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Particle-core model for transverse dynamics of beam halo
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The transverse motion of beam halo particles is described by a particle-core model which uses the
space-charge field of a continuous cylindrical oscillating beam core in a uniform linear focusing channel
to provide the force that drives particles to large amplitudes. The model predicts a maximum amplitude
for the resonantly-driven particles as a function of the initial mismatch. We have calculated these
amplitude limits and have estimated the growth times for extended-halo formation as a function of
both the space-charge tune-depression ratio and a mismatch parameter. We also present formulas for
the scaling of the maximum amplitudes as a function of the beam parameters. The model results are
compared with multiparticle simulations and we find very good agreement for a variety of initial particle
distributions. [S1098-4402(98)00022-6]

PACS numbers: 29.17.+w, 29.27.Bd, 41.75.– i

I. INTRODUCTION

High-intensity charged-particle beams can develop ex-
tended low-density halos; examples of such halos have
been observed at the output of the LANSCE proton linac
[1] and have also been studied experimentally [2]. The
existence of halos can have serious consequences in par-
ticle accelerators. If halo particles are lost in the accelera-
tor, they may induce radioactivity. For the next generation
of high intensity proton linac projects, such as accelerator
production of tritium [3], it is necessary to obtain a more
quantitative understanding of the physics of the halo.

Multiparticle simulation studies of round beams in uni-
form linear focusing channels have provided some use-
ful physical insights into the dynamics of high-current
beams. For a nonequilibrium beam injected with the cor-
rectly matched rms size, the initial distribution relaxes
with accompanying emittance growth over a time of only
about one quarter plasma period to a quasiequilibrium
state with an approximately uniform central core in real
space and with an edge that falls off over a distance
approximately equal to the Debye length [4]. The rela-
tive sizes of the central core and the Debye edge de-
pend on whether the beam is emittance or space-charge
dominated. In the extreme space-charge limit the Debye
edge approaches zero and the spatial density is uniform,
whereas in the emittance-dominated limit the profile is
dominated by the Debye edge and a spatial density that
is approximately Gaussian [5]. In numerical simulations
of rms-mismatched beams for both uniform and periodic
channels, a tail develops that is much more extended and
more densely populated [6–10] than the Debye tail of a
matched beam. The simulation results have suggested
a simple particle-core model to describe a mismatched
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beam. In the model the central charge distribution, or
core, oscillates as a consequence of the initial mismatch,
and particles, including those in the initial Debye edge,
are represented by single test particles that interact with
the external focusing force and with the time-dependent
space-charge field of the core [11,12]. Various aspects
of the particle-core model have been studied at several
laboratories [13–24]. Perhaps the most significant result
obtained from an analytic solution of the model equations
[12] has been the discovery that the interaction between
the particles and the core results in a parametric resonance
that is effective in driving some particles to large ampli-
tudes, and this process is sufficient to account for the halo
that is observed in the simulations.

In a typical proton linac after the beam is bunched, the
bunches formed have an approximately spheroidal shape
with a longitudinal to transverse aspect ratio that ranges
from near 1 (spherical) to 3 or 4. To model the transverse
dynamics for beams where the bunch length is several
times larger than the radius, we use the simple particle-
core model based on transverse particle motion in the
space-charge field of a continuous cylindrical beam core
whose radius also oscillates because of a mismatch. We
have also studied a particle-core model for a spherical
bunch [20,21], and the results are qualitatively similar
to those that will be presented here; these results will
be the subject of a later paper. In the model the space-
charge field of the core is approximated by replacing the
unknown beam distribution with that of an equivalent-
uniform beam, where the equivalent beam has the same
rms size as the actual beam. We find that the model
results are not sensitive to the detailed choice of the core-
density distribution.

Several aspects of the particle-core model will be
emphasized in this paper that have not been given as
much attention in previous work. First, we are interested
in obtaining numerical results that are useful for linac
design work and for comparison with particle simulations.
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Therefore, we solve the nonlinear equations of the model
by numerical integration. Second, we note that for
practical equilibrium distributions in accelerators with
linear focusing forces, excluding the singular Kapchinsky-
Vladimirsky (K-V) distribution and excluding the extreme
space-charge limit, a tail exists at the beam edge that
will usually extend into the region of influence of the
resonance. For these beams, K-V core instabilities are
not required to explain the existence of particles near
the core that can be resonantly excited, although if
such instabilities are present [18,19,21], they could feed
additional particles into the tail. Thus, we use the model
to represent a beam whose initial density distribution
includes particles that populate a finite size Debye tail,
and the fraction of those particles that are included within
the region of influence of the resonance will end up in
the halo. Third, we emphasize the model prediction of a
maximum amplitude for the resonantly-driven particles as
a function of the mismatch, and we identify this maximum
amplitude as the maximum size of the halo. Finally, we
find that the maximum amplitude is proportional to the
matched rms beam size, and using the analytic solution
relating the rms size of the beam core to the current,
emittance, and focusing strength, we obtain a scaling
formula for the size of the transverse beam halo.

II. PARTICLE-CORE MODEL

Consider a round continuous beam propagating in a
uniform beam transport system with azimuthal symmetry
and a linear radial focusing force; such a transport system
can be used to represent the average or smoothed behavior
of a beam in a quadrupole focusing channel. The central
beam core will be assumed to have a uniform spatial
density and will be described by the envelope equation.
An arbitrary beam particle will experience an external
focusing force and a space-charge force, which we will
calculate by assuming that the particle interacts only
with the core. We approximate the transverse space-
charge force by assuming that the core is an infinitely
long uniform cylinder of charge, whose radius oscillates
because of an initial mismatch. The space-charge force is
linear when the particle is inside the core and nonlinear
when outside. We ignore any influence of an individual
particle on the motion of the core.

The above assumptions lead to the following model.
The transverse equation of motion of the core-radius R is
given as a function of axial coordinate z by

d2R

dz2
1 k2

0R 2
´2

R3
2

K

R
 0 , (1)

where the focusing force is represented by k0, which
is also the wave number or phase advance per unit
length of the transverse particle oscillations at zero cur-
rent, K  qIy2p´0mc3b3g3, where q, m, and bc are
the charge, mass, and axial velocity of the particles, re-

spectively, g is the relativistic Lorentz factor, I is the
beam current (charge per unit length times axial speed),

´  4

q

X2 X 02 2 XX 02, where X 0
 dXydz and the bar

indicates an average over the distribution, is the total
unnormalized emittance, c is the speed of light, and
´0 is the permeability of free space. For a matched
beam in a uniform focusing channel, d2Rydz2

 0,
and the matched-beam radius is given by R2

 R
2
0 

s´yk0d fu 1
p

1 1 u2 g, where u  Ky2´k0 is a dimen-
sionless space-charge parameter. If the initial radius is
unequal to the matched value R0, d2Rydz2 fi 0 and for
a round beam a symmetric breathing mode is excited, re-
sulting in oscillations in the radius. The transverse equa-
tion of motion of a single particle moving radially in the
field of the uniform core is

d2X

dz2
1 k2

0X 2 Fsc  0 , (2)

where X is the radial displacement and Fsc is the space-
charge term given for a uniform density by

Fsc 

Ω

KXyR2, jXj , R

KyX, jXj $ R
. (3)

The net focusing force including the space-charge term
for a particle that always remains within the core is
represented by the wave number k, given by k2

 k
2
0 2

k2
py2, where k2

p  2KyR
2
0 is the square of the plasma

wave number. The core breathing-mode wave number kc

can be expressed as k2
c  2k

2
0 1 2k2

 4k2 1 k2
p .

For the matched case, the core radius is constant,
and there is no net change in particle energy averaged
over a complete period of the particle motion. For the
mismatched case, the core radius oscillates, and particles
can either gain or lose energy with each transit through
the core. The particles experience a nonlinear force
proportional to KyX when they are spatially outside the
core and from Gauss’s law this force is independent of
the instantaneous size of the core. When the particles
pass through the core, they are decelerated by the space-
charge force as they approach the core, and accelerated
by the space-charge force as they leave the core. The
net space-charge impulse delivered to the beam may be
described as the sum of a core-entrance contribution plus
a core-exit contribution. These impulses may be either
diminished or enhanced relative to the matched case,
depending on whether the core radius is larger or smaller
than the equilibrium value at the time the particle passed
through. For example, if a particle enters the core when
its radius is larger than the matched value and exits when
the radius is smaller than the matched value, a net energy
impulse is delivered to the particle. Gluckstern [12] has
shown that this motion can be described by a nonlinear
parametric resonance; the particles resonate with the core
motion when the particle wave number n is related to
the core breathing-mode wave number kc by kc  2n.
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Note that n  k for particles that always remain within
the core, and n . k for particles with amplitude larger
than the core radius. For nonzero beam current, one can
show that the resonance condition is satisfied only when
n . k, i.e., for particles with amplitudes larger than the
core radius. The decrease of the space-charge field with
displacement experienced by particles that are outside the
core produces an increase of the wave number n with
amplitude so that the kc  2n resonant condition cannot
be maintained as the amplitude increases; this effect limits
the resonant amplitude growth.

The two model equations, Eqs. (1) and (2), can be con-
verted to dimensionless form by introducing the following
variables: r  RyR0, x  XyR0, and t  k0z. We ex-
press the in-core space-charge tune-depression ratio for

the particles as h  kyk0 

p
1 1 u2 2 u. The dimen-

sionless equation of motion of the core becomes

d2r

dt2
1 r 2

h2

r3
2

1 2 h2

r
 0 , (4)

and the dimensionless single-particle equation is

d2x

dt2
1 x 2 s1 2 h2d 3

Ω

xyr2, jxj , r

1yx, jxj $ r
. (5)

Equations (4) and (5) depend only on the single pa-
rameter h. The matched core corresponds to r  1.
The divergence x0 in dimensionless coordinates becomes
x0

 dxydt  X 0yk0R0, and the emittance ´ in dimen-
sionless coordinates becomes h  ´yk0R

2
0 . To describe

the mismatch of the core radius we need a second parame-
ter, which we define as a mismatch parameter equal to
the initial core radius m  rinitial, where the initial phase-
space ellipse is assumed to be upright.

III. GRAPHICAL PRESENTATION OF

SOLUTIONS

The differential equations, (4) and (5), for the evolution
of the core radius and the trajectory of a single particle can
be numerically integrated as functions of h and m. We
have integrated these equations numerically for different
initial conditions and use three methods to display the
results of particle motion: 1) plot the particle trajectory x

versus time t, 2) display the continuous particle trajectory
in phase space from t  0 to some time t, and 3) show
a stroboscopic phase-space map of a particle trajectory
or an array of particle trajectories. The stroboscopic
method accumulates many snapshots of phase space
taken periodically at some specified phase of the core
oscillation. The stroboscopic map is useful as a method
for displaying regions in phase space where classes of
trajectories can be identified. Using the stroboscopic
map, resonance regions surround stable fixed points, and
regions of chaos appear as a random scatter of points.

First, we show in Figs. 1–3 the three plots for the case
with h  0.5 and an initial dimensionless core radius
r  m  0.62, which corresponds to a maximum radius

FIG. 1. (Color) Displacement versus time for a particle tra-
jectory with initial coordinates x  0.77, x0

 0, and with
m  0.62 and h  0.5.

r  1.5. We show x versus t in Fig. 1, the continuous
phase-space plot in Fig. 2, and the stroboscopic plot taken
when the core radius is at its minimum value in Fig. 3, all
for a particle with initial coordinates x  0.77 and x0



0, which is within the region of the parametric resonance.
The amplitude of this orbit varies from a minimum of 0.77
to a maximum of 2.73. Our choice of the strobe phase,
when the core has its minimum radius, corresponds to the
time at which the resonant orbits reach their maximum
displacements. The maximum of the orbits within the
core occurs when the core is at its maximum radius.

Next, we show stroboscopic maps for an initial array
of 32 particle coordinates uniformly distributed along the
positive horizontal and vertical axes, again at a core-
oscillation phase that corresponds to the minimum core
radius. Figures 4–8 show the stroboscopic plots for a
mismatch parameter m  0.62 and for h  0.1 0.9 in
steps of 0.2, all taken at the time when the core radius
is minimum. Recall that h  0.1 is a space-charge–
dominated beam and h  0.9 is an emittance-dominated
beam. A separatrix with inner and outer branches defines
three different regions. First are the quasielliptical curves

FIG. 2. (Color) Continuous plot of x versus t in phase space
for a particle with initial coordinates x  0.77, x0

 0, and
with m  0.62 and h  0.5.
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FIG. 3. (Color) Stroboscopic plot for a particle trajectory with
initial coordinates x  0.77, x0

 0, and with m  0.62 and
h  0.5. The points are plotted once per core oscillation
at the time when the core radius is minimum. These points
correspond to more core cycles than those in Fig. 2.

near the center, including the beam core radius at r 

0.62, and a small region between the core boundary
and the inner separatrix. Second are the two regions
of concentric curves centered on the stable fixed points
symmetrically located on the x axis. These regions
display the parametric resonance trajectories. Finally,
there are families of quasielliptical trajectories outside
the outer separatrix. For small h # 0.3, breakdown
of the separatrix is clearly observed with associated
stochastic behavior; the stochastic regime grows as h

decreases. In this parameter region the motion of the
trajectories near the separatrix becomes very sensitive
to the initial conditions. For small h the stochastic
behavior replaces the regular trajectories between the core
boundary and the inner separatrix. Stroboscopic plots
have been made over the range between m  1.1 and 3.0.
The qualitative appearances of these plots are similar to
those at m  0.62 (or 1.5). The areas occupied by the
parametric resonance increase with increasing m, although

FIG. 4. (Color) Stroboscopic plot for mismatch parameter m 

0.62 and tune-depression ratio h  0.1 for the uniform-
density core.

FIG. 5. (Color) Stroboscopic plot for mismatch parameter m 

0.62 and tune-depression ratio h  0.3 for the uniform-
density core.

the positions of the stable fixed points are insensitive to
m; thus, the amplitude variation of the resonant orbits
increases as the mismatch parameter m deviates from
unity.

Figure 9 shows the stroboscopic plot for m  0.62 and
h  0.5, obtained by replacing the uniform-density core
with that of a Gaussian core. Outside the core region,
this plot looks very similar to that for the uniform core
shown in Fig. 6. The similarity of Figs. 6 and 9 suggests
that for resonant partices, the single-particle dynamics are
insensitive to the details of the core-density distribution
used in the model.

Next, we present our interpretation of the model and
its relation to beam halo. We assume that most of the
particles that form the halo in the real beam are those
that initially populate the Debye edge of the beam that
lies outside the inner separatrix and inside the resonance
region of the stroboscopic plot. Because the density of
the real beam decreases with increasing amplitude, most
of these particles will initially lie near the inner separatrix.
After some time these particles will be driven outwards

FIG. 6. (Color) Stroboscopic plot for mismatch parameter m 

0.62 and tune-depression ratio h  0.5 for the uniform-
density core.
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FIG. 7. (Color) Stroboscopic plot for mismatch parameter m 

0.62 and tune-depression ratio h  0.7 for the uniform-
density core.

to the outer separatrix and will thereafter cycle back and
forth bounded by the two separatrices. Eventually, after
enough phase mixing, these particles form the halo that
will be distributed throughout the resonance region, and
the outer separatrix will define a maximum amplitude for
the halo. This picture is an approximation for at least two
reasons. First, if the core distribution is not stable, some
particles that are initially within the core may increase the
number of particles in the halo. This would be an effect
that is beyond the scope of the model, which assumes
a fixed core distribution. We find that an unstable core
does occur for a K-V beam, as shown in Sect. V, and has
been studied by Gluckstern et al. [18,19,21]. Even for
these particles we find from simulation that the maximum
amplitude is still limited by the outer separatrix. Second,
the edge of a real beam may also extend outward across
the unstable fixed points on the velocity axis of the
stroboscopic plots and produce an initial population of
the focusing-dominated region. These particles would
have a larger maximum amplitude than that defined by
the outer separatrix. Because the particle distribution is

FIG. 8. (Color) Stroboscopic plot for mismatch parameter m 

0.62 and tune-depression ratio h  0.9 for the uniform-
density core.

decreasing strongly with increasing transverse velocity,
we expect that the corresponding amplitude increase will
be small. Consequently, we will assume that the main
source of the beam halo is associated with those particles
that are initially within the spatial Debye edge of the beam
and that lie initially within the resonance region. These
particles will be limited by the outer separatrix, which we
will associate with the maximum amplitude of the halo.
Later, we will test the maximum amplitude predictions by
comparison with numerical simulation.

IV. CHARACTERISTICS OF RESONANT

TRAJECTORIES

In the previous section we have seen that orbits in
the region of the parametric resonance can undergo large
changes in amplitude, and we have argued that these
particles constitute the majority of the halo. Figure 10 for
m  1.1 and Fig. 11 for m  1.5 show the values of four
important parameters that characterize the stroboscopic
plots for the uniform-density core as a function of the
tune-depression ratio h. Shown are the minimum core
radius rmin, the coordinate of the stable fixed point xs, and
the minimum and maximum values, xmin and xmax, of the
intercepts of the separatrix with the x axis. From Figs. 10
and 11 we see that the values of these dimensionless
parameters are very insensitive to h. As the mismatch
parameter m deviates further from unity, the difference
between xmin and rmin decreases, suggesting that the
number of particles in the halo should increase, and the
difference between xmax and xmin increases, suggesting
that the amplification of the halo amplitude increases.

We can use the model to estimate approximate growth
times of the resonant amplitudes that determine the
halo. Assuming that the resonance region of stroboscopic
phase space nearest the core is initially populated with
particles, we are interested in the time it takes for particle
amplitudes to grow to a value near xmax. However,

FIG. 9. (Color) Stroboscopic plot obtained by replacing the
uniform-density core with a Gaussian-density core of the same
rms size. The plot is shown for mismatch parameter m  0.62

and tune-depression ratio h  0.5.
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FIG. 10. (Color) Four parameters that characterize the strobo-
scopic plots as a function of the tune-depression ratio h for
m  1.1. Shown are the minimum core radius rmin, the co-
ordinate of the stable fixed point xs, and the minimum and
maximum values of the intercepts of the separatrix with the x
axis, xmin and xmax, respectively.

because the net restoring force is nonlinear, this time
will depend on the amplitude and will be expected to
increase as the initial coordinate approaches the inner
separatrix. To estimate the time scale for the growth,
we have numerically calculated the period for amplitude
growth from the minimum to the maximum value, for
small initial deviations from the stable fixed point, where
the period is nearly independent of the initial deviation.
These small amplitude results are plotted in units of
core-oscillation cycles in Fig. 12 for mismatch parameters
m  1.1, 1.5, and 2.0. Generally, the model predicts
that these growth times are insensitive to the mismatch
parameter m but increase strongly with tune depression
h for large h. Comparisons of these growth times from
the model to numerical simulation results show that the
results in Fig. 12 are of the correct order of magnitude

FIG. 11. (Color) Four parameters that characterize the strobo-
scopic plots as a function of the tune-depression ratio h for
m  1.5. Shown are the minimum core radius rmin, the co-
ordinate of the stable fixed point xs, and the minimum and
maximum values of the intercepts of the separatrix with the x
axis, xmin and xmax, respectively.

but, for most cases, agree to within only about a factor
of 2. The halo growth times from the simulations depend
on the initial particle distribution and are often difficult to
define in an unambiguous way.

V. COMPARISON OF THE MODEL WITH

MULTIPARTICLE SIMULATIONS

We have compared the maximum amplitude predictions
of the model with numerical simulation using 104 particles
per run. Two space-charge codes were used; one uses
Gauss’s law to calculate the space-charge fields in a cylin-
drical geometry, and the other, called SCHEFF, which is
widely used for linac simulation studies, is based on a
particle-in-cell method [25]. Several initial distributions
were used, including Gaussian in both position and ve-
locity space (truncated at 3s), semi-Gaussian (uniform in
space and Gaussian in velocity space), and 4D Waterbag
(uniformly filled ellipsoid in 4D phase space). For each
case we have carried out a set of runs varying the initial
mismatch parameter m. After the beam sizes were set for
a given mismatch parameter, the velocities were scaled to
produce the same emittance as for the matched case.

In Figs. 13 and 14 the ratio of the maximum particle
amplitude from simulation to the rms size of the matched
beam is plotted versus the mismatch parameter m; the
lower and upper curves in Fig. 13 are for tune-depression
ratios of h  0.5 and 0.9. The simulations were run for
at least 100 plasma periods, sufficient for the amplitudes
to reach an apparent asymptotic value. A typical high-
power proton linac may contain a few hundred plasma
periods.

The maximum amplitudes from the different space-
charge codes and for all the distributions agree very well
with each other and with the cylinder particle-core model.
The insensitivity of the maximum amplitude to the
initial particle distribution observed in the simulations is

FIG. 12. (Color) Time in core-oscillation cycles for amplitude
growth from the minimum to the maximum value for small
initial deviations from the stable fixed point, plotted versus
the tune depression h for mismatch parameters m  1.1, 1.5,
and 2.0.
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FIG. 13. (Color) Multiparticle simulations comparing the
particle-core model with the Gauss-law space-charge code for
a round beam in a uniform-focusing channel. The ratio of
the maximum amplitude to the matched rms size is plotted
versus the mismatch parameter m. The lower and upper curves
are from the particle-core model for tune-depression ratios of
h  0.5 and 0.9, respectively. The solid and open symbols
are for the initial Gaussian and semi-Gaussian distributions,
respectively, and the circles and squares are for tune-depression
ratios of h  0.5 and 0.9.

consistent with the results shown earlier that the particle-
core model predictions are insensitive to the choice of
uniform- or Gaussian-core distributions.

Figure 15 shows particle simulation results from the
Gauss-law space-charge routine for a mismatched K-V
beam having the same parameters as Fig. 6. Although
the initial distribution has the property that it is uniform
in phase space, it is unstable for the parameters chosen,
and the resulting phase space of Fig. 15 is highly nonuni-
form. The curve bounding the distribution in Fig. 15 lies
just outside the outer separatrix shown in Fig. 6. Thus,
even for an unstable core, the maximum particle ampli-

FIG. 14. (Color) Multiparticle simulations comparing the
particle-core model (curve) with the Gauss (circles) and
SCHEFF (squares) space-charge codes for a tune-depression
ratio of h  0.5. The ratio of the maximum amplitude to the
matched rms size is plotted versus the mismatch parameter m.
The initial distribution is a 4D Waterbag.

tude from simulation is in excellent agreement with the
maximum amplitude from the particle-core model.

VI. SCALING OF BEAM HALO AMPLITUDES

We find that the normalized maximum particle ampli-
tude curves from the model, shown in Figs. 13 and 14, are
well described over the useful range of tune-depression ra-
tios by an approximate empirical formula

xmaxya  A 1 Bj lnsmdj , (6)

where xmax is the maximum resonant-particle amplitude,
a  R0y2 is the matched core rms size, and A and B

are weak functions of the tune-depression ratio, approxi-
mately given by A  B  4 [20]. Equation (6) is not a
good approximation for values of m very near 1, where at
m  1, xmaxya  2. Based on Eq. (6), we obtain simple
scaling formulas for the maximum particle amplitudes
of the mismatched beam. The space-charge parameter
introduced in Sect. II can be written as

u 

qI

16p´0mc2g2bk0,f´n,rms

. (7)

The parameters appearing in Eq. (7) include the average
beam current I for a string of bunches with bunch
frequency f, the total bunch length ,, and normalized rms
input emittance ´n,rms  bg´y4. The average current
is related to the number of particles per bunch N and
the bunch frequency f by I  qNf. The particle-core
model for an rms-mismatched beam predicts that the halo
particles produced by the resonance have a maximum
amplitude for a given mismatch. From Eq. (6), the
numerical solution predicts that the maximum amplitude
is proportional to the matched rms size a of the core
given by

a2


´n,rms

k0bg
f
p

1 1 u2 1 ug . (8)

FIG. 15. Beam phase space from a 2 3 106 particle simula-
tion of an initial K-V distribution. The outer peanut-shaped
curve lies just outside the outer separatrix of the particle-core
model shown in Fig. 6.

084201-7 084201-7



PRST-AB 1 T. P. WANGLER et al. 084201 (1998)

In the space-charge dominated limit, when u ¿ 1, the
rms beam size is

a2 >
2´n,rmsu

k0bg


qI

8p´0mc2g3b2,fk
2
0

, (9)

which is independent of the input emittance. Substituting
the result of Eq. (9) into Eq. (6), the model predicts that,
for a given value of m, the maximum transverse halo
amplitude increases with increasing beam current and
with decreasing frequency, bunch length, and focusing
strength. The emittance-dominated limit corresponds to
u ø 1, and we find

a2 >
´n,rms

k0bg

"

1 1
qI

16p´0mc2g2b,fk0´n,rms

#

. (10)

In this limit the second term is much less than unity, and
the model predicts that the maximum amplitude increases
mainly with increasing emittance and with decreasing
focusing strength.

VII. SUMMARY

The particle-core model describes the transverse dynam-
ics of particles in a beam halo. We use the model to rep-
resent a beam whose initial density distribution includes
particles that populate a finite size Debye tail at the edge
of the beam. The particle-core model makes quantitative
predictions about the halo that is formed from the reso-
nant interaction between individual particles in the tail and
a mismatch-induced core oscillation. We have expressed
the model in a dimensionless form and have solved the
nonlinear equations of the model by numerical integra-
tion. Over a wide range of mismatch parameter values,
the results expressed in dimensionless form are remarkably
insensitive to the tune depression and to the core-density
distribution. The exception to this is the growth rate of
the halo which, for large values of h, depends strongly
on the tune depression, increasing with increasing h as
the beam becomes more emittance dominated, as shown in
Fig. 12. The model predicts that the halo will be limited
to a maximum amplitude, which depends on the magni-
tude of the mismatch parameter. The simulation results,
using two different space-charge codes and three different
initial particle distributions, agree well with the model pre-
dictions for the maximum amplitude. We have obtained
a scaling formula for the maximum amplitude and have
shown that for a given beam current and energy, the maxi-
mum transverse amplitude is reduced by stronger focusing,
higher frequency, longer bunch length, and smaller input
emittance.

For small values of the tune-depression ratio, h , 0.3,
stochastic behavior is observed, which begins along the
separatrix and grows with decreasing h. The main effect
of the chaos is not so much to increase the maximum
halo amplitude, but to reduce the spacing between the core
radius and the inner separatrix. Qualitatively, this can be
expected to increase the population of the halo.

Now let us briefly review the assumptions and limita-
tions of the model. The particle-core model is a simple
approximation for the evolution of particles in an rms-
mismatched beam. To use the model, one integrates the
equations of motion of test particles moving in the field of
an rms-mismatched core; the core itself is modeled by in-
tegrating the rms envelope equations. We assume that the
form of the core distribution function does not change and
that the core emittance does not change. In a real beam
other collective modes in addition to the breathing mode,
and other resonances of the particle-core system, may also
be present. Charge redistribution in the core may rapidly
change the core distribution, an effect that is not included
in this non-self-consistent treatment of the core. The com-
plexity of the real situation has been described elsewhere in
terms of turbulence models of beam halo [26,27]. Never-
theless, the good agreement of our model with the numeri-
cal simulations suggests that this added complexity has a
minor effect on the maximum resonant amplitude. We be-
lieve that the particle-core model includes the main reso-
nant mechanism that explains how particles in the initial
tail of a realistic beam distribution can be driven to larger
amplitudes to form a halo. We find that the basic struc-
ture of the separatrix in the stroboscopic phase-space plots
of the model is nearly the same for both a uniform and a
Gaussian core, which suggests that the halo dynamics de-
scribed by the model is a general property of a mismatched
beam that is insensitive to the shape of the core distribu-
tion and is not an artifact of any particular core distribution.
For most realistic beam distributions, an initial tail exists
at the edge of the beam that can easily extend beyond the
inner separatrix into the resonance region of the strobo-
scopic phase-space plot; particles that lie within this outer
tail will be resonantly driven to larger amplitudes to form
the halo. For the special cases of a K-V distribution or an
equilibrium distribution in the extreme space-charge limit,
the beam has a uniform cross section with no initial tail. In
those cases, an additional mechanism is required to explain
how the particles cross the inner separatrix, after which, a
halo will develop because of the resonance [28]; such an
additional mechanism may involve other collective modes.
In this paper we have studied transverse dynamics under
the assumption that the external focusing force is linear.
When we track large amplitude particles beyond the outer
separatrix, we see bounded betatronlike motion in a field
dominated by the linear focusing field. The longitudinal
dynamics for a bunched beam, which is not treated by our
model, is being studied using a similar particle-core model
based on a spheroidal bunch geometry [22,28]. The in-
clusion of nonlinear rf forces in that model may lead to
unbounded motion for some particles.

Once the expected beam mismatch is estimated, the
particle-core model may be used to estimate the maximum
transverse amplitude of the beam halo and a suitable
aperture size can be chosen that will reduce the threat
of beam loss from the halo. In determining the expected
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beam mismatch for a high-current linac design, one must
account for the fact that in a real linac the beam may
be mismatched as a result of a large number of small
parameter errors rather than from a single error as is
described by the particle-core model. Thus, a realistic
determination of the mismatch and the halo amplitude
for a given linac design should be made by doing
multiparticle simulation studies including random errors
based on realistic expectations.
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