensors alone the 

number of strategies for immobilization, type of nanomaterial, and detection platform 

are varied enough to fill several reviews13–19. One family of nanomaterials favoured 

with purification strategies is Superparamagnetic Particles, SPPs. These particles 

allow for the removal of specific analytes from complex sample matrices using 

nothing more complicated than a hand held magnet14,20–23 and the use of SPPs has 

become increasingly common. When they are incorporated into fluidic devices they 

can be used to continuously sort cells and DNA from liquids24, and are integrated 

into a variety of detection platforms14,24,25.  

When using nanomaterials in bioassays, the material must remain suspended 

in the solution for it to capture the analyte. A particle’s surface chemistry design is 

important to avoid sedimentation of irreversible aggregation; there are two 

mechanisms available to prevent this. First is the use of steric stabilisation by placing 

a neutral polymer onto the particle surface, and the second depends upon charge 

stabilisation whereby the repulsive coulombic forces overcome the attractive Van der 

Waals forces26,27.  

For charge stabilised particles, a typical measurement used to represent the 

surface charge, and infer stability, is zeta potential. The zeta potential represents the 

value of the electrostatic potential at the plane of shear and typically for nanoparticle 

systems, zeta potential values of ±30 mV are representative of stabilised particles28. 

When a polyelectrolyte, such as DNA, is immobilised onto the surface of the 

nanomaterials the DNA can take on two roles. The first is the more natural of the two 

as a capture probe, designed to hybridise to target DNA. The second is a passive 

role where the inherent charge on the phosphate back bone can act as a stabiliser 

by creating a high charge density on the particle surfaces, helping suspend them in 

solution29. In doing this it is important to consider the structure of the DNA 

immobilised onto a nanomaterial’s surface. Single-stranded and double-stranded 
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DNA varies in persistence length, which affects the stability and flexibility of the 

polymer when immobilised to a surface. For example, dsDNA has a 50-fold higher 

persistence length than ssDNA30,31, making it a far more rigid. As well as the 

persistence length, the contour length also varies between ssDNA and dsDNA, and 

both these parameters will affect the plane of shear and thus zeta potential32. 

When using nanoparticle systems a mean population zeta potential will not 

allow the true measure of the ligand distribution across all of the particles to be 

interpreted, and in a typical reaction the ligand density would follow a poisson 

distribution33–35. The spread of the population can have an effect on the reaction 

kinetics, stability and sensitivity of nanoparticle based assays36–38. To build up a true 

measure of the spread of zeta potential values for a given particle population, the 

zeta potential of each individual particle has to be measured, and this aspect is 

challenging, although electrophoretic and electrochemical techniques allow insight to 

these measurements29,39. Electrophoresis studies have demonstrated the ability to 

separate ssDNA and dsDNA modified particles, and probe the structure of the 

ssDNA surfaces40–42. Alternative technologies for monitoring particle-by-particle zeta 

potentials rely upon particle tracking technologies that monitor the speed of the 

particles in an applied electric field43.  

A relatively recent technology to be developed for the characterisation of 

nanoparticles is based upon tunable resistive pulse sensing (TRPS)44–51. TRPS is 

based on polyurethane elastomeric membranes in which the pore geometry can be 

altered in real time. The brief set up and theory for TRPS technologies is as follows: 

a stable ionic current is established by two electrodes, separated by a pore; as 

particles/analytes translocate the pore they temporarily occlude ions, leading to a 

transient decrease in current known as a “blockade event”, examples of which can 

be seen in figure 1a. In the TRPS arrangement used here, the pore is mounted 

laterally so that particles typically move from the upper fluid cell into the lower fluid 

cell, aided by an inherent pressure head due to 40 µl of liquid  in the upper fluid cell 

of approximately 50 Pa52, and a positive or negative bias is applied via an electrode 

under the pore.  By monitoring changes in blockade width or full width half maximum 

(FWHM), blockade magnitude (Δip) and blockade frequency (events/min) it is 

possible to elucidate the zeta potential53,54, size49, and concentration50 of colloidal 

dispersions in situ49.  
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Figure 1 – a) Blockade events produced as particles traverse the pore and the 

resulting blockade shape depicting ∆ip and FWHM. b) Blockade shape is relative to 

particle translocation and a measurement is made at 8 blockade reference points 

representing a particle’s position in the nanopore at any given time (green spots). 

T1.0 for example is the time the blockade is at 100% magnitude, dRmax. T0.30 and T0.60 

are the times at which the blockade is 30% (I0.30) and 60% (I0.60) of dRmax 

respectively. c) 1/T vs voltage used within the calibration method to calculate the 

particle translocation time and therefore zeta potential of a given sample.  

 

The methodology for measuring zeta potential using RPS technologies has 

seen an evolution of techniques44,54,55, and here we use a similar concept as was 

published by Arjmandi et. al. using pyramidal pores56. In brief, a calibration based 

zeta potential method is applied, based on the measurement of signal durations of 

translocation events as a function of voltage. The electrophoretic mobility is 

calculated from the derivative of medium particle velocity and applied electric field. 

The zeta potential of each particle can then be obtained from the measured 

electrophoretic mobility using the Smoluchowski approximation44,57. The calculated 
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zeta potential only depends on the measured pulse duration and is independent of 

the magnitude of the pulse, meaning that simultaneous size and charge 

measurements can easily and reliably be carried out. TRPS’s particle-by-particle 

nature means that sub-populations with different zeta potential are able to be 

resolved, whilst ensemble methods such as phase analysis light scattering or PALS 

will only report an average zeta potential.  

We adapt and apply the theory by first demonstrating its use with calibration 

particles and then move to measure changes in zeta potential for DNA modified 

nanoparticles. We go on to measure the change in zeta potential as a function of 

DNA concentration on the particles surface. We observe that the measured zeta 

potential is correlated to the concentration of DNA and as the technique also 

provides a particle-by-particle analysis, the distribution of the zeta potential across 

the sample population is also produced. As we increase the concentration of DNA, a 

more symmetrical Gaussian distribution of charge is produced, indicating a more 

uniform ligand distribution around the nanoparticles. By measuring the zeta potential 

and shape of the distribution, we go on to measure the effects of oligonucleotide 

length and apply our method to the detection of dsDNA. By controlling the packing 

density of the capture probe (CP) on the particle surface and the mechanism by 

which the CP hybridises to the target, the sensitivity of the instrument can allow for 

the detection of target DNA in assay times under 30 mins. Finally we demonstrate 

that by designing the length and position of the complementary section to the target 

we can improve the signal and detection.  

The method will have an impact on designing particle based assays and the 

technology shows potential to study zeta potentials on biological analytes, with clear 

applications in fields of bioassays; as well as the monitoring of nanomaterials in 

nanotoxicology and nanomedicine where a clear understanding of the particle 

surface charge and size can have an influence on the efficiency and toxicology of 

particle based drugs.  

 

2. Materials and methods 

 

2.1 Chemicals and Reagents 
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The buffer used was phosphate buffered saline with Tween-20 as a surfactant 

(1 x PBST (0.01 M phosphate buffer, 0.0027 M Potassium Chloride, 0.137 M Sodium 

Chloride, pH 7.4 with 0.05 (v/v)% Tween-20 in 200 mL deionised water (18.2 Ω cm))). 

PBS tablets (P4417) and Tween-20 (P1379) were purchased from Sigma Aldrich, 

UK. Streptavidin coated superparamagnetic particles (120 nm, 4352 pmol/mg 

binding capacity, product 03121) were purchased from Ademtech, France.  

 

2.2 Carboxyl polystyrene particle standards 

 

Carboxylated polystyrene particles with a mean nominal diameter of 220 nm 

were purchased from Bangs Laboratories, US and are denoted as CPC200. The 

specific surface charge as determined by the manufacturer was 86 µeq/g, equivalent 

to a surface density of 3.2 x 10-19 C/nm2. The CPC200s were measured at a 

concentration of 1 x 1010 particles/mL. 

 

2.3 Custom DNA oligonucleotides 

 

All the oligonucleotides used in this study were purchased as lyophilised 

powders (100 pmol/µL) from Sigma Aldrich, UK with customised DNA sequences fit 

for purpose detailed below, please not the abbreviation [Btn] is relative to a biotin 

modification; 5’NNNNNNNNNN[Btn]3’ (VL10, 10 bases), 

5’TGGGAGTAGGTTGGTGTGGTTGGGGCTCCCCTTTTT[Btn]3’ (VL36, 36 bases), 

5’ATACCAGTCTATTCAATTGGGCCCGTCCGTATGGTGGGTGTGCTGGCCAG[Btn

]3’ (VL50, 50 bases), 5’ATGGTTAAACCTCACTACGCGTGGC[Btn]3’ (VL25/CP, 25 

bases), 5’GCCACGCGTAGTGAGGTTTAACCAT3’ (cDNA, 25 bases), 

5’GTAGTGAGGT3’ (MidT, 10 bases), 5’GTTTAACCAT3’ (EndT, 10 bases), 

5’GTGAGGTTTAACCATTTTTTTTTTTTTTTT3’ (OverT, 30 bases). 

 

2.4 Phase analysis light scattering (PALS) 

 

CPC200 zeta potentials were measured on a Malvern Zetasizer Nano ZS. 

PALS analysis was used to determine the average zeta potential of the carboxylated 

polystyrene standards dispersed in PBS electrolyte.  
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2.5 Hybridising DNA to streptavidin coated particles 

 

120 nm diameter streptavidin coated particles (03121, Ademtech, France) 

were diluted to a concentration of approximately 1 x 109 particles/mL. The diluted 

particle solutions were then vortexed for 30 s, and sonicated for 2 mins, to ensure 

monodispersity.  

The biotinylated DNA capture probe was added to the streptavidin coated 

particles (4352 pmol/mg binding capacity – determined by the supplier) at the 

required concentration. The samples were then placed on a rotary wheel for 30 

minutes. Any unbound DNA remaining in solution was then removed via magnetic 

separation by placing the samples onto a Magrack (GE Healthcare, UK) for 30 

minutes. The supernatant was then removed and replaced with new buffer (PBST).  

 

2.6 Addition of complementary target DNA 

 

Target DNA was added in excess (500 nM) to ensure the maximum possible 

target binding was reached. The samples were then placed on a rotary wheel at 

room temperature to investigate the effect of DNA hybridisation time.  

 

2.7 TRPS setup 

 

All measurements were conducted using the qNano (Izon Sciences Ltd, NZ) 

combining tunable nanopores with proprietary data capture and analysis software, 

Izon Control Suite v.2.2.2.117. The lower fluid cell always contained the electrolyte 

buffer (80 µL). The upper fluid cell always contained 40 µL of sample (that was 

suspended in the buffer) when a measurement was being completed with an 

inherent pressure on the system (47 Pa). Prior to TRPS analysis, all samples were 

vortexed for 30 s and sonicated for 1 minute. During each sample run, the system 

was washed by placing PBST (40 µL) into the upper fluid cell several times with 

various pressures applied to ensure there were no residual particles remaining and 

therefore no cross contamination between samples. A detailed description of such a 

tunable resistive pulse sensing device can be found in Willmott et al.50 and Vogel et 

al.49.  
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2.8 Streaming potential measurement 

 

Streaming potential and current measurements of the thermoplastic 

polyurethane (TPU) pore membrane were made using a Surpass instrument (Anton 

Paar GMBH, USA). TPU membranes were cut to form a cylindrical cell with an 

adjustable gap and the streaming potential was measured for a range of applied 

pressures within a cyclic pressure sweep. The zeta potential was evaluated with the 

Surpass Visiolab software, applying the Helmholtz-Smoluchowski equation58.  

 

2.9 Calibration zeta potential measurements  

 

Based on the size of the sample particles being used (~120 nm) and 

calibration CPC200s (220 nm), the most idealistic pore to use was an NP150 (size 

range 85 – 300 nm). The calibration particles are measured at 3 applied voltages 

that are dependent on the applied stretch and consequent baseline current observed. 

Each sample measurement was performed using a baseline current of 100 ± 10 nA, 

to allow us to compare data sets across several runs and pores. To account for 

variation in the pore size from the manufacturing process, the stretch and voltage 

were adjusted to achieve a similar baseline current for each experiment (see above). 

As well as matching the baseline current each sample blockade signal was greater 

than 0.05 nA, compared to a background noise of circa 10 pA. Finally when 

performing an experiment a calibration was performed on particles of known size 

and zeta potential.  For the purpose of measuring and comparing zeta potential, it 

was imperative that the stretch of the nanopore and the applied potential were not 

changed during a sample or calibration measurement of a particular dataset. The 

sample measurements were all completed at the highest or second highest voltage 

that the calibration measurements were carried out at. Calibration measurements 

were completed on each new day analysis was completed and when a new 

nanopore was introduced.  The zeta potential distributions were measured as 

D90/10 value, D90 is defined as the particle zeta potential at 90% of the cumulative 

particle zeta potential, distribution and D10 is defined as the particle zeta potential at 

10% of the cumulative particle zeta potential. 
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3. Results and discussion 

 

3.1 Zeta calculation 

 

In this study we are using a method related to Arjmandi et al., 56, who described a 

calibration based method of measuring particle zeta potentials using resistive pulse 

sensing. This method is based on measuring the duration of the translocation of 

particles through a nanopore as a function of applied voltage, with particle velocity 

and electric field being averaged over the entire sensing zone of a regular conical 

pore. The electric field, E, can be determined using the calculation of pore resistance, 

so that E is entirely parallel to the z-axis, 𝐸𝑧(𝑧) =  −𝐼0 ∗ 𝑑𝑅𝑑𝑧, with Ez, I0, and R being the 

electric field component along the pore axis, electric current, and resistance 

respectively59. For a voltage V0 of 0.5 V, a small pore opening diameter of 0.8 µm, a 

large pore opening diameter of 40 µm, and a membrane thickness of 250 µm, the 

maximum electric field is approximately 105
 V/m. Please note that the above pore 

dimensions are estimates, which are in accordance with SEM images of pores with 

similar dimensions to the ones used for this study. The electrophoretic mobility is the 

derivative of 1/T (with T being the signal duration) and voltage multiplied by the 

square of the sensing zone length, l.  l is a fitting parameter that is included in a 

calibration constant, which is calculated using a calibration particle with known zeta 

potential. Convection and electroosmosis have been neglected for being much 

smaller than the electrophoretic contribution to particle motion. Finally, Henry’s 

equation is used to relate the particle zeta potentials with the measured 

electrophoretic mobility of single particles60. 

We are using a related approach, in which we are considering the effects of 

elecroosmosis and convection (through an applied pressure) in addition to 

electrophoresis when calculating the zeta potential of single particles. Samples of 

particles with a wide spectrum of zeta potentials, potentially reaching from positive to 

negative values and/or very dilute suspensions, may require the application of an 

external pressure in order to capture the whole spectrum of particle zeta potentials. 

Also, without any net pressure, most neutral particles might not translocate the pore 

and hence are not measured, skewing the results.  
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Average velocities and electric fields at multiple points through the sensing 

zone (as opposed to only at the end of the sensing zone, see figure 1b) will help to 

reduce errors that result from rogue events such as instantaneous background noise. 

In other words, multi point analysis serves as a sort of quality control of the acquired 

zeta potentials. The calibration of the pore is based on measuring the linear 

dependence of 1/Tx vs voltage, V, using standard carboxylated polystyrene particles 

with a known average zeta potential (figure 1c). The calibration process is 

summarised in supplementary info (equations A.1-A.6). From this the electrokinetic 

particle velocities of sample, (𝑣𝑥𝑖 )𝑒𝑙 𝑆𝑎𝑚𝑝𝑙𝑒, and calibration, (𝑣𝑥)𝑒𝑙 𝐶𝑎𝑙, are related with 

their zeta potentials, 𝜉𝑥 𝑛𝑒𝑡 𝑆𝑎𝑚𝑝𝑙𝑒𝑖  and 𝜉𝑛𝑒𝑡 𝐶𝑎𝑙   (equation 1), assuming a linear 

relationship between velocity (mobility) and zeta potential as given in the 

Smoluchowski approximation53,57.  (𝑣𝑥𝑖 )𝑒𝑙 𝑆𝑎𝑚𝑝𝑙𝑒 (𝑣𝑥)𝑒𝑙 𝐶𝑎𝑙 =  𝜉𝑥 𝑛𝑒𝑡 𝑆𝑎𝑚𝑝𝑙𝑒𝑖 𝜉𝑛𝑒𝑡 𝐶𝑎𝑙           (1)  

The net zeta potentials for both sample and calibration particles are the 

differences in the respective particle zeta potentials and the membrane zeta 

potential, 𝜉𝑚(equation 2). 𝜉𝑝 𝑆𝑎𝑚𝑝𝑙𝑒  =  𝜉𝑛𝑒𝑡 𝑆𝑎𝑚𝑝𝑙𝑒 +  𝜉𝑚         (2) 

The zeta potential of each sample particle i, ξSamplei , is given by averaging 

respective zeta potential values, calculated at various locations within the pore 

(equation 3), with lx being the position within the pore reached after time, t=Tx. Please 

note that lx is set to equal 0 right at the narrow pore entrance of the conical pore, 

where the signal magnitude reaches its maximum, as shown in figure 1b. Zeta 

potentials are evaluated by taking the average at several discrete points, lx.  

 ξSamplei = ∑ ξx Sampleix Σx = ∑ (vx Samplei −vx CalP ×𝑃)/(vx CalV ×𝑉)x Σx × ξnet Cal + ξm          (3) 

 vxi Sample  is the sum of the time averaged electrokinetic (electroosmotic and 

electrophoretic) and convection velocity components of sample particulates at 

position lx within the pore (equation 4).  vxi Sample = lxTxi = ∫ vi(t)dtTxi0 Txi          (4) 
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vxVCal , vxPCal  , P, and V are electrokinetic velocity per unit voltage, convective velocity 

per unit pressure, applied pressure and voltage for the sample runs respectively. The 

electrokinetic velocity per unit voltage is equivalent to the electrokinetic mobility, 

which is the sum of electroosmotic and electrophoretic mobility.  vxVCal and  vxPCal are 

calculated by averaging typically over more than 500 calibration particles. ξnet Cal and ξm  are the zeta potentials of polystyrene standard particles and the membrane 

respectively. The zeta potentials of polystyrene standards and the thermoplastic 

polyurethane membrane were measured using PALS and streaming potential 

techniques, to be -20 mV and -11 mV respectively (see supplementary info).  

 

3.2 Zeta potential of DNA Modified Particles 

 

To test our method on DNA modified particles we first performed a series of 

measurements increasing the concentration of ssDNA (25 bases in length) on the 

streptavidin coated particle surfaces. The concentration of DNA, termed here CP, 

was increased from 10 – 210 nM, whilst the particle concentration remained constant. 

At DNA concentrations over 188 nM the theoretical binding capacity of the 

streptavidin particles (as given by the supplier) has been reached (see 

supplementary figures A.2 and A.3 for the size and charge distributions of the 

Streptavidin coated particles without DNA). At the highest concentration of DNA 

added to the particles there is ~ 12648 pieces of DNA/ particle, if all of these are 

attached to the surface of the particles it would equate to 1 DNA molecules every 2 

nm across the particle surface. At lower concentrations of the DNA this ratio changes 

to 602/ bead at 10 nM, and 4517/ bead for 75 nM. Figure 2 is an example of size and 

zeta potential data that can be captured simultaneously in a single TRPS 

measurement. The blue and red bars/data points show the data at the lowest and 

middle concentration of CP (10 nM and 47 nM respectively) and the green bars/data 

points show results from the highest concentration of CP measured (210 nM). 

Please note that each data point in figure 2 represents a single particle.  
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Figure 2 – Size and zeta potential data captured simultaneously from a single TRPS 
measurement. The blue bars/data points are results of a sample containing 10 nM 
CP (570 particles measured), the red bars/data points are of a sample containing 47 
nM (524 particles measured) and the green bars/data points are of a sample 
containing 210 nM CP DNA (576 particles measured). 
  

From this, it can be found that although there are no significant size changes 

observed between the samples, there are significant changes observed in the zeta 

potential. The inferred zeta potentials from the measured velocities of the samples at 

varying CP concentration are shown in figure 3a and 3b respectively. The particle 

velocities are determined from 1/T0.50 (see supplementary material), which is an 

estimate of the average particle speeds. The measured zeta potential in figure 3a 

shows that as the DNA concentration is increased, the larger the absolute zeta 

potential, and follows the expected trend based on the measured particle velocities; 

similar data for repeat experiments are given in figure A.2a. This is attributed to each 

phosphate group contributing to a negative point charge, thereby increasing the 

charge density of the particle surface, as described by Graham’s equation. Surface 

charge densities were calculated using Graham’s equation56,61. With mean zeta 

potentials not exceeding an absolute value of 40 mV the respective absolute surface 

charge densities lie below 0.035 C/m2, and acknowledge that whilst counter ion 

condensation may play a role under these situations it is beyond the scope of the 
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study to describe in detail. Figure 3c shows a series of histograms of frequency 

versus measured zeta potential for each concentration of DNA. The distribution at 

low concentrations of DNA can be characterised as narrow with a long skewed tail, 

which may impart be due to the particles themselves not having a uniform coating of 

streptavidin. As the concentration of DNA is increased the distribution changes, with 

the median skew value going from -0.66, -0.36 and -0.51 -0.36 for 10, 95 and 210 

nM respectively. It should be noted here that the skewed histogram data in the figure 

may be an inherent property of the particles themselves not having a uniform coating 

of the streptavidin protein coating, as shown in figure A2. The charge histograms for 

all of CP concentrations studied are shown in figure A.4 and 5. Particle-by-particle 

measurements provide more detailed analysis of a sample solution. Charge 

distribution histograms are used to represent the spread of data amongst a given 

sample population. The zeta potential of the sample can then be analysed in more 

depth. 

 

Figure 3 – a) Mean zeta potential vs capture probe concentration. b) 1/T0.50, see 
figure 1b, estimating average particle speed vs capture probe concentration.  c) 
Charge distributions amongst the sample population shown in ‘a)’ increasing in DNA 
concentration from left to right. 537, 605, 585, and 588 particles were measured for 
the samples containing 10, 47, 95, and 210 nM DNA respectively.  
 

A similar relationship between the length of the ssDNA and measured zeta 

potential should also exist, that is as the length of the DNA increases, the zeta 

potential is also predicted to increase. Steinbock et al. have previously investigated 

the effect of long double stranded DNA strands (4 and 6 kilo base pairs) hybridised 
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to colloids using microparticles and a microcapillary base Coulter counter system. 

They found that DNA coated microparticles displayed a much smaller change in 

conductance values due to the additional charge in the system40. To investigate the 

sensitivity of TRPS in its ability to measure changes in zeta potential, we are 

focusing on much smaller strands of single-stranded DNA. The ssDNA 

oligonucleotides in this study were 10, 25, 36 and 50 bases in length equivalent to 

7.0, 17.5, 25.2 and 35 nm in length respectively if the ssDNA is fully extended62,63.  

 

Figure 4 – a) Mean zeta potential vs capture probe base length. Blue bars are 
representative of a 75 nM DNA concentration and red bars represent a 210 nM DNA 
concentration. b)  1/T0.50, see figure 1b, estimating average particle speed vs capture 
probe base length. c) The charge distribution of varied DNA base length using 210 
nM DNA. 676, 1001, 996, and 693 particles were measured for the 10, 25, 36, and 
50mer respectively. Error bars represent st.dev where n = 2. 
 

Figure 4a shows how the zeta potential increases when the length of the DNA 

is increased alongside the relative particle velocity displayed in figure 4b. In this 

example (red bars), the concentration of DNA added to the particles is in excess of 

the binding capacity. Figure 4a, blue bars, illustrate the same effect, i.e. as the length 

of the DNA increases so does the measured zeta potential. However in this 

experiment, the DNA is at 75 nM, which is lower than the theoretical binding capacity 

of the particles. At this lower concentration the DNA is much more flexible and can 

exist in its condensed mushroom form64. Figure 4c shows the charge distribution 

histograms for the densely packed DNA particles (distributions for the 75nM DNA are 

given in figure A.6, and distributions from multiple runs are presented in figure A.7.).  
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The width of the distribution increases as the length of the DNA increases 

(D90/10 goes from 2.87 to 5.3 for 10 and 50 base lengths respectively), we attribute 

this observation to the steric hindrance of the longer strands, preventing a higher 

packing density of the DNA around the particles due to their radius of gyration, 

effectively blocking the binding of the DNA onto the surface. Its also interesting to 

note that the median skewness values from -042 to -0.41, -0.12 and 0.45 for 10, 25, 

35 and 50 bases respectively. The particle charge distributions for the lower DNA 

concentration (75 nM) and comparative datasets for the higher concentration (210 

nM) illustrating the reproducibility of the data are given in supplementary figures A.6 

and A.7.  

 

3.3 Detecting Target DNA Hybridisation 

 

It was then investigated if the technique could discriminate between ssDNA 

and dsDNA. Initially the capture probe length was kept constant at 25 bases in 

length, and was always added in excess of the binding capacity. Any unbound 

capture probe in solution was removed before the target probe was incubated with 

the particles. As can be seen in figure 5ai and ii, the formation of dsDNA can be 

measured by an increase in zeta potential for assay hybridisation times of 16 hours 

(green triangle) and for  hybridisation times as short as 30 minutes (red squares).  

The change in structure from ssDNA to dsDNA is a 50-fold increase in 

persistence length30,31, and this will result in the hydrodynamic radius of the particle 

upon forming dsDNA to increase. Two competing factors then affect the surface 

chare density. The first is the elongation of the DNA upon forming the dsDNA 

structure which has the effect of spacing out the charged phosphate groups away 

from the particles surface, resulting in a decrease in charge density. However this is 

countered by the addition of a second strand of DNA doubling the number of point 

charges resulting in a net increase in electrophoretic mobility in solution, and thus 

resulting in increased velocities and larger zeta potential values. 

This is similar to the work done by Booth et al. demonstrating the detection of 

target-probe DNA hybridisation and successfully discriminating between ‘probe’ and 

‘target-probe’ hybridised particles using TRPS65. However, in these previous 

examples the experiments utilised a 23mer capture probe and 50mer target, as such 

the captured DNA extended out into solution and was predominantly ssDNA. Here 
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we were curious as to the ability of the technique to discriminate between ssDNA 

and dsDNA, as well as overhanging DNA. We investigated a range of DNA targets 

binding to various positions of the capture probe, to determine the sensitivity and 

reliability of a zeta potential measurement for the detection of varied DNA 

hybridisation. We termed these target probes as cDNA (fully complementary), MidT 

(binds to the middle of the CP), EndT (binds to the end of the CP) and OverT (binds 

to the end 10 bases of the CP and overhangs into solution by 15 bases). The results 

for these measured zeta potential values are plotted in figure 5aiii–v. As we add 

target DNA in each of the hybridisation experiments to form dsDNA, be it at the 

middle or end of the CP, there is a larger zeta potential recorded. The magnitude of 

change in zeta potential is always greatest with the longer hybridisation times. Of 

interest is that fact the overhanging DNA sequences (OverT) gives the largest 

negative zeta potential of all the samples despite being the longest length. 

Increasing the length of the DNA could have slowed the speed at which the particles 

traverse the pore due to additional drag effects and lowered the recorded zeta 

potential. However, the result indicates that the increase in charge due to the 

additional 30 based has a more dominant effect on particle translocation times. One 

suggestion for this observation could be down to the ssDNA having a lower 

persistence length. The overhanging ssDNA may coil/ fold back towards the particle. 

This folding in effect increased the surface charge density around the particle 

increasing the electrophoretic velocity through the creation of a ‘hairy layer 

mechanism’66. The ssDNA within the overhanging DNA is also further from the 

particles surface than the DNA in any other experiment. Given the curvature of the 

particle the distance between each DNA molecule will increase, and this room to fold 

back may explain the enhanced effect over MidT and EndT experiments. 
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Figure 5 – a) Relative change in mean zeta potential (mV) from DNA capture probe 
(CP, 250 nM) to when a variety of targets are hybridised for 30 minutes (red squares) 
and hybridised for 16 hours (green triangles). The relative change in zeta potential 
was also investigated for a lower concentration (75 nM) and 30 minute hybridisation 
time (blue diamonds). b) Charge distributions for each target at 250 nM CP 
concentrations and a hybridisation time of 16 hours. 500, 990, 592, 707, and 964 
particles were measured for samples i)-v) respectively with median skewness values 
of -073, -0.59, -0.41, -0.49, -0.31. Error bars represent st.dev where n = 3. 

 

A surprising aspect of the data was the ability to distinguish between dsDNA 

formed at the end or middle of the capture probe. The target DNA that bound to the 

end of the CP (EndT), recorded a smaller zeta potential than a same sized target 

that was hybridised to the middle of the CP (MidT). We attribute this to the effects of 

persistence lengths and the location of the dsDNA in the capture probe. The MidT 

dsDNA leaves a section of ssDNA exposed to the solution. This is more flexible and 

we hypothesise that when the dsDNA is in the middle of the DNA, the single 

stranded end section coils/ folds back to increase the charge density around the 

particle66, thus creating a larger zeta potential. In the case where the dsDNA is at the 

end of the sequence, the ability of the DNA to fold back on its self is restricted and 

forms a more rigid elongated oligomer across the entire length of the DNA, moving 

the charge away from the surface and lowering the surface charge density.   
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The observation that MidT produces a larger shift in zeta potential could 

influence the design of future assays on TRPS systems. The change in distribution 

shape indicates a difference in the DNA hybridisation or DNA target itself. Figure 5b 

shows the change in charge histogram shape, dependent on the target DNA 

hybridised to the CP. The ability to monitor any of these discrete differences is an 

insightful prospect for future colloid and nucleotide research.  

As well as designing the location to capture target DNA, there is also an 

interesting observation on the effect of DNA density on hybridisation kinetics. 

Previous studies have illustrated that the kinetics of target DNA capture is influenced 

by DNA probe density at a surface67–70. At high DNA probe densities, the  ssDNA 

forms a dense packed polymer brush56, the DNA forms a rigid polymer coating who’s 

thickness is equal to the length of the extended DNA sequence, H72. The effects on 

packing density then determine the electrostatic potential, the position of the shear 

plane and the kinetics of target DNA hybridisation. The significance of the zeta 

potential at polyelectrolyte layers becomes more complicated, and when the debye 

length,-1
, is sufficiently lower than the polyelectrolyte layer thickness, H, i.e. -

1/H<<1, the measured zeta potential may no longer reflect the stern potential, as the 

plane of shear is shifted to distances further away from the particles surface73. 

Therefore at polyelectrolyte surfaces, the term zeta potential in effect loses its 

original meaning. As the density of the DNA packing decreases the plane of shear 

may enter the DNA layer73.  

Figure 6 shows the effect of hybridising an excess of target cDNA to different 

packing densities of CP. At a low capture probe concentration and a target 

hybridisation time of 30 minutes (shown by figure 6a), the charge distributions were 

much narrower in shape with less of a tailing effect observed. In agreement with 

previous studies74, when the DNA capture probe concentration is lower, there is a 

faster rate of reaction, resulting in a much narrower charge distribution histogram. At 

high capture probe concentrations, it is difficult to observe an increase in zeta 

potential for small hybridisation reaction times, thus for quick assay times, low 

packing densities of CP produce better results.   
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Figure 6 - The charge distributions for a sample population at; a) low concentration 

of capture probe (75 nM) + 30 minute hybridisation of varied targets in excess, (987, 

998, and 996 particles were measured for CP, cDNA, and OverT respectively) b) 

high concentration of capture probe (250 nM) + 30 minute hybridisation of varied 

targets in excess, (502, 997, and 661 particles were measured for CP, cDNA and 

OverT respectively) and c) high concentration of capture probe (250 nM) + 16 hour 

hybridisation of varied targets in excess (512, 916, and 944 particles were measured 

for CP, cDNA and OverT respectively) . 

 

Figure 6b and 6c both display results observed at a high CP concentrations 

and show the charge distribution widening as the target hybridisation time increases 

from 30 minutes to 16 hours. This is due to the increase in amount of time the target 

DNA has to reach the required orientation to achieve successful complementary 

DNA binding. The more time there is for this to happen, the higher the proportion of 

target DNA that can successfully bind to the capture probe resulting in a larger 

amount of dsDNA present on the particles. This increases the particle velocity 

through the nanopore, thus resulting in a larger absolute zeta potential.  

A more Gaussian charge distribution was seen for particles analysed in figure 6a 

and 6c than in 6b, skewness values of 0.1, -0.41 and -0.37 respectively. We attribute 

this to an increase in ability to form dsDNA, and then detect its presence on a 

particle. For example with a hybridisation time of 30 minutes and a lower capture 

probe concentration (6a), the presence of dsDNA is easily detected. This may be 

due to two factors, firstly there being less steric hindrance for the target DNA to 

approach the particle allowing the rate of dsDNA formation to be increased, and 
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secondly the resolution of the technique to measure the incremental additional of 

dsDNA against a particle of lower charge, compared to a high density ssDNA 

covered particle in 6b. Increasing the target hybridisation time to 16 hours (figure 6c) 

using the high concentrations of capture probe allows the target to have more time 

hybridise and thus more dsDNA is present on the surface. 

 

4. Conclusions 

 

We have demonstrated that TRPS can successfully detect and characterise 

both unmodified and DNA-modified particles in a single, real-time measurement. 

Charge distributions, rather than a single mean zeta potential value allow for more 

information to be extracted from a sample dataset using a particle-by-particle 

perspective. DNA-based surface modifications to a nanoparticle affect the behaviour 

of the nanoparticles in an electrolyte solution and their mobility through a nanopore; 

and by optimising the hybridisation time and DNA packing density on a surface, we 

measure the successful capture of target DNA after just 30 minutes incubation time. 

Successful analyte capture after such short incubation times is advantageous and 

shows great potential for medical applications, such as point of care assays, for 

example.   

 

Acknowledgments  

The authors thank Izon Scientific Ltd for their support and the Centre for 

Analytical Science at Loughborough University.  The work was supported by the 

European Commission for Research (PCIG11-GA-2012-321836 Nano4Bio), 

Loughborough University Chemistry Department (Start-up fund) and by the National 

Institute for Health Research (NIHR) Diet, Lifestyle & Physical Activity Biomedical 

Research Unit based at University Hospitals of Leicester and Loughborough 

University. The views expressed are those of the authors and not necessarily those 

of the NHS, the NIHR or the Department of Health. E. L. C. J. B. is supported by Izon 

Science Ltd. 

 

Appendix A - Supplementary Material 

Supplementary data associated with this article can be found in the online version at: 

 



22 
 

Conflicts of Interest Disclosure 

The authors declare no competing financial interest.  

 

References 

1. Niemeyer, C. M. & Blohm, D. DNA Microarrays. Angew. Chemie 38, 2865–2869 (1999). 

2. Gresham, D., Dunham, M. J. & Botstein, D. Comparing whole genomes using DNA 
microarrays. Nat Rev Genet 9, 291–302 (2008). 

3. Bulyk, M. L. Protein Binding Microarrays for the Characterization of Protein-DNA Interactions. 
Adv. Biochem. Eng. Biotechnol. 104, 65–85 (2007). 

4. Platt, M., Rowe, W., Knowles, J., Day, P. J. & Kell, D. B. Analysis of aptamer sequence activity 
relationships. Integr. Biol. 1, 116–122 (2009). 

5. Billinge, E. R. & Platt, M. Aptamer based dispersion assay using tunable resistive pulse 
sensing (TRPS). Anal. Methods 7, 8534–8538 (2015). 

6. Billinge, E. R., Broom, M. & Platt, M. Monitoring Aptamer–Protein Interactions Using Tunable 
Resistive Pulse Sensing. Anal. Chem. 86, 1030–1037 (2013). 

7. Gold, L. & al., et. Aptamer-Based Multiplexed Proteomic Technology for Biomarker Discovery. 
PLoS One 5, e15004 (2010). 

8. Park, S.-J., Taton, T. A. & Mirkin, C. A. Array-Based Electrical Detection of DNA with 
Nanoparticle Probes. Science (80-. ). 295, 1503–1506 (2002). 

9. Billinge, E. R. & Platt, M. Multiplexed, label-free detection of biomarkers using aptamers and 
Tunable Resistive Pulse Sensing (AptaTRPS). Biosens. Bioelectron. 68, 741–748 (2015). 

10. Ruiz-Hernández, E., Baeza, A. & Vallet-Regí, M. Smart Drug Delivery through DNA/Magnetic 
Nanoparticle Gates. ACS Nano 5, 1259–1266 (2011). 

11. Alexander, C. M., Maye, M. M. & Dabrowiak, J. C. DNA-capped nanoparticles designed for 
doxorubicin drug delivery. Chem. Commun. 47, 3418–3420 (2011). 

12. Li, J., Fan, C., Pei, H., Shi, J. & Huang, Q. Smart Drug Delivery Nanocarriers with Self-
Assembled DNA Nanostructures. Adv. Mater. 25, 4386–4396 (2013). 

13. Rosi, N. L. & Mirkin, C. A. Nanostructures in Biodiagnostics. Chem. Rev. 105, 1547–1562 
(2005). 

14. Llandro, J., Palfreyman, J., Ionescu, A. & Barnes, C. Magnetic biosensor technologies for 
medical applications: a review. Med. Biol. Eng. Comput. 48, 977–998 (2010). 

15. Tokel, O., Inci, F. & Demirci, U. Advances in Plasmonic Technologies for Point of Care 
Applications. Chem. Rev. (2014). doi:10.1021/cr4000623 

16. Michalet, X. et al. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science (80-
. ). 307, 538–544 (2005). 



23 
 

17. Salata, O. V. Applications of nanoparticles in biology and medicine. J. Nanobiotechnology 2, 3 
(2004). 

18. Sun, J., Xianyu, Y. & Jiang, X. Point-of-care biochemical assays using gold nanoparticle-
implemented microfluidics. Chem. Soc. Rev. 43, 6239–6253 (2014). 

19. Thaxton, C. S. et al. Nanoparticle-based bio-barcode assay redefines ‘undetectable’ PSA and 
biochemical recurrence after radical prostatectomy. Proc. Natl. Acad. Sci. U. S. A. 106, 
18437–18442 (2009). 

20. McCarthy, J. R. & Weissleder, R. Multifunctional magnetic nanoparticles for targeted imaging 
and therapy. Adv. Drug Deliv. Rev. 60, 1241–1251 (2008). 

21. Kim, H., Achermann, M., Balet, L. P., Hollingsworth, J. A. & Klimov, V. I. Synthesis and 
characterization of Co/CdSe core/shell nanocomposites: Bifunctional magnetic-optical 
nanocrystals. J. Am. Chem. Soc. 127, 544–546 (2005). 

22. Pamme, N. & Wilhelm, C. Continuous sorting of magnetic cells via on-chip free-flow 
magnetophoresis. Lab Chip 6, 974–980 (2006). 

23. Whitaker, J. R. et al. Antibody-based enrichment of peptides on magnetic beads for mass-
spectrometry-based quantification of serum biomarkers. Anal. Biochem 1, 44–54 (2007). 

24. Pamme, N. Continuous flow separations in microfluidic devices. Lab Chip 7, 1644–1659 
(2007). 

25. Kojima, T. et al. PCR amplification from single DNA molecules on magnetic beads in emulsion: 
application for high-throughput screening of transcription factor targets. Nucleic Acids Res. 33, 
e150 (2005). 

26. Park, S., Sinha, N. & Hamad-Schifferli, K. Effective Size and Zeta Potential of Nanorods by 
Ferguson Analysis. Langmuir 26, 13071–13075 (2010). 

27. Norde, W. Colloids and Interfaces in Life Sciences. Materials Today 6, (CRC Press, Taylor and 
Francis Group, 2011). 

28. Clogston, J. & Patri, A. in Characterization of Nanoparticles Intended for Drug Delivery SE  - 6 
(ed. McNeil, S. E.) 697, 63–70 (Humana Press, 2011). 

29. Park, S. & Hamad-Schifferli, K. Evaluation of Hydrodynamic Size and Zeta-Potential of 
Surface-Modified Au Nanoparticle-DNA Conjugates via Ferguson Analysis. J. Phys. Chem. C 
112, 7611–7616 (2008). 

30. Tinland, B., Pluen, A., Sturm, J. & Weill, G. Persistence Length of Single-Stranded DNA. 
Macromolecules 30, 5763–5765 (1997). 

31. Bustamante, C., Bryant, Z. & Smith, S. B. Ten years of tension: single-molecule DNA 
mechanics. Nature 421, 423–427 (2003). 

32. De las Nieves, F. J., Daniels, E. S. & El-Aasser, M. S. Electrokinetic characterization of highly 
sulfonated polystyrene model colloids. Colloids and Surfaces 60, 107–126 (1991). 

33. Mullen, D. G. et al. A Quantitative Assessment of Nanoparticle Ligand Distributions: 
Implications for Targeted Drug and Imaging Delivery in Dendrimer Conjugates. ACS Nano 4, 
657–670 (2010). 



24 
 

34. Mullen, D. G. & Banaszak Holl, M. M. Heterogeneous Ligand–Nanoparticle Distributions: A 
Major Obstacle to Scientific Understanding and Commercial Translation. Acc. Chem. Res. 44, 
1135–1145 (2011). 

35. Uddayasankar, U., Shergill, R. T. & Krull, U. J. Evaluation of Nanoparticle–Ligand Distributions 
To Determine Nanoparticle Concentration. Anal. Chem. 87, 1297–1305 (2015). 

36. Jin, R., Wu, G., Li, Z., Mirkin, C. A. & Schatz, G. C. What Controls the Melting Properties of 
DNA-Linked Gold Nanoparticle Assemblies? J. Am. Chem. Soc. 125, 1643–1654 (2003). 

37. Geerts, N. & Eiser, E. DNA-functionalized colloids: Physical properties and applications. Soft 
Matter 6, 4647 (2010). 

38. Jones, M. R., Macfarlane, R. J., Prigodich, A. E., Patel, P. C. & Mirkin, C. A. Nanoparticle 
Shape Anisotropy Dictates the Collective Behavior of Surface-Bound Ligands. J. Am. Chem. 
Soc. 133, 18865–18869 (2011). 

39. Rant, U. et al. Excessive counterion condensation on immobilized ssDNA in solutions of high 
ionic strength. Biophys. J. 85, 3858–64 (2003). 

40. Steinbock, L. J., Stober, G. & Keyser, U. F. Sensing DNA-coatings of microparticles using 
micropipettes. Biosens. Bioelectron. 24, 2423–7 (2009). 

41. Gagnon, Z., Senapati, S. & Chang, H.-C. Optimized DNA hybridization detection on 
nanocolloidal particles by dielectrophoresis. Electrophoresis 31, 666–671 (2010). 

42. Russell, A. J., Del Bonis-O’Donnell, J. T., Wynne, T. M., Napoli, M. T. & Pennathur, S. 
Separation behavior of short single- and double-stranded DNA in 1 micron and 100 nm glass 
channels. Electrophoresis 35, 412–418 (2014). 

43. Devasenathipathy, S., Santiago, J. G. & Takehara, K. Particle Tracking Techniques for 
Electrokinetic Microchannel Flows. Anal. Chem. 74, 3704–3713 (2002). 

44. Kozak, D. et al. Simultaneous size and ζ-potential measurements of individual nanoparticles in 
dispersion using size-tunable pore sensors. ACS Nano 6, 6990–6997 (2012). 

45. Kozak, D., Anderson, W., Vogel, R. & Trau, M. Advances in Resistive Pulse Sensors: Devices 
bridging the void between molecular and microscopic detection. Nano Today 6, 531–545 
(2011). 

46. Roberts, G. S. et al. Tunable nano/micropores for particle detection and discrimination: 
scanning ion occlusion spectroscopy. Small 6, 2653–8 (2010). 

47. Roberts, G. S. et al. Tunable pores for measuring concentrations of synthetic and biological 
nanoparticle dispersions. Biosens. Bioelectron. 31, 17–25 (2012). 

48. Sowerby, S. J., Broom, M. F. & Petersen, G. B. Dynamically resizable nanometre-scale 
apertures for molecular sensing. Sensors Actuators B Chem. 123, 325–330 (2007). 

49. Vogel, R. et al. Quantitative sizing of nano/microparticles with a tunable elastomeric pore 
sensor. Anal. Chem. 83, 3499–3506 (2011). 

50. Willmott, G. R. et al. Use of tunable nanopore blockade rates to investigate colloidal 
dispersions. J. Phys. Condens. Matter 22, 454116 (2010). 



25 
 

51. Blundell, E. L. C. J., Mayne, L. J., Billinge, E. R. & Platt, M. Emergence of tunable resistive 
pulse sensing as a biosensor. Anal. Methods Advance Ar, 1–12 (2015). 

52. Willmott, G. R., Platt, M. & Lee, G. U. Resistive pulse sensing of magnetic beads and 
supraparticle structures using tunable pores. Biomicrofluidics 6, 14103–1410315 (2012). 

53. Kozak, D., Anderson, W., Vogel, R. & Chen, S. Simultaneous size and ζ-potential 
measurements of individual nanoparticles in dispersion using size-tunable pore sensors. 
ACS … 6, 6990–6997 (2012). 

54. Vogel, R., Anderson, W., Eldridge, J., Glossop, B. & Willmott, G. A variable pressure method 
for characterizing nanoparticle surface charge using pore sensors. Anal. Chem. 84, 3125–
3131 (2012). 

55. Eldridge, J. a., Willmott, G. R., Anderson, W. & Vogel, R. Nanoparticle ζ-potential 
measurements using tunable resistive pulse sensing with variable pressure. J. Colloid 
Interface Sci. 429, 45–52 (2014). 

56. Arjmandi, N., Van Roy, W., Lagae, L. & Borghs, G. Measuring the electric charge and zeta 
potential of nanometer-sized objects using pyramidal-shaped nanopores. Anal. Chem. 84, 
8490–8496 (2012). 

57. Hunter, R. J. Zeta Potential in Colloid Science: Principles and Applications. (Academic Press: 
London, 1981). 

58. Overbeek, J. T. G. & Wiersema, P. H. in Electrophoresis: Theory, Methods and Applications 
(ed. Bier, M.) 1–52 (Academic Press: New York, 1967). 

59. Willmott, G. R. & Parry, B. E. T. Resistive pulse asymmetry for nanospheres passing through 
tunable submicron pores. J. Appl. Phys. 109, (2011). 

60. Henry, D. C. The Cataphoresis of Suspended Particles, Part 1: The equation of cataphoresis. 
(Proc. Roy. Soc., 1931). 

61. Daiguji, H., Yang, P. & Majumdar, A. Ion Transport in Nanofluidic Circuits. Nano Lett. 4, 47405 
(2004). 

62. Smith, S. B., Cui, Y. & Bustamante, C. Overstretching B-DNA: the elastic response of 
individual double-stranded and single-stranded DNA molecules. Science 271, 795–799 (1996). 

63. Record, M. T., Anderson, C. F. & Lohman, T. M. Thermodynamic analysis of ion effects on the 
binding and conformational equilibria of proteins and nucleic acids: the roles of ion association 
or release, screening, and ion effects on water activity. Q. Rev. Biophys. 11, 103–178 (1978). 

64. Rao, A. & Grainger, D. Biophysical properties of nucleic acids at surfaces relevant to 
microarray performance. Biomater. Sci. 436–471 (2014). doi:10.1039/c3bm60181a 

65. Booth, M. A., Vogel, R., Curran, J. M., Harbison, S. & Travas-Sejdic, J. Detection of target-
probe oligonucleotide hybridization using synthetic nanopore resistive pulse sensing. Biosens. 
Bioelectron. 45, 136–40 (2013). 

66. Hidalgo-Álvarez, R. et al. Electrokinetic properties, colloidal stability and aggregation kinetics 
of polymer colloids. Adv. Colloid Interface Sci. 67, 1–118 (1996). 

67. Southern, E., Mir, K. & Shchepinov, M. Molecular interactions on microarrays. Nat. Genet. 21, 
S5–S9 (1999). 



26 
 

68. Huang, E., Satjapipat, M., Han, S. & Zhou, F. Surface structure and coverage of an 
oligonucleotide probe tethered onto a gold substrate and its hybridization efficiency for a 
polynucleotide target. Langmuir 17, 1215–1224 (2001). 

69. Peterson, A., Heaton, R. & Georgiadis, R. The effect of surface probe density on DNA 
hybridization. Nucleic Acids Res. 29, 5163–5168 (2001). 

70. Randeria, P. S. et al. What Controls the Hybridization Thermodynamics of Spherical Nucleic 
Acids? J. Am. Chem. Soc. 137, 3486–3489 (2015). 

71. Wong, I. Y. & Melosh, N. A. An Electrostatic Model for DNA Surface Hybridization. Biophys. J. 
98, 2954–2963 (2010). 

72. Valignat, M.-P., Theodoly, O., Crocker, J. C., Russel, W. B. & Chaikin, P. M. Reversible self-
assembly and directed assembly of DNA-linked micrometer-sized colloids. Proc. Natl. Acad. 
Sci. U. S. A. 102, 4225–4229 (2005). 

73. Shen, G. et al. Charging behavior of single-stranded DNA polyelectrolyte brushes. J. Am. 
Chem. Soc. 128, 8427–8433 (2006). 

74. Halperin, A., Buhot, A. & Zhulina, E. B. On the hybridization isotherms of DNA microarrays: the 
Langmuir model and its extensions. Journal of Physics: Condensed Matter 18, S463–S490 
(2006).  

 

 


